1
|
Meloni EG, Carlezon WA, Bolshakov VY. Association between social dominance hierarchy and PACAP expression in the extended amygdala, corticosterone, and behavior in C57BL/6 male mice. Sci Rep 2024; 14:8919. [PMID: 38637645 PMCID: PMC11026503 DOI: 10.1038/s41598-024-59459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
The natural alignment of animals into social dominance hierarchies produces adaptive, and potentially maladaptive, changes in the brain that influence health and behavior. Aggressive and submissive behaviors assumed by animals through dominance interactions engage stress-dependent neural and hormonal systems that have been shown to correspond with social rank. Here, we examined the association between social dominance hierarchy status established within cages of group-housed mice and the expression of the stress peptide PACAP in the bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA). We also examined the relationship between social dominance rank and blood corticosterone (CORT) levels, body weight, motor coordination (rotorod) and acoustic startle. Male C57BL/6 mice were ranked as either Dominant, Submissive, or Intermediate based on counts of aggressive/submissive encounters assessed at 12 weeks-old following a change in homecage conditions. PACAP expression was significantly higher in the BNST, but not the CeA, of Submissive mice compared to the other groups. CORT levels were lowest in Submissive mice and appeared to reflect a blunted response following events where dominance status is recapitulated. Together, these data reveal changes in specific neural/neuroendocrine systems that are predominant in animals of lowest social dominance rank, and implicate PACAP in brain adaptations that occur through the development of social dominance hierarchies.
Collapse
Affiliation(s)
- Edward G Meloni
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, 02478, USA.
- McLean Hospital, Mailman Research Center, 115 Mill St., Belmont, MA, 02478, USA.
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, 02478, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA, 02478, USA
| |
Collapse
|
2
|
Lepeak L, Miracle S, Ferragud A, Seiglie MP, Shafique S, Ozturk Z, Minnig MA, Medeiros G, Cottone P, Sabino V. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) of the Bed Nucleus of the Stria Terminalis Mediates Heavy Alcohol Drinking in Mice. eNeuro 2023; 10:ENEURO.0424-23.2023. [PMID: 38053471 PMCID: PMC10755645 DOI: 10.1523/eneuro.0424-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Alcohol use disorder (AUD) is a complex psychiatric disease characterized by periods of heavy drinking and periods of withdrawal. Chronic exposure to ethanol causes profound neuroadaptations in the extended amygdala, which cause allostatic changes promoting excessive drinking. The bed nucleus of the stria terminalis (BNST), a brain region involved in both excessive drinking and anxiety-like behavior, shows particularly high levels of pituitary adenylate cyclase-activating polypeptide (PACAP), a key mediator of the stress response. Recently, a role for PACAP in withdrawal-induced alcohol drinking and anxiety-like behavior in alcohol-dependent rats has been proposed; whether the PACAP system of the BNST is also recruited in other models of alcohol addiction and whether it is of local or nonlocal origin is currently unknown. Here, we show that PACAP immunoreactivity is increased selectively in the BNST of C57BL/6J mice exposed to a chronic, intermittent access to ethanol. While pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor-expressing cells were unchanged by chronic alcohol, the levels of a peptide closely related to PACAP, the calcitonin gene-related neuropeptide, were found to also be increased in the BNST. Finally, using a retrograde chemogenetic approach in PACAP-ires-Cre mice, we found that the inhibition of PACAP neuronal afferents to the BNST reduced heavy ethanol drinking. Our data suggest that the PACAP system of the BNST is recruited by chronic, voluntary alcohol drinking in mice and that nonlocally originating PACAP projections to the BNST regulate heavy alcohol intake, indicating that this system may represent a promising target for novel AUD therapies.
Collapse
Affiliation(s)
| | | | - Antonio Ferragud
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University Chobanian & Avedisian, School of Medicine, Boston, Massachusetts 02118
| | - Mariel P. Seiglie
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University Chobanian & Avedisian, School of Medicine, Boston, Massachusetts 02118
| | - Samih Shafique
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University Chobanian & Avedisian, School of Medicine, Boston, Massachusetts 02118
| | - Zeynep Ozturk
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University Chobanian & Avedisian, School of Medicine, Boston, Massachusetts 02118
| | - Margaret A. Minnig
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University Chobanian & Avedisian, School of Medicine, Boston, Massachusetts 02118
| | - Gianna Medeiros
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University Chobanian & Avedisian, School of Medicine, Boston, Massachusetts 02118
| | | | | |
Collapse
|
3
|
Meloni EG, Carlezon WA, Bolshakov VY. Impact of social dominance hierarchy on PACAP expression in the extended amygdala, corticosterone, and behavior in C57BL/6 male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539254. [PMID: 37205328 PMCID: PMC10187259 DOI: 10.1101/2023.05.03.539254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The natural alignment of animals into social dominance hierarchies produces adaptive, and potentially maladaptive, changes in the brain that influence health and behavior. Aggressive and submissive behaviors assumed by animals through dominance interactions engage stress-dependent neural and hormonal systems that have been shown to correspond with social rank. Here, we examined the impact of social dominance hierarchies established within cages of group-housed laboratory mice on expression of the stress peptide pituitary adenylate cyclase-activating polypeptide (PACAP) in areas of the extended amygdala comprising the bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA). We also quantified the impact of dominance rank on corticosterone (CORT), body weight, and behavior including rotorod and acoustic startle response. Weight-matched male C57BL/6 mice, group-housed (4/cage) starting at 3 weeks of age, were ranked as either most-dominant (Dominant), least-dominant (Submissive) or in-between rank (Intermediate) based on counts of aggressive and submissive encounters assessed at 12 weeks-old following a change in homecage conditions. We found that PACAP expression was significantly higher in the BNST, but not the CeA, of Submissive mice compared to the other two groups. CORT levels were lowest in Submissive mice and appeared to reflect a blunted response following social dominance interactions. Body weight, motor coordination, and acoustic startle were not significantly different between the groups. Together, these data reveal changes in specific neural/neuroendocrine systems that are predominant in animals of lowest social dominance rank, and implicate PACAP in brain adaptations that occur through the development of social dominance hierarchies.
Collapse
Affiliation(s)
- Edward G. Meloni
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478
| | - William A. Carlezon
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478
| | - Vadim Y. Bolshakov
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, MA 02478
| |
Collapse
|
4
|
Kuburas A, Russo AF. Shared and independent roles of CGRP and PACAP in migraine pathophysiology. J Headache Pain 2023; 24:34. [PMID: 37009867 PMCID: PMC10069045 DOI: 10.1186/s10194-023-01569-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
The neuropeptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) have emerged as mediators of migraine pathogenesis. Both are vasodilatory peptides that can cause migraine-like attacks when infused into people and migraine-like symptoms when injected into rodents. In this narrative review, we compare the similarities and differences between the peptides in both their clinical and preclinical migraine actions. A notable clinical difference is that PACAP, but not CGRP, causes premonitory-like symptoms in patients. Both peptides are found in distinct, but overlapping areas relevant to migraine, most notably with the prevalence of CGRP in trigeminal ganglia and PACAP in sphenopalatine ganglia. In rodents, the two peptides share activities, including vasodilation, neurogenic inflammation, and nociception. Most strikingly, CGRP and PACAP cause similar migraine-like symptoms in rodents that are manifested as light aversion and tactile allodynia. Yet, the peptides appear to act by independent mechanisms possibly by distinct intracellular signaling pathways. The complexity of these signaling pathways is magnified by the existence of multiple CGRP and PACAP receptors that may contribute to migraine pathogenesis. Based on these differences, we suggest PACAP and its receptors provide a rich set of targets to complement and augment the current CGRP-based migraine therapeutics.
Collapse
Affiliation(s)
- Adisa Kuburas
- Department of Molecular Physiology and Biophysics and Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics and Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.
- Veterans Affairs Medical Center, Iowa City, IA, 52246, USA.
| |
Collapse
|
5
|
Ni R, Shu Y, Luo P, Zhou J. Sexual dimorphism in the bed nucleus of the stria terminalis, medial preoptic area and suprachiasmatic nucleus in male and female tree shrews. J Anat 2022; 240:528-540. [PMID: 34642936 PMCID: PMC8819044 DOI: 10.1111/joa.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
Sex differences in behaviour partly arise from the sexual dimorphism of brain anatomy between males and females. However, the sexual dimorphism of the tree shrew brain is unclear. In the present study, we examined the detailed distribution of vasoactive intestinal polypeptide-immunoreactive (VIP-ir) neurons and fibres in the suprachiasmatic nucleus (SCN) and VIP-ir fibres in the bed nucleus of the stria terminalis (BST) of male and female tree shrews. The overall volume of the SCN in male tree shrews was comparable with that in females. However, males showed a significantly higher density of VIP-ir cells and fibres in the SCN than females. The shape of the VIP-stained area in coronal sections was arched, elongated or oval in the lateral division (STL) and the anterior part of the medial division (STMA) of the BST and oval or round in the posterior part of the medial division of the BST (STMP). The volume of the VIP-stained BST in male tree shrews was similar to that in females. The overall distribution of VIP-ir fibres was similar between the sexes throughout the BST except within the STMA, where darkly stained fibres were observed in males, whereas lightly stained fibres were observed in females. Furthermore, male tree shrews showed a significantly higher intensity of Nissl staining in the medial preoptic area (MPA) and the ventral part of the medial division of the BST than females. These findings are the first to reveal sexual dimorphism in the SCN, BST and MPA of the tree shrew brain, providing neuroanatomical evidence of sexual dimorphism in these regions related to their roles in sex differences in physiology and behaviour.
Collapse
Affiliation(s)
- Rong‐Jun Ni
- Psychiatric Laboratory and Mental Health CenterWest China Hospital of Sichuan UniversityChengduChina
- Huaxi Brain Research CenterWest China Hospital of Sichuan UniversityChengduChina
| | - Yu‐Mian Shu
- School of Architecture and Civil EngineeringChengdu UniversityChengduChina
| | - Peng‐Hao Luo
- Chinese Academy of Science Key Laboratory of Brain Function and DiseasesSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Jiang‐Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and DiseasesSchool of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
6
|
Raitiere MN. The Elusive "Switch Process" in Bipolar Disorder and Photoperiodism: A Hypothesis Centering on NADPH Oxidase-Generated Reactive Oxygen Species Within the Bed Nucleus of the Stria Terminalis. Front Psychiatry 2022; 13:847584. [PMID: 35782417 PMCID: PMC9243387 DOI: 10.3389/fpsyt.2022.847584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most striking and least understood aspects of mood disorders involves the "switch process" which drives the dramatic state changes characteristic of bipolar disorder. In this paper we explore the bipolar switch mechanism as deeply grounded in forms of seasonal switching (for example, from summer to winter phenotypes) displayed by many mammalian species. Thus we develop a new and unifying hypothesis that involves four specific claims, all converging to demonstrate a deeper affinity between the bipolar switch process and the light-sensitive (photoperiodic) nonhuman switch sequence than has been appreciated. First, we suggest that rapid eye movement (REM) sleep in both human and nonhuman plays a key role in probing for those seasonal changes in length of day that trigger the organism's characteristic involutional response (in certain animals, hibernation) to shorter days. Second, we claim that this general mammalian response requires the integrity of a neural circuit centering on the anterior bed nucleus of the stria terminalis. Third, we propose that a key molecular mediator of the switch process in both nonhumans and seasonal humans involves reactive oxygen species (ROS) of a particular provenance, namely those created by the enzyme NADPH oxidase (NOX). This position diverges from one currently prominent among students of bipolar disorder. In that tradition, the fact that patients afflicted with bipolar-spectrum disorders display indices of oxidative damage is marshaled to support the conclusion that ROS, escaping adventitiously from mitochondria, have a near-exclusive pathological role. Instead, we believe that ROS, originating instead in membrane-affiliated NOX enzymes upstream from mitochondria, take part in an eminently physiological signaling process at work to some degree in all mammals. Fourth and finally, we speculate that the diversion of ROS from that purposeful, genetically rooted seasonal switching task into the domain of human pathology represents a surprisingly recent phenomenon. It is one instigated mainly by anthropogenic modifications of the environment, especially "light pollution."
Collapse
Affiliation(s)
- Martin N Raitiere
- Department of Psychiatry, Providence St. Vincent Medical Center, Portland, OR, United States
| |
Collapse
|
7
|
Avegno EM, Gilpin NW. Reciprocal midbrain-extended amygdala circuit activity in preclinical models of alcohol use and misuse. Neuropharmacology 2022; 202:108856. [PMID: 34710467 PMCID: PMC8627447 DOI: 10.1016/j.neuropharm.2021.108856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Alcohol dependence is characterized by a shift in motivation to consume alcohol from positive reinforcement (i.e., increased likelihood of future alcohol drinking based on its rewarding effects) to negative reinforcement (i.e., increased likelihood of future alcohol drinking based on alcohol-induced reductions in negative affective symptoms, including but not limited to those experienced during alcohol withdrawal). The neural adaptations that occur during this transition are not entirely understood. Mesolimbic reinforcement circuitry (i.e., ventral tegmental area [VTA] neurons) is activated during early stages of alcohol use, and may be involved in the recruitment of brain stress circuitry (i.e., extended amygdala) during the transition to alcohol dependence, after chronic periods of high-dose alcohol exposure. Here, we review the literature regarding the role of canonical brain reinforcement (VTA) and brain stress (extended amygdala) systems, and the connections between them, in acute, sub-chronic, and chronic alcohol response. Particular emphasis is placed on preclinical models of alcohol use.
Collapse
Affiliation(s)
- Elizabeth M Avegno
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Department of Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Corresponding author: Correspondence should be addressed to Elizabeth Avegno, 1901 Perdido St, Room 7205, New Orleans, LA 70112,
| | - Nicholas W Gilpin
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Department of Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Southeast Louisiana VA Healthcare System (SLVHCS), New Orleans, LA
| |
Collapse
|
8
|
Snyder AE, Silberman Y. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders. Neuropharmacology 2021; 201:108814. [PMID: 34624301 PMCID: PMC8578398 DOI: 10.1016/j.neuropharm.2021.108814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.
Collapse
Affiliation(s)
- Angela E Snyder
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA
| | - Yuval Silberman
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA.
| |
Collapse
|
9
|
Jaramillo AA, Brown JA, Winder DG. Danger and distress: Parabrachial-extended amygdala circuits. Neuropharmacology 2021; 198:108757. [PMID: 34461068 DOI: 10.1016/j.neuropharm.2021.108757] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
Our understanding of the role of the parabrachial nucleus (PBN) has evolved as technology has advanced, in part due to cell-specific studies and complex behavioral assays. This is reflected in the heterogeneous neuronal populations within the PBN to the extended amygdala (EA) circuits which encompass the bed nucleus of the stria terminalis (BNST) and central amygdala (CeA) circuitry, as they differentially modulate aspects of behavior in response to diverse threat-like contexts necessary for survival. Here we review how the PBN→CeA and PBN→BNST pathways differentially modulate fear-like behavior, innate and conditioned, through unique changes in neurotransmission in response to stress-inducing contexts. Furthermore, we hypothesize how in specific instances the PBN→CeA and PBN→BNST circuits are redundant and in part intertwined with their respective reciprocal projections. By deconstructing the interoceptive and exteroceptive components of affect- and stress related behavioral paradigms, evidence suggests that the PBN→CeA circuit modulates innate response to physical stimuli and fear conditioning. Conversely, the PBN→BNST circuit modulates distress-like stress in unpredictable contexts. Thereby, the PBN provides a pathway for alarming interoceptive and exteroceptive stimuli to be processed and relayed to the EA to induce stress-relevant affect. Additionally, we provide a framework for future studies to detail the cell-type specific intricacies of PBN→EA circuits in mediating behavioral responses to threats, and the relevance of the PBN in drug-use as it relates to threat and negative reinforcement. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- A A Jaramillo
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA
| | - J A Brown
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA; Department of Pharmacology, USA
| | - D G Winder
- Vanderbilt University School of Medicine, Nashville, TN, USA; Dept. Mol. Phys. & Biophysics, USA; Vanderbilt Brain Institute, USA; Vanderbilt Center for Addiction Research, USA; Department of Pharmacology, USA; Vanderbilt Kennedy Center, USA; Department of Psychiatry & Behavioral Sciences, USA.
| |
Collapse
|
10
|
Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates dependence-induced alcohol drinking and anxiety-like behavior in male rats. Neuropsychopharmacology 2021; 46:509-518. [PMID: 33191400 PMCID: PMC8027820 DOI: 10.1038/s41386-020-00904-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a devastating illness defined by periods of heavy drinking and withdrawal, often leading to a chronic relapsing course. Initially, alcohol is consumed for its positive reinforcing effects, but later stages of AUD are characterized by drinking to alleviate withdrawal-induced negative emotional states. Brain stress response systems in the extended amygdala are recruited by excessive alcohol intake, sensitized by repeated withdrawal, and contribute to the development of addiction. In this study, we investigated one such brain stress response system, pituitary adenylate cyclase-activating polypeptide (PACAP), and its cognate receptor, PAC1R, in alcohol withdrawal-induced behaviors. During acute withdrawal, rats exposed to chronic intermittent ethanol vapor (ethanol-dependent) displayed a significant increase in PACAP levels in the bed nucleus of the stria terminalis (BNST), a brain area within the extended amygdala critically involved in both stress and withdrawal. No changes in PACAP levels were observed in the central nucleus of the amygdala. Site-specific microinfusion of the PAC1R antagonist PACAP(6-38) into the BNST dose-dependently blocked excessive alcohol intake in ethanol-dependent rats without affecting water intake overall or basal ethanol intake in control, nondependent rats. Intra-BNST PACAP(6-38) also reversed ethanol withdrawal-induced anxiety-like behavior in ethanol-dependent rats, but did not affect this measure in control rats. Our findings show that chronic intermittent exposure to ethanol recruits the PACAP/PAC1R system of the BNST and that these neuroadaptations mediate the heightened alcohol drinking and anxiety-like behavior observed during withdrawal, suggesting that this system represents a major brain stress element responsible for the negative reinforcement associated with the "dark side" of alcohol addiction.
Collapse
|
11
|
Hammack SE, Braas KM, May V. Chemoarchitecture of the bed nucleus of the stria terminalis: Neurophenotypic diversity and function. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:385-402. [PMID: 34225977 DOI: 10.1016/b978-0-12-819975-6.00025-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a compact but neurophenotypically complex structure in the ventral forebrain that is structurally and functionally linked to other limbic structures, including the amygdala nuclear complex, hypothalamic nuclei, hippocampus, and related midbrain structures, to participate in a wide range of functions, especially emotion, emotional learning, stress-related responses, and sexual behaviors. From a variety of sensory inputs, the BNST acts as a node for signal integration and coordination for information relay to downstream central neuroendocrine and autonomic centers for appropriate homeostatic physiological and behavioral responses. In contrast to the role of the amygdala in fear, the BNST has gained wide interest from work suggesting that it has main roles in mediating sustained responses to diffuse, unpredictable and/or long-duration threats that are typically associated with anxiety-related responses. Further, some BNST subregions are highly sexually dimorphic which appear contributory to the differential stress and social interactive behaviors, including reproductive responses, between males and females. Notably, maladaptive BNST neuroplasticity and function have been implicated in chronic pain, depression, anxiety-related abnormalities, and other psychopathologies including posttraumatic stress disorders. The BNST circuits are predominantly GABAergic-the glutaminergic neurons represent a minor population-but the complexity of the system results from an overlay of diverse neuropeptide coexpression in these neurons. More than a dozen neuropeptides may be differentially coexpressed in BNST neurons, and from variable G protein-coupled receptor signaling, may inhibit or activate downstream circuit activities. The mechanisms and roles of these peptides in modulating intrinsic BNST neurocircuit signaling and BNST long-distance target cell projections are still not well understood. Nevertheless, an understanding of some of the principal players may allow assembly of the circuit interactions.
Collapse
Affiliation(s)
- Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, Burlington, VT, United States
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States.
| |
Collapse
|
12
|
Corticotropin-Releasing Factor Family: A Stress Hormone-Receptor System's Emerging Role in Mediating Sex-Specific Signaling. Cells 2020; 9:cells9040839. [PMID: 32244319 PMCID: PMC7226788 DOI: 10.3390/cells9040839] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
No organ in the body is impervious to the effects of stress, and a coordinated response from all organs is essential to deal with stressors. A dysregulated stress response that fails to bring systems back to homeostasis leads to compromised function and ultimately a diseased state. The components of the corticotropin-releasing factor (CRF) family, an ancient and evolutionarily conserved stress hormone-receptor system, helps both initiate stress responses and bring systems back to homeostasis once the stressors are removed. The mammalian CRF family comprises of four known agonists, CRF and urocortins (UCN1–3), and two known G protein-coupled receptors (GPCRs), CRF1 and CRF2. Evolutionarily, precursors of CRF- and urocortin-like peptides and their receptors were involved in osmoregulation/diuretic functions, in addition to nutrient sensing. Both CRF and UCN1 peptide hormones as well as their receptors appeared after a duplication event nearly 400 million years ago. All four agonists and both CRF receptors show sex-specific changes in expression and/or function, and single nucleotide polymorphisms are associated with a plethora of human diseases. CRF receptors harbor N-terminal cleavable peptide sequences, conferring biased ligand properties. CRF receptors have the ability to heteromerize with each other as well as with other GPCRs. Taken together, CRF receptors and their agonists due to their versatile functional adaptability mediate nuanced responses and are uniquely positioned to orchestrate sex-specific signaling and function in several tissues.
Collapse
|
13
|
Kovács LÁ, Berta G, Csernus V, Ujvári B, Füredi N, Gaszner B. Corticotropin-Releasing Factor-Producing Cells in the Paraventricular Nucleus of the Hypothalamus and Extended Amygdala Show Age-Dependent FOS and FOSB/DeltaFOSB Immunoreactivity in Acute and Chronic Stress Models in the Rat. Front Aging Neurosci 2019; 11:274. [PMID: 31649527 PMCID: PMC6794369 DOI: 10.3389/fnagi.2019.00274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/24/2019] [Indexed: 01/01/2023] Open
Abstract
Corticotropin-releasing factor (CRF) immunoreactive (ir) neurons of the paraventricular nucleus of the hypothalamus (PVN) play pivotal role in the coordination of stress response. CRF-producing cells in the central nucleus of amygdala (CeA) and oval division of the bed nucleus of stria terminalis (BNSTov) are also involved in stress adaptation and mood control. Immediate early gene products, subunits of the transcription factor activator protein 1 (AP1) are commonly used as acute (FOS) and/or chronic (FOSB/deltaFOSB) markers for the neuronal activity in stress research. It is well known that the course of aging affects stress adaptation, but little is known about the aging-related stress sensitivity of CRF neurons. To the best of our knowledge, the stress-induced neuronal activity of CRF neurons in the course of aging in acute and chronic stress models was not studied systematically yet. Therefore, the aim of the present study was to quantify the acute restraint stress (ARS) and chronic variable mild stress (CVMS) evoked neuronal activity in CRF cells of the PVN, CeA, and BNSTov using triple-label immunofluorescence throughout the whole lifespan in the rat. We hypothesized that the FOS and FOSB content of CRF cells upon ARS or CVMS decreases with age. Our results showed that the FOS and FOSB response to ARS declined with age in the PVN-CRF cells. BNSTov and CeA CRF cells did not show remarkable stress-induced elevation of these markers neither in ARS, nor in CVMS. Exposure to CVMS resulted in an age-independent significant increase of FOSB/delta FOSB immunosignal in PVN-CRF neurons. Unexpectedly, we detected a remarkable stress-independent FOSB/deltaFOSB signal in CeA- and BNSTov-CRF cells that declined with the course of aging. In summary, PVN-CRF cells show decreasing acute stress sensitivity (i.e., FOS and FOSB immunoreactivity) with the course of aging, while their (FOSB/deltaFOSB) responsivity to chronic challenge is maintained till senescence. Stress exposure does not affect the occurrence of the examined Fos gene products in CeA- and BNSTov-CRF cells remarkably suggesting that their contribution to stress adaptation response does not require AP1-controlled transcriptional changes.
Collapse
Affiliation(s)
- László Á Kovács
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary.,Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Valér Csernus
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary
| | - Balázs Ujvári
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary.,Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Nóra Füredi
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary.,Centre for Neuroscience, Pécs University, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary.,Centre for Neuroscience, Pécs University, Pécs, Hungary
| |
Collapse
|
14
|
Gupta A, Gargiulo AT, Curtis GR, Badve PS, Pandey S, Barson JR. Pituitary Adenylate Cyclase-Activating Polypeptide-27 (PACAP-27) in the Thalamic Paraventricular Nucleus Is Stimulated by Ethanol Drinking. Alcohol Clin Exp Res 2018; 42:1650-1660. [PMID: 29969146 DOI: 10.1111/acer.13826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/29/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND The paraventricular nucleus of the thalamus (PVT) is a limbic brain structure that affects ethanol (EtOH) drinking, but the neurochemicals transcribed in this nucleus that may participate in this behavior have yet to be fully characterized. The neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP), is known to be transcribed in other limbic areas and to be involved in many of the same behaviors as the PVT itself, possibly including EtOH drinking. It exists in 2 isoforms, PACAP-38 and PACAP-27, with the former expressed at higher levels in most brain regions. The purpose of this study was to characterize PACAP in the PVT and to assess its response to EtOH drinking. METHODS First, EtOH-naïve, Sprague Dawley rats were examined using quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry, to characterize PACAP mRNA and peptide throughout the rostrocaudal axis of the PVT. Next, EtOH-naïve, vGLUT2-GFP transgenic mice were examined using immunohistochemistry, to identify the neurochemical phenotype of the PACAPergic cells in the PVT. Finally, Long Evans rats were trained to drink 20% EtOH under the intermittent-access paradigm and then examined with PCR and immunohistochemistry, to determine the effects of EtOH on endogenous PACAP in the PVT. RESULTS Gene expression of PACAP was detected across the entire PVT, denser in the posterior than the anterior portion of this nucleus. The protein isoform, PACAP-27, was present in a high percentage of cell bodies in the PVT, again particularly in the posterior portion, while PACAP-38 was instead dense in fibers. All PACAP-27+ cells colabeled with glutamate, which itself was identified in the majority of PVT cells. EtOH drinking led to an increase in PACAP gene expression and in levels of PACAP-27 in individual cells of the PVT. CONCLUSIONS This study characterizes the PVT neuropeptide, PACAP, and its understudied protein isoform, PACAP-27, and demonstrates that it is involved in pharmacologically relevant EtOH drinking. This indicates that PACAP-27 should be further investigated for its possible role in EtOH drinking.
Collapse
Affiliation(s)
- Anuranita Gupta
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Andrew T Gargiulo
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Genevieve R Curtis
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Preeti S Badve
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Surya Pandey
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Abstract
Stressor exposure is associated with the onset and severity of many psychopathologies that are more common in women than men. Moreover, the maladaptive expression and function of stress-related hormones have been implicated in these disorders. Evidence suggests that PACAP has a critical role in the stress circuits mediating stress-responding, and PACAP may interact with sex hormones to contribute to sex differences in stress-related disease. In this review, we describe the role of the PACAP/PAC1 system in stress biology, focusing on the role of stress-induced alterations in PACAP expression and signaling in the development of stress-induced behavioral change. Additionally, we present more recent data suggesting potential interactions between stress, PACAP, and circulating estradiol in pathological states, including PTSD. These studies suggest that the level of stress and circulating gonadal hormones may differentially regulate the PACAPergic system in males and females to influence anxiety-like behavior and may be one mechanism underlying the discrepancies in human psychiatric disorders.
Collapse
Affiliation(s)
- S Bradley King
- a Department of Psychological Science , University of Vermont , Burlington , VT , USA
| | - Donna J Toufexis
- a Department of Psychological Science , University of Vermont , Burlington , VT , USA
| | - Sayamwong E Hammack
- a Department of Psychological Science , University of Vermont , Burlington , VT , USA
| |
Collapse
|
16
|
The Effects of Prior Stress on Anxiety-Like Responding to Intra-BNST Pituitary Adenylate Cyclase Activating Polypeptide in Male and Female Rats. Neuropsychopharmacology 2017; 42:1679-1687. [PMID: 28106040 PMCID: PMC5518896 DOI: 10.1038/npp.2017.16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 01/23/2023]
Abstract
Chronic or repeated exposure to stressful stimuli can result in several maladaptive consequences, including increased anxiety-like behaviors and altered peptide expression in anxiety-related brain structures. Among these structures, the bed nucleus of the stria terminalis (BNST) has been implicated in emotional behaviors as well as regulation of hypothalamic-pituitary-adrenal (HPA) axis activity. In male rodents, chronic variate stress (CVS) has been shown to increase BNST pituitary adenylate cyclase activating polypeptide (PACAP) and its cognate PAC1 receptor transcript, and BNST PACAP signaling may mediate the maladaptive changes associated with chronic stress. Here, we examined whether CVS would sensitize the behavioral and/or endocrine response to a subthreshold BNST PACAP infusion. Male and cycling female rats were exposed to a 7 day CVS paradigm previously shown to upregulate BNST PAC1 receptor transcripts; control rats were not stressed. Twenty-four hours following the last stressor, rats were bilaterally infused into the BNST with a normally subthreshold dose of PACAP. We found an increase in startle amplitude and plasma corticosterone levels 30 min following intra-BNST PACAP infusion in male rats that had been previously exposed to CVS. CVS did not enhance the startle response in cycling females. Equimolar infusion of the VPAC1/2 receptor ligand vasoactive intestinal polypeptide (VIP) had no effect on plasma corticosterone levels even in previously stressed male rats. These results suggest that repeated exposure to stressors may differentially alter the neural circuits underlying the responses to intra-BNST PACAP, and may result in different anxiety-like responses in males and females.
Collapse
|
17
|
Construct and face validity of a new model for the three-hit theory of depression using PACAP mutant mice on CD1 background. Neuroscience 2017; 354:11-29. [PMID: 28450265 DOI: 10.1016/j.neuroscience.2017.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
Major depression is a common cause of chronic disability. Despite decades of efforts, no equivocally accepted animal model is available for studying depression. We tested the validity of a new model based on the three-hit concept of vulnerability and resilience. Genetic predisposition (hit 1, mutation of pituitary adenylate cyclase-activating polypeptide, PACAP gene), early-life adversity (hit 2, 180-min maternal deprivation, MD180) and chronic variable mild stress (hit 3, CVMS) were combined. Physical, endocrinological, behavioral and functional morphological tools were used to validate the model. Body- and adrenal weight changes as well as corticosterone titers proved that CVMS was effective. Forced swim test indicated increased depression in CVMS PACAP heterozygous (Hz) mice with MD180 history, accompanied by elevated anxiety level in marble burying test. Corticotropin-releasing factor neurons in the oval division of the bed nucleus of the stria terminalis showed increased FosB expression, which was refractive to CVMS exposure in wild-type and Hz mice. Urocortin1 neurons became over-active in CMVS-exposed PACAP knock out (KO) mice with MD180 history, suggesting the contribution of centrally projecting Edinger-Westphal nucleus to the reduced depression and anxiety level of stressed KO mice. Serotoninergic neurons of the dorsal raphe nucleus lost their adaptation ability to CVMS in MD180 mice. In conclusion, the construct and face validity criteria suggest that MD180 PACAP HZ mice on CD1 background upon CVMS may be used as a reliable model for the three-hit theory.
Collapse
|
18
|
Reduced response to chronic mild stress in PACAP mutant mice is associated with blunted FosB expression in limbic forebrain and brainstem centers. Neuroscience 2016; 330:335-58. [DOI: 10.1016/j.neuroscience.2016.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 12/29/2022]
|
19
|
Rodríguez-Sierra OE, Goswami S, Turesson HK, Pare D. Altered responsiveness of BNST and amygdala neurons in trauma-induced anxiety. Transl Psychiatry 2016; 6:e857. [PMID: 27434491 PMCID: PMC5545714 DOI: 10.1038/tp.2016.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/18/2016] [Accepted: 05/08/2016] [Indexed: 12/31/2022] Open
Abstract
A highly conserved network of brain structures regulates the expression of fear and anxiety in mammals. Many of these structures display abnormal activity levels in post-traumatic stress disorder (PTSD). However, some of them, like the bed nucleus of the stria terminalis (BNST) and amygdala, are comprised of several small sub-regions or nuclei that cannot be resolved with human neuroimaging techniques. Therefore, we used a well-characterized rat model of PTSD to compare neuronal properties in resilient vs PTSD-like rats using patch recordings obtained from different BNST and amygdala regions in vitro. In this model, a persistent state of extreme anxiety is induced in a subset of susceptible rats following predatory threat. Previous animal studies have revealed that the central amygdala (CeA) and BNST are differentially involved in the genesis of fear and anxiety-like states, respectively. Consistent with these earlier findings, we found that between resilient and PTSD-like rats were marked differences in the synaptic responsiveness of neurons in different sectors of BNST and CeA, but whose polarity was region specific. In light of prior data about the role of these regions, our results suggest that control of fear/anxiety expression is altered in PTSD-like rats such that the influence of CeA is minimized whereas that of BNST is enhanced. A model of the amygdalo-BNST interactions supporting the PTSD-like state is proposed.
Collapse
Affiliation(s)
- O E Rodríguez-Sierra
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ, USA
| | - S Goswami
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - H K Turesson
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ, USA
| | - D Pare
- Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, NJ, USA
| |
Collapse
|
20
|
Jiang SZ, Eiden LE. Activation of the HPA axis and depression of feeding behavior induced by restraint stress are separately regulated by PACAPergic neurotransmission in the mouse. Stress 2016; 19:374-82. [PMID: 27228140 PMCID: PMC5564370 DOI: 10.1080/10253890.2016.1174851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We measured serum CORT elevation in wild-type and PACAP-deficient C57BL/6N male mice after acute (1 h) or prolonged (2-3 h) daily restraint stress for 7 d. The PACAP dependence of CORT elevation was compared to that of stress-induced hypophagia. Daily restraint induced unhabituated peak CORT elevation, and hypophagia/weight loss, of similar magnitude for 1, 2, and 3 h of daily restraint, in wild-type mice. Peak CORT elevation, and hypophagia, were both attenuated in PACAP-deficient mice for 2 and 3 h daily restraint. Hypophagia induced by 1-h daily restraint was also greatly reduced in PACAP-deficient mice, however CORT elevation, both peak and during recovery from stress, was unaffected. Thus, hypothalamic PACAPergic neurotransmission appears to affect CRH gene transcription and peptide production, but not CRH release, in response to psychogenic stress. A single exposure to restraint sufficed to trigger hypophagia over the following 24 h. PACAP deficiency attenuated HPA axis response (CORT elevation) to prolonged (3 h) but not acute (1 h) single-exposure restraint stress, while hypophagia induced by either a single 1 h or a single 3 h restraint were both abolished in PACAP-deficient mice. These results suggest that PACAP's actions to promote suppression of food intake following an episode of psychogenic stress is unrelated to the release of CRH into the portal circulation to activate the pituitary-adrenal axis. Furthermore, demonstration of suppressed food intake after a single 1-h restraint stress provides a convenient assay for investigating the location of the synapses and circuits mediating the effects of PACAP on the behavioral sequelae of psychogenic stress.
Collapse
Affiliation(s)
- Sunny Zhihong Jiang
- a Section on Molecular Neuroscience , National Institute of Mental Health , Bethesda , MD , USA
| | - Lee E Eiden
- a Section on Molecular Neuroscience , National Institute of Mental Health , Bethesda , MD , USA
| |
Collapse
|
21
|
Lebow MA, Chen A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry 2016; 21:450-63. [PMID: 26878891 PMCID: PMC4804181 DOI: 10.1038/mp.2016.1] [Citation(s) in RCA: 426] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/19/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a center of integration for limbic information and valence monitoring. The BNST, sometimes referred to as the extended amygdala, is located in the basal forebrain and is a sexually dimorphic structure made up of between 12 and 18 sub-nuclei. These sub-nuclei are rich with distinct neuronal subpopulations of receptors, neurotransmitters, transporters and proteins. The BNST is important in a range of behaviors such as: the stress response, extended duration fear states and social behavior, all crucial determinants of dysfunction in human psychiatric diseases. Most research on stress and psychiatric diseases has focused on the amygdala, which regulates immediate responses to fear. However, the BNST, and not the amygdala, is the center of the psychogenic circuit from the hippocampus to the paraventricular nucleus. This circuit is important in the stimulation of the hypothalamic-pituitary-adrenal axis. Thus, the BNST has been largely overlooked with respect to its possible dysregulation in mood and anxiety disorders, social dysfunction and psychological trauma, all of which have clear gender disparities. In this review, we will look in-depth at the anatomy and projections of the BNST, and provide an overview of the current literature on the relevance of BNST dysregulation in psychiatric diseases.
Collapse
Affiliation(s)
- M A Lebow
- grid.13992.300000 0004 0604 7563Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel ,grid.419548.50000 0000 9497 5095Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich, Germany
| | - A Chen
- grid.13992.300000 0004 0604 7563Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel ,grid.419548.50000 0000 9497 5095Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
22
|
Hammack SE, May V. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry 2015; 78:167-77. [PMID: 25636177 PMCID: PMC4461555 DOI: 10.1016/j.biopsych.2014.12.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
The maladaptive expression and function of several stress-associated hormones have been implicated in pathological stress and anxiety-related disorders. Among these, recent evidence has suggested that pituitary adenylate cyclase activating polypeptide (PACAP) has critical roles in central neurocircuits mediating stress-related emotional behaviors. We describe the PACAPergic systems, the data implicating PACAP in stress biology, and how altered PACAP expression and signaling may result in psychopathologies. We include our work implicating PACAP signaling within the bed nucleus of the stria terminalis in mediating the consequences of stressor exposure and relatedly, describe more recent studies suggesting that PACAP in the central nucleus of the amygdala may impact the emotional aspects of chronic pain states. In aggregate, these results are consistent with data suggesting that PACAP dysregulation is associated with posttraumatic stress disorder in humans.
Collapse
Affiliation(s)
- Sayamwong E. Hammack
- Department of Psychological Science, University of Vermont, John Dewey Hall, 2 Colchester Avenue, Burlington, Vermont 05405-0134, Phone: 802.656.1041, Fax: 802.656.8783
| | - Victor May
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, HSRF 428, Burlington, VT 05405, Phone: 802.656.4579
| |
Collapse
|
23
|
Kash TL, Pleil KE, Marcinkiewcz CA, Lowery-Gionta EG, Crowley N, Mazzone C, Sugam J, Hardaway JA, McElligott ZA. Neuropeptide regulation of signaling and behavior in the BNST. Mol Cells 2015; 38:1-13. [PMID: 25475545 PMCID: PMC4314126 DOI: 10.14348/molcells.2015.2261] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/23/2022] Open
Abstract
Recent technical developments have transformed how neuroscientists can probe brain function. What was once thought to be difficult and perhaps impossible, stimulating a single set of long range inputs among many, is now relatively straight-forward using optogenetic approaches. This has provided an avalanche of data demonstrating causal roles for circuits in a variety of behaviors. However, despite the critical role that neuropeptide signaling plays in the regulation of behavior and physiology of the brain, there have been remarkably few studies demonstrating how peptide release is causally linked to behaviors. This is likely due to both the different time scale by which peptides act on and the modulatory nature of their actions. For example, while glutamate release can effectively transmit information between synapses in milliseconds, peptide release is potentially slower [See the excellent review by Van Den Pol on the time scales and mechanisms of release (van den Pol, 2012)] and it can only tune the existing signals via modulation. And while there have been some studies exploring mechanisms of release, it is still not as clearly known what is required for efficient peptide release. Furthermore, this analysis could be complicated by the fact that there are multiple peptides released, some of which may act in contrast. Despite these limitations, there are a number of groups making progress in this area. The goal of this review is to explore the role of peptide signaling in one specific structure, the bed nucleus of the stria terminalis, that has proven to be a fertile ground for peptide action.
Collapse
Affiliation(s)
- Thomas L. Kash
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Kristen E. Pleil
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Catherine A. Marcinkiewcz
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Emily G. Lowery-Gionta
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Nicole Crowley
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Christopher Mazzone
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Jonathan Sugam
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - J. Andrew Hardaway
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| | - Zoe A. McElligott
- Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill,
USA
| |
Collapse
|
24
|
Lezak KR, Roman CW, Braas KM, Schutz KC, Falls WA, Schulkin J, May V, Hammack SE. Regulation of bed nucleus of the stria terminalis PACAP expression by stress and corticosterone. J Mol Neurosci 2014; 54:477-84. [PMID: 24614974 PMCID: PMC4162870 DOI: 10.1007/s12031-014-0269-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/17/2014] [Indexed: 12/26/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) in the genes for pituitary adenylyl cyclase-activating peptide (PACAP) and the PAC1 receptor have been associated with stress-related psychiatric disorders. Although, from recent work, we have argued that stress-induced PACAP expression in the bed nucleus of the stria terminalis (BNST) may mediate stress-related psychopathology, it is unclear whether stress-induced increases in BNST PACAP expression require acute or repeated stressor exposure and whether increased BNST PACAP expression is related to stress-induced increases in circulating glucocorticoids. In the current work, we have used real-time quantitative polymerase chain reaction (qPCR) to assess transcript expression in brain punches from rats after stressor exposure paradigms or corticosterone injection. BNST PACAP and PAC1 receptor transcript expression was increased only after 7 days of repeated stressor exposure; no changes in transcript levels were observed 2 or 24 hours after a single-restraint session. Moreover, repeated corticosterone treatment for 7 days was not sufficient to reliably increase BNST PACAP transcript levels, suggesting that stress-induced elevations in corticosterone may not be the primary drivers of BNST PACAP expression. These results may help clarify the mechanisms and temporal processes that underlie BNST PACAP induction for intervention in stress-related anxiety disorders.
Collapse
Affiliation(s)
- Kimberly R Lezak
- Department of Psychology, University of Vermont, 2 Colchester Avenue, John Dewey Hall, Burlington, VT, 05405, USA,
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Roman CW, Lezak KR, Hartsock MJ, Falls WA, Braas KM, Howard AB, Hammack SE, May V. PAC1 receptor antagonism in the bed nucleus of the stria terminalis (BNST) attenuates the endocrine and behavioral consequences of chronic stress. Psychoneuroendocrinology 2014; 47:151-65. [PMID: 25001965 PMCID: PMC4342758 DOI: 10.1016/j.psyneuen.2014.05.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/07/2014] [Accepted: 05/11/2014] [Indexed: 11/28/2022]
Abstract
Chronic or repeated stressor exposure can induce a number of maladaptive behavioral and physiological consequences and among limbic structures, the bed nucleus of the stria terminalis (BNST) has been implicated in the integration and interpretation of stress responses. Previous work has demonstrated that chronic variate stress (CVS) exposure in rodents increases BNST pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) and PAC1 receptor (Adcyap1r1) transcript expression, and that acute BNST PACAP injections can stimulate anxiety-like behavior. Here we show that chronic stress increases PACAP expression selectively in the oval nucleus of the dorsolateral BNST in patterns distinct from those for corticotropin releasing hormone (CRH). Among receptor subtypes, BNST PACAP signaling through PAC1 receptors not only heightened anxiety responses as measured by different behavioral parameters but also induced anorexic-like behavior to mimic the consequences of stress. Conversely, chronic inhibition of BNST PACAP signaling by continuous infusion with the PAC1 receptor antagonist PACAP(6-38) during the week of CVS attenuated these stress-induced behavioral responses and changes in weight gain. BNST PACAP signaling stimulated the hypothalamic-pituitary-adrenal (HPA) axis and heightened corticosterone release; further, BNST PACAP(6-38) administration blocked corticosterone release in a sensitized stress model. In aggregate with recent associations of PACAP/PAC1 receptor dysregulation with altered stress responses including post-traumatic stress disorder, these data suggest that BNST PACAP/PAC1 receptor signaling mechanisms may coordinate the behavioral and endocrine consequences of stress.
Collapse
Affiliation(s)
- Carolyn W. Roman
- Department of Neurological Sciences University of Vermont College of Medicine Burlington, Vermont 05405 USA
| | - Kim R. Lezak
- Department of Psychological Science University of Vermont Burlington, Vermont 05405 USA
| | - Matthew J. Hartsock
- Department of Psychological Science University of Vermont Burlington, Vermont 05405 USA
| | - William A. Falls
- Department of Psychological Science University of Vermont Burlington, Vermont 05405 USA
| | - Karen M. Braas
- Department of Neurological Sciences University of Vermont College of Medicine Burlington, Vermont 05405 USA
| | - Alan B. Howard
- Department of Mathematics and Statistics University of Vermont Burlington, Vermont 05405 USA
| | - Sayamwong E. Hammack
- Department of Psychological Science University of Vermont Burlington, Vermont 05405 USA,Corresponding Authors: Victor May, Ph.D., Department of Neurological Sciences University of Vermont College of Medicine 149 Beaumont Avenue, HSRF 428 Burlington, Vermont 05405, Telephone: 802.656.4579,
| | - Victor May
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA.
| |
Collapse
|
26
|
Lezak KR, Roelke E, Harris OM, Choi I, Edwards S, Gick N, Cocchiaro G, Missig G, Roman CW, Braas KM, Toufexis DJ, May V, Hammack SE. Pituitary adenylate cyclase-activating polypeptide (PACAP) in the bed nucleus of the stria terminalis (BNST) increases corticosterone in male and female rats. Psychoneuroendocrinology 2014; 45:11-20. [PMID: 24845172 PMCID: PMC4050443 DOI: 10.1016/j.psyneuen.2014.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 11/17/2022]
Abstract
Single nucleotide polymorphisms (SNP) in the genes for pituitary adenylate cyclase-activating polypeptide (PACAP) and the PAC1 receptor have been associated with several psychiatric disorders whose etiology has been associated with stressor exposure and/or dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. In rats, exposure to repeated variate stress has been shown to increase PACAP and its cognate PAC1 receptor expression in the bed nucleus of the stria terminalis (BNST), a brain region implicated in anxiety and depression-related behaviors as well as the regulation of HPA axis activity. We have argued that changes in BNST PACAP signaling may mediate the changes in emotional behavior and dysregulation of the HPA axis associated with anxiety and mood disorders. The current set of studies was designed to determine whether BNST PACAP infusion leads to activation of the HPA axis as determined by increases in plasma corticosterone. We observed an increase in plasma corticosterone levels 30min following BNST PACAP38 infusion in male and female rats, which was independent of estradiol (E2) treatment in females, and we found that plasma corticosterone levels were increased at both 30min and 60min, but returned to baseline levels 4h following the highest dose. PACAP38 infusion into the lateral ventricles immediately above the BNST did not alter plasma corticosterone level, and the increased plasma corticosterone following BNST PACAP was not blocked by BNST corticotropin releasing hormone (CRH) receptor antagonism. These results support others suggesting that BNST PACAP plays a key role in regulating stress responses.
Collapse
Affiliation(s)
- K R Lezak
- Department of Psychology, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, United States
| | - E Roelke
- Department of Psychology, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, United States
| | - O M Harris
- Department of Psychology, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, United States
| | - I Choi
- Department of Psychology, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, United States; Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, United States
| | - S Edwards
- Department of Psychology, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, United States; Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, United States
| | - N Gick
- Department of Psychology, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, United States; Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, United States
| | - G Cocchiaro
- Department of Psychology, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, United States
| | - G Missig
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, United States
| | - C W Roman
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, United States
| | - K M Braas
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, United States
| | - D J Toufexis
- Department of Psychology, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, United States
| | - V May
- Department of Neurological Sciences, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, United States
| | - S E Hammack
- Department of Psychology, University of Vermont, 2 Colchester Avenue, Burlington, VT 05405, United States.
| |
Collapse
|
27
|
PACAP in the BNST produces anorexia and weight loss in male and female rats. Neuropsychopharmacology 2014; 39:1614-23. [PMID: 24434744 PMCID: PMC4023158 DOI: 10.1038/npp.2014.8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/17/2013] [Accepted: 01/09/2014] [Indexed: 11/08/2022]
Abstract
Recent gene association studies have implicated pituitary adenylate cyclase-activating peptide (PACAP) systems in several psychiatric disorders associated with stressor exposure, and we have argued that many of the behavioral consequences of repeated stressor exposure may depend on the expression of PACAP in the bed nucleus of the stria terminalis (BNST). One behavioral consequence of the activation of stress systems can be anorexia and subsequent weight loss, and both the activation of central PACAP systems as well as neuronal activity in the BNST have also been associated with anorexic states in rodents. Hence, we investigated the regulation of food and water intake and weight loss following BNST PACAP infusion. BNST PACAP38 dose-dependently decreased body weight, as well as food and water intake in the first 24 h following infusion. Because different BNST subregions differentially regulate stress responding, we further examined the effects of PACAP38 in either the anterior or posterior BNST. Anterior BNST PACAP38 infusion did not alter weight gain, whereas posterior PACAP38 infusion resulted in weight loss. PACAP38 infused into the lateral ventricles did not alter weight, suggesting that the effects of BNST-infused PACAP were not mediated by leakage into the ventricular system. These data suggest that PACAP receptor activation in posterior BNST subregions can produce anorexia and weight loss, and corroborate growing data implicating central PACAP activation in mediating the consequences of stressor exposure.
Collapse
|
28
|
Zorrilla EP, Koob GF. Amygdalostriatal projections in the neurocircuitry for motivation: a neuroanatomical thread through the career of Ann Kelley. Neurosci Biobehav Rev 2013; 37:1932-45. [PMID: 23220696 PMCID: PMC3838492 DOI: 10.1016/j.neubiorev.2012.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/28/2012] [Indexed: 01/25/2023]
Abstract
In MacLean's triune brain, the amygdala putatively subserves motivated behavior by modulating the "reptilian" basal ganglia. Accordingly, Ann Kelley, with Domesick and Nauta, influentially showed that amygdalostriatal projections are much more extensive than were appreciated. They highlighted that amygdalar projections to the rostral ventromedial striatum converged with projections from the ventral tegmental area and cingulate cortex, forming a "limbic striatum". Caudal of the anterior commissure, the entire striatum receives afferents from deep basal nuclei of the amygdala. Orthologous topographic projections subsequently were observed in fish, amphibians, and reptiles. Subsequent functional studies linked acquired value to action via this neuroanatomical substrate. From Dr. Kelley's work evolved insights into components of the distributed, interconnected network that subserves motivated behavior, including the nucleus accumbens shell and core and the striatal-like extended amygdala macrostructure. These heuristic frameworks provide a neuroanatomical basis for adaptively translating motivation into behavior. The ancient amygdala-to-striatum pathways remain a current functional thread not only for stimulus-response valuation, but also for the psychopathological plasticity that underlies addiction-related memory, craving and relapse.
Collapse
Affiliation(s)
- Eric P Zorrilla
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
29
|
Stamatakis AM, Sparta DR, Jennings JH, McElligott ZA, Decot H, Stuber GD. Amygdala and bed nucleus of the stria terminalis circuitry: Implications for addiction-related behaviors. Neuropharmacology 2013; 76 Pt B:320-8. [PMID: 23752096 DOI: 10.1016/j.neuropharm.2013.05.046] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 02/07/2023]
Abstract
Complex motivated behavioral processes, such as those that can go awry following substance abuse and other neuropsychiatric disorders, are mediated by a distributive network of neurons that reside throughout the brain. Neural circuits within the amygdala regions, such as the basolateral amygdala (BLA), and downstream targets such as the bed nucleus of the stria terminalis (BNST), are critical neuroanatomical structures for orchestrating emotional behavioral responses that may influence motivated actions such as the reinstatement of drug seeking behavior. Here, we review the functional neurocircuitry of the BLA and the BNST, and discuss how these circuits may guide maladaptive behavioral processes such as those seen in addiction. Thus, further study of the functional connectivity within these brain regions and others may provide insight for the development of new treatment strategies for substance use disorders. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Alice M Stamatakis
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
30
|
Dougalis AG, Matthews GAC, Bishop MW, Brischoux F, Kobayashi K, Ungless MA. Functional properties of dopamine neurons and co-expression of vasoactive intestinal polypeptide in the dorsal raphe nucleus and ventro-lateral periaqueductal grey. Eur J Neurosci 2012; 36:3322-3332. [PMID: 22925150 DOI: 10.1111/j.1460-9568.2012.08255.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The dorsal raphe nucleus (DRN) and ventrolateral periaqueductal grey (vlPAG) regions contain populations of dopamine neurons, often considered to be a dorsal caudal extension of the A10 group [mostly found in the ventral tegmental area (VTA)]. Recent studies suggest they are involved in promoting wakefulness and mediate some of the antinociceptive and rewarding properties of opiates. However, little is known about their electrophysiological properties. To address this, we used Pitx3-GFP and tyrosine hydroxylase (TH)-GFP mice to carry out targeted whole-cell recordings from this population in acute brain slices. We found that DRN/vlPAG dopamine neurons have characteristics similar to most VTA dopamine neurons, but distinct from dorsal raphe serotonin neurons. They fire broad action potentials at a relatively slow, regular rate, exhibit a hyperpolarization-activated inward current and delayed repolarization, and show spike-frequency adaptation in response to prolonged depolarization. In addition, they receive fast excitatory and inhibitory synaptic inputs. Moreover, we found co-expression of vasoactive intestinal polypeptide in small, periaqueductal dopamine neurons, but generally not in larger, more ventral dopamine neurons.
Collapse
Affiliation(s)
- Antonios G Dougalis
- Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Gillian A C Matthews
- Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Matthew W Bishop
- Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Frédéric Brischoux
- Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Mark A Ungless
- Medical Research Council Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
31
|
Kash TL. The role of biogenic amine signaling in the bed nucleus of the stria terminals in alcohol abuse. Alcohol 2012; 46:303-8. [PMID: 22449787 DOI: 10.1016/j.alcohol.2011.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 12/01/2022]
Abstract
There is a growing body of evidence that suggests that stress and anxiety can influence the development of alcohol use disorders. This influence is believed to be due in part to persistent adaptations in discrete brain regions that underlie stress responsivity. One structure that has been proposed to be a site of important neuroadaptations underlying this behavior is the extended amygdala. The extended amygdala is a series of extensively inter-connected limbic structures including the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST). These structures are critical regulators of behavioral and physiological activation associated with anxiety. Additionally, numerous reports have suggested that these regions are involved in increased drinking behavior associated with chronic alcohol exposure and withdrawal. The focus of this review will be to discuss the role of the BNST in regulation of behavior, to provide some insight in to the circuitry of the BNST, and to discuss the actions of the biogenic amines, serotonin, dopamine and norepinephrine, in the BNST.
Collapse
Affiliation(s)
- Thomas Louis Kash
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
32
|
Reactive oxygen species and inhibitors of inflammatory enzymes, NADPH oxidase, and iNOS in experimental models of Parkinson's disease. Mediators Inflamm 2012; 2012:823902. [PMID: 22577256 PMCID: PMC3346999 DOI: 10.1155/2012/823902] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/23/2011] [Accepted: 01/09/2012] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen species (ROSs) are emerging as important players in the etiology of neurodegenerative disorders including Parkinson's disease (PD). Out of several ROS-generating systems, the inflammatory enzymes nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and inducible nitric oxide synthase (iNOS) were believed to play major roles. Mounting evidence suggests that activation of NADPH oxidase and the expression of iNOS are directly linked to the generation of highly reactive ROS which affects various cellular components and preferentially damage midbrain dopaminergic neurons in PD. Therefore, appropriate management or inhibition of ROS generated by these enzymes may represent a therapeutic target to reduce neuronal degeneration seen in PD. Here, we have summarized recently developed agents and patents claimed as inhibitors of NADPH oxidase and iNOS enzymes in experimental models of PD.
Collapse
|
33
|
Gaszner B, Kormos V, Kozicz T, Hashimoto H, Reglodi D, Helyes Z. The behavioral phenotype of pituitary adenylate-cyclase activating polypeptide-deficient mice in anxiety and depression tests is accompanied by blunted c-Fos expression in the bed nucleus of the stria terminalis, central projecting Edinger-Westphal nucleus, ventral lateral septum, and dorsal raphe nucleus. Neuroscience 2011; 202:283-99. [PMID: 22178610 DOI: 10.1016/j.neuroscience.2011.11.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 01/10/2023]
Abstract
Pituitary adenylate-cyclase activating polypeptide (PACAP) has been implicated in the (patho)physiology of stress-adaptation. PACAP deficient (PACAP(-/-)) mice show altered anxiety levels and depression-like behavior, but little is known about the underlying mechanisms in stress-related brain areas. Therefore, we aimed at investigating PACAP(-/-) mice in light-dark box, marble burying, open field, and forced swim paradigms. We also analyzed whether the forced swim test-induced c-Fos expression would be affected by PACAP deficiency in the following stress-related brain areas: magno- and parvocellular paraventricular nucleus of the hypothalamus (PVN); basolateral (BLA), medial (MeA), and central (CeA) amygdaloid nuclei; ventral (BSTv), dorsolateral (BSTdl), dorsomedial (BSTdm), and oval (BSTov) nuclei of the bed nucleus of stria terminalis; dorsal (dLS) and ventral parts (vLS) of lateral septal nucleus, central projecting Edinger-Westphal nucleus (EWcp), dorsal (dPAG) and lateral (lPAG) periaqueductal gray matter, dorsal raphe nucleus (DR). Our results revealed that PACAP(-/-) mice showed greatly reduced anxiety and increased locomotor activity compared with wildtypes. In forced swim test PACAP(-/-) mice showed increased depression-like behavior. Forced swim exposure increased c-Fos expression in all examined brain areas in wildtypes, whereas this was markedly blunted in the DR, EWcp, BSTov, BSTdl, BSTv, PVN, vLS, dPAG, and in the lPAG of PACAP(-/-) mice vs. wildtypes, strongly suggesting their involvement in the behavioral phenotype of PACAP(-/-) mice. PACAP deficiency did not influence the c-Fos response in the CeA, MeA, BSTdm, and dLS. Therefore, we propose that PACAP exerts a brain area-specific effect on stress-induced neuronal activation and it might contribute to stress-related mood disorders.
Collapse
Affiliation(s)
- B Gaszner
- Department of Anatomy, PTE-MTA Lendület PACAP Research Team, University of Pécs, Faculty of Medicine, H-7624, Pécs, Szigeti u. 12., Hungary.
| | | | | | | | | | | |
Collapse
|
34
|
Sterrenburg L, Gaszner B, Boerrigter J, Santbergen L, Bramini M, Elliott E, Chen A, Peeters BWMM, Roubos EW, Kozicz T. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat. PLoS One 2011; 6:e28128. [PMID: 22132228 PMCID: PMC3223222 DOI: 10.1371/journal.pone.0028128] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 11/01/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although the higher prevalence of depression in women than in men is well known, the neuronal basis of this sex difference is largely elusive. METHODS Male and female rats were exposed to chronic variable mild stress (CVMS) after which immediate early gene products, corticotropin-releasing factor (CRF) mRNA and peptide, various epigenetic-associated enzymes and DNA methylation of the Crf gene were determined in the hypothalamic paraventricular nucleus (PVN), oval (BSTov) and fusiform (BSTfu) parts of the bed nucleus of the stria terminalis, and central amygdala (CeA). RESULTS CVMS induced site-specific changes in Crf gene methylation in all brain centers studied in female rats and in the male BST and CeA, whereas the histone acetyltransferase, CREB-binding protein was increased in the female BST and the histone-deacetylase-5 decreased in the male CeA. These changes were accompanied by an increased amount of c-Fos in the PVN, BSTfu and CeA in males, and of FosB in the PVN of both sexes and in the male BSTov and BSTfu. In the PVN, CVMS increased CRF mRNA in males and CRF peptide decreased in females. CONCLUSIONS The data confirm our hypothesis that chronic stress affects gene expression and CRF transcriptional, translational and secretory activities in the PVN, BSTov, BSTfu and CeA, in a brain center-specific and sex-specific manner. Brain region-specific and sex-specific changes in epigenetic activity and neuronal activation may play, too, an important role in the sex specificity of the stress response and the susceptibility to depression.
Collapse
Affiliation(s)
- Linda Sterrenburg
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Jeroen Boerrigter
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Lennart Santbergen
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Mattia Bramini
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Evan Elliott
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
- Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Bernard W. M. M. Peeters
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Eric W. Roubos
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tamás Kozicz
- Department of Cellular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Roman CW, Lezak KR, Kocho-Schellenberg M, Garret MA, Braas K, May V, Hammack SE. Excitotoxic lesions of the bed nucleus of the stria terminalis (BNST) attenuate the effects of repeated stress on weight gain: evidence for the recruitment of BNST activity by repeated, but not acute, stress. Behav Brain Res 2011; 227:300-4. [PMID: 22101300 DOI: 10.1016/j.bbr.2011.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/11/2011] [Accepted: 11/06/2011] [Indexed: 01/01/2023]
Abstract
Exposure to repeated stress can lead to diverse and widespread behavioral consequences, including reduction in food and water intake and subsequent diminution in weight gain. Many reports have suggested that repeated stress substantially alters the neurochemistry, morphology and physiology of neurons within the bed nucleus of the stria terminalis (BNST). Here we investigate the role of the BNST in mediating the reduced weight gain observed during repeated stress. Rats exposed to a one-week variate stress paradigm exhibited a reduction in weight gain over the course of the 7-day paradigm. Excitotoxic lesions to a subregion of the anterolateral BNST containing the oval nucleus had no effects early in the 7-day paradigm, but significantly attenuated the effects of repeated stress on weight gain by the last day of stress. These data suggest that at least two mechanisms mediate the effects of stress on body weight gain, and that when stressor exposure becomes repeated, the BNST is recruited, worsening the symptoms of stressor exposure.
Collapse
Affiliation(s)
- Carolyn W Roman
- Department of Anatomy and Neurobiology, University of Vermont, Burlington, VT 05405, United States
| | | | | | | | | | | | | |
Collapse
|
36
|
Sterrenburg L, Gaszner B, Boerrigter J, Santbergen L, Bramini M, Roubos EW, Peeters BW, Kozicz T. Sex-dependent and differential responses to acute restraint stress of corticotropin-releasing factor-producing neurons in the rat paraventricular nucleus, central amygdala, and bed nucleus of the stria terminalis. J Neurosci Res 2011; 90:179-92. [DOI: 10.1002/jnr.22737] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 11/09/2022]
|
37
|
Hashimoto H, Shintani N, Tanida M, Hayata A, Hashimoto R, Baba A. PACAP is implicated in the stress axes. Curr Pharm Des 2011; 17:985-9. [PMID: 21524255 PMCID: PMC3179129 DOI: 10.2174/138161211795589382] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 03/16/2011] [Indexed: 12/30/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a highly conserved pleiotropic neuropeptide that functions as a neurotransmitter, neuromodulator and neurotrophic factor. Accumulating evidence implicates PACAP as an important regulator of both central and/or peripheral components of the stress axes, particularly exposure to prolonged or traumatic stress. Indeed, PACAP and its cognate receptors are widely expressed in the brain regions and peripheral tissues that mediate stress-related responses. In the sympathoadrenomedullary system, PACAP is required for sustained epinephrine secretion during metabolic stress. It is likely that PACAP regulates autonomic function and contributes to peripheral homeostasis by maintaining a balance between sympathetic and parasympathetic activity, favoring stimulation of the sympathetic system. Furthermore, PACAP is thought to act centrally on the paraventricular nucleus of the hypothalamus to regulate both the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. Intriguingly, PACAP is also active in brain structures that mediate anxiety- and fear-related behaviors, and the expression of PACAP and its receptors are dynamically altered under pathologic conditions. Thus PACAP may influence both hard-wired (genetically determined) stress responses and gene-environment interactions in stress-related psychopathology. This article aims to overview the molecular mechanisms and psychiatric implications of PACAP-dependent stress responses.
Collapse
Affiliation(s)
- Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Roles for pituitary adenylate cyclase-activating peptide (PACAP) expression and signaling in the bed nucleus of the stria terminalis (BNST) in mediating the behavioral consequences of chronic stress. J Mol Neurosci 2010; 42:327-40. [PMID: 20405238 DOI: 10.1007/s12031-010-9364-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/30/2010] [Indexed: 12/23/2022]
Abstract
Anxiety disorders are frequently long-lasting and debilitating for more than 40 million American adults. Although stressor exposure plays an important role in the etiology of some anxiety disorders, the mechanisms by which exposure to stressful stimuli alters central circuits that mediate anxiety-like emotional behavior are still unknown. Substantial evidence has implicated regions of the central extended amygdala, including the bed nucleus of the stria terminalis (BNST) and the central nucleus of the amygdala as critical structures mediating fear- and anxiety-like behavior in both humans and animals. These areas organize coordinated fear- and anxiety-like behavioral responses as well as peripheral stress responding to threats via direct and indirect projections to the paraventricular nucleus of the hypothalamus and brainstem regions (Walker et al. Eur J Pharmacol 463:199-216, 2003, Prog Neuropsychopharmacol Biol Psychiatry 33(8):1291-1308, 2009; Ulrich-Lai and Herman Nat Rev Neurosci 10:397-409, 2009). In particular, the BNST has been argued to mediate these central and peripheral responses when the perceived threat is of long duration (Waddell et al. Behav Neurosci 120:324-336, 2006) and/or when the anxiety-like response is sustained (Walker and Davis Brain Struct Funct 213:29-42, 2008); hence, the BNST may mediate pathological anxiety-like states that result from exposure to chronic stress. Indeed, chronic stress paradigms result in enhanced BNST neuroplasticity that has been associated with pathological anxiety-like states (Vyas et al. Brain Res 965:290-294, 2003; Pego et al. Eur J Neurosci 27:1503-1516, 2008). Here we review evidence that suggests that pituitary adenylate cyclase-activating polypeptide (PACAP) and corticotropin-releasing hormone (CRH) work together to modulate BNST function and increase anxiety-like behavior. Moreover, we have shown that BNST PACAP as well as its cognate PAC1 receptor is substantially upregulated following chronic stress, particularly in the BNST oval nucleus where PACAP-containing neurons closely interact with CRH-containing neurons (Kozicz et al. Brain Res 767:109-119, 1997; Hammack et al. Psychoneuroendocrinology 34:833-843, 2009). We describe how interactions between PACAP and CRH in the BNST may mediate stress-associated behaviors, including anorexia and anxiety-like behavior. These studies have the potential to define specific mechanisms underlying anxiety disorders, and may provide important therapeutic strategies for stress and anxiety management.
Collapse
|
39
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharmacol Rev 2009; 61:283-357. [DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 829] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
40
|
Veening JG, Böcker KBE, Verdouw PM, Olivier B, De Jongh R, Groenink L. Activation of the septohippocampal system differentiates anxiety from fear in startle paradigms. Neuroscience 2009; 163:1046-60. [PMID: 19580851 DOI: 10.1016/j.neuroscience.2009.06.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 06/26/2009] [Accepted: 07/29/2009] [Indexed: 12/18/2022]
Abstract
It has been suggested that different brain areas are involved in the modulation and expression of fear and anxiety. In the present study we investigated these potential differences by using the fear-potentiated-startle (FPS) and light-enhanced-startle (LES) paradigms to differentiate between fear and anxiety, respectively. Male Wistar rats were tested in the FPS and LES paradigm and perfused 1 h after the test session. Fos immunoreactivity (IR) was quantified in 21 brain areas and compared between FPS, LES and four control conditions. Both FPS and LES procedures significantly enhanced the acoustic startle response. A principal component analysis of Fos-IR-data showed that 70% of the changes in Fos-IR could be explained by three independent components: an arousal-component, identifying brain areas known to be activated under conditions of vigilance, arousal and stress, a LES- and an FPS-component. The LES component comprised the septohippocampal system and functionally interrelated areas including nucleus accumbens, anterior cingulate cortex, lateral habenula and supramammillary areas, but not the dorsolateral part of the bed nucleus of the stria terminalis. The central amygdaloid nucleus and the dorsolateral part of the bed nucleus of the stria terminalis loaded exclusively on the FPS component. Analysis of the separate brain areas revealed significantly higher Fos-IR in LES relative to FPS in the anterior cingulate cortex, nucleus accumbens shell, lateral septum, lateral habenula and area postrema. We conclude that the neural circuitry activated during FPS and LES shows clear differences. In anxiety as induced by LES, activation of the septohippocampal system and related areas seems to play a major role. In fear as induced by FPS, the central amygdaloid nucleus and the dorsolateral part of the bed nucleus of the stria terminalis loaded on the same component, but Fos-IR observed in these brain regions did not differentiate between anxiety and fear. Furthermore, principal-component analysis appears a useful tool in detecting and describing correlated changes in patterns of neuronal activity.
Collapse
Affiliation(s)
- J G Veening
- Department of Anatomy, 109 UMC St Radboud, University of Nijmegen, Geert Grooteplein N 21, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
41
|
Hammack SE, Cheung J, Rhodes KM, Schutz KC, Falls WA, Braas KM, May V. Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior. Psychoneuroendocrinology 2009; 34:833-43. [PMID: 19181454 PMCID: PMC2705919 DOI: 10.1016/j.psyneuen.2008.12.013] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/26/2008] [Accepted: 12/18/2008] [Indexed: 10/21/2022]
Abstract
Exposure to chronic stress has been argued to produce maladaptive anxiety-like behavioral states, and many of the brain regions associated with stressor responding also mediate anxiety-like behavior. Pituitary adenylate cyclase activating polypeptide (PACAP) and its specific G protein-coupled PAC(1) receptor have been associated with many of these stress- and anxiety-associated brain regions, and signaling via this peptidergic system may facilitate the neuroplasticity associated with pathological affective states. Here we investigated whether chronic stress increased transcript expression for PACAP, PAC(1) receptor, brain-derived neurotrophic factor (BDNF), and tyrosine receptor kinase B (TrkB) in several nuclei. In rats exposed to a 7 days chronic variate stress paradigm, chronic stress enhanced baseline startle responding induced by handling and exposure to bright lights. Following chronic stress, quantitative transcript assessments of brain regions demonstrated dramatic increases in PACAP and PAC(1) receptor, BDNF, and TrkB receptor mRNA expression selectively in the dorsal aspect of the anterolateral bed nucleus of the stria terminalis (dBNST). Related vasoactive intestinal peptide (VIP) and VPAC receptor, and other stress peptide transcript levels were not altered compared to controls. Moreover, acute PACAP38 infusion into the dBNST resulted in a robust dose-dependent anxiogenic response on baseline startle responding that persisted for 7 days. PACAP/PAC(1) receptor signaling has established trophic functions and its coordinate effects with chronic stress-induced dBNST BDNF and TrkB transcript expression may underlie the maladaptive BNST remodeling and plasticity associated with anxiety-like behavior.
Collapse
Affiliation(s)
| | - Joseph Cheung
- Department of Psychology, University of Vermont Burlington, Vermont 05405,Department of Anatomy and Neurobiology, University of Vermont Burlington, Vermont 05405
| | - Kimberly M. Rhodes
- Department of Psychology, University of Vermont Burlington, Vermont 05405
| | - Kristin C. Schutz
- Department of Anatomy and Neurobiology, University of Vermont Burlington, Vermont 05405
| | - William A. Falls
- Department of Psychology, University of Vermont Burlington, Vermont 05405
| | - Karen M. Braas
- Department of Anatomy and Neurobiology, University of Vermont Burlington, Vermont 05405
| | - Victor May
- Department of Anatomy and Neurobiology, University of Vermont Burlington, Vermont 05405
| |
Collapse
|
42
|
Legradi G, Das M, Giunta B, Hirani K, Mitchell EA, Diamond DM. Microinfusion of pituitary adenylate cyclase-activating polypeptide into the central nucleus of amygdala of the rat produces a shift from an active to passive mode of coping in the shock-probe fear/defensive burying test. Neural Plast 2007; 2007:79102. [PMID: 17641738 PMCID: PMC1906870 DOI: 10.1155/2007/79102] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 03/18/2007] [Indexed: 11/24/2022] Open
Abstract
High concentrations of pituitary adenylate cyclase-activating polypeptide (PACAP) nerve fibers are present in the central nucleus of amygdala (CeA), a brain region implicated in the control of fear-related behavior. This study evaluated PACAPergic modulation of fear responses at the CeA in male Sprague-Dawley rats. PACAP (50–100 pmol) microinfusion via intra-CeA cannulae produced increases in immobility and time the rats spent withdrawn into a corner opposite to the electrified probe compared to controls in the shock-probe fear/defensive burying test. Shock-probe burying and exploration, numbers of shocks received, locomotion distance, and velocity were all reduced by intra-CeA PACAP injection. Further, intra-CeA PACAP effects were manifested only when the animals were challenged by shock, as intra-CeA PACAP injections did not cause significant changes in the behaviors of unshocked rats. Thus, intra-CeA administration of PACAP produces a distinct reorganization of stress-coping behaviors from active (burying) to passive modes, such as withdrawal and immobility. These findings are potentially significant toward enhancing our understanding of the involvement of PACAP and the CeA in the neural basis of fear and anxiety.
Collapse
Affiliation(s)
- Gabor Legradi
- Department of Pathology and Cell Biology, College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Kiss P, Reglodi D, Tamás A, Lubics A, Lengvári I, Józsa R, Somogyvári-Vigh A, Szilvássy Z, Németh J. Changes of PACAP levels in the brain show gender differences following short-term water and food deprivation. Gen Comp Endocrinol 2007; 152:225-30. [PMID: 17286974 DOI: 10.1016/j.ygcen.2006.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 12/14/2006] [Accepted: 12/25/2006] [Indexed: 10/23/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic neuropeptide exerting diverse actions in the central and peripheral nervous systems. A few studies indicate that PACAP is involved in the regulation of feeding and water homeostasis. The aim of the present study was to investigate changes in PACAP38 concentrations in different brain areas following food or water deprivation in male and female rats. Rats were sacrificed 12, 36 and 84h after water or food removal. PACAP levels were determined by radioimmunoassay. Our results show that levels of PACAP decreased in the hypothalamus in both sexes after water deprivation, with a more marked, significant decrease in females at 12h. A decrease was observed also in the telencephalon, with a similar pattern in both genders: levels were lowest after 12h, and showed a gradual increase at the other two time-points. PACAP levels increased in the brainstem of male rats, while females had a decrease 12h after water deprivation. The pattern of changes in PACAP levels was very different after food deprivation. In male rats, PACAP levels showed a significant increase in the hypothalamus, telencephalon and brainstem 12h after the beginning of starvation. In females, a less marked increase was observed only in the hypothalamus while no changes were found in the other brain areas. Our results show a sensitive reaction in changes of endogenous PACAP levels to water and food deprivation in most brain areas, but they are differentially regulated in male and female rats.
Collapse
Affiliation(s)
- P Kiss
- Department of Anatomy, University of Pécs, Medical Faculty, Szigeti u 12, 7624 Pécs, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang S, Yang J, Yang Z, Chen P, Fraser A, Zhang W, Pang H, Gao X, Wilson B, Hong JS, Block ML. Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and PACAP4-6 are neuroprotective through inhibition of NADPH oxidase: potent regulators of microglia-mediated oxidative stress. J Pharmacol Exp Ther 2006; 319:595-603. [PMID: 16891616 DOI: 10.1124/jpet.106.102236] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microglial activation is implicated in the progressive nature of numerous neurodegenerative diseases, including Parkinson's disease. Using primary rat mesencephalic neuron-glia cultures, we found that pituitary adenylate cyclase-activating polypeptide (PACAP) 38, PACAP27, and its internal peptide, Gly-Ile-Phe (GIF; PACAP4-6), are neuroprotective at 10(-13) M against lipopolysaccharide (LPS)-induced dopaminergic (DA) neurotoxicity, as determined by [(3)H]DA uptake and the number of tyrosine hydroxylase-immunoreactive neurons. PACAP38 and GIF also protected against 1-methyl-4-phenylpyridinium(+)-induced neurotoxicity but only in cultures containing microglia. PACAP38 and GIF ameliorated the production of microglia-derived reactive oxygen species (ROS), where both LPS- and phorbol 12-myristate 13-acetate-induced superoxide and intracellular ROS were inhibited. The critical role of NADPH oxidase for GIF and PACAP38 neuroprotection against LPS-induced DA neurotoxicity was demonstrated using neuron-glia cultures from mice deficient in NADPH oxidase (PHOX(-/-)), where PACAP38 and GIF reduced tumor necrosis factor alpha production and were neuroprotective only in PHOX(+/+) cultures and not in PHOX(-/-) cultures. Pretreatment with PACAP6-38 (3 microM; PACAP-specific receptor antagonist) was unable to attenuate PACAP38, PACAP27, or GIF (10(-13) M) neuroprotection. PACAP38 and GIF (10(-13) M) failed to induce cAMP in neuronglia cultures, supporting that the neuroprotective effect was independent of traditional high-affinity PACAP receptors. Pharmacophore analysis revealed that GIF shares common chemical properties (hydrogen bond acceptor, positive ionizable, and hydrophobic regions) with other subpicomolar-acting compounds known to inhibit NADPH oxidase: naloxone, dextromethorphan, and Gly-Gly-Phe. These results indicate a common high-affinity site of action across numerous diverse peptides and compounds, revealing a basic neuropeptide regulatory mechanism that inhibits microglia-derived oxidative stress and promotes neuron survival.
Collapse
Affiliation(s)
- Sufen Yang
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, MD F1-01, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Agarwal A, Halvorson LM, Legradi G. Pituitary adenylate cyclase-activating polypeptide (PACAP) mimics neuroendocrine and behavioral manifestations of stress: Evidence for PKA-mediated expression of the corticotropin-releasing hormone (CRH) gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2005; 138:45-57. [PMID: 15882914 PMCID: PMC1950324 DOI: 10.1016/j.molbrainres.2005.03.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2004] [Revised: 03/22/2005] [Accepted: 03/27/2005] [Indexed: 11/15/2022]
Abstract
The physiologic response to stress is highly dependent on the activation of corticotropin-releasing hormone (CRH) neurons by various neurotransmitters. A particularly rich innervation of hypophysiotropic CRH neurons has been detected by nerve fibers containing the neuropeptide PACAP, a potent activator of the cAMP-protein kinase A (PKA) system. Intracerebroventricular (icv) injections of PACAP also elevate steady-state CRH mRNA levels in the paraventricular nucleus (PVN), but it is not known whether PACAP effects can be associated with acute stress responses. Likewise, in cell culture studies, pharmacologic activation of the PKA system has stimulated CRH gene promoter activity through an identified cAMP response element (CRE); however, a direct link between PACAP and CRH promoter activity has not been established. In our present study, icv injection of 150 or 300 pmol PACAP resulted in robust phosphorylation of the transcription factor CREB in the majority of PVN CRH neurons at 15 to 30 min post-injection and induced nuclear Fos labeling at 90 min. Simultaneously, plasma corticosterone concentrations were elevated in PACAP-injected animals, and significant increases were observed in face washing, body grooming, rearing and wet-dog shakes behaviors. We investigated the effect of PACAP on human CRH promoter activity in alphaT3-1 cells, a PACAP-receptor expressing cell line. Cells were transiently transfected with a chloramphenicol acetyltransferase (CAT) reporter vector containing region - 663/+124 of the human CRH gene promoter then treated for with PACAP (100 nM) or with the adenylate cyclase activating agent, forskolin (2.5 muM). Both PACAP and forskolin significantly increased wild-type hCRH promoter activity relative to vehicle controls. The PACAP response was abolished in the CRE-mutant construct. Pretreatment of transfected cells with the PKA blocker, H-89, completely prevented both PACAP- and forskolin-induced increases in CRH promoter activity. Furthermore, CREB overexpression strongly enhanced PACAP-mediated stimulation of hCRH promoter activity, an effect which was also lost with mutation of the CRE. Thus, we demonstrate that icv PACAP administration to rats under non-stressed handling conditions leads to cellular, hormonal and behavioral responses recapitulating manifestations of the acute stress response. Both in vivo and in vitro data point to the importance of PACAP-mediated activation of the cAMP/PKA signaling pathway for stimulation of CRH gene transcription, likely via the CRE.
Collapse
Affiliation(s)
- Anika Agarwal
- Tufts-New England Medical Center, Boston, MA 02111, USA
| | - Lisa M. Halvorson
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gabor Legradi
- Department of Anatomy, College of Medicine University of South Florida, 12901 Bruce B. Downs Blvd., MDC6 Tampa, FL 33612, USA
| |
Collapse
|
46
|
Coelho DJ, Sims DJ, Ruegg PJ, Minn I, Muench AR, Mitchell PJ. Cell type-specific and sexually dimorphic expression of transcription factor AP-2 in the adult mouse brain. Neuroscience 2005; 134:907-19. [PMID: 16009501 DOI: 10.1016/j.neuroscience.2005.04.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 04/20/2005] [Accepted: 04/27/2005] [Indexed: 11/19/2022]
Abstract
Expression of transcription factor AP-2 family genes in adult mouse brain regions was examined at RNA and protein levels and in tissue sections. AP-2 family RNA transcripts, nuclear AP-2 DNA binding activity, and AP-2 immunoreactivity were greatest in hindbrain and midbrain regions. Cells expressing AP-2 were predominantly differentiated neurons and were abundant in the solitary tract nucleus, hypoglossal nucleus, locus coeruleus, cerebellar molecular layer, superior colliculus, mitral cell layers of the main and accessory olfactory bulbs, and in some divisions of the bed nucleus of the stria terminalis. Sexually dimorphic expression of AP-2 was seen in the bed nucleus of the stria terminalis, a forebrain region required for regulation of gender-specific reproductive and social behaviors. In males, AP-2 expressing neurons were present in supracapsular, lateral ventral, and medial ventral divisions of the bed nucleus of the stria terminalis. In contrast, females had AP-2 expressing neurons in the lateral ventral division, but not the supracapsular division, and AP-2 expression in medial ventral division neurons oscillated during the estrus cycle. With the exception of the bed nucleus of the stria terminalis, forebrain regions generally lacked cells with high levels of AP-2. However, a small population of cells co-expressing low levels of AP-2 and Notch1 was sparsely distributed in the cerebral cortex and hippocampal dentate gyrus subgranular zone. Based on their variable levels of NeuN, a marker for differentiated neurons, these cells may include nascent neurons. A subset of cerebellar Purkinje cells also co-expressed low levels of AP-2 and Notch1. Together, the adult brain regions with AP-2 expressing neurons are notable for their importance in pathways that integrate sensory and neuroendocrine information for regulation of reproductive, social, and feeding behaviors. Our data suggest that AP-2 transcription factors contribute at multiple levels to adult brain function including regulation of gender-specific behavior.
Collapse
Affiliation(s)
- D J Coelho
- Department of Biochemistry and Molecular Biology, 201 Life Sciences Building, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Exposure to hostile conditions initiates responses organized to enhance the probability of survival. These coordinated responses, known as stress responses, are composed of alterations in behavior, autonomic function and the secretion of multiple hormones. The activation of the renin-angiotensin system and the hypothalamic-pituitary-adrenocortical axis plays a pivotal role in the stress response. Neuroendocrine components activated by stressors include the increased secretion of epinephrine and norepinephrine from the sympathetic nervous system and adrenal medulla, the release of corticotropin-releasing factor (CRF) and vasopressin from parvicellular neurons into the portal circulation, and seconds later, the secretion of pituitary adrenocorticotropin (ACTH), leading to secretion of glucocorticoids by the adrenal gland. Corticotropin-releasing factor coordinates the endocrine, autonomic, behavioral and immune responses to stress and also acts as a neurotransmitter or neuromodulator in the amygdala, dorsal raphe nucleus, hippocampus and locus coeruleus, to integrate brain multi-system responses to stress. This review discussed the role of classical mediators of the stress response, such as corticotropin-releasing factor, vasopressin, serotonin (5-hydroxytryptamine or 5-HT) and catecholamines. Also discussed are the roles of other neuropeptides/neuromodulators involved in the stress response that have previously received little attention, such as substance P, vasoactive intestinal polypeptide, neuropeptide Y and cholecystokinin. Anxiolytic drugs of the benzodiazepine class and other drugs that affect catecholamine, GABA(A), histamine and serotonin receptors have been used to attenuate the neuroendocrine response to stressors. The neuroendocrine information for these drugs is still incomplete; however, they are a new class of potential antidepressant and anxiolytic drugs that offer new therapeutic approaches to treating anxiety disorders. The studies described in this review suggest that multiple brain mechanisms are responsible for the regulation of each hormone and that not all hormones are regulated by the same neural circuits. In particular, the renin-angiotensin system seems to be regulated by different brain mechanisms than the hypothalamic-pituitary-adrenal system. This could be an important survival mechanism to ensure that dysfunction of one neurotransmitter system will not endanger the appropriate secretion of hormones during exposure to adverse conditions. The measurement of several hormones to examine the mechanisms underlying the stress response and the effects of drugs and lesions on these responses can provide insight into the nature and location of brain circuits and neurotransmitter receptors involved in anxiety and stress.
Collapse
Affiliation(s)
- Gonzalo A Carrasco
- Department of Pharmacology, Center for Serotonin Disorders Research, Loyola University of Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | | |
Collapse
|
48
|
Lubics A, Reglodi D, Szelier M, Lengvári I, Kozicz T. Comparative distribution of urocortin- and CRF-like immunoreactivities in the nervous system of the earthworm Lumbricus terrestris. Peptides 2003; 24:205-13. [PMID: 12668204 DOI: 10.1016/s0196-9781(03)00028-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Corticotropin-releasing factor (CRF) and urocortin (Ucn) are both members of the CRF neuropeptide family. The distribution of Ucn- and CRF-like immunoreactive (ir) structures in the central nervous system of several vertebrate species has been studied, but little is known about that in non-vertebrates. We used a highly specific polyclonal antibody against rat Ucn and CRF to determine and compare the distribution of Ucn- and CRF-like immunoreactivity in the earthworm nervous system. Several Ucn- and CRF-like ir perikarya were described in the cerebral ganglion, subesophageal and ventral cord ganglia. The majority of Ucn-like ir cells were found in the ventral ganglia, whereas CRF-like ir cells were most abundant in the cerebral ganglion. Scattered Ucn- and CRF-like ir varicose fiber terminals were seen in all areas of the earthworm central nervous system. Ucn-like ir cell bodies and fiber terminals were also demonstrated in the pharyngeal wall. No co-localization of Ucn- and CRF-like ir nervous structures were observed. This study provided morphological evidence that Ucn- and CRF-like neurosecretory products exist in the earthworm central nervous system. Furthermore, both the distribution and morphology of Ucn- and CRF-like ir structures were distinct, therefore, it can be hypothesized that these neuropeptides exert different neurendocrine functions in the earthworm nervous system.
Collapse
Affiliation(s)
- Andrea Lubics
- Department of Human Anatomy, Medical Faculty, University of Pécs, Szigeti ut 12, 7624, Pécs, Hungary.
| | | | | | | | | |
Collapse
|
49
|
Hannibal J. Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J Comp Neurol 2002; 453:389-417. [PMID: 12389210 DOI: 10.1002/cne.10418] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study the localization of pituitary adenylate cyclase-activating peptide (PACAP)-expressing cell bodies and PACAP projections were mapped in the adult rat brain and spinal cord by using immunohistochemistry and in situ hybridization histochemistry. A widespread occurrence of PACAP-containing cell bodies was found, with the greatest accumulation in several hypothalamic nuclei and in several brainstem nuclei, especially the habenular nuclei, the pontine nucleus, the lateral parabrachial nucleus (LPB), and the vagal complex. PACAP was also present in cell bodies in the olfactory areas, in neocortical areas, in the hippocampus, in the vestibulo- and cochlear nuclei, in cell bodies of the intermediolateral cell column of the spinal cord and in Purkinje cells of the cerebellum, in the subfornical organ, and in the organum vasculosum of the lamina terminalis. An intense accumulation of PACAP-immunoreactive (-IR) nerve fibers was observed throughout the hypothalamus, in the amydaloid and extended amygdaloid complex, in the anterior and paraventricular thalamic nuclei, in the intergeniculate leaflet, in the pretectum, and in several brainstem nuclei, such as the parabrachial nucleus, the sensory trigeminal nucleus, and the nucleus of the solitary tract. PACAP-IR nerve fibers were also found in the area postrema, the posterior pituitary and the choroid plexus, and the dorsal and ventral horn of the spinal cord. The widespread distribution of PACAP in the brain and spinal cord suggests that PACAP is involved in the control of many autonomic and sensory functions as well as higher cortical processes.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen NV, Denmark.
| |
Collapse
|
50
|
Kozicz T. Met-enkephalin immunoreactive neurons recruited by acute stress are innervated by axon terminals immunopositive for tyrosine hydroxylase and dopamine-alpha-hydroxylase in the anterolateral division of bed nuclei of the stria terminalis in the rat. Eur J Neurosci 2002; 16:823-35. [PMID: 12372018 DOI: 10.1046/j.1460-9568.2002.02129.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bed nuclei of the stria terminalis (BST) are highly heterogeneous forebrain structures, which play a central role in the regulation/modulation of stress responses. Studies using the inducible immediate early gene c-fos as a marker of activated neurons have demonstrated significant stress-induced neuronal activation in this limbic region. The BST also exhibit a dense network of dopamine and noradrenaline immunoreactive (ir) axon terminals. These catecholaminergic projections from various brainstem sources to the BST play an important role in a neurochemically mediated coordination of stress responses. In the anterolateral division of bed nuclei of the stria terminalis, the distribution of several Met-enkephalin immunopositive perikarya overlaps with that of catecholaminergic axon terminals. Both monoaminergic and enkephalinergic structures have been postulated to play a role in the regulation/modulation of the central regulatory pathways of endocrine, behavioural and physiological responses during stress. Therefore the aims of this study were: (i). to study the possible involvement of dopaminergic fibre terminals in stress-induced activation of BST perikarya; (ii). to investigate whether Met-enkephalin-immunoreactive neurons are recruited by acute volumen/osmotic challenge; and (iii). to demonstrate synaptic interactions between Met-enkephalin-ir neurons and fibre terminals immunopositive for dopamine or noradrenaline in the anterolateral division of the BST. From the results of this study we can conclude that depletion of dopamine in fibre terminals completely abolished stress-induced activation of perikarya in the anterolateral division of BST. Furthermore, the innervation of stress-induced Met-enkephalin-ir perikarya by dopaminergic fibre terminals in the oval nucleus of BST was demonstrated, whereas noradrenergic axons contacted enkephalinergic structures in the fusiform and subcomissural nuclei of BST. These interactions can be central in the modulatory control of the major stress regulatory pathway, the limbic hypothalamo-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Tamás Kozicz
- University of Pécs, Medical Faculty, Department of Human Anatomy, Pécs, Szigeti ut 12., H-7624, Hungary.
| |
Collapse
|