1
|
Juri T, Fujimoto Y, Suehiro K, Nishikawa K, Mori T. Participation of the descending noradrenergic inhibitory system in the anti-hyperalgesic effect of acetaminophen in a rat model of inflammation. Life Sci 2021; 286:120030. [PMID: 34627774 DOI: 10.1016/j.lfs.2021.120030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022]
Abstract
AIMS This study investigated the relationship between the analgesic efficacy of acetaminophen and the descending noradrenergic systems using rodent models of inflammatory pain. MAIN METHODS Inflammatory pain models were established by carrageenan injection into rats' paws. The models were defined as acute (4 h after carrageenan injection), subacute (24 h after carrageenan injection), and late (1 week after carrageenan injection) phase. To evaluate intravenous acetaminophen treatment, the withdrawal threshold to mechanical stimuli was assessed simultaneously with in vivo microdialysis assay of noradrenaline levels in the locus coeruleus (LC). Further analyses were performed to observe the effect of yohimbine on the treatment and the impact of AM404 treatment, a metabolite of acetaminophen, on noradrenaline levels in the LC. KEY FINDINGS In all phases, intravenous acetaminophen had a significant anti-hyperalgesic effect (p < 0.05). There was a significant time-dependent increase in the noradrenaline concentration within the LC (acetaminophen versus saline treatment; at 30 min, p < 0.001; 60 min, p < 0.01) in the subacute pain model, but not in the acute and late phase pain models. Intrathecal pre-injection of yohimbine attenuated the anti-hyperalgesic effect after acetaminophen injection only in the subacute model (p < 0.05). In the subacute pain model, intracerebroventricular administration of AM404 showed the same trend in noradrenaline levels as acetaminophen administration (AM404 versus vehicle group at 30 min, p < 0.001). SIGNIFICANCE We found the descending noradrenergic inhibitory system is involved in the antinociceptive action of acetaminophen in the subacute phase of inflammatory pain.
Collapse
Affiliation(s)
- Takashi Juri
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yohei Fujimoto
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Koichi Suehiro
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kiyonobu Nishikawa
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takashi Mori
- Department of Anesthesiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
2
|
Genaro K, Prado WA. The role of the anterior pretectal nucleus in pain modulation: A comprehensive review. Eur J Neurosci 2021; 54:4358-4380. [PMID: 33909941 DOI: 10.1111/ejn.15255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/27/2022]
Abstract
Descending pain modulation involves multiple encephalic sites and pathways that range from the cerebral cortex to the spinal cord. Behavioral studies conducted in the 1980s revealed that electrical stimulation of the pretectal area causes antinociception dissociation from aversive responses. Anatomical and physiological studies identified the anterior pretectal nucleus and its descending projections to several midbrain, pontine, and medullary structures. The anterior pretectal nucleus is morphologically divided into a dorsal part that contains a dense neuron population (pars compacta) and a ventral part that contains a dense fiber band network (pars reticulata). Connections of the two anterior pretectal nucleus parts are broad and include prominent projections to and from major encephalic systems associated with somatosensory processes. Since the first observation that acute or chronic noxious stimuli activate the anterior pretectal nucleus, it has been established that numerous mediators participate in this response through distinct pathways. Recent studies have confirmed that at least two pain inhibitory pathways are activated from the anterior pretectal nucleus. This review focuses on rodent anatomical, behavioral, molecular, and neurochemical data that have helped to identify mediators of the anterior pretectal nucleus and pathways related to its role in pain modulation.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Anesthesiology, University of California, Irvine, CA, USA
| | - Wiliam A Prado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Farahani F, Azizi H, Janahmadi M, Seutin V, Semnanian S. Formalin-induced inflammatory pain increases excitability in locus coeruleus neurons. Brain Res Bull 2021; 172:52-60. [PMID: 33836239 DOI: 10.1016/j.brainresbull.2021.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 11/19/2022]
Abstract
Chronic pain is recognized as an important problem in communities. The locus coeruleus (LC) with extensive ascending and descending projections has a critical role in modulating pain. Some studies indicate how the locus coeruleus-noradrenaline system can remain more active after nociceptive stimulation. In the present study, we examined whether formalin-induced inflammatory pain may affect the electrophysiological properties of LC neurons after 24 h. Inflammatory pain was induced by a subcutaneous injection of 2% formalin (10 μL) into the hind paw of 2-3 week-old male Wistar rats. After 24 h, horizontal slices of brain stem containing the locus coeruleus were prepared and whole-cell patch-clamp recordings were carried out on LC neurons. Findings revealed that LC neurons from formalin injected rats had a significant enhancement in firing rate, half-width and instantaneous frequency of action potentials, but their resting membrane potential, input resistance and afterhyperpolarization amplitude almost remained unchanged. In addition, action potential peak amplitude, maximum rise slope, maximum decay slope, first spike latency and rheobase current significantly decreased in LC neurons obtained from formalin-treated rats. Here, for the first time, we demonstrate that inflammatory pain after 24 h induces hyperexcitability in LC neurons, which in turn may result in changes in noradrenaline release and pain processing.
Collapse
Affiliation(s)
- Fatemeh Farahani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mahyar Janahmadi
- Neuroscience Research Center and Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vincent Seutin
- Neurophysiology Unit, GIGA Neurosciences, University of Liege, Liege, Belgium
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Sakamoto T, Ishio Y, Ishida Y, Mogi K, Kikusui T. Low maternal licking/grooming stimulation increases pain sensitivity in male mouse offspring. Exp Anim 2021; 70:13-21. [PMID: 32741955 PMCID: PMC7887629 DOI: 10.1538/expanim.20-0030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022] Open
Abstract
Deprivation of maternal care has been associated with higher pain sensitivity in offspring. In the present study, we hypothesized that the maternal licking/grooming behavior was an important factor for the development of the pain regulatory system. To test this hypothesis, we used male F2 offspring of early-weaned (EW) F1 mother mice that exhibit lower frequency of licking/grooming behavior. The formalin test revealed that F2 offspring of EW F1 dams showed significantly higher pain behavior than F2 offspring of normally-weaned (NW) F1 dams. We found that the mRNA levels of transient receptor potential vanilloid 1 (TRPV1), a nociceptor, were higher in the lumbosacral dorsal root ganglion (DRG) of F2 offspring of EW F1 dams than those of F2 offspring of NW F1 dams, suggesting that the higher pain sensitivity may be attributed to low licking/grooming, which may result in developmental changes in nociceptive neurons. In the DRG, mRNA levels of Mas-related G-protein coupled receptor B4 (MrgprB4), a marker of sensory neurons that detect gentle stroking, was also up-regulated in the F2 offspring of EW F1 dams. Considering that gentle touch alleviates pain, Mrgprb4 up-regulation may reflect a compensatory change. The present findings indicate important implications of maternal licking/grooming behavior in the development of the pain regulatory system.
Collapse
Affiliation(s)
- Takashi Sakamoto
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Yukino Ishio
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Yuiko Ishida
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
5
|
Cortical Modulation of Nociception. Neuroscience 2021; 458:256-270. [PMID: 33465410 DOI: 10.1016/j.neuroscience.2021.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/28/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Nociception is the neuronal process of encoding noxious stimuli and could be modulated at peripheral, spinal, brainstem, and cortical levels. At cortical levels, several areas including the anterior cingulate cortex (ACC), prefrontal cortex (PFC), ventrolateral orbital cortex (VLO), insular cortex (IC), motor cortex (MC), and somatosensory cortices are involved in nociception modulation through two main mechanisms: (i) a descending modulatory effect at spinal level by direct corticospinal projections or mostly by activation of brainstem structures (i.e. periaqueductal grey matter (PAG), locus coeruleus (LC), the nucleus of raphe (RM) and rostroventral medulla (RVM)); and by (ii) cortico-cortical or cortico-subcortical interactions. This review summarizes evidence related to the participation of the aforementioned cortical areas in nociception modulation and different neurotransmitters or neuromodulators that have been studied in each area. Besides, we point out the importance of considering intracortical neuronal populations and receptors expression, as well as, nociception-induced cortical changes, both functional and connectional, to better understand this modulatory effect. Finally, we discuss the possible mechanisms that could potentiate the use of cortical stimulation as a promising procedure in pain alleviation.
Collapse
|
6
|
Ahmadi-Soleimani SM, Mianbandi V, Azizi H, Azhdari-Zarmehri H, Ghaemi-Jandabi M, Abbasi-Mazar A, Mohajer Y, Darana SP. Coregulation of sleep-pain physiological interplay by orexin system: An unprecedented review. Behav Brain Res 2020; 391:112650. [DOI: 10.1016/j.bbr.2020.112650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
|
7
|
The Neurotoxin DSP-4 Induces Hyperalgesia in Rats that is Accompanied by Spinal Oxidative Stress and Cytokine Production. Neuroscience 2018; 376:13-23. [PMID: 29421433 DOI: 10.1016/j.neuroscience.2018.01.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/30/2022]
Abstract
Central neuropathic pain (CNP) a significant problem for many people, is not well-understood and difficult to manage. Dysfunction of the central noradrenergic system originating in the locus coeruleus (LC) may be a causative factor in the development of CNP. The LC is the major noradrenergic nucleus of the brain and plays a significant role in central modulation of nociceptive neurotransmission. Here, we examined CNS pathophysiological changes induced by intraperitoneal administration of the neurotoxin DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride). Administration of DSP-4 decreased levels of norepinephrine in spinal tissue and cerebrospinal fluid (CSF) and led to the development of thermal and mechanical hyperalgesia over 21 days, that was reversible with morphine. Hyperalgesia was accompanied by significant increases in noradrenochrome (oxidized norepinephrine) and expression of 4-hydroxynonenal in CSF and spinal cord tissue respectively at day 21, indicative of oxidative stress. In addition, spinal levels of pro-inflammatory cytokines (interleukins 6 and 17A, tumor necrosis factor-α), as well as the anti-inflammatory cytokine interleukin10 were also significantly elevated at day 21, indicating that an inflammatory response occurred. The inflammatory effect of DSP-4 presented in this study that includes oxidative stress may be particularly useful in elucidating mechanisms of CNP in inflammatory disease states.
Collapse
|
8
|
Chakraborty S, Elvezio V, Kaczocha M, Rebecchi M, Puopolo M. Presynaptic inhibition of transient receptor potential vanilloid type 1 (TRPV1) receptors by noradrenaline in nociceptive neurons. J Physiol 2017; 595:2639-2660. [PMID: 28094445 DOI: 10.1113/jp273455] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS The transient receptor potential vanilloid type 1 (TRPV1) receptor is a polymodal molecular integrator in the pain pathway expressed in Aδ- and C-fibre nociceptors and is responsible for the thermal hyperalgesia associated with inflammatory pain. Noradrenaline strongly inhibited the activity of TRPV1 channels in dorsal root ganglia neurons. The effect of noradrenaline was reproduced by clonidine and antagonized by yohimbine, consistent with contribution of α2 adrenergic receptors. The inhibitory effect of noradrenaline on TRPV1 channels was dependent on calcium influx and linked to calcium/calmodulin-dependent protein kinase II. In spinal cord slices, clonidine reduced the frequency of capsaicin-induced miniature EPSCs in the presence of tetrodotoxin and ω-conotoxin-MVIIC, consistent with inhibition of presynaptic TRPV1 channels by α2 adrenergic receptors. We suggest that modulation of presynaptic TRPV1 channels in nociceptive neurons by descending noradrenergic inputs may constitute a mechanism for noradrenaline to modulate incoming noxious stimuli in the dorsal horn of the spinal cord. ABSTRACT The transient receptor potential vanilloid type 1 (TRPV1) receptor is a well-known contributor to nociceptor excitability. To address whether noradrenaline can down-regulate TRPV1 channel activity in nociceptors and reduce their synaptic transmission, the effects of noradrenaline and clonidine were tested on the capsaicin-activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons and on miniature (m)EPSCs recorded from large lamina I neurons in horizontal spinal cord slices. Noradrenaline or clonidine inhibited the capsaicin-activated current by ∼60%, and the effect was reversed by yohimbine, confirming that it was mediated by activation of α2 adrenergic receptors. Similarly, clonidine reduced the frequency of capsaicin-induced mEPSCs by ∼60%. Inhibition of capsaicin-activated current by noradrenaline was mediated by GTP binding proteins, and was highly dependent on calcium influx. The inhibitory effect of noradrenaline on the capsaicin-activated current was not affected either by blocking the activity of protein kinase A with H89, or by blocking the activity of protein kinase C with bisindolylmaleimide II. In contrast, when the calcium/calmodulin-dependent protein kinase II (CaMKII) was blocked with KN-93, the inhibitory effect of noradrenaline on the capsaicin-activated current was greatly reduced, suggesting that activation of adrenergic receptors in DRG neurons is preferentially linked to CaMKII activity. We suggest that modulation of TRPV1 channels by noradrenaline in nociceptive neurons is a mechanism whereby noradrenaline may suppress incoming noxious stimuli at the primary synaptic afferents in the dorsal horn of the spinal cord.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA.,Present address: Department of Biochemistry, Rush University Medical Center, Cohn Research Building, 1735 W. Harrison St., Chicago, IL, 60612, USA
| | - Vincent Elvezio
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | - Mario Rebecchi
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| |
Collapse
|
9
|
Taylor BK, Westlund KN. The noradrenergic locus coeruleus as a chronic pain generator. J Neurosci Res 2016; 95:1336-1346. [PMID: 27685982 DOI: 10.1002/jnr.23956] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
Central noradrenergic centers such as the locus coeruleus (LC) are traditionally viewed as pain inhibitory; however, complex interactions among brainstem pathways and their receptors modulate both inhibition and facilitation of pain. In addition to the well-described role of descending pontospinal pathways that inhibit spinal nociceptive transmission, an emerging body of research now indicates that noradrenergic neurons in the LC and their terminals in the dorsal reticular nucleus (DRt), medial prefrontal cortex (mPFC), spinal dorsal horn, and spinal trigeminal nucleus caudalis participate in the development and maintenance of allodynia and hyperalgesia after nerve injury. With time after injury, we argue that the balance of LC function shifts from pain inhibition to pain facilitation. Thus, the pain-inhibitory actions of antidepressant drugs achieved with elevated noradrenaline concentrations in the dorsal horn may be countered or even superseded by simultaneous activation of supraspinal facilitating systems dependent on α1 -adrenoreceptors in the DRt and mPFC as well as α2 -adrenoreceptors in the LC. Indeed, these opposing actions may account in part for the limited treatment efficacy of tricyclic antidepressants and noradrenaline reuptake inhibitors such as duloxetine for the treatment of chronic pain. We propose that the traditional view of the LC as a pain-inhibitory structure be modified to account for its capacity as a pain facilitator. Future studies are needed to determine the neurobiology of ascending and descending pathways and the pharmacology of receptors underlying LC-mediated pain inhibition and facilitation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bradley K Taylor
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| | - Karin N Westlund
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, Kentucky
| |
Collapse
|
10
|
Kaushal R, Taylor BK, Jamal AB, Zhang L, Ma F, Donahue R, Westlund KN. GABA-A receptor activity in the noradrenergic locus coeruleus drives trigeminal neuropathic pain in the rat; contribution of NAα1 receptors in the medial prefrontal cortex. Neuroscience 2016; 334:148-159. [PMID: 27520081 DOI: 10.1016/j.neuroscience.2016.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/20/2016] [Accepted: 08/03/2016] [Indexed: 12/24/2022]
Abstract
Trigeminal neuropathic pain is described as constant excruciating facial pain. The study goal was to investigate the role of nucleus locus coeruleus (LC) in a model of chronic orofacial neuropathic pain (CCI-ION). The study examines LC's relationship to both the medullary dorsal horn receiving trigeminal nerve sensory innervation and the medial prefrontal cortex (mPFC). LC is a major source of CNS noradrenaline (NA) and a primary nucleus involved in pain modulation. Although descending inhibition of acute pain by LC is well established, contribution of the LC to facilitation of chronic neuropathic pain is also reported. In the present study, a rat orofacial pain model of trigeminal neuropathy was induced by chronic constrictive injury of the infraorbital nerve (CCI-ION). Orofacial neuropathic pain was indicated by development of whisker pad mechanical hypersensitivity. Hypersensitivity was alleviated by selective elimination of NA neurons, including LC (A6 cell group), with the neurotoxin anti-dopamine-β-hydroxylase saporin (anti-DβH-saporin) microinjected either intracerebroventricularly (i.c.v.) or into trigeminal spinal nucleus caudalis (spVc). The GABAA receptor antagonist, bicuculline, administered directly into LC (week 8) inhibited hypersensitivity. This indicates a valence shift in which increased GABAA signaling ongoing in LC after trigeminal nerve injury paradoxically produces excitatory facilitation of the chronic pain state. Microinjection of NAα1 receptor antagonist, benoxathian, into mPFC attenuated whisker pad hypersensitivity, while NAα2 receptor antagonist, idazoxan, was ineffective. Thus, GABAA-mediated activation of NA neurons during CCI-ION can facilitate hypersensitivity through NAα1 receptors in the mPFC. These data indicate LC is a chronic pain generator.
Collapse
Affiliation(s)
- R Kaushal
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - B K Taylor
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - A B Jamal
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - L Zhang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - F Ma
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - R Donahue
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - K N Westlund
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| |
Collapse
|
11
|
Noradrenergic Locus Coeruleus pathways in pain modulation. Neuroscience 2016; 338:93-113. [PMID: 27267247 DOI: 10.1016/j.neuroscience.2016.05.057] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/20/2016] [Accepted: 05/27/2016] [Indexed: 12/30/2022]
Abstract
The noradrenergic system is crucial for several activities in the body, including the modulation of pain. As the major producer of noradrenaline (NA) in the central nervous system (CNS), the Locus Coeruleus (LC) is a nucleus that has been studied in several pain conditions, mostly due to its strategic location. Indeed, apart from a well-known descending LC-spinal pathway that is important for pain control, an ascending pathway passing through this nucleus may be responsible for the noradrenergic inputs to higher centers of the pain processing, such as the limbic system and frontal cortices. Thus, the noradrenergic system appears to modulate different components of the pain experience and accordingly, its manipulation has distinct behavioral outcomes. The main goal of this review is to bring together the data available regarding the noradrenergic system in relation to pain, particularly focusing on the ascending and descending LC projections in different conditions. How such findings influence our understanding of these conditions is also discussed.
Collapse
|
12
|
Kubo SI, Hamada S, Maeda T, Uchiyama T, Hashimoto M, Nomoto N, Kano O, Takahashi T, Terashi H, Takahashi T, Hatano T, Hasegawa T, Baba Y, Sengoku R, Watanabe H, Kadowaki T, Inoue M, Kaneko S, Shimura H, Nagayama H. A Japanese multicenter survey characterizing pain in Parkinson's disease. J Neurol Sci 2016; 365:162-6. [DOI: 10.1016/j.jns.2016.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 01/31/2023]
|
13
|
Mohammad-Pour Kargar H, Azizi H, Mirnajafi-Zadeh J, Ali Reza M, Semnanian S. Microinjection of orexin-A into the rat locus coeruleus nucleus induces analgesia via cannabinoid type-1 receptors. Brain Res 2015; 1624:424-432. [DOI: 10.1016/j.brainres.2015.07.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/19/2015] [Accepted: 07/29/2015] [Indexed: 01/05/2023]
|
14
|
Rossaneis A, Genaro K, Dias Q, Guethe L, Fais R, Del Bel E, Prado W. Descending mechanisms activated by the anterior pretectal nucleus initiate but do not maintain neuropathic pain in rats. Eur J Pain 2014; 19:1148-57. [DOI: 10.1002/ejp.638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2014] [Indexed: 11/06/2022]
Affiliation(s)
- A.C. Rossaneis
- Department of Pharmacology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - K. Genaro
- Department of Pharmacology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - Q.M. Dias
- Oswaldo Cruz Foundation; Fiocruz Rondônia; Brazil
| | - L.M. Guethe
- Department of Pharmacology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - R.S. Fais
- Department of Pharmacology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - E.A. Del Bel
- Department of Morphology, Estomatology and Physiology; Faculty of Odontology of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - W.A. Prado
- Department of Pharmacology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
15
|
Miranda A, Mickle A, Bruckert M, Kannampalli P, Banerjee B, Sengupta JN. NMDA receptor mediates chronic visceral pain induced by neonatal noxious somatic stimulation. Eur J Pharmacol 2014; 744:28-35. [PMID: 25281204 DOI: 10.1016/j.ejphar.2014.09.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/29/2022]
Abstract
NMDA receptors (NMDAR) are important in the development and maintenance of central sensitization. Our objective was to investigate the role of spinal neurons and NMDAR in the maintenance of chronic visceral pain. Neonatal rats were injected with acidic saline adjusted to pH 4.0 in the gastrocnemius muscle every other day for 12 days. In adult rats, NR1 and NR2B subunits were examined in the lumbo-sacral (LS) spinal cord. A baseline, visceromotor response (VMR) to graded colorectal distension (CRD) was recorded before and after administration of the NMDA antagonist, CGS-19755. Extracellular recordings were performed from CRD-sensitive LS spinal neurons and pelvic nerve afferents (PNA) before and after CGS-19755. Rats that received pH 4.0 saline injections demonstrated a significant increase in the expression NR2B subunits and VMR response to CRD>20 mmHg. CGS-19755 (i.v. or i.t.) had no effect in naïve rats, but significantly decreased the response to CRD in pH 4.0 saline injected rats. CGS-19755 had no effect on the spontaneous firing of SL-A, but decreased that of SL-S. Similarly, CGS-19755 attenuates the responses of SL-S neurons to CRD, but had no effect on SL-A neurons or on the response characteristics of PNA fibers. Neonatal noxious somatic stimulation results in chronic visceral hyperalgesia and sensitizes a specific subpopulation of CRD-sensitive spinal neurons. The sensitization of these SL-S spinal neurons is attenuated by the NMDAR antagonist. The results of this study suggest that spinal NMDARs play an important role in the development of hyperalgesia early in life.
Collapse
Affiliation(s)
- Adrian Miranda
- Division of Gastroenterology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - Aaron Mickle
- Division of Gastroenterology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Mitchell Bruckert
- Division of Gastroenterology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Pradeep Kannampalli
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Banani Banerjee
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Jyoti N Sengupta
- Division of Gastroenterology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States; Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
16
|
Drake RAR, Hulse RP, Lumb BM, Donaldson LF. The degree of acute descending control of spinal nociception in an area of primary hyperalgesia is dependent on the peripheral domain of afferent input. J Physiol 2014; 592:3611-24. [PMID: 24879873 PMCID: PMC4229351 DOI: 10.1113/jphysiol.2013.266494] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Descending controls of spinal nociceptive processing play a critical role in the development of inflammatory hyperalgesia. Acute peripheral nociceptor sensitization drives spinal sensitization and activates spino–supraspinal–spinal loops leading to descending inhibitory and facilitatory controls of spinal neuronal activity that further modify the extent and degree of the pain state. The afferent inputs from hairy and glabrous skin are distinct with respect to both the profile of primary afferent classes and the degree of their peripheral sensitization. It is not known whether these differences in afferent input differentially engage descending control systems to different extents or in different ways. Injection of complete Freund's adjuvant resulted in inflammation and swelling of hairy hind foot skin in rats, a transient thermal hyperalgesia lasting <2 h, and longlasting primary mechanical hyperalgesia (≥7 days). Much longer lasting thermal hyperalgesia was apparent in glabrous skin (1 h to >72 h). In hairy skin, transient hyperalgesia was associated with sensitization of withdrawal reflexes to thermal activation of either A- or C-nociceptors. The transience of the hyperalgesia was attributable to a rapidly engaged descending inhibitory noradrenergic mechanism, which affected withdrawal responses to both A- and C-nociceptor activation and this could be reversed by intrathecal administration of yohimbine (α-2-adrenoceptor antagonist). In glabrous skin, yohimbine had no effect on an equivalent thermal inflammatory hyperalgesia. We conclude that acute inflammation and peripheral nociceptor sensitization in hind foot hairy skin, but not glabrous skin, rapidly activates a descending inhibitory noradrenergic system. This may result from differences in the engagement of descending control systems following sensitization of different primary afferent classes that innervate glabrous and hairy skin.
Collapse
Affiliation(s)
- Robert A R Drake
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Richard P Hulse
- Cancer Biology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Bridget M Lumb
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Lucy F Donaldson
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK Arthritis Research UK Pain Centre, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
17
|
Vo L, Drummond PD. Analgesia to pressure–pain develops in the ipsilateral forehead after high- and low-frequency electrical stimulation of the forearm. Exp Brain Res 2013; 232:685-93. [DOI: 10.1007/s00221-013-3776-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 11/10/2013] [Indexed: 12/13/2022]
|
18
|
Pertovaara A. The noradrenergic pain regulation system: A potential target for pain therapy. Eur J Pharmacol 2013; 716:2-7. [DOI: 10.1016/j.ejphar.2013.01.067] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 12/11/2012] [Accepted: 01/09/2013] [Indexed: 12/26/2022]
|
19
|
Martins I, de Vries M, Teixeira-Pinto A, Fadel J, Wilson S, Westerink B, Tavares I. Noradrenaline increases pain facilitation from the brain during inflammatory pain. Neuropharmacology 2013; 71:299-307. [DOI: 10.1016/j.neuropharm.2013.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/18/2013] [Accepted: 04/04/2013] [Indexed: 01/08/2023]
|
20
|
Tsuruoka M, Tamaki J, Maeda M, Hayashi B, Inoue T. Biological implications of coeruleospinal inhibition of nociceptive processing in the spinal cord. Front Integr Neurosci 2012; 6:87. [PMID: 23060762 PMCID: PMC3460321 DOI: 10.3389/fnint.2012.00087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/12/2012] [Indexed: 11/13/2022] Open
Abstract
The coeruleospinal inhibitory pathway (CSIP), the descending pathway from the nucleus locus coeruleus (LC) and the nucleus subcoeruleus (SC), is one of the centrifugal pain control systems. This review answers two questions regarding the role coeruleospinal inhibition plays in the mammalian brain. First is related to an abnormal pain state, such as inflammation. Peripheral inflammation activated the CSIP, and activation of this pathway resulted in a decrease in the extent of the development of inflammatory hyperalgesia. During inflammation, the responses of the dorsal horn neurons to graded heat stimuli in the LC/SC-lesioned rats did not produce a further increase with the increase of stimulus intensity in the higher range temperatures. These results suggest that the function of CSIP is to maintain the accuracy of intensity coding in the dorsal horn because the plateauing of the heat-evoked response in the LC/SC-lesioned rats during inflammation is due to a response saturation that results from the lack of coeruleospinal inhibition. The second concerns attention and vigilance. During freezing behavior induced by air-puff stimulation, nociceptive signals were inhibited by the CSIP. The result implies that the CSIP suppresses pain system to extract other sensory information that is essential for circumstantial judgment.
Collapse
Affiliation(s)
- Masayoshi Tsuruoka
- Department of Physiology, Showa University School of Dentistry Tokyo, Japan
| | | | | | | | | |
Collapse
|
21
|
Vo L, Drummond PD. High frequency electrical stimulation concurrently induces central sensitization and ipsilateral inhibitory pain modulation. Eur J Pain 2012; 17:357-68. [PMID: 22893547 DOI: 10.1002/j.1532-2149.2012.00208.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND In healthy humans, analgesia to blunt pressure develops in the ipsilateral forehead during various forms of limb pain. The aim of the current study was to determine whether this analgesic response is induced by ultraviolet B radiation (UVB), which evokes signs of peripheral sensitization, or by high-frequency electrical stimulation (HFS), which triggers signs of central sensitization. METHODS Before and after HFS and UVB conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the treated site in the forearm. In addition, sensitivity to blunt pressure was measured bilaterally in the forehead. The effect of ipsilateral versus contralateral temple cooling on electrically evoked pain in the forearm was then examined, to determine whether HFS or UVB conditioning altered inhibitory pain modulation. RESULTS UVB conditioning triggered signs of peripheral sensitization, whereas HFS conditioning triggered signs of central sensitization. Importantly, ipsilateral forehead analgesia developed after HFS but not UVB conditioning. In addition, decreases in electrically evoked pain at the HFS-treated site were greater during ipsilateral than contralateral temple cooling, whereas decreases at the UVB-treated site were similar during both procedures. CONCLUSIONS HFS conditioning induced signs of central sensitization in the forearm and analgesia both in the ipsilateral forehead and the HFS-treated site. This ipsilateral analgesia was not due to peripheral sensitization or other non-specific effects, as it failed to develop after UVB conditioning. Thus, the supra-spinal mechanisms that evoke central sensitization might also trigger a hemilateral inhibitory pain modulation process. This inhibitory process could sharpen the boundaries of central sensitization or limit its spread.
Collapse
Affiliation(s)
- L Vo
- School of Psychology, Murdoch University, Perth, WA, Australia
| | | |
Collapse
|
22
|
Drummond PD, Chung C. Immersing the foot in painfully-cold water evokes ipsilateral extracranial vasodilatation. Auton Neurosci 2011; 166:89-92. [PMID: 21889422 DOI: 10.1016/j.autneu.2011.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2010] [Revised: 04/15/2011] [Accepted: 08/08/2011] [Indexed: 11/18/2022]
Abstract
Temporal pulse amplitude was recorded bilaterally in 56 participants before, during and after three ice-water immersions of the foot. Half of the participants were told that prolonged exposure to freezing temperatures could cause frostbite. Increases in pulse amplitude were greater in the ipsilateral than contralateral temple during and after the three foot-immersions. Although pulse amplitude decreased after threatening instructions and repeated immersion of the foot, the vasodilator response persisted during all three immersions. These findings suggest that nociceptive stimulation of the foot evokes an ipsilateral supra-spinal extracranial vasodilator response, possibly as part of a broader defense response.
Collapse
Affiliation(s)
- Peter D Drummond
- School of Psychology, Murdoch University, Perth, Western Australia, Australia.
| | | |
Collapse
|
23
|
Tsuruoka M, Tamaki J, Maeda M, Hayashi B, Inoue T. The nucleus locus coeruleus/subcoeruleus contributes to antinociception during freezing behavior following the air-puff startle in rats. Brain Res 2011; 1393:52-61. [PMID: 21529786 DOI: 10.1016/j.brainres.2011.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/31/2011] [Accepted: 04/03/2011] [Indexed: 10/18/2022]
Abstract
An air puff elicits a startle response in mammals. Following the startle response, rats react with a defensive-like, immobile posture (DIP) of approximately 2-5s in length. We have previously reported that air-puff stimulation (APS) activates the nucleus locus coeruleus/subcoeruleus (LC/SC) so that the DIP is induced. The LC/SC is one of the structures that plays an important role in endogenous pain control. Our particular interest is whether APS induces nociceptive modulation. Rats were tested for behavioral nociception with heating of the tail. Rats whisked their tail following heating and then bit the heat source when the tail could not escape heating by tail flick. The tail flick latency (TFL) and the bite latency (BL) were measured as an indicator of nociception. Compressed house air (14.4 psi in strength, 0.1s in duration) was presented for APS. Two weeks before the experiment, the rats received bilateral injections of 6 μg of the neurotoxin 6-hydroxydopamine to specifically lesion noradrenaline-containing neurons of the LC/SC. APS produced prolongation of the TFL and the BL. In both the TFL and the BL, APS-induced prolongation was not observed in rats with the LC/SC lesions. When BLs were plotted against DIP periods, the BL was almost constant regardless of the change in the DIP period. These results suggest that (1) APS produces nociceptive modulation, (2) the LC/SC is involved in APS-induced nociceptive modulation, and (3) two APS-induced events, the DIP and nociceptive modulation, are a parallel phenomenon.
Collapse
Affiliation(s)
- Masayoshi Tsuruoka
- Department of Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | |
Collapse
|
24
|
Rice DA, McNair PJ. Quadriceps arthrogenic muscle inhibition: neural mechanisms and treatment perspectives. Semin Arthritis Rheum 2009; 40:250-66. [PMID: 19954822 DOI: 10.1016/j.semarthrit.2009.10.001] [Citation(s) in RCA: 310] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/13/2009] [Accepted: 10/04/2009] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Arthritis, surgery, and traumatic injury of the knee joint are associated with long-lasting inability to fully activate the quadriceps muscle, a process known as arthrogenic muscle inhibition (AMI). The goal of this review is to provide a contemporary view of the neural mechanisms responsible for AMI as well as to highlight therapeutic interventions that may help clinicians overcome AMI. METHODS An extensive literature search of electronic databases was conducted including AMED, CINAHL, MEDLINE, OVID, SPORTDiscus, and Scopus. RESULTS While AMI is ubiquitous across knee joint pathologies, its severity may vary according to the degree of joint damage, time since injury, and knee joint angle. AMI is caused by a change in the discharge of articular sensory receptors due to factors such as swelling, inflammation, joint laxity, and damage to joint afferents. Spinal reflex pathways that likely contribute to AMI include the group I nonreciprocal (Ib) inhibitory pathway, the flexion reflex, and the gamma-loop. Preliminary evidence suggests that supraspinal pathways may also play an important role. Some of the most promising interventions to counter the effects of AMI include cryotherapy, transcutaneous electrical nerve stimulation, and neuromuscular electrical stimulation. Nonsteroidal anti-inflammatory drugs and intra-articular corticosteroids may also be effective when a strong inflammatory component is present with articular pathology. CONCLUSIONS AMI remains a significant barrier to effective rehabilitation in patients with arthritis and following knee injury and surgery. Gaining a better understanding of AMI's underlying mechanisms will allow the development of improved therapeutic strategies, enhancing the rehabilitation of patients with knee joint pathology.
Collapse
Affiliation(s)
- David Andrew Rice
- Health and Rehabilitation Research Centre, AUT University, Auckland, New Zealand.
| | | |
Collapse
|
25
|
Persistent inflammatory pain decreases the antinociceptive effects of the mu opioid receptor agonist DAMGO in the locus coeruleus of male rats. Neuropharmacology 2009; 56:1017-26. [PMID: 19265713 DOI: 10.1016/j.neuropharm.2009.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 02/14/2009] [Accepted: 02/19/2009] [Indexed: 12/18/2022]
Abstract
Persistent inflammatory nociception increases levels of endogenous opioids with affinity for delta opioid receptors in the ventromedial medulla and enhances the antinociceptive effects of the mu opioid receptor (MOPr) agonist [D-Ala2, N-Me-Phe4, Gly5-ol]enkephalin (DAMGO) [Hurley, R.W., Hammond, D.L., 2001. Contribution of endogenous enkephalins to the enhanced analgesic effects of supraspinal mu opioid receptor agonists after inflammatory injury. J. Neurosci. 21, 2536-2545]. It also increases levels of endogenous opioids that act at MOPr elsewhere in the CNS [Zangen, A., Herzberg, U., Vogel, Z., Yadid, G., 1998. Nociceptive stimulus induces release of endogenous beta-endorphin in the rat brain. Neuroscience 85, 659-662]. This study tested the hypothesis that a sustained release of endogenous opioids leads to a downregulation of MOPr in the locus coeruleus (LC) and induces a state of endogenous opioid tolerance. Four days after injection of complete Freund's adjuvant (CFA) in the left hindpaw of the rat, both the magnitude and duration of the antinociception produced by microinjection of DAMGO in the right LC were reduced. Saturation isotherms demonstrated a 50% decrease in MOPr B(max) in homogenates of the LC from CFA-treated rats; K(d) was unchanged. Receptor autoradiography revealed that this decrease was bilateral. The decreased efficacy of DAMGO in CFA-treated rats most likely results from a decreased number of MOPr in the LC. Microinjection of the MOPr antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) in the LC did not exacerbate hyperalgesia in the ipsilateral hindpaw or produce hyperalgesia in the contralateral hindpaw of CFA-treated rats. The downregulation in MOPr is therefore unlikely to result from the induction of endogenous opioid tolerance in the LC. These results indicate that persistent inflammatory nociception alters the antinociceptive actions of MOPr agonists in the CNS by diverse mechanisms that are nucleus specific and likely to have different physiological implications.
Collapse
|
26
|
Descending pathways from activated locus coeruleus/subcoeruleus following unilateral hindpaw inflammation in the rat. Brain Res Bull 2009; 78:170-4. [DOI: 10.1016/j.brainresbull.2008.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 09/12/2008] [Accepted: 09/12/2008] [Indexed: 11/18/2022]
|
27
|
Brightwell JJ, Taylor BK. Noradrenergic neurons in the locus coeruleus contribute to neuropathic pain. Neuroscience 2009; 160:174-85. [PMID: 19223010 DOI: 10.1016/j.neuroscience.2009.02.023] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 01/20/2009] [Accepted: 02/04/2009] [Indexed: 12/17/2022]
Abstract
Current theories of neuropathic hypersensitivity include an imbalance of supraspinal inhibition and facilitation. Our overall hypothesis is that the locus coeruleus (LC), classically interpreted as a source of pain inhibition, may paradoxically result in facilitation after tibial and common peroneal nerve transection (spared sural nerve injury--SNI). We first tested the hypothesis that non-noxious tactile hind paw stimulation of the spared sural innervation territory increases neuronal activity in the LC in male rats. We observed a bilateral increase in the stimulus-evoked expression of transcription factors Fos and phosphorylated CREB (pCREB) in LC after SNI but not sham surgery; these markers of neuronal activity correlated with the intensity of tactile allodynia. We next tested the hypothesis that noradrenergic neurons contribute to the development of neuropathic pain. To selectively destroy these neurons, we delivered antidopamine-beta-hydroxylase saporin (anti-DbetaH-saporin) into the i.c.v. space 2 weeks before SNI. We found that anti-DbetaH-saporin, but not an IgG-saporin control, reduced behavioral signs of tactile allodynia, mechanical hyperalgesia, and cold allodynia from 3 to 28 days. after SNI. Our final experiment tested the hypothesis that the LC contributes to the maintenance of neuropathic pain. We performed SNI, waited 2 weeks for maximal allodynia and hyperalgesia to develop, and then administered the local anesthetic lidocaine (4%) directly into the LC parenchyma. Lidocaine reduced all behavioral signs of neuropathic pain in a reversible manner, suggesting that the LC contributes to pain facilitation. We conclude that, in addition to its well-known inhibition of acute and inflammatory pain, the LC facilitates the development and maintenance of neuropathic pain in the SNI model. Further studies are needed to determine the facilitatory pathways emanating from the LC.
Collapse
Affiliation(s)
- J J Brightwell
- Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | | |
Collapse
|
28
|
Imbe H, Okamoto K, Donishi T, Kawai S, Enoki K, Senba E, Kimura A. Activation of ERK in the locus coeruleus following acute noxious stimulation. Brain Res 2009; 1263:50-7. [PMID: 19368817 DOI: 10.1016/j.brainres.2009.01.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 12/30/2008] [Accepted: 01/26/2009] [Indexed: 11/28/2022]
Abstract
In the present study, the activation of extracellular signal-regulated kinase (ERK) in the locus coeruleus (LC) following injection of formalin or complete Freund's adjuvant (CFA) into the rat hindpaw was examined in order to clarify the mechanisms underlying the dynamic changes in the descending pain modulatory system after acute noxious stimulation or chronic inflammation. In naive rats there were few phospho-extracellular signal-regulated kinase-immunoreactive (p-ERK-IR) neurons in the LC. Formalin-, CFA- and saline-injections induced an increase in p-ERK-IR in the LC. The number of p-ERK-IR neurons in the LC in the formalin group was significantly higher than those in all other groups from 5 min to 1 h after the injection (p<0.05). CFA injection induced only a transient significant increase in the number of p-ERK-IR neurons and there was no significant difference in the number of p-ERK-IR neurons between the CFA and saline groups. At 5 min after formalin injection, almost all p-ERK-IR neurons in the LC were tyrosine hydroxylase (TH) -positive. These findings suggest that activation of ERK in the LC is induced by acute noxious stimulation, such as formalin injection, but not by CFA-induced chronic inflammation. The activation of ERK in the LC may be involved in the plasticity of the descending pain modulatory systems following acute noxious stimulation.
Collapse
Affiliation(s)
- Hiroki Imbe
- Department of Physiology, Wakayama Medical University, Wakayama City, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Knudsen L, Drummond PD. Cold-induced limb pain decreases sensitivity to pressure-pain sensations in the ipsilateral forehead. Eur J Pain 2009; 13:1023-9. [PMID: 19171493 DOI: 10.1016/j.ejpain.2008.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/28/2008] [Accepted: 12/14/2008] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the effect of unilateral limb pain on sensitivity to pain on each side of the forehead. In the first experiment, pressure-pain thresholds and sharpness sensations were assessed on each side of the forehead in 45 healthy volunteers before and after a 10 degrees C cold pressor of the hand and in 18 controls who were not subjected to the cold pressor. In a second experiment, forehead sensitivity was assessed in 32 healthy volunteers before and after a 2 degrees C cold pressor. The assessments were repeated without the cold pressor, and before and after six successive 4 degrees C cold pressor tests. The 10 degrees C cold pressor did not influence forehead sensitivity, whereas the 2 degrees C cold pressor and the 4 degrees C cold pressor tests resulted in bilateral analgesia to sharpness and pressure. The analgesia to pressure was greater in the ipsilateral forehead. Stress-induced analgesia and diffuse noxious inhibitory controls may have contributed to the analgesia to pressure-pain and sharpness sensations bilaterally after the most painful cold pressor tests. The locus coeruleus inhibits ipsilateral nociceptive activity in dorsal horn neurons during limb inflammation, and thus may have mediated the ipsilateral component of analgesia. Pain-evoked changes in forehead sensitivity differed for sharpness and pressure, possibly due to separate thalamic or cortical representations of cutaneous and deep tissue sensibility. These findings suggest that several mechanisms act concurrently to influence pain sensitivity at sites distant from a primary site of painful stimulation.
Collapse
Affiliation(s)
- Lone Knudsen
- School of Psychology, Murdoch University, South Street, Perth, Murdoch, WA 6150, Australia.
| | | |
Collapse
|
30
|
|
31
|
Sud R, Spengler RN, Nader ND, Ignatowski TA. Antinociception occurs with a reversal in alpha 2-adrenoceptor regulation of TNF production by peripheral monocytes/macrophages from pro- to anti-inflammatory. Eur J Pharmacol 2008; 588:217-31. [PMID: 18514187 DOI: 10.1016/j.ejphar.2008.04.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 04/02/2008] [Accepted: 04/09/2008] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-alpha (TNF) plays a role in neuropathic pain. During neuropathic pain development in the chronic constriction injury model, elevated TNF levels in the brain occur in association with enhanced alpha 2-adrenoceptor inhibition of norepinephrine release. alpha 2-Adrenoceptors are also located on peripheral macrophage where they normally function as pro-inflammatory, since they increase the production of the cytokine TNF, a proximal mediator of inflammation. How the central increase in TNF affects peripheral alpha 2-adrenoceptor function was investigated. Male, Sprague-Dawley rats had four loose ligatures placed around the right sciatic nerve. Thermal hyperalgesia was determined by comparing hind paw withdrawal latencies between chronic constriction injury and sham-operated rats. Chronic constriction injury increased TNF immunoreactivity at the lesion and the hippocampus. Amitriptyline, an antidepressant that is used as an analgesic, was intraperitoneally administered (10 mg/kg) starting simultaneous with ligature placement (day-0) or at days-4 or -6 post-surgery. Amitriptyline treatment initiated at day-0 or day-4 post-ligature placement alleviated hyperalgesia. When initiated at day-0, amitriptyline prevented increased TNF immunoreactivity in the hippocampus and at the lesion. A peripheral inflammatory response, macrophage production of TNF, was also assessed in the current study. Lipopolysaccharide (LPS)-stimulated production of TNF by whole blood cells and peritoneal macrophages was determined following activation of the alpha 2-adrenoceptor in vitro. alpha 2-Adrenoceptor regulation of TNF production from peripheral immune-effector cells reversed from potentiation in controls to inhibition in chronic constriction injured rats. This effect is accelerated with amitriptyline treatment initiated at day-0 or day-4 post-ligature placement. Amitriptyline treatment initiated day-6 post-ligature placement did not alleviate hyperalgesia and prevented the switch from potentiation to inhibition in alpha 2-adrenoceptor regulation of TNF production. Recombinant rat TNF i.c.v. microinfusion reproduces the response of peripheral macrophages from rats with chronic constriction injury. A reversal in peripheral alpha 2-adrenoceptor regulation of TNF production from pro- to anti-inflammatory is associated with effective alleviation of thermal hyperalgesia. Thus, alpha 2-adrenoceptor regulation of peripheral TNF production may serve as a potential biomarker to evaluate therapeutic regimens.
Collapse
Affiliation(s)
- Reeteka Sud
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
32
|
Rahman W, D’Mello R, Dickenson AH. Peripheral Nerve Injury–Induced Changes in Spinal α2-Adrenoceptor–Mediated Modulation of Mechanically Evoked Dorsal Horn Neuronal Responses. THE JOURNAL OF PAIN 2008; 9:350-9. [DOI: 10.1016/j.jpain.2007.11.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 10/26/2007] [Accepted: 11/14/2007] [Indexed: 11/15/2022]
|
33
|
Ren LY, Lu ZM, Liu MG, Yu YQ, Li Z, Shang GW, Chen J. Distinct roles of the anterior cingulate cortex in spinal and supraspinal bee venom-induced pain behaviors. Neuroscience 2008; 153:268-78. [PMID: 18367341 DOI: 10.1016/j.neuroscience.2008.01.067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2007] [Revised: 12/18/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
A wide variety of human and animal experiments suggest that the anterior cingulate cortex (ACC) is one of the key brain substrates subserving higher order processing of noxious information. However, no sufficient data are now available regarding the mediation by ACC of different levels of pain processing as well as its potential descending modulation of spinal nociception. Using the well-developed rat bee venom (BV) model, the present study evaluated the effect of lesions of bilateral ACC on two levels of spontaneous nociceptive behaviors (spinally-processed persistent paw flinching reflex and supraspinally-processed paw lifting/licking) and heat or mechanical hypersensitivity under the inflammatory pain state. In contrast to the sham lesion group (saline microinjection into the ACC), bilateral complete ACC chemical lesions (kainic acid microinjection into the ACC) significantly decreased the BV-induced paw lifting and licking behavior (less time spent by the animal in paw lifting/licking) but produced no influence upon spinally-processed spontaneous paw flinching reflex (no change in number of paw flinches following subcutaneous BV injection). Moreover, the bilateral ACC lesions relieved the BV-evoked primary thermal or mechanical hypersensitivity compared with the sham control group. However, incomplete lesions of bilateral ACC failed to affect the abovementioned pain-related behaviors. No effects were seen on basal pain sensitivity in either group of rats. Motor coordination, as measured by Rota-Rod treadmill test, was not impaired by bilateral ACC lesions. These results implicate that the ACC area of the brain plays differential roles in the mediation of different levels of spontaneous pain-related behaviors. The present study also provides additional evidence for the ACC-mediated descending facilitation of primary hyperalgesia (pain hypersensitivity) identified in the injured area under inflammatory pain state.
Collapse
Affiliation(s)
- L-Y Ren
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, #1 Xinsi Road, Baqiao District, Xi'an 710038, PR China
| | | | | | | | | | | | | |
Collapse
|
34
|
DeBerry J, Ness TJ, Robbins MT, Randich A. Inflammation-induced enhancement of the visceromotor reflex to urinary bladder distention: modulation by endogenous opioids and the effects of early-in-life experience with bladder inflammation. THE JOURNAL OF PAIN 2007; 8:914-23. [PMID: 17704007 PMCID: PMC4012257 DOI: 10.1016/j.jpain.2007.06.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 06/07/2007] [Accepted: 06/15/2007] [Indexed: 11/17/2022]
Abstract
UNLABELLED Abdominal electromyographic (EMG) responses to noxious intensities of urinary bladder distention (UBD) are significantly enhanced 24 hours after zymosan-induced bladder inflammation in adult female rats. This inflammation-induced hypersensitivity is concomitantly inhibited by endogenous opioids because intraperitoneal (i.p.) naloxone administration before testing significantly increases EMG response magnitude to UBD. This inhibitory mechanism is not tonically active because naloxone does not alter EMG response magnitude to UBD in rats without inflammation. At the dose tested, naloxone does not affect bladder compliance in rats with or without inflammation. The effects of i.p. naloxone probably result from blockade of a spinal mechanism because intrathecal naloxone also significantly enhances EMG responses to UBD in rats with inflammation. Rats exposed to bladder inflammation from P90-P92 before reinflammation at P120 show similar hypersensitivity and concomitant opioid inhibition, with response magnitudes being no different from that produced by inflammation at P120 alone. In contrast, rats exposed to bladder inflammation from P14-P16 before reinflammation at P120 show markedly enhanced hypersensitivity and no evidence of concomitant opioid inhibition. These data indicate that bladder inflammation in adult rats induces bladder hypersensitivity that is inhibited by an endogenous opioidergic mechanism. This mechanism can be disrupted by neonatal bladder inflammation. PERSPECTIVE The present study observed that bladder hypersensitivity resulting from acute bladder inflammation is suppressed by an opioid-inhibitory mechanism. Experiencing bladder inflammation during the neonatal period can impair the expression of this opioid inhibitory mechanism in adulthood. This suggests that bladder insults during development may permanently alter visceral sensory systems and may represent 1 cause of painful bladder disorders.
Collapse
Affiliation(s)
- Jennifer DeBerry
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA.
| | | | | | | |
Collapse
|
35
|
Pertovaara A. Noradrenergic pain modulation. Prog Neurobiol 2006; 80:53-83. [PMID: 17030082 DOI: 10.1016/j.pneurobio.2006.08.001] [Citation(s) in RCA: 400] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 08/25/2006] [Accepted: 08/30/2006] [Indexed: 11/18/2022]
Abstract
Norepinephrine is involved in intrinsic control of pain. Main sources of norepinephrine are sympathetic nerves peripherally and noradrenergic brainstem nuclei A1-A7 centrally. Peripheral norepinephrine has little influence on pain in healthy tissues, whereas in injured tissues it has variable effects, including aggravation of pain. Its peripheral pronociceptive effect has been associated with injury-induced expression of novel noradrenergic receptors, sprouting of sympathetic nerve fibers, and pronociceptive changes in the ionic channel properties of primary afferent nociceptors, while an interaction with the immune system may contribute in part to peripheral antinociception induced by norepinephrine. In the spinal cord, norepinephrine released from descending pathways suppresses pain by inhibitory action on alpha-2A-adrenoceptors on central terminals of primary afferent nociceptors (presynaptic inhibition), by direct alpha-2-adrenergic action on pain-relay neurons (postsynaptic inhibition), and by alpha-1-adrenoceptor-mediated activation of inhibitory interneurons. Additionally, alpha-2C-adrenoceptors on axon terminals of excitatory interneurons of the spinal dorsal horn possibly contribute to spinal control of pain. At supraspinal levels, the pain modulatory effect by norepinephrine and noradrenergic receptors has varied depending on many factors such as the supraspinal site, the type of the adrenoceptor, the duration of the pain and pathophysiological condition. While in baseline conditions the noradrenergic system may have little effect, sustained pain induces noradrenergic feedback inhibition of pain. Noradrenergic systems may also contribute to top-down control of pain, such as induced by a change in the behavioral state. Following injury or inflammation, the central as well as peripheral noradrenergic system is subject to various plastic changes that influence its antinociceptive efficacy.
Collapse
Affiliation(s)
- Antti Pertovaara
- Biomedicum Helsinki, Institute of Biomedicine/Physiology, PO Box 63, University of Helsinki, FIN-00014 Helsinki, Finland.
| |
Collapse
|
36
|
Couto LB, Moroni CR, dos Reis Ferreira CM, Elias-Filho DH, Parada CA, Pelá IR, Coimbra NC. Descriptive and functional neuroanatomy of locus coeruleus-noradrenaline-containing neurons involvement in bradykinin-induced antinociception on principal sensory trigeminal nucleus. J Chem Neuroanat 2006; 32:28-45. [PMID: 16678997 DOI: 10.1016/j.jchemneu.2006.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 03/28/2006] [Accepted: 03/29/2006] [Indexed: 11/24/2022]
Abstract
The present study was carried out in Wistar rats, using the jaw-opening reflex and dental pulp stimulation, to investigate noradrenaline- and serotonin-mediated antinociceptive circuits. The effects of microinjections of bradykinin into the principal sensory trigeminal nucleus (PSTN) before and after neurochemical lesions of the locus coeruleus noradrenergic neurons were studied. Neuroanatomical experiments showed evidence for reciprocal neuronal pathways connecting the locus coeruleus (LC) to trigeminal sensory nuclei and linking monoaminergic nuclei of the pain inhibitory system to spinal trigeminal nucleus (STN). Fast blue (FB) injections in the locus coeruleus/subcoeruleus region retrogradely labeled neurons in the contralateral PSTN and LC. Microinjections of FB into the STN showed neurons labeled in both ipsilateral and contralateral LC, as well as in the ipsilateral Barrington's nucleus and subcoeruleus area. Retrograde tract-tracing with FB also showed that the mesencephalic trigeminal nucleus sends neural pathways towards the ipsilateral PSTN, with outputs from cranial and caudal aspects of the brainstem. In addition, neurons from the lateral and dorsolateral columns of periaqueductal gray matter also send outputs to the ipsilateral PSTN. Microinjections of FB in the interpolar and caudal divisions of the STN labeled neurons in the caudal subdivision of STN. Microinjections in the STN interpolar and caudal divisions also retrogradely labeled serotonin- and noradrenaline-containing nucleus of the brainstem pain inhibitory system. Finally, the gigantocellularis complex (nucleus reticularis gigantocellularis/paragigantocellularis), nucleus raphe magnus and nucleus raphe pallidus also projected to the caudal divisions of the STN. Microinjections of bradykinin in the PSTN caused a statistically significant long-lasting antinociception, antagonized by the damage of locus coeruleus-noradrenergic neuronal fibres with (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) (DSP4), a neurotoxin that specifically depleted noradrenaline from locus coeruleus terminal fields. These data suggest that serotonin- and noradrenaline-containing nuclei of the endogenous pain inhibitory system exert a key-role in the antinociceptive mechanisms of bradykinin and the locus coeruleus is crucially involved in this effect.
Collapse
Affiliation(s)
- Lucélio Bernardes Couto
- Laboratory of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 3900, Ribeirão Preto (SP), 14049-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Bouhassira D, Danziger N. Chapter 12 Investigation of brainstem: descending pain modulation in animals and humans. ACTA ACUST UNITED AC 2006; 58:134-49. [PMID: 16623328 DOI: 10.1016/s1567-424x(09)70065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Didier Bouhassira
- INSERM E-332, CHU Ambroise Paré, AP-HP Boulogne-Billancourt, France.
| | | |
Collapse
|
38
|
Suzuki R, Rahman W, Hunt SP, Dickenson AH. Descending facilitatory control of mechanically evoked responses is enhanced in deep dorsal horn neurones following peripheral nerve injury. Brain Res 2004; 1019:68-76. [PMID: 15306240 DOI: 10.1016/j.brainres.2004.05.108] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Pain resulting from peripheral nerve injury, characterised by ongoing pain, hyperalgesia and allodynia arises from peripheral and central processes. Here, we studied the potential role of central facilitations in nerve injury by investigating the effect of blocking the excitatory 5HT3 receptor with ondansetron. 5HT3 receptors play a pronociceptive role in the spinal cord and ondansetron has previously been shown to produce antinociception in behavioural studies. We investigated the effects of spinally administered ondansetron (10, 50 and 100 microg) on the responses of deep dorsal horn neurones, evoked by peripheral electrical stimuli and a range of natural (mechanical punctate and heat) stimuli, 2 weeks after nerve injury induced through tight ligation of L5/6 spinal nerves (SNL). Comparisons were made between SNL rats and a sham-operated group. Ondansetron produced little effect on the electrically evoked responses (Abeta-, Adelta- and C-fibre-evoked responses, postdischarge); however, responses to mechanical punctate stimuli (von Frey filaments 1-75 g) were markedly reduced in both SNL and control groups. Furthermore, the drug effect was significantly enhanced after SNL (p<0.05). In particular, the lowest dose (10 microg) now became effective after SNL. Ondansetron produced less marked effects on thermal responses. Our results demonstrate that neuropathic pain states are associated with an enhanced descending facilitatory control of mechanical responses of spinal neurones, mediated through the activation of spinal 5HT3 receptors. These excitatory influences are likely to contribute to the development and maintenance of central sensitisation in the spinal cord, and furthermore, to the behavioural manifestation of tactile allodynia.
Collapse
Affiliation(s)
- Rie Suzuki
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
39
|
Tsuruoka M, Maeda M, Inoue T. Persistent hindpaw inflammation produces coeruleospinal antinociception in the non-inflamed forepaw of rats. Neurosci Lett 2004; 367:66-70. [PMID: 15308299 DOI: 10.1016/j.neulet.2004.05.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 05/24/2004] [Accepted: 05/25/2004] [Indexed: 11/23/2022]
Abstract
In a rat model of unilateral hindpaw inflammation, it is unclear whether the coeruleospinal modulation system is active at spinal segments distant from the inflamed plantar region, such as the cervical segments. To clarify this query, in the present study we measured paw withdrawal latency (PWL) to thermal stimuli on four paws (both forepaws and both hindpaws) following induction of inflammation and compared PWLs between rats with bilateral lesions of the locus coeruleus/subcoeruleus (LC/SC) and rats with sham operation. Unilateral hindpaw inflammation was produced by a subcutaneous injection of carrageenan (2 mg in 0.15 ml saline). Prior to carrageenan injection, in all four paws, PWLs did not differ between the LC/SC-lesioned and the sham-operated rats. Four hours after carrageenan injection, PWLs in the inflamed left hindpaw decreased significantly in both the LC/SC-lesioned and the sham-operated rats. The decreased PWLs of the LC/SC-lesioned group were significantly shorter than those of the sham-operated group. These phenomena which were observed in the inflamed left hindpaw were also observed in the non-inflamed left forepaws. In the right forepaws and the right hindpaws, no significant change in PWL was observed between before and 4 h after injection in both the sham-operated and the LC/SC-lesioned rats. These results suggest that unilateral hindpaw inflammation activates the coeruleospinal modulation system and that this modulation system is active not only at the lumbar segments but also at the cervical level where spinal segments are distant from the inflamed plantar region.
Collapse
Affiliation(s)
- Masayoshi Tsuruoka
- Department of Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | |
Collapse
|
40
|
Tsuruoka M, Arai YCP, Nomura H, Matsutani K, Willis WD. Unilateral hindpaw inflammation induces bilateral activation of the locus coeruleus and the nucleus subcoeruleus in the rat. Brain Res Bull 2003; 61:117-23. [PMID: 12831996 DOI: 10.1016/s0361-9230(03)00099-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several lines of evidence have shown that unilateral hindpaw inflammation produces activation of the locus coeruleus (LC) and the nucleus subcoeruleus (SC), resulting in descending modulation of nociceptive processing in the dorsal horn. However, it is unclear if the LC/SC is activated unilaterally or bilaterally following the development of unilateral hindpaw inflammation. The present study was designed to clarify this question. For the induction of unilateral hindpaw inflammation, lambda carrageenan (2.0mg in 0.15ml saline) was injected subcutaneously into the plantar surface of the left hindpaw. Four hours after carrageenan injection, in the LC/SC both ipsilateral and contralateral to the inflamed paw, the number of Fos-positive cells increased significantly in carrageenan-injected rats when compared to vehicle (saline)-injected and untreated control rats. The Fos expression in the LC/SC was equivalent bilaterally in the carrageenan-injected rats, as well as in vehicle-injected and untreated control rats. For nociceptive testing, the paw withdrawal latency, which measures cutaneous hyperalgesia in response to thermal stimuli, was determined in rats receiving a unilateral lesion of the LC/SC either ipsilateral or contralateral to the inflamed paw. Two and a half hours after the induction of inflammation, in both groups of rats with unilateral lesion, paw withdrawal latencies decreased significantly in the LC/SC-lesioned rats. However, there was no significant difference in paw withdrawal latencies between the LC/SC-lesioned rats and sham-operated rats, indicating that unilateral activation of the LC/SC is sufficient for modulating nociceptive processing in the dorsal horn. These results suggest that unilateral hindpaw inflammation induces bilateral activation of the LC/SC.
Collapse
Affiliation(s)
- Masayoshi Tsuruoka
- Department of Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | |
Collapse
|
41
|
Tsuruoka M, Matsutani K, Inoue T. Coeruleospinal inhibition of nociceptive processing in the dorsal horn during unilateral hindpaw inflammation in the rat. Pain 2003; 104:353-61. [PMID: 12855345 DOI: 10.1016/s0304-3959(03)00042-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Behavioral and neurochemical studies have shown that the coeruleospinal modulation system is activated by peripheral inflammation, and that this modulation system is active in only the dorsal horn ipsilateral, but not in the dorsal horn contralateral, to the site of inflammation; the present study was designed to confirm electrophysiologically this previous finding. Extracellular recordings from dorsal horn neurons were continued for at least 4 h after the induction of inflammation. Unilateral hindpaw inflammation was produced by a subcutaneous injection of carrageenan (2 mg in 0.15 ml saline). Background activity and responses to noxious heating were compared between rats receiving bilateral lesions in the locus coeruleus/subcoeruleus (LC/SC) and non-operated control rats. In neurons located in the dorsal horn ipsilateral to the inflamed paw, prior to inflammation, there was no significant difference in either the background activity or the heat-evoked response in neurons in LC/SC-lesioned compared to LC/SC-intact rats. Four hours after the induction of inflammation, there was a significant increase in both the background activity and heat-evoked response in neurons in LC/SC-lesioned compared to LC/SC-intact rats. In neurons located in the dorsal horn contralateral to the inflamed paw, 4 h after inflammation, no significant increase in either the background activity or the heat-evoked response in neurons in LC/SC-lesioned rats was observed, as well as in the case before inflammation. These results suggest that the coeruleospinal modulation system is active in only the dorsal horn ipsilateral, but not in the dorsal horn contralateral, to the site of inflammation during the development of unilateral hindpaw inflammation.
Collapse
Affiliation(s)
- Masayoshi Tsuruoka
- Department of Physiology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | |
Collapse
|
42
|
Vincler MA, Eisenach JC. Immunocytochemical localization of the alpha3, alpha4, alpha5, alpha7, beta2, beta3 and beta4 nicotinic acetylcholine receptor subunits in the locus coeruleus of the rat. Brain Res 2003; 974:25-36. [PMID: 12742621 DOI: 10.1016/s0006-8993(03)02546-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The presence of nicotinic acetylcholine receptors (nAChRs) within the locus coeruleus (LC) has been examined using a wide range of techniques. However, the expression pattern of individual nicotinic receptor subunits has not been described. Using immunocytochemistry, we demonstrate the distribution of the alpha3, alpha4, alpha5, alpha7, beta2, beta3 and beta4 nAChR subunits within the LC. Most nAChR subunits were expressed on neuronal perikarya within the LC nucleus. The alpha3, alpha4, alpha7 and beta3 immunoreactive neurons were evenly distributed in the dorsal and ventral LC whereas the alpha5, beta2 and beta4 nAChR subunits were preferentially confined to the upper dorsal section. In addition to neuronal perikarya, alpha4, alpha5 and beta2 immunoreactive fibers were observed. With the exception of the alpha3 subunit, punctate labeling was observed within and immediately surrounding the LC. These data are consistent with the presence of multiple nAChRs within the LC and extend these findings to show the distribution pattern of each nAChR subunit throughout the LC nucleus.
Collapse
Affiliation(s)
- Michelle A Vincler
- Department of Anesthesiology and Center for the Study of Pharmacologic Plasticity in the Presence of Pain, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
43
|
Suzuki R, Green GM, Millan MJ, Dickenson AH. Electrophysiologic characterization of the antinociceptive actions of S18616, a novel and potent alpha2-adrenoceptor agonist, after acute and persistent pain states. THE JOURNAL OF PAIN 2002; 3:234-43. [PMID: 14622778 DOI: 10.1054/jpai.2002.123651] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
alpha (2)-Adrenoceptor (AR) agonists are active in behavioral models of persistent pain involving tissue and nerve damage. We evaluated the spinal effect of a novel, potent, and selective alpha (2)-AR agonist, [7,8](2-chlorobenzo)-2-amino-1-aza-3-oxa[4,5]spirodeca-1,7-diene (S18616), on the responses of dorsal horn neurons in halothane-anesthetized rats. Intrathecal administration of S18616 (0.1 to 3.0 microg) dose-dependently suppressed C- and A delta-fiber evoked responses but not the A beta-fiber evoked response. Drug effects were reversed by the alpha (2)-AR antagonists, atipamezole and idazoxan (100 microg). In rats with unilateral spinal nerve (L5-L6) ligation performed 2 weeks before study, S18616 (0.1 to 3.0 microg) dose-dependently suppressed the C- and A delta-fiber evoked responses and blocked "wind-up" in these neurons. The potency was comparable between nerve-injured and sham-operated rats, and S18616 was equally effective against responses to thermal and high-intensity mechanical stimuli. Interestingly, the effectiveness of S18616 on the low-intensity mechanical evoked response was significantly enhanced after nerve injury. Finally, S18616 (0.3 and 3.0 microg) reduced the neuronal responses produced by intraplantar injection of formalin. In conclusion, S18616 dose-dependently and potently inhibits the responses of dorsal horn neurons to peripheral stimulation in normal, inflamed, and neuropathic rats. These data support the use of spinal S18616 and other alpha (2)-AR agonists in the management of clinical pain.
Collapse
Affiliation(s)
- Rie Suzuki
- Department of Pharmacology, University College London, UK.
| | | | | | | |
Collapse
|
44
|
Terayama R, Dubner R, Ren K. The roles of NMDA receptor activation and nucleus reticularis gigantocellularis in the time-dependent changes in descending inhibition after inflammation. Pain 2002; 97:171-81. [PMID: 12031790 DOI: 10.1016/s0304-3959(02)00017-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previous studies indicate that descending modulation of nociception is progressively increased following persistent inflammation. The present study was designed to further examine the role of supraspinal neurons in descending modulation following persistent inflammation. Constant levels of paw withdrawal (PW) and tail flick (TF) latencies to noxious heat stimuli were achieved in lightly anesthetized rats (pentobarbital sodium 3-10 mg/kg/h, i.v.). Electrical stimulation (ES, 0.1 ms, 100 Hz, 20-200 A) was delivered to the rostral ventromedial medulla (RVM), mainly the nucleus raphe magnus (NRM). ES produced intensity-dependent inhibition of PW and TF. Following a unilateral hindpaw inflammation produced by injection of complete Freund's adjuvant (CFA), ES-produced inhibition underwent time-dependent changes. There was an initial decrease at 3 h after inflammation and a subsequent increase after inflammation in the excitability of RVM neurons and the inhibition of nocifensive responses. These changes were most robust after stimulation of the inflamed paw although similar findings were seen on the non-inflamed paw and tail. The inflammation-induced dynamic changes in descending modulation appeared to be correlated with changes in the activation of the N-methyl--aspartate (NMDA) excitatory amino acid receptor. Microinjection of an NMDA receptor antagonist, AP5 (1 pmol), resulted in an increase in the current intensity required for inhibition of the PW and TF. The effect of AP5 was less at 3 h after inflammation and significantly greater at 11-24 h after inflammation. In a subsequent experiment, ES-produced inhibition of nocifensive responses after inflammation was examined following selective chemical lesions of the nuclei reticularis gigantocellularis (NGC). Compared to vehicle-injected animals, microinjection of a soma-selective excitotoxin, ibotenic acid, enhanced ES-produced inhibition at 3 h but not at 24 h after inflammation. We propose that these time course changes reflect dynamic alterations in concomitant descending facilitation and inhibition. At early time points, NMDA receptor and NGC activation enhance descending facilitation; as time progresses, the dose-response curve of NMDA shifts to the left and descending inhibition dominates and masks any descending facilitation.
Collapse
Affiliation(s)
- R Terayama
- Department of Oral and Craniofacial Biological Sciences, Dental School & Program in Neuroscience, University of Maryland, Baltimore 21201-1586, USA
| | | | | |
Collapse
|
45
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
46
|
Miki K, Zhou QQ, Guo W, Guan Y, Terayama R, Dubner R, Ren K. Changes in gene expression and neuronal phenotype in brain stem pain modulatory circuitry after inflammation. J Neurophysiol 2002; 87:750-60. [PMID: 11826044 DOI: 10.1152/jn.00534.2001] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies indicate that descending pain modulatory pathways undergo time-dependent changes in excitability following inflammation involving both facilitation and inhibition. The cellular and molecular mechanisms of these phenomena are unclear. In the present study, we examined N-methyl-D-aspartate (NMDA) receptor gene expression and neuronal activity in the rostral ventromedial medulla (RVM), a pivotal structure in pain modulatory circuitry, after complete Freund's adjuvant (CFA)-induced hindpaw inflammation. The reverse transcription polymerase chain reaction analysis indicated that there was an upregulation of mRNAs encoding NMDA receptor subunits in the RVM after inflammation. The increase in the NR1, NR2A, and NR2B receptor mRNAs started at 5 h, maintained for 1-7 days (P < 0.05-0.001) and returned to the control level at 14 days after inflammation. Western blot analysis indicated that the protein translation products of the NR2A subunit were also increased (P < 0.01). In single-unit extracellular recordings, we correlated RVM neuronal activity with the paw withdrawal response in rats with inflammation. We describe these RVM cells as on-, off-, and neutral-like cells because of their similarity to previous studies in which neuronal responses were correlated with tail-flick nocifensive behavior in the absence of inflammation. In contrast to previous studies in the absence of inflammation, using tail flick as a behavioral correlate, fewer off-like cells in naïve animals exhibited a complete pause before the paw withdrawal to a noxious thermal stimulus. The percentage of cells showing a pause of activity after noxious stimulation was further reduced after inflammation (chi(2) P < 0.0001 vs. naïve rats). Continuous neuronal recordings (3-6.5 h) revealed a phenotypic switch of RVM neurons during the development of inflammation: 11/15 neutral-like cells initially unresponsive to noxious stimuli exhibited and maintained response profiles characteristic of pain modulatory neurons (became off-like: n = 5; became on-like: n = 6). Neutral-like cells recorded in noninflamed animals did not show response profile changes during continuous recordings (5-5.5 h, n = 7). A population study (n = 165) confirmed an increase in on- and off-like cells and a decrease in neutral-like cells at 24 h after inflammation as compared with naïve rats (P < 0.001). These results suggest that enhanced NMDA receptor activation mediates time-dependent changes in excitability of RVM pain modulatory circuitry. The functional phenotypic switch of RVM neurons provides a novel mechanism underlying activity-dependent plasticity and enhanced net descending inhibition after inflammation.
Collapse
Affiliation(s)
- Kenji Miki
- Department of Oral and Craniofacial Biological Sciences, Dental School, University of Maryland, 666 W. Baltimore St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Contribution of endogenous enkephalins to the enhanced analgesic effects of supraspinal mu opioid receptor agonists after inflammatory injury. J Neurosci 2001. [PMID: 11264327 DOI: 10.1523/jneurosci.21-07-02536.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study examined a mechanism responsible for the enhanced antihyperalgesic and antinociceptive effects of the mu opioid receptor agonist (ORA) [D-Ala(2), NMePhe(4), Gly(5)-ol]enkephalin (DAMGO) microinjected in the rostroventromedial medulla (RVM) of rats with inflammatory injury induced by injection of complete Freund's adjuvant (CFA) in one hindpaw. In rats injected with CFA 4 hr earlier, microinjection of the mu opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) in the RVM antagonized both the marginal enhancement of the potency of DAMGO and its antinociceptive effect. The delta opioid receptor antagonist naltriben (NTB) was without effect. In rats injected with CFA 2 weeks earlier, CTAP antagonized the effects of DAMGO to a lesser extent. However, NTB completely prevented the enhancement of the potency of DAMGO, whereas it did not antagonize DAMGO's antinociceptive effects. Microinjection of NTB alone, but not CTAP in the RVM of CFA-treated rats, enhanced the hyperalgesia present in the ipsilateral hindpaw and induced hyperalgesia in the contralateral, uninjured hindpaw. These results suggest that persistent inflammatory injury increased the release in the RVM of opioid peptides with preferential affinity for the delta opioid receptor, which can interact in a synergistic or additive manner with an exogenously administered mu opioid receptor agonist. Indeed, the levels of [Met(5)]enkephalin and [Leu(5)]enkephalin were increased in the RVM and in other brainstem nuclei in CFA-treated rats. This increase most likely presents a compensatory neuronal response of the CNS of the injured animal to mitigate the full expression of inflammatory pain and to enhance the antinociceptive and antihyperalgesic effects of exogenously administered mu opioid receptor analgesics.
Collapse
|
48
|
Affiliation(s)
- A Pertovaara
- Department of Physiology, University of Turku, Finland.
| |
Collapse
|
49
|
Danziger N, Weil-Fugazza J, Le Bars D, Bouhassira D. Stage-dependent changes in the modulation of spinal nociceptive neuronal activity during the course of inflammation. Eur J Neurosci 2001; 13:230-40. [PMID: 11168527 DOI: 10.1046/j.0953-816x.2000.01375.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spinal and supraspinal controls can tonically or phasically modulate the output of spinal nociceptive neurons. Alterations of these modulatory systems have been described during the acute stage of inflammation. In the present study in the rat, tonic descending controls were assessed during acute (24--48 h) and chronic (3--4 weeks) stages of monoarthritis of the ankle. The electrophysiological properties of spinal convergent neurons with ankle input were compared before and after spinalization. In a parallel series of experiments, spinal convergent neurons were recorded from the normal side in order to assess the propriospinal and supraspinal inhibitory controls triggered by nociceptive stimulation of the inflamed ankle. Tonic descending inhibition of convergent neurons with input from the inflamed ankle was enhanced during the acute stage and then decreased during the chronic stage of monoarthritis. Contralateral-induced inhibitions exhibited a similar temporal evolution. Time-dependent changes in the spinal transmission of nociceptive signals were shown by removing descending modulation in animals with monoarthritis; sensitization of spinal neurons with input from the inflamed ankle was demonstrated during the acute stage of monoarthritis, whereas a crossed transmission between inflamed and normal sides was observed during the chronic stage of the disease. These results show that dynamic and stage-dependent modifications of descending controls tend to dampen the central changes associated with inflammation.
Collapse
Affiliation(s)
- N Danziger
- INSERM U-161, 2 rue d'Alésia, 75014 Paris, France
| | | | | | | |
Collapse
|
50
|
Terayama R, Guan Y, Dubner R, Ren K. Activity-induced plasticity in brain stem pain modulatory circuitry after inflammation. Neuroreport 2000; 11:1915-9. [PMID: 10884043 DOI: 10.1097/00001756-200006260-00022] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Brain stem descending pathways modulate spinal nociceptive transmission. In a lightly anesthetized rat preparation, we present evidence that such descending modulation undergoes time-dependent changes following persistent hindpaw inflammation. There was an initial decrease and a subsequent increase in the excitability of neurons in the rostral ventromedial medulla (RVM) involving facilitation and inhibition. These changes were most robust after stimulation of the inflamed paw although similar findings were seen on the non-inflamed paw and tail. The enhanced descending modulation appeared to be mediated by changes in the activation of the NMDA excitatory amino acid receptor. These findings demonstrate the dynamic plasticity of the pain modulating pathways in response to persistent tissue injury.
Collapse
Affiliation(s)
- R Terayama
- Department of Oral and Craniofacial Biological Sciences, Dental School, University of Maryland, Baltimore 21201-1586, USA
| | | | | | | |
Collapse
|