1
|
Gołyszny M, Obuchowicz E. Are neuropeptides relevant for the mechanism of action of SSRIs? Neuropeptides 2019; 75:1-17. [PMID: 30824124 DOI: 10.1016/j.npep.2019.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/08/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are drugs of first choice in the therapy of moderate to severe depression and anxiety disorders. Their primary mechanism of action is via influence of the serotonergic (5-HT) system, but a growing amount of data provides evidence for other non-monoaminergic players in SSRI effects. It is assumed that neuropeptides, which play a role as neuromodulators in the CNS, are involved in their mechanism of action. In this review we focus on six neuropeptides: corticotropin-releasing factor - CRF, galanin - GAL, oxytocin - OT, vasopressin - AVP, neuropeptide Y - NPY, and orexins - OXs. First, information about their roles in depression and anxiety disorders are presented. Then, findings describing their interactions with the 5-HT system are summarized. These data provide background for analysis of the results of published preclinical and clinical studies related to SSRI effects on the neuropeptide systems. We also report findings showing how modulation of neuropeptide transmission influences behavioral and neurochemical effects of SSRIs. Finally, future research necessary for enriching our knowledge of SSRI mechanisms of action is proposed. Recognition of new molecular targets for antidepressants will have a significant effect on the development of novel therapeutic strategies for mood-related disorders.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland
| | - Ewa Obuchowicz
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland.
| |
Collapse
|
2
|
Hazari PP, Pandey A, Chaturvedi S, Mishra AK. New Trends and Current Status of Positron-Emission Tomography and Single-Photon-Emission Computerized Tomography Radioligands for Neuronal Serotonin Receptors and Serotonin Transporter. Bioconjug Chem 2017; 28:2647-2672. [PMID: 28767225 DOI: 10.1021/acs.bioconjchem.7b00243] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The critical role of serotonin (5-hydroxytryptamine; 5-HT) and its receptors (5-HTRs) in the pathophysiology of diverse neuropsychiatric and neurodegenerative disorders render them attractive diagnostic and therapeutic targets for brain disorders. Therefore, the in vivo assessment of binding of 5-HT receptor ligands under a multitude of physiologic and pathologic scenarios may support more-accurate identification of disease and its progression and the patient's response to therapy as well as the screening of novel therapeutic strategies. The present Review aims to focus on the current status of radioligands used for positron-emission tomography (PET) and single-photon-emission computerized tomography (SPECT) imaging of human brain serotonin receptors. We further elaborate upon and emphasize the attributes that qualify a radioligand for theranostics on the basis of its frequency of use in clinics, its benefit to risk assessment in humans, and its continuous evolution, along with the major limitations.
Collapse
Affiliation(s)
- Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Ankita Pandey
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences , Brig S.K. Mazumdar Road, Delhi 110054, India
| |
Collapse
|
3
|
Activation of brain serotonergic system by repeated intracerebral administration of 5-hydroxytryptophan (5-HTP) decreases the expression and activity of liver cytochrome P450. Biochem Pharmacol 2016; 99:113-22. [DOI: 10.1016/j.bcp.2015.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/09/2015] [Indexed: 01/03/2023]
|
4
|
de Bortoli VC, Yamashita PSDM, Zangrossi H. 5-HT1A and 5-HT2A receptor control of a panic-like defensive response in the rat dorsomedial hypothalamic nucleus. J Psychopharmacol 2013; 27:1116-23. [PMID: 23787365 DOI: 10.1177/0269881113492900] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dorsomedial nucleus of the hypothalamus (DMH) has long been implicated in the genesis/regulation of escape, a panic-related defensive behavior. In the dorsal periaqueductal gray matter (dPAG), another key panic-associated area, serotonin, through the activation of 5-HT1A and 5-HT2A receptors, exerts an inhibitory role on escape expression. This panicolytic-like effect is facilitated by chronic treatment with clinically effective antipanic drugs such as fluoxetine and imipramine. It is still unclear whether serotonin within the DMH plays a similar regulatory action. The results showed that intra-DMH injection of the 5-HT1A receptor agonist 8-OH-DPAT, the preferential 5-HT2A receptor agonist DOI, but not the 5-HT2C agonist MK-212, inhibited the escape reaction of male Wistar rats evoked by electrical stimulation of the DMH. Local microinjection of the 5-HT1A antagonist WAY-100635 or the preferential 5-HT2A antagonist ketanserin was ineffective. Whereas chronic (21 days) systemic treatment with imipramine potentiated the anti-escape effect of both 8-OH-DPAT and DOI, repeated administration of fluoxetine enhanced the effect of the latter agonist. The results indicate that 5-HT1A and 5-HT2A receptors within the DMH play a phasic inhibitory role upon escape expression, as previously reported in the dPAG. Facilitation of 5-HT-mediated neurotransmission in the DMH may be implicated in the mode of action of antipanic drugs.
Collapse
|
5
|
Canal CE, Morgan D. Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test Anal 2012; 4:556-76. [PMID: 22517680 DOI: 10.1002/dta.1333] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 11/06/2022]
Abstract
Two primary animal models persist for assessing hallucinogenic potential of novel compounds and for examining the pharmacological and neurobiological substrates underlying the actions of classical hallucinogens, the two-lever drug discrimination procedure and the drug-induced head-twitch response (HTR) in rodents. The substituted amphetamine hallucinogen, serotonin 2 (5-HT(2) ) receptor agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI) has emerged as the most popular pharmacological tool used in HTR studies of hallucinogens. Synthesizing classic, recent, and relatively overlooked findings, addressing ostensibly conflicting observations, and considering contemporary theories in receptor and behavioural pharmacology, this review provides an up-to-date and comprehensive synopsis of DOI and the HTR model, from neural mechanisms to utility for understanding psychiatric diseases. Also presented is support for the argument that, although both the two-lever drug discrimination and the HTR models in rodents are useful for uncovering receptors, interacting proteins, intracellular signalling pathways, and neurochemical processes affected by DOI and related classical hallucinogens, results from both models suggest they are not reporting hallucinogenic experiences in animals.
Collapse
Affiliation(s)
- Clint E Canal
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA.
| | | |
Collapse
|
6
|
Williams SK, Lauder JM, Johns JM. Prenatal Cocaine Disrupts Serotonin Signaling-Dependent Behaviors: Implications for Sex Differences, Early Stress and Prenatal SSRI Exposure. Curr Neuropharmacol 2011; 9:478-511. [PMID: 22379462 PMCID: PMC3151602 DOI: 10.2174/157015911796557957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/31/2010] [Accepted: 01/07/2011] [Indexed: 02/06/2023] Open
Abstract
Prenatal cocaine (PC) exposure negatively impacts the developing nervous system, including numerous changes in serotonergic signaling. Cocaine, a competitive antagonist of the serotonin transporter, similar to selective serotonin reuptake inhibitors (SSRIs), also blocks dopamine and norepinephrine transporters, leaving the direct mechanism through which cocaine disrupts the developing serotonin system unclear. In order to understand the role of the serotonin transporter in cocaine's effect on the serotonergic system, we compare reports concerning PC and prenatal antidepressant exposure and conclude that PC exposure affects many facets of serotonergic signaling (serotonin levels, receptors, transporters) and that these effects differ significantly from what is observed following prenatal SSRI exposure. Alterations in serotonergic signaling are dependent on timing of exposure, test regimens, and sex. Following PC exposure, behavioral disturbances are observed in attention, emotional behavior and stress response, aggression, social behavior, communication, and like changes in serotonergic signaling, these effects depend on sex, age and developmental exposure. Vulnerability to the effects of PC exposure can be mediated by several factors, including allelic variance in serotonergic signaling genes, being male (although fewer studies have investigated female offspring), and experiencing the adverse early environments that are commonly coincident with maternal drug use. Early environmental stress results in disruptions in serotonergic signaling analogous to those observed with PC exposure and these may interact to produce greater behavioral effects observed in children of drug-abusing mothers. We conclude that based on past evidence, future studies should put a greater emphasis on including females and monitoring environmental factors when studying the impact of PC exposure.
Collapse
Affiliation(s)
- Sarah K Williams
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jean M Lauder
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Josephine M Johns
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Abstract
The use of estrogenic compounds as antidepressants or as coadjuvants to facilitate the effect of antidepressants has reported controversial results, suggesting that many factors could influence their actions. This review analyzes, from a basic research perspective, the possible factors that may underlie the antidepressant action of estrogens alone or in combination. The possible mechanisms of action of estrogens alone and in combination with the selective serotonin reuptake inhibitor, fluoxetine, the selective noradrenaline reuptake inhibitor, desipramine, and the mixed serotonin/noradrenaline reuptake inhibitor, venlafaxine are reviewed, focusing on monoaminergic systems and estrogen receptors as main targets. The antidepressant effect of estrogens depends on the type of estrogen, treatment duration, doses, sex, time after ovariectomy, and age. Estrogens potentiate the antidepressant-like action of fluoxetine, venlafaxine, and desipramine and drastically shorten their latency of action. The antidepressant-like effect of estrogens alone or in combination with antidepressants seems to be mediated by monoaminergic and classic estrogen receptors, as WAY100635, an antagonist to the serotonin 1A receptor, idaxozan, an antagonist to alpha2 adrenergic receptors, and RU 58668, an estrogen receptor antagonist, blocked their antidepressant-like effect. In conclusion, estrogens produce antidepressant-like actions by themselves and importantly facilitate the action of clinically used antidepressants.
Collapse
|
8
|
Real C, Seif I, Adrien J, Escourrou P. Ondansetron and fluoxetine reduce sleep apnea in mice lacking monoamine oxidase A. Respir Physiol Neurobiol 2009; 168:230-8. [PMID: 19615472 DOI: 10.1016/j.resp.2009.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 06/07/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Prospective clinical trials addressing the role of serotonin (5-HT) in sleep apnea have indicated that the 5-HT uptake inhibitor fluoxetine is beneficial to some patients with obstructive apnea, whereas the 5-HT(3) receptor antagonist ondansetron seems of little value despite its efficacy in rat and dog models of sleep apnea (central and obstructive). Here, we examined the effect of these drugs in transgenic mice lacking monoamine oxidase A (Tg8), which exhibit approximately 3-fold higher rates of central sleep apnea than their wild-type counterparts (C3H), linked to their enhanced 5-HT levels. Acute ondansetron (2 mg kg(-1), intraperitoneal), acute fluoxetine (16 mg kg(-1)) and 13-day chronic fluoxetine (1 or 16 mg kg(-1)) decreased by approximately 80% the total (spontaneous and post-sigh) apnea index in Tg8 mice during non-rapid eye movement sleep, with no statistically significant effect on apnea in C3H mice. Our study shows that both drugs reduce the frequency of apneic episodes attributable to increased monoamine levels in this model of MAOA deficiency, and suggests that both may be effective in some patients with central sleep apneas.
Collapse
Affiliation(s)
- C Real
- Univ Paris-Sud, EA 3544, Sérotonine et Neuropharmacologie, Châtenay-Malabry cedex, France.
| | | | | | | |
Collapse
|
9
|
Canal CE, Mahautmr KC, Cao C, Sanders-Bush E, Airey DC. RNA editing of the serotonin 2C receptor and expression of Galpha(q) protein: genetic mouse models do not support a role for regulation or compensation. J Neurochem 2009; 108:1136-42. [PMID: 19154337 PMCID: PMC2742694 DOI: 10.1111/j.1471-4159.2008.05852.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The serotonin 2C (5-HT(2C)) receptor undergoes RNA editing at five bases in a region of the pre-mRNA encoding the second intracellular loop, generating many unique 5-HT(2C) receptor isoforms. Mechanisms regulating in vivo expression of different edited 5-HT(2C) receptor isoforms are poorly understood, as are the adaptive consequences of variation in editing profiles. Recent findings suggest a putative relationship between expression levels of Galpha(q/11) protein and the degree of editing of 5-HT(2C) receptor transcripts. To elucidate the potential regulatory or adaptive role of Galpha(q/11) protein levels, we quantified editing of 5-HT(2C) receptor RNA transcripts in Galpha(q) null mice and protein levels of Galpha(q) and Galpha(11) in transgenic male mice solely expressing either the non-edited (INI) or the fully edited (VGV) isoforms of the 5-HT(2C) receptor. Pyrosequencing of RNA isolated from amygdaloid cortex in Galpha(q) null and wild-type mice revealed no significant differences in 5-HT(2C) receptor mRNA editing profiles. Cortical tissue from INI/y, VGV/y, and wild-type mice was assayed for expression of Galpha(q) and Galpha(11) subunits by Western blotting. No differences in signal density between wild-type and INI/y or VGV/y groups were found, indicating equivalent levels of Galpha(q) and Galpha(11) protein. Together, these data do not support a causal or compensatory relationship between 5-HT(2C) receptor RNA editing and G(q) protein levels.
Collapse
Affiliation(s)
- Clinton E. Canal
- Department of Pharmacology, Vanderbilt University, USA
- Center for Molecular Neuroscience, Vanderbilt University, USA
| | | | - Chike Cao
- Department of Pharmacology, Vanderbilt University, USA
| | - Elaine Sanders-Bush
- Department of Pharmacology, Vanderbilt University, USA
- Center for Molecular Neuroscience, Vanderbilt University, USA
- Department of Psychiatry, Vanderbilt University, USA
| | - David C. Airey
- Department of Pharmacology, Vanderbilt University, USA
- Center for Molecular Neuroscience, Vanderbilt University, USA
| |
Collapse
|
10
|
Marek GJ. Cortical 5-hydroxytryptamine2A-receptor mediated excitatory synaptic currents in the rat following repeated daily fluoxetine administration. Neurosci Lett 2008; 438:312-6. [PMID: 18486339 DOI: 10.1016/j.neulet.2008.04.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 03/16/2008] [Accepted: 04/11/2008] [Indexed: 11/16/2022]
Abstract
Down-regulation of 5-hydroxytryptamine(2A) (5-HT(2A)) receptors has been a consistent effect induced by most antidepressant drugs. The evidence for down-regulation of 5-HT(2A) receptor binding following subchronic treatment with fluoxetine and other selective serotonin reuptake inhibitors (SSRIs) is mixed. The question of 5-HT(2A) receptor sensitivity during chronic administration of antidepressants is important since activation of 5-HT(2A) receptors is associated with impulsivity. Continued activation of 5-HT(2A) receptors may functionally oppose activation of other non-5-HT(2A) receptors in the prefrontal cortex associated with the clinical efficacy of SSRI treatment. Therefore, the effects of repeated daily administration of fluoxetine (10 mg/kg, i.p. x 3 weeks) on pharmacologically characterized electrophysiological response mediated by 5-HT(2A) receptor activation, 5-HT-induced excitatory postsynaptic currents (EPSCs), in rat prefrontal cortical slices was examined. The concentration-response curve for 5-HT-induced EPSCs was unchanged following subchronic fluoxetine treatment. This subchronic fluoxetine treatment failed to modify electrophysiological responses to AMPA in layer V pyramidal cells as well. These findings would be consistent with the hypothesis that blockade of 5-HT(2A) receptors may enhance the effects of SSRIs or serotonin/norepinephrine reuptake inhibitors (SNRIs).
Collapse
Affiliation(s)
- Gerard J Marek
- Discovery Biology, Eli Lilly and Company, Lilly Corporate Center, Mail Drop 0510, Indianapolis, IN 46285 USA.
| |
Collapse
|
11
|
Muma NA, Singh RK, Vercillo MS, D'Souza DN, Zemaitaitis B, Garcia F, Damjanoska KJ, Zhang Y, Battaglia G, Van de Kar LD. Chronic olanzapine activates the Stat3 signal transduction pathway and alters expression of components of the 5-HT2A receptor signaling system in rat frontal cortex. Neuropharmacology 2007; 53:552-62. [PMID: 17675105 PMCID: PMC2075101 DOI: 10.1016/j.neuropharm.2007.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/12/2007] [Accepted: 06/20/2007] [Indexed: 12/19/2022]
Abstract
The mechanisms underlying desensitization of serotonin 2A (5-HT(2A)) receptor signaling by antagonists are unclear but may involve changes in gene expression mediated via signal transduction pathways. In cells in culture, olanzapine causes desensitization of 5-HT(2A) receptor signaling and increases the levels of regulators of G protein signaling (RGS) 7 protein dependent on phosphorylation/activation of the Janus kinase 2 (Jak2)/signal transducers and activators of transcription 3 (Stat3) signaling pathway. In the current study, the 5-HT(2A) receptor signaling system in rat frontal cortex was examined following 7 days of daily treatment with 0.5, 2.0 or 10.0 mg/kg i.p. olanzapine. Olanzapine increased phosphorylation of Stat3 in rats treated daily with 10 mg/kg olanzapine and caused a dose-dependent desensitization of 5-HT(2A) receptor-mediated phospholipase C activity. There were dose-dependent increases in the levels of membrane-associated 5-HT(2A) receptor, G(alpha11) and G(alphaq) protein levels but no changes in the G(beta) protein levels. With olanzapine treatment, RGS4 protein levels increase in the membrane-fraction and decrease in the cytosolic fraction by similar amounts suggesting a redistribution of RGS4 protein within neurons. RGS7 protein levels increase in both the membrane and cytosolic fractions in rats treated daily with 10mg/kg olanzapine. The olanzapine-induced increase in Stat3 activity could underlie the increase in RGS7 protein expression in vivo as previously demonstrated in cultured cells. Furthermore, the increases in membrane-associated RGS proteins could play a role in desensitization of signaling by terminating the activated G(alphaq/11) proteins more rapidly.
Collapse
Affiliation(s)
- N A Muma
- Department of Pharmacology, Loyola University Medical Center, Maywood, IL 60153, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shi J, Damjanoska KJ, Singh RK, Carrasco GA, Garcia F, Grippo AJ, Landry M, Sullivan NR, Battaglia G, Muma NA. Agonist Induced-Phosphorylation of Gα11Protein Reduces Coupling to 5-HT2AReceptors. J Pharmacol Exp Ther 2007; 323:248-56. [PMID: 17646429 DOI: 10.1124/jpet.107.122317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously demonstrated that 24-h treatment with (-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI) causes phosphorylation of Galpha11 protein at serine 154 and that this phosphorylation causes desensitization of serotonin (5-HT) 2A receptor signaling in A1A1v cells (Shi et al., 2007). We now report that treatment of A1A1v cells with DOI for 24 h produces a greater reduction in the Bmax of [125I](+/-)-DOI-labeled high-affinity binding sites (46%) than the reduction of [3H]ketanserin binding sites (25%). Although the KD values are not altered, there is a smaller amount of GTPgammaS [guanosine 5'-3-O-(thio)triphosphate]-sensitive [125I](+/-)-DOI binding in DOI-treated cells. These results suggest that DOI treatment causes down-regulation of 5-HT2A receptors and reductions in G protein-coupled 5-HT2A receptors. In contrast, in cells transfected with the phosphorylation state mimic G(alpha11)S154D, GTPgammaS-sensitive [125I](+/-)-DOI binding was decreased by 48%; however, there was no significant difference in the KD and Bmax values of [125I](+/-)-DOI-labeled receptors. The receptor binding experiments suggest that phosphorylation of Galpha11 on serine 154 reduces coupling of 5-HT2A receptors, whereas DOI causes down-regulation of 5-HT2A receptors in addition to the phosphorylation-induced uncoupling of Galpha11 to 5-HT2A receptors. To determine whether DOI increases phosphorylation of Galphaq/11 protein in vivo, rats were treated with 1 mg/kg/day DOI or saline for 1 to 7 days. Seven days of DOI treatment significantly decreased phospholipase C activity stimulated by an Emax concentration of 5-HT by 40% and increased phosphorylation of Galphaq/11 proteins by 51% in the frontal cortex. These data suggest that DOI causes phosphorylation of Galphaq/11 in vivo and could thereby contribute to the desensitization of 5-HT2A receptors.
Collapse
Affiliation(s)
- Ju Shi
- Department of Pharmacology and Experimental Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Estrada-Camarena E, Fernández-Guasti A, López-Rubalcava C. Participation of the 5-HT1A receptor in the antidepressant-like effect of estrogens in the forced swimming test. Neuropsychopharmacology 2006; 31:247-55. [PMID: 16012533 DOI: 10.1038/sj.npp.1300821] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aim of the present study was to explore the possible participation of the 5-HT(1A) receptor in the antidepressant-like action of two estrogenic compounds: 17beta-estradiol (E(2)) and ethynil-estradiol (EE(2)) in the FST. Ovariectomized female Wistar rats were used in all experiments. As a positive control, the effect of the 5-HT(1A) receptor agonist, 8-hydroxy-2-(di-n)-propil-aminotetraline (8-OH-DPAT; 0.0625, 0.125, 0.25 and 0.5 mg/kg) alone or in combination with WAY 100635 (0.5 and 1.0 mg/kg) was analyzed in the FST. In order to analyze the participation of the 5-HT(1A) receptor in the antidepressant-like actions of estrogens, the effect of the selective antagonist WAY 100635 (0.5 and 1.0 mg/kg) in combination with E(2) (10 microg/rat) and EE(2) (5 microg/rat) was studied in the FST. In this case, WAY 100635 was administered either simultaneously with the estrogens (48 h before the FST test) or 30 min before the FST. On the other hand, a suboptimal dose of 8-OH-DPAT (0.0625 mg/kg), combined with a noneffective dose of E(2) (2.5 microg/rat) or EE(2) (1.25 microg/rat), was tested in the FST. The results showed that 8-OH-DPAT (0.25 and 0.5 mg/kg), E(2) (10 microg/rat), and EE(2) (5 microg/rat), by themselves, exerted an antidepressant-like action. The antagonist to the 5-HT(1A) receptor WAY 100635, when applied together with 8-OH-DPAT or E(2), blocked their antidepressant-like actions, but not the one induced by EE(2). Interestingly, when the antagonist was applied 30 min before the FST, it was able to cancel the actions of EE(2) on immobility behavior, and had no effect on the actions of E(2.) Finally, when a subthreshold dose of 8-OH-DPAT was combined with a noneffective dose of either E(2) or EE(2), an antidepressant-like action was observed. The results support the notion that the 5-HT(1A) receptor is one of the mediators of the antidepressant-like action of E(2), and could indirectly contribute to the one induced by EE(2).
Collapse
Affiliation(s)
- Erika Estrada-Camarena
- Subdirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, México City, DF, México
| | | | | |
Collapse
|
14
|
Doat-Meyerhoefer MM, Hard R, Winter JC, Rabin RA. Effects of clozapine and 2,5-dimethoxy-4-methylamphetamine [DOM] on 5-HT2A receptor expression in discrete brain areas. Pharmacol Biochem Behav 2005; 81:750-7. [PMID: 15972234 PMCID: PMC1351091 DOI: 10.1016/j.pbb.2005.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 05/10/2005] [Accepted: 05/23/2005] [Indexed: 11/19/2022]
Abstract
Activation of 5-HT2A receptors has been shown to be an essential component of the discriminative stimulus effects of indoleamine and phenethylamine hallucinogens. The objective of the present study was to determine the neuroanatomical location of the 5HT2A receptors which may be responsible for the stimulus effects of the phenethylamine hallucinogen [-]2,5-dimethoxy-4-methylamphetamine (DOM). It was hypothesized that brain areas containing altered 5-HT2A receptor expression in the context of a similar alteration in DOM-induced stimulus control might be important in mediating the stimulus effects of DOM. Fisher 344 rats were treated with either clozapine (25 mg/kg/day) or DOM (2 mg/kg/day) for 7 days, and the consequences of these drug treatment regimens on DOM-induced stimulus control and on 5-HT2A receptor expression in several brain areas were determined. Chronic administration of clozapine was associated with a wide-spread decrease in levels of 5-HT2A/2C receptors. Conversely, treatment with DOM had varied effects including a neuroanatomically selective decrease in 5-HT2A/2C receptor levels that was restricted to the olfactory nucleus. Both chronic treatment with DOM and clozapine decreased the stimulus effects of DOM. The present findings suggest a role for the olfactory nucleus in producing the stimulus effects of DOM.
Collapse
Affiliation(s)
| | - R Hard
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214
| | - JC Winter
- Department of Pharmacology and Toxicology, and
| | - RA Rabin
- Department of Pharmacology and Toxicology, and
| |
Collapse
|
15
|
Chen Z, Waimey K, Van de Kar LD, Carrasco GA, Landry M, Battaglia G. Prenatal cocaine exposure potentiates paroxetine-induced desensitization of 5-HT2A receptor function in adult male rat offspring. Neuropharmacology 2004; 46:942-53. [PMID: 15081791 DOI: 10.1016/j.neuropharm.2004.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 12/22/2003] [Accepted: 01/19/2004] [Indexed: 11/20/2022]
Abstract
This study investigated the ability of prenatal exposure to cocaine to alter serotonin(2A) (5-HT(2A)) receptor function and paroxetine-induced desensitization of 5-HT(2A) receptor function in rat offspring. Following exposure to saline or (-)cocaine (15 mg/kg, s.c., b.i.d.), during gestational days 13-20, adult male offspring were treated with either saline or paroxetine (10 mg/kg/day, i.p. 14 days). Eighteen hours post-treatment, changes in the stimulation of oxytocin, adrenocorticotropic hormone (ACTH) and corticosterone by (-)4-iodo-2,5-dimethoxyphenylisopropylamine (DOI, 0.5 or 2.0 mg/kg, s.c.) and in 5-HT(2A) receptor densities were determined. Prenatal cocaine exposure did not alter 5-HT(2A) receptor-mediated neuroendocrine responses or 5-HT(2A) receptor densities. In contrast, paroxetine treatment reduced cortical 5-HT(2A) receptors (18-25%) and desensitized 5-HT(2A) receptor-mediated oxytocin responses in both offspring groups. Furthermore, in cocaine offspring, paroxetine produced an inhibition of 5-HT(2A) receptor-mediated increase in plasma ACTH levels and a greater attenuation of the oxytocin responses to (-)DOI. Paroxetine-induced reductions in body weight gain (-8.8%) were comparable in both offspring groups. These data, demonstrating that prenatal exposure to cocaine potentiates paroxetine-induced desensitization of 5-HT(2A) receptor function, may be clinically relevant with respect to treating mood disorders in adults exposed in utero to cocaine.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Pharmacology and Center for Serotonin Disorders Research, Loyola University of Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | | | |
Collapse
|
16
|
Zhang Y, Gray TS, D'Souza DN, Carrasco GA, Damjanoska KJ, Dudas B, Garcia F, Zainelli GM, Sullivan Hanley NR, Battaglia G, Muma NA, Van de Kar LD. Desensitization of 5-HT1A receptors by 5-HT2A receptors in neuroendocrine neurons in vivo. J Pharmacol Exp Ther 2004; 310:59-66. [PMID: 15064330 DOI: 10.1124/jpet.103.062224] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An imbalance between serotonin-2A (5-HT2A) and 5-HT1A receptors may underlie several mood disorders. The present studies determined whether 5-HT2A receptors interact with 5-HT1A receptors in the rat hypothalamic paraventricular nucleus (PVN). The sensitivity of the hypothalamic 5-HT1A receptors was measured as oxytocin and adrenocorticotropic hormone (ACTH) responses to the 5-HT1A receptor agonist (+)-8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide [(+)8-OH-DPAT] (40 microg/kg s.c.). The 5-HT(2A/2C) receptor agonist (-)DOI [(-)-1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane HCl] (1 mg/kg s.c.) injected 2 h prior to (+)8-OH-DPAT significantly reduced the oxytocin and ACTH responses to (+)8-OH-DPAT, producing a heterologous desensitization of the 5-HT1A receptors. Microinjection of the 5-HT2A receptor antagonist MDL100,907 [(+)-alpha-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidinemethanol; 0, 10, or 20 nmol, 15 min prior to (-)DOI] into the PVN dose-dependently prevented the desensitization of 5-HT1A receptors induced by the 5-HT2A receptor agonist (-)DOI. Double-label immunocytochemistry revealed a high degree of colocalization of 5-HT1A and 5-HT2A receptors in the oxytocin and corticotropin-releasing factor neurons of the PVN. Thus, activation of 5-HT2A receptors in the PVN may directly induce a heterologous desensitization of 5-HT1A receptors within individual neuroendocrine cells. These findings may provide insight into the long-term adaptation of 5-HT1A receptor signaling after changes in function of 5-HT2A receptors; for example, during pharmacotherapy of mood disorders.
Collapse
Affiliation(s)
- Yahong Zhang
- Center for Serotonin Disorders Research and Department of Pharmacology, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Estrada-Camarena E, Fernández-Guasti A, López-Rubalcava C. Interaction between estrogens and antidepressants in the forced swimming test in rats. Psychopharmacology (Berl) 2004; 173:139-45. [PMID: 14730416 DOI: 10.1007/s00213-003-1707-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 10/30/2003] [Indexed: 10/26/2022]
Abstract
RATIONALE Several reports suggest that estrogens possess antidepressant effects and could facilitate the action of some antidepressants. OBJECTIVE To analyze the interaction between three different types of estrogens, 17 beta-estradiol (E(2)), ethinylestradiol (EE(2)) or diethyl-stilbestrol (DES) and the antidepressants, fluoxetine (FLX) or desipramine (DMI) in ovariectomized female rats subjected to an animal model for the study of antidepressant compounds, the forced swimming test (FST). METHODS The effect of the combination of a sub-optimal dose of FLX (2.5 mg/kg) or DMI (2.5 mg/kg) with a sub-active dose of E(2 )(10 microg/kg), EE(2), (2.5 or 5 microg/kg) or DES (1 mg/kg) was analyzed in both the FST and the open field paradigm. RESULTS The combination of a sub-optimal dose of E(2) or DES with that of the antidepressant DMI resulted in a clear antidepressant-like effect, evidenced by a significant decrease in immobility accompanied by an increase in climbing behavior. Sub-optimal doses of either E(2) or DES also facilitated the antidepressant-like effect of a sub-optimal dose of FLX. In this case, a decrease in immobility with a concomitant increase in swimming behavior was observed. Finally, the combination of EE(2) with either DMI or FLX decreased immobility and induced an increase in both swimming and climbing behaviors. All combinations decreased rats' locomotor activity when evaluated in the open field test. CONCLUSION In the FST estrogens were able to facilitate the action of two different kinds of antidepressants; however, these effects were dependent on the type of estrogen used.
Collapse
Affiliation(s)
- Erika Estrada-Camarena
- Depto de Farmacobiología CINVESTAV-IPN, Calzada de los Tenorios 235, Col Granjas Coapa, Deleg Tlalpan, CP 14330 México DF, México.
| | | | | |
Collapse
|
18
|
Li Q, Ma L, Innis RB, Seneca N, Ichise M, Huang H, Laruelle M, Murphy DL. Pharmacological and genetic characterization of two selective serotonin transporter ligands: 2-[2-(dimethylaminomethylphenylthio)]-5-fluoromethylphenylamine (AFM) and 3-amino-4-[2-(dimethylaminomethyl-phenylthio)]benzonitrile (DASB). J Pharmacol Exp Ther 2003; 308:481-6. [PMID: 14610240 DOI: 10.1124/jpet.103.058636] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression and function of the serotonin transporter (SERT) is important in the regulation of mood and emotion. Determination of SERT alterations in physiological and pathological states is essential for understanding the role of SERT in mood regulation, and in the etiology and therapy of psychiatric disorders. Two SERT ligands, AFM ([(3)H]2-[2-(dimethylaminomethylphenylthio)]-5-fluoromethylphenylamine) and DASB ([(3)H]3-amino-4-[2-(dimethylaminomethylphenylthio)]benzonitrile), have recently been developed for positron emission tomography (PET) imaging. The aim of the present study was to determine the selectivity of these compounds for SERT. Autoradiography of AFM or DASB binding was compared in the brains of mice with genetically normal, diminished, or absent SERT. In addition, the pharmacodynamic profile of [(3)H]AFM was examined in the mouse brain. The distribution of [(3)H]AFM and [(3)H]DASB binding in the normal brains was consistent with that of previously studied serotonin reuptake inhibitors. Both ligands had negligible binding in the brain of SERT knockout mice, and binding was reduced approximately 50% in heterozygote SERT mice. The K(d) of [(3)H]AFM binding in the cortex and midbrain was 1.6 and 1.0 nM, respectively. Competition studies showed that [(3)H]AFM has very low affinity for norepinephrine and dopamine transporters as well as 5-HT receptors, including 5-HT(1A), 5-HT(1B), 5-HT(2A), and 5-HT(2C) receptors. In addition, fenfluramine showed a low capability to compete with [(3)H]AFM. The present results suggest that both AFM and DASB are highly selective SERT ligands potentially suitable for use in human PET studies of SERT.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Damjanoska KJ, Van de Kar LD, Kindel GH, Zhang Y, D'Souza DN, Garcia F, Battaglia G, Muma NA. Chronic fluoxetine differentially affects 5-hydroxytryptamine (2A) receptor signaling in frontal cortex, oxytocin- and corticotropin-releasing factor-containing neurons in rat paraventricular nucleus. J Pharmacol Exp Ther 2003; 306:563-71. [PMID: 12721328 DOI: 10.1124/jpet.103.050534] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Differential adaptive changes in serotonin2A [5-hydroxytryptamine (5-HT)2A] receptor signaling during treatment may be one mechanism involved in the latency of therapeutic improvement with antidepressants, such as fluoxetine. We examined the effects of fluoxetine (2, 3, 7, 21, or 42 days) on hypothalamic 5-HT2A receptor signaling. The hormone responses to an injection of the 5-HT2A receptor agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-amino-propane HCl (DOI) were used as an index of hypothalamic 5-HT2A receptor function. Treatment with fluoxetine for 21 or 42 days produced diminished adrenocorticotropic hormone (ACTH) and oxytocin (but not corticosterone) responses to DOI injections (2.5 mg/kg i.p.; 15 min postinjection). Regulators of G protein signaling 4 and Galphaq protein levels in the hypothalamic paraventricular nucleus were not altered during fluoxetine treatment. Because previous studies indicate that treatment with fluoxetine for 21 days resulted in increased hormone responses to DOI when measured at 30 min after injection, we examined the effect of fluoxetine (21 days) on DOI-induced increase hormone levels at 15, 30, and 60 min after DOI injection. Fluoxetine decreased the oxytocin response at 15 but not at 30 min post-DOI injection, and potentiated the ACTH and corticosterone responses at 30 min post-DOI injection. For comparison, we examined the effect of fluoxetine on 5-HT2A receptor-mediated increase in phospholipase C (PLC) activity in the frontal cortex. 5-HT-stimulated, but not guanosine 5'-O-(3-thio)triphosphate-stimulated PLC activity was increased after 21 days of fluoxetine-treatment. Overall, these results indicate that chronic fluoxetine treatment can potentiate 5-HT2A receptor signaling in frontal cortex but differentially alters 5-HT2A receptor signaling in oxytocin-containing neurons and corticotropin-releasing factor-containing neurons in the paraventricular nucleus.
Collapse
Affiliation(s)
- K J Damjanoska
- Department of Pharmacology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Estrada-Camarena E, Fernández-Guasti A, López-Rubalcava C. Antidepressant-like effect of different estrogenic compounds in the forced swimming test. Neuropsychopharmacology 2003; 28:830-8. [PMID: 12637949 DOI: 10.1038/sj.npp.1300097] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study evaluated the possible antidepressant-like action of the natural estrogen 17beta-estradiol (E(2), 2.5-10 microg/rat), the synthetic steroidal estrogen ethinyl-estradiol (EE(2), 1.25-10.0 microg/rat), and the nonsteroidal synthetic estrogen, diethyl-stilbestrol (DES, 0.25-1.0 mg/rat) in ovariectomized adult female Wistar rats using the forced swimming test (FST). The behavioral profile induced by the estrogens was compared with that induced by the antidepressants fluoxetine (FLX, 2.5-10 mg/kg) and desipramine (DMI, 2.5-10 mg/kg). In addition, the temporal course of the antidepressant-like action of the estrogenic compounds was analyzed. FLX and DMI induced an antidepressant-like effect characterized by a reduced immobility and increased swimming for FLX and decreased immobility and increased climbing for DMI. Both E(2) and EE(2) produced a decrease in immobility and an increase in swimming, suggesting an antidepressant-like action. DES did not affect the responses in this animal model of depression at any dose tested. The time course analysis of the actions of E(2) (10 microg/rat) and EE(2) (5 microg/rat) showed that both compounds induced an antidepressant-like effect observed 1 h after their injection lasting for 2-3 days.
Collapse
Affiliation(s)
- Erika Estrada-Camarena
- Depto de Farmacobiología CINVESTAV-IPN, Calzada de los Tenorios 235, Col Granjas Coapa, Deleg Tlalpan, CP 14330 México DF, México.
| | | | | |
Collapse
|
21
|
Van Oekelen D, Luyten WHML, Leysen JE. 5-HT2A and 5-HT2C receptors and their atypical regulation properties. Life Sci 2003; 72:2429-49. [PMID: 12650852 DOI: 10.1016/s0024-3205(03)00141-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The 5-HT(2A) and 5-HT(2C) receptors belong to the G-protein-coupled receptor (GPCR) superfamily. GPCRs transduce extracellular signals to the interior of cells through their interaction with G-proteins. The 5-HT(2A) and 5-HT(2C) receptors mediate effects of a large variety of compounds affecting depression, schizophrenia, anxiety, hallucinations, dysthymia, sleep patterns, feeding behaviour and neuro-endocrine functions. Binding of such compounds to either 5-HT(2) receptor subtype induces processes that regulate receptor sensitivity. In contrast to most other receptors, chronic blockade of 5-HT(2A) and 5-HT(2C) receptors leads not to an up- but to a (paradoxical) down-regulation. This review deals with published data involving such non-classical regulation of 5-HT(2A) and 5-HT(2C) receptors obtained from in vivo and in vitro studies. The underlying regulatory processes of the agonist-induced regulation of 5-HT(2A) and 5-HT(2C) receptors, commonly thought to be desensitisation and resensitisation, are discussed. The atypical down-regulation of both 5-HT(2) receptor subtypes by antidepressants, antipsychotics and 5-HT(2) antagonists is reviewed. The possible mechanisms of this paradoxical down-regulation are discussed, and a new hypothesis on possible heterologous regulation of 5-HT(2A) receptors is proposed.
Collapse
Affiliation(s)
- Dirk Van Oekelen
- Johnson and Johnson Pharmaceutical, p/a Janssen Pharmaceutica, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | | | | |
Collapse
|
22
|
Li Q, Wichems CH, Ma L, Van de Kar LD, Garcia F, Murphy DL. Brain region-specific alterations of 5-HT2A and 5-HT2C receptors in serotonin transporter knockout mice. J Neurochem 2003; 84:1256-65. [PMID: 12614326 DOI: 10.1046/j.1471-4159.2003.01607.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of the present studies was to determine the effects of reduced or absent serotonin (5-HT) transporters (5-HTTs) on 5-HT2A and 5-HT2C receptors. The density of 5-HT2C receptors was significantly increased in the amygdala and choroid plexus of 5-HTT knockout mice. On the other hand, the density of 5-HT2A receptors was significantly increased in the hypothalamus and septum, but reduced in the striatum, of 5-HTT knockout mice. However, 5-HT2A mRNA was not changed in any brain region measured. 5-HT2C mRNA was significantly reduced in the choroid plexus and lateral habenula nucleus of these mice. The function of 5-HT2A receptors was evaluated by hormonal responses to (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Oxytocin, but not adrenocorticotrophic hormone or corticosterone, responses to DOI were significantly greater in 5-HTT knockout mice. In addition, Gq and G11 proteins were not significantly changed in any brain region measured. The present results suggest that the constitutive alteration in the function of 5-HTTs changes the density of 5-HT2A and 5-HT2C receptors in a brain region-specific manner. These changes may not be mediated by alterations in their gene expression or in the level of Gq/11 proteins. The alterations in these receptors may be related to the altered behaviors of 5-HTT knockout mice.
Collapse
MESH Headings
- Animals
- Anxiety/genetics
- Anxiety/pathology
- Autoradiography
- Brain/metabolism
- Brain/pathology
- Carrier Proteins/genetics
- Female
- GTP-Binding Protein alpha Subunits, Gq-G11
- Heterotrimeric GTP-Binding Proteins/metabolism
- Heterozygote
- Homozygote
- In Situ Hybridization
- Indophenol/analogs & derivatives
- Indophenol/pharmacokinetics
- Male
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Transport Proteins
- Mice
- Mice, Knockout
- Mice, Neurologic Mutants
- Nerve Tissue Proteins
- Organ Specificity
- RNA, Messenger/metabolism
- Receptor, Serotonin, 5-HT2A
- Receptor, Serotonin, 5-HT2C
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Serotonin Antagonists/pharmacology
- Serotonin Plasma Membrane Transport Proteins
- Serotonin Receptor Agonists/pharmacokinetics
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Clinical Science, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-1264, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Zea-Ponce Y, Kegeles LS, Guo N, Raskin L, Bakthavachalam V, Laruelle M. Pharmacokinetics and brain distribution in non human primate of R(-)[123I]DOI, A 5HT(2A/2C) serotonin agonist. Nucl Med Biol 2002; 29:575-83. [PMID: 12088728 DOI: 10.1016/s0969-8051(02)00306-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our goal was to synthesize with high specific activity R(-)-1-(2,5-Dimethoxy-4-[123I]iodophenyl)-2-aminopropane [R(-)[123I]DOI], an in vitro potent and selective 5-HT(2A/2C) serotonin agonist, and study in vivo its plasma pharmacokinetics and brain distribution in baboon by SPECT. The purpose was to evaluate this radiotracer as a potential tool in discerning the role of the agonist high affinity state of 5-HT(2) receptors in depression and other neurological disorders. The radiotracer was prepared by electrophilic radioiodination of the N-trifluoroacetyl precursor of R(-)-1-(2,5-Dimethoxyphenyl)-2-aminopropane [R(-)DMA-TFA] with high-purity sodium [123I]iodide in the presence of chloramine-T, followed by amino deprotection with KOH in isopropanol (labeling yield: 73%, radiochemical yield: 62%, radiochemical purity: 99%). In vivo studies in baboon showed high accumulation of radioactivity in thalamus, the frontoparietal cortex, temporal, occipital and the striatum regions, with slightly lower accumulation in the midbrain and cerebellum. Ketanserin did not displaced the radioactivity in any of these brain regions. Plasma metabolite analysis was performed using methanol protein precipitation, the methanol fractions contained from 68% to 92% of the mixture of a labeled metabolite and parent compound. The recovery coefficient of unmetabolized R(-)[123I]DOI was 68%. The percent parent compound present in the extracted fraction, measured by HPLC, decreased gradually with time from 99.8% to 0.3% still present after 4.7 hours post injection whereas the percentage of the only one detected metabolite increased conversely. Free fraction determination (f(1)), was 31 +/- 0.9% (n = 3). For comparison purposes, ex-vivo brain distribution, displacement and metabolite analysis was also carried out in rodents. Although R(-)[123I]DOI displayed good brain uptake and localized in serotonergic areas of the brain, its target to non target ratio and its insensitivity to ketanserin displacement suggest high nonspecific uptake, therefore non potentially useful as brain imaging radiotracer for visualization of the agonist high-affinity state of 5-HT(2A) receptors and for visualizing 5-HT(2C) receptors by SPECT.
Collapse
Affiliation(s)
- Yolanda Zea-Ponce
- Departments of Psychiatry and Radiology, Columbia University College of Physicians and Surgeons, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Van de Kar LD, Raap DK, Battaglia G, Muma NA, Garcia F, DonCarlos LL. Treatment of cycling female rats with fluoxetine induces desensitization of hypothalamic 5-HT(1A) receptors with no change in 5-HT(2A) receptors. Neuropharmacology 2002; 43:45-54. [PMID: 12213258 DOI: 10.1016/s0028-3908(02)00075-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although women constitute the majority of patients who receive treatment with selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine, most animal studies of SSRIs are conducted on males. The present study investigated whether long-term treatment of cycling female rats with fluoxetine alters their estrous cycle and the sensitivity of hypothalamic serotonin (5-HT) 5-HT(1A) and 5-HT(2A) receptor systems. Adult female rats received daily injections of fluoxetine (10 mg/kg, i.p.) for three consecutive estrous cycles (15.2+/-0.2 days) with the first injection beginning on metestrus (when circulating estrogen levels are low and stable). Fluoxetine did not alter basal plasma estradiol levels at metestrus, nor did it alter the pattern of estrous cyclicity. Rats treated with fluoxetine showed a loss in body weight. On the morning of metestrus of the fourth cycle (18 h after the last fluoxetine injection), the rats were injected with a sub-maximal dose of the 5-HT(1A) agonist (+/-)-8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT, 50 MICRO/kg, s.c.) or a maximal dose of the 5-HT(2A) agonist [(+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl] (DOI). Plasma levels of oxytocin, ACTH and corticosterone were measured as peripheral indicators of hypothalamic 5-HT(1A) and 5-HT(2A) receptor sensitivity. Injecting 8-OH-DPAT to saline pretreated rats produced a significant increase in plasma oxytocin (299%), ACTH (1456%) and corticosterone (170%) levels but not in plasma prolactin or renin concentrations. Greater increases in plasma levels of these hormones were observed after injecting DOI. Fluoxetine treatment completely blocked the oxytocin, ACTH and corticosterone responses to 8-OH-DPAT, but did not inhibit the effect of DOI on any hormone, thus confirming that fluoxetine treatment did not produce a deficit in the functioning of corticotropin releasing hormone or oxytocin containing neurons. These results indicate that in cycling female rats, fluoxetine treatment desensitizes hypothalamic post-synaptic 5-HT(1A) receptor signaling. Understanding the pharmacological effects of fluoxetine in females may lead to more effective treatment of women with mood disorders.
Collapse
Affiliation(s)
- L D Van de Kar
- Department of Pharmacology, Center for Serotonin Disorders Research, Stritch School of Medicine, Loyola University of Chicago, 2160 South First Avenue, Maywood, IL 60153, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Kong EKC, Peng L, Chen Y, Yu ACH, Hertz L. Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration. Neurochem Res 2002; 27:113-20. [PMID: 11930908 DOI: 10.1023/a:1014862808126] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects were studied of short-term (1 week) versus long-term (2-3 weeks) fluoxetine treatment of primary cultures of mouse astrocytes, differentiated by treatment with dibutyryl cyclic AMP. From previous experiments it is known that acute treatment with fluoxetine stimulates glycogenolysis and increases free cytosolic Ca2+ concentration ([Ca2+]i]) in these cultures, whereas short-term (one week) treatment with 10 microM down-regulates the effects on glycogen and [Ca2+]i, when fluoxetine administration is renewed (or when serotonin is administered). Moreover, antagonist studies have shown that these responses are evoked by activation of a 5-HT2, receptor that is different from the 5-HT2A receptor and therefore at that time tentatively were interpreted as being exerted on 5-HT2C receptors. In the present study the cultures were found by RT-PCR to express mRNA for 5-HT2A and 5-HT2B receptors, but not for the 5-HT2C receptor, identifying the 5-HT2 receptor activated by fluoxetine as the 5-HT2B receptor, the most recently cloned 5-Ht2 receptor and a 5-HT receptor known to be more abundant in human, than in rodent, brain. Both short-term and long-term treatment with fluoxetine increased the specific binding of [3H]mesulergine, a ligand for alL three 5-HT2 receptors. Long-term treatment with fluoxetine caused an agonist-induced up-regulation of the glycogenolytic response to renewed administration of fluoxetine, whereas short-term treatment abolished the fluoxetine-induced hydrolysis of glycogen. Thus, during a treatment period similar to that required for fluoxetine's clinical response to occur, 5-HT2B-mediated effects are initially down-regulated and subsequently up-regulated.
Collapse
Affiliation(s)
- Ebenezer K C Kong
- Department of Biology, The Hong Kong University of Science and Technology, China
| | | | | | | | | |
Collapse
|
26
|
Frank JL, Hendricks SE, Olson CH. Multiple ejaculations and chronic fluoxetine: effects on male rat copulatory behavior. Pharmacol Biochem Behav 2000; 66:337-42. [PMID: 10880687 DOI: 10.1016/s0091-3057(00)00191-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Male rats were treated with fluoxetine (FLX) or vehicle daily for 14 days and copulatory behavior tested on day 15. Rats were either mated to three ejaculations or to sexual exhaustion. Both standard measures and the mount bout analysis were used to evaluate the effects of the chronic FLX on male rat copulatory behavior. Only 56.25% of the animals treated with FLX achieved three ejaculations. FLX inhibited the consumatory aspect of male sexual behavior, especially the ability to achieve three ejaculations, but there was no effect on the propensity of the male to pursue the female. These differences were observed for the first three ejaculations. Analysis of the last three ejaculations in those animals that mated to exhaustion did not reveal an effect of FLX. The behavioral pattern of FLX-treated animals during the first three ejaculations resembled that observed during the last three ejaculatory series in the vehicle-treated animals that mated to exhaustion. The results are discussed in terms of the serotonergic effects on male rat sexual behavior.
Collapse
Affiliation(s)
- J L Frank
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | | | | |
Collapse
|
27
|
Zhang Y, Raap DK, Garcia F, Serres F, Ma Q, Battaglia G, Van de Kar LD. Long-term fluoxetine produces behavioral anxiolytic effects without inhibiting neuroendocrine responses to conditioned stress in rats. Brain Res 2000; 855:58-66. [PMID: 10650130 DOI: 10.1016/s0006-8993(99)02289-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to investigate the anxiolytic effects of long-term treatment with fluoxetine in rats. Selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine, are used to treat anxiety and panic disorders, in addition to treating depression. A major concern with SSRIs is a 2-3-week delay in their therapeutic effects. SSRIs share with anxiolytic 5-HT(1A) agonists the ability to produce desensitization of post-synaptic 5-HT(1A) receptors. To investigate the anxiolytic effects of fluoxetine, rats were treated for 14 days with fluoxetine (10 mg kg(-1) day(-1), i.p. ). The rats were stressed using a conditioned stress procedure and tested one day after the last fluoxetine injection. Fluoxetine decreased stress-induced defecation (by 60%), reversed the stress-induced suppression of exploring behavior (by 59%) and shortened the duration of stress-induced freezing behavior (by 11. 5%). However, the stress-induced increase in plasma levels of ACTH, corticosterone, oxytocin, prolactin and renin were not inhibited by fluoxetine treatment. These findings suggest that neuroadaptive changes induced by sustained inhibition of serotonin (5-HT) reuptake, contribute to the mechanism of the anxiolytic effects of fluoxetine. In contrast, the neuroendocrine responses to conditioned stress are not affected by these neuroadaptive changes.
Collapse
Affiliation(s)
- Y Zhang
- Department of Pharmacology, Stritch School of Medicine, Loyola University Chicago, 2160 S. First Avenue, Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are effective drugs for the treatment of several neuropsychiatric disorders associated with reduced serotonergic function. Serotonergic neurons play an important role in the regulation of neuroendocrine function. This review will discuss the acute and chronic effects of SSRIs on neuroendocrine function. Acute administration of SSRIs increases the secretion of several hormones, but chronic treatment with SSRIs does not alter basal blood levels of hormones. However, adaptive changes are induced by long-term treatment with SSRIs in serotonergic, noradrenergic and peptidergic neural function. These adaptive changes, particularly in the function of specific post-synaptic receptor systems, can be examined from altered adrenocorticotrophic hormone (ACTH), cortisol, oxytocin, vasopressin, prolactin, growth hormone (GH) and renin responses to challenges with specific agonists. Neuroendocrine challenge tests both in experimental animals and in humans indicate that chronic SSRIs produce an increase in serotonergic terminal function, accompanied by desensitization of post-synaptic 5-HT1A receptor-mediated ACTH, cortisol, GH and oxytocin responses, and by supersensitivity of post-synaptic 5-HT2A (and/or 5-HT2C) receptor-mediated secretion of hormones. Chronic exposure to SSRIs does not alter the neuroendocrine stress-response and produces inconsistent changes in alpha2 adrenoceptor-mediated GH secretion. Overall, the effects of SSRIs on neuroendocrine function are dependent on adaptive changes in specific neurotransmitter systems that regulate the secretion of specific hormones.
Collapse
Affiliation(s)
- D K Raap
- Department of Pharmacology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | |
Collapse
|
29
|
Cornea-Hébert V, Riad M, Wu C, Singh SK, Descarries L. Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 1999; 409:187-209. [PMID: 10379914 DOI: 10.1002/(sici)1096-9861(19990628)409:2<187::aid-cne2>3.0.co;2-p] [Citation(s) in RCA: 363] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Light and electron microscope immunocytochemistry with a monoclonal antibody against the N-terminal domain of the human protein was used to determine the cellular and subcellular localization of serotonin 5-HT2A receptors in the central nervous system of adult rat. Following immunoperoxidase or silver-intensified immunogold labeling, neuronal, somatodendritic, and/or axonal immunoreactivity was detected in numerous brain regions, including all those in which ligand binding sites and 5-HT2A mRNA had previously been reported. The distribution of 5-HT2A-immunolabeled soma/dendrites was characterized in cerebral cortex, olfactory system, septum, hippocampal formation, basal ganglia, amygdala, diencephalon, cerebellum, brainstem, and spinal cord. Labeled axons were visible in every myelinated tract known to arise from immunoreactive cell body groups. In immunopositive soma/dendrites as well as axons, the 5-HT2A receptor appeared mainly cytoplasmic rather than membrane bound. Even though the dendritic labeling was generally stronger than the somatic, it did not extend to dendritic spines in such regions as the cerebral and piriform cortex, the neostriatum, or the molecular layer of the cerebellum. Similarly, there were no labeled axon terminals in numerous regions known to be strongly innervated by the immunoreactive somata and their axons (e.g., molecular layer of piriform cortex). It was concluded that the 5-HT2A receptor is mostly intracellular and transported in dendrites and axons, but does not reach into dendritic spines or axon terminals. Because it has previously been shown that this serotonin receptor is transported retrogradely as well as anterogradely, activates intracellular transduction pathways and intervenes in the regulation of the expression of many genes, it is suggested that one of its main functions is to participate in retrograde signaling systems activated by serotonin.
Collapse
Affiliation(s)
- V Cornea-Hébert
- Départements de Pathologie et Biologie Cellulaire et de Physiologie, and Centre de Recherche en Sciences Neurologiques, Faculté de Médecine, Université de Montréal, Quebec, Canada
| | | | | | | | | |
Collapse
|
30
|
Durand M, Berton O, Aguerre S, Edno L, Combourieu I, Mormède P, Chaouloff F. Effects of repeated fluoxetine on anxiety-related behaviours, central serotonergic systems, and the corticotropic axis axis in SHR and WKY rats. Neuropharmacology 1999; 38:893-907. [PMID: 10465693 DOI: 10.1016/s0028-3908(99)00009-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In keeping with the anxiolytic property of selective serotonin reuptake inhibitors (SSRIs) in humans, we have examined in the spontaneously hypertensive rat (SHR) and the Wistar-Kyoto (WKY) rat, which display low and high anxiety, respectively, some psychoneuroendocrine effects of a repeated treatment with the SSRI fluoxetine (5 or 10 mg/kg daily, for 3 weeks). Two days after the last injection, plasma levels of fluoxetine were not detectable whereas those of its metabolite, norfluoxetine, were present to similar extents in both strains. By means of the elevated plus-maze test (29-30 h after the 13th administration of fluoxetine) and an open field test (48 h after the last injection of fluoxetine), it was observed that fluoxetine pretreatment did not yield anxiolysis; hence, some, but not all, behaviours were indicative of anxiety and hypolocomotion (as assessed through principal component analyses and acute diazepam studies). In both strains, the 10 mg/kg dose of fluoxetine decreased hypothalamus 5-HT and 5-HIAA levels, and reduced midbrain and/or hippocampus [3H]citalopram binding at 5-HT transporters, but did not affect [3H]8-hydroxy-2-(di-N-propylamino)tetralin binding at hippocampal 5-HT1A receptors. However, the fluoxetine-elicited reduction in hippocampal 5-HT transporter binding was much more important in WKY than in SHR rats, this strain-dependent effect being associated in WKY rats with a reduction in cortical [3H]ketanserin binding at 5-HT2A receptors. Lastly, in WKY rats, repeated fluoxetine administration increased adrenal weights and the plasma corticosterone response to open field exposure, but did not affect the binding capacities of hippocampal mineralocorticoid and glucocorticoid receptors. These data show that key psychoneuroendocrine responses to repeated fluoxetine administration may be strain-dependent, and that repeated fluoxetine administration does not yield anxiolysis, as assessed by two standard tests of emotivity.
Collapse
Affiliation(s)
- M Durand
- NeuroGénétique et Stress, INSERM U471-INRA, Institut François Magendie, Bordeaux, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Exposure to hostile conditions initiates the secretion of several hormones, including corticosterone/cortisol, catecholamines, prolactin, oxytocin, and renin, as part of the survival mechanism. Such conditions are often referred to as "stressors" and can be divided into three categories: external conditions resulting in pain or discomfort, internal homeostatic disturbances, and learned or associative responses to the perception of impending endangerment, pain, or discomfort ("psychological stress"). The hormones released in response to stressors often are referred to as "stress hormones" and their secretion is regulated by neural circuits impinging on hypothalamic neurons that are the final output toward the pituitary gland and the kidneys. This review discusses the forebrain circuits that mediate the neuroendocrine responses to stressors and emphasizes those neuroendocrine systems that have previously received little attention as stress-sensitive hormones: renin, oxytocin, and prolactin. Anxiolytic drugs of the benzodiazepine class and other drugs that affect catecholamine, GABAA, histamine, and serotonin receptors alter the neuroendocrine stress response. The effects of these drugs are discussed in relation to their effects on forebrain neural circuits that regulate stress hormone secretion. For psychological stressors such as conditioned fear, the neural circuits mediating neuroendocrine responses involve cortical activation of the basolateral amygdala, which in turn activates the central nucleus of the amygdala. The central amygdala then activates hypothalamic neurons directly, indirectly through the bed nucleus of the stria terminalis, and/or possibly via circuits involving brainstem serotonergic and catecholaminergic neurons. The renin response to psychological stress, in contrast to those of ACTH and prolactin, is not mediated by the bed nucleus of the stria terminalis and is not suppressed by benzodiazepine anxiolytics. Stressors that challenge cardiovascular homeostasis, such as hemorrhage, trigger a pattern of neuroendocrine responses that is similar to that observed in response to psychological stressors. These neuroendocrine responses are initiated by afferent signals from cardiovascular receptors which synapse in the medulla oblongata and are relayed either directly or indirectly to hypothalamic neurons controlling ACTH, prolactin, and oxytocin release. In contrast, forebrain pathways may not be essential for the renin response to hemorrhage. Thus current evidence indicates that although a diverse group of stressors initiate similar increases in ACTH, renin, prolactin, and oxytocin, the specific neural circuits and neurotransmitter systems involved in these responses differ for each neuroendocrine system and stressor category.
Collapse
Affiliation(s)
- L D Van de Kar
- Department of Pharmacology, Loyola University of Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, Illinois, 60153, USA.
| | | |
Collapse
|