1
|
Fogarty MJ. Dendritic morphology of motor neurons and interneurons within the compact, semicompact, and loose formations of the rat nucleus ambiguus. Front Cell Neurosci 2024; 18:1409974. [PMID: 38933178 PMCID: PMC11199410 DOI: 10.3389/fncel.2024.1409974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Motor neurons (MNs) within the nucleus ambiguus innervate the skeletal muscles of the larynx, pharynx, and oesophagus. These muscles are activated during vocalisation and swallowing and must be coordinated with several respiratory and other behaviours. Despite many studies evaluating the projections and orientation of MNs within the nucleus ambiguus, there is no quantitative information regarding the dendritic arbours of MNs residing in the compact, and semicompact/loose formations of the nucleus ambiguus.. Methods In female and male Fischer 344 rats, we evaluated MN number using Nissl staining, and MN and non-MN dendritic morphology using Golgi-Cox impregnation Brightfield imaging of transverse Nissl sections (15 μm) were taken to stereologically assess the number of nucleus ambiguus MNs within the compact and semicompact/loose formations. Pseudo-confocal imaging of Golgi-impregnated neurons within the nucleus ambiguus (sectioned transversely at 180 μm) was traced in 3D to determine dendritic arbourisation. Results We found a greater abundance of MNs within the compact than the semicompact/loose formations. Dendritic lengths, complexity, and convex hull surface areas were greatest in MNs of the semicompact/loose formation, with compact formation MNs being smaller. MNs from both regions were larger than non-MNs reconstructed within the nucleus ambiguus. Conclusion Adding HBLS to the diet could be a potentially effective strategy to improve horses' health.
Collapse
Affiliation(s)
- Matthew J. Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
2
|
Kaneko M, Sugiyama Y, Munekawa R, Kinoshita S, Mukudai S, Umezaki T, Dutschmann M, Hirano S. Sustained Effects of Capsaicin Infusion into the Oropharynx on Swallowing in Perfused Rats. Laryngoscope 2024; 134:305-314. [PMID: 37503765 DOI: 10.1002/lary.30918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES To examine the sustained effects of oropharyngeal capsaicin stimulation on the regulation of swallowing, we recorded the swallowing-related nerve activities during continuous infusion of capsaicin solution into the oropharynx. METHODS In 33 in situ perfused brainstem preparation of rats, we recorded the activities of the vagus, hypoglossal, and phrenic nerves during fictive swallowing. The interburst intervals (IBIs) of the swallowing-related nerves during sequential pharyngeal swallowing (sPSW) elicited by electrical stimulation of the superior laryngeal nerve (SLN) during concurrent capsaicin stimulation of 10, 1, and 0.1 μM (n = 28) were compared with those during oropharyngeal infusion of saline (control) (n = 5). RESULTS The IBIs during SLN-induced sPSW were reduced at 5 min after initiation of continuous infusion of 10 and 1 μM capsaicin solution. The IBIs showed significant decreases to -25.8 ± 6.9%, -25.9 ± 5.3, -18.3 ± 3.7, and -12.0 ± 1.6 at 30 min following 1 μM capsaicin stimulation at SLN stimulus conditions at 5 Hz of 1.2 times threshold, 10 Hz of 40 μA, 5 Hz of 60 μA, and 10 Hz of 60 μA, respectively. Continuous capsaicin stimulation of 0.1 μM solution did not show significant sustained effects. CONCLUSION Pharmacological stimulation of capsaicin could provide time-dependent effects on the likelihood of swallowing, particularly subserving sustained facilitation of swallowing reflex with appropriate concentration of capsaicin. LEVEL OF EVIDENCE NA Laryngoscope, 134:305-314, 2024.
Collapse
Affiliation(s)
- Mami Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryoto Munekawa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shota Kinoshita
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, and the Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Mathias Dutschmann
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Iizumi Y, Ihara Y, Koike J, Takahashi K. Effects of interferential current electrical stimulation (IFCS) on mastication and swallowing function in healthy young adults: A preliminary study. Clin Exp Dent Res 2023. [PMID: 37158140 DOI: 10.1002/cre2.748] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the effects of interferential current electrical stimulation (IFCS) on masticatory and swallowing function. MATERIALS AND METHODS Twenty healthy young adults were enrolled. The measurement items were spontaneous swallowing frequency (SSF), voluntary swallowing frequency (VSF), saliva secretion volume (SSV), glucose elution volume (GEV), and velocity of chew (VOC). All participants underwent both IFCS and sham stimulation (without stimulation, sham). Two sets of independent IFCS electrodes were placed on the bilateral neck. The precise location of the upper electrodes was just below the angle of the mandible, while the lower electrodes were placed at the anterior border of the sternocleidomastoid muscle. The intensity of IFCS was determined to be one level below the perceptual threshold that all participants felt discomfort. Statistical analysis was performed using a two-way repeated measures analysis of variance. RESULTS For IFCS, the results of each measurement before and during stimulation were SSF: 1.16 and 1.46, VSF: 8.05 and 8.45, SSV: 5.33 and 5.56 g, GEV: 171.75 and 208.60 mg/dL, and VOC: 87.20 and 95.20, respectively. SSF, GEV, and VOC during stimulation were significantly increased by IFCS (SSF, p = .009; GEV, p = .048; and VOC, p = .007). Following sham stimulation, the results were SSF: 1.24 and 1.34, VSF: 7.75 and 7.90, SSV: 5.65 and 6.04 g, GEV: 176.45 and 187.35 mg/dL, and VOC: 91.35 and 88.25, respectively. CONCLUSION While no significant differences were observed in the sham group, our findings suggest that IFCS of the superior laryngeal nerve may impact not only the swallowing function but also the masticatory function.
Collapse
Affiliation(s)
- Yoshiki Iizumi
- Department of Special Needs Dentistry, Division of Oral Functional Rehabilitation Medicine, School of Dentistry, Showa University, Tokyo, Japan
| | - Yoshiaki Ihara
- Department of Special Needs Dentistry, Division of Oral Functional Rehabilitation Medicine, School of Dentistry, Showa University, Tokyo, Japan
| | - Joji Koike
- Department of Special Needs Dentistry, Division of Oral Functional Rehabilitation Medicine, School of Dentistry, Showa University, Tokyo, Japan
| | - Koji Takahashi
- Department of Special Needs Dentistry, Division of Oral Functional Rehabilitation Medicine, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
4
|
Takemura A, Sugiyama Y, Yamamoto R, Kinoshita S, Kaneko M, Fuse S, Hashimoto K, Mukudai S, Umezaki T, Dutschmann M, Hirano S. Effect of pharmacological inhibition of the pontine respiratory group on swallowing interneurons in the dorsal medulla oblongata. Brain Res 2022; 1797:148101. [PMID: 36183794 DOI: 10.1016/j.brainres.2022.148101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To examine the role of neurons of the pontine respiratory group (PRG) overlapping with the Kölliker-Fuse nucleus in the regulation of swallowing, we compared the activity of swallowing motor activities and interneuron discharge in the dorsal swallowing group in the medulla before and after pharmacological inhibition of the PRG. METHODS In 23 in situ perfused brainstem preparation of rats, we recorded the activities of the vagus (VNA), hypoglossal (HNA), and phrenic nerves (PNA), and swallowing interneurons of the dorsal medulla during fictive swallowing elicited by electrical stimulation of the superior laryngeal nerve or oral water injection. Subsequently, respiratory- and swallow-related motor activities and single unit cell discharge were assessed before and after local microinjection of the GABA-receptor agonist muscimol into the area of PRG ipsilateral to the recording sites of swallowing interneurons. RESULTS After muscimol injection, the amplitude and duration of swallow-related VNA bursts decreased to 71.3 ± 2.84 and 68.1 ± 2.76 % during electrically induced swallowing and VNA interburst intervals during repetitive swallowing decreased. Similar effects were observed for swallowing-related HNA. The swallowing motor activity was similarly qualitatively altered during physiologically induced swallowing. All 23 neurons were changed in either discharge duration or frequency after PRG inhibition, however, the general discharge patterns in relation to the motor output remained unchanged. CONCLUSION Descending synaptic inputs from PRG provide control of the primary laryngeal sensory gate and synaptic activity of the PRG partially determine medullary cell and cranial motor nerve activities that govern the pharyngeal stage of swallowing.
Collapse
Affiliation(s)
- Akiyo Takemura
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Ryota Yamamoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; Department of Otolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-5852, Japan
| | - Shota Kinoshita
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Mami Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shinya Fuse
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Keiko Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, and the Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka 814-0001, Japan
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, Gate 11, Royal Parade, University of Melbourne, Victoria 3052, Australia
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
5
|
Yamamoto R, Sugiyama Y, Hashimoto K, Kinoshita S, Takemura A, Fuse S, Kaneko M, Mukudai S, Umezaki T, Dutschmann M, Nakagawa T, Hirano S. Firing characteristics of swallowing interneurons in the dorsal medulla during physiologically induced swallowing in perfused brainstem preparation in rats. Neurosci Res 2021; 177:64-77. [PMID: 34808248 DOI: 10.1016/j.neures.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022]
Abstract
Oropharyngeal swallowing is centrally mediated by a swallowing central pattern generator (Sw-CPG) in the medulla oblongata. The activity of the Sw-CPG depends on the sensory inputs determined by physical and chemical bolus properties. Here we investigate the sensory-motor integration during swallowing arising from different sensory sources. To do so we electrically stimulated the superior laryngeal nerve and we triggered swallowing with oral injections of distilled water or capsaicin solution and extracellularly recorded from swallowing interneurons in arterially perfused brainstem preparations of rats. We recorded the activities of 40 neurons, while monitoring the motor activities of the phrenic, vagal and hypoglossal nerves. Eighteen neurons responded to electrical stimulation of the ipsilateral superior laryngeal nerve, and 6 neurons were excited by oral fluid injection, while 16 non-respiratory neurons did not receive afferent inputs to either electrical or physiological stimuli. The cellular activities displayed by swallowing interneurons during electrical and physiological stimulation of pharyngeal and laryngeal afferent input reveal complex adaptations of the timing of firing patterns and frequencies. The modulation of neuronal activity is likely to contribute to the coordination of efficient bolus transfer during the pharyngeal stage of swallowing.
Collapse
Affiliation(s)
- Ryota Yamamoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan; Department of Otolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-5852, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Keiko Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shota Kinoshita
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Akiyo Takemura
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shinya Fuse
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Mami Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, and the Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, 814-0001, Japan
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, Gate 11, Royal Parade, University of Melbourne, VIC 3052, Australia
| | - Takashi Nakagawa
- Department of Otolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-5852, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
6
|
Kinoshita S, Sugiyama Y, Hashimoto K, Fuse S, Mukudai S, Umezaki T, Dutschmann M, Hirano S. Influences of GABAergic Inhibition in the Dorsal Medulla on Contralateral Swallowing Neurons in Rats. Laryngoscope 2020; 131:2187-2198. [PMID: 33146426 DOI: 10.1002/lary.29242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/24/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES We aimed to examine the effect of unilateral inhibition of the medullary dorsal swallowing networks on the activities of swallowing-related cranial motor nerves and swallowing interneurons. METHODS In 25 juvenile rats, we recorded bilateral vagal nerve activity (VNA) as well as unilateral phrenic and hypoglossal activity (HNA) during fictive swallowing elicited by electrical stimulation of the superior laryngeal nerve during control and following microinjection of the GABA agonist muscimol into the caudal dorsal medulla oblongata in a perfused brainstem preparation. In 20 animals, swallowing interneurons contralateral to the muscimol injection side were simultaneously recorded extracellularly and their firing rates were analyzed during swallowing. RESULTS Integrated VNA and HNA to the injection side decreased to 49.0 ± 16.6% and 32.3 ± 17.9%, respectively. However, the VNA on the uninjected side showed little change after muscimol injection. Following local inhibition, 11 out of 20 contralateral swallowing interneurons showed either increased or decreased of their respective firing discharge during evoked-swallowing, while no significant changes in activity were observed in the remaining nine neurons. CONCLUSION The neuronal networks underlying the swallowing pattern generation in the dorsal medulla mediate the ipsilateral motor outputs and modulate the contralateral activity of swallowing interneurons, suggesting that the bilateral coordination of the swallowing central pattern generator regulates the spatiotemporal organization of pharyngeal swallowing movements. LEVEL OF EVIDENCE NA Laryngoscope, 131:2187-2198, 2021.
Collapse
Affiliation(s)
- Shota Kinoshita
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinya Fuse
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, and the Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Umezaki T, Shiba K, Sugiyama Y. Intracellular activity of pharyngeal motoneurons during breathing, swallowing, and coughing. J Neurophysiol 2020; 124:750-762. [PMID: 32727254 DOI: 10.1152/jn.00093.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recorded membrane potentialp changes in 45 pharyngeal motoneurons (PMs) including 33 expiratory modulated and 12 nonrespiratory neurons during breathing, swallowing, and coughing in decerebrate paralyzed cats. Four types of membrane potential changes were observed during swallowing: 1) depolarization during swallowing (n = 27), 2) depolarization preceded by a brief (≤ 0.1 s) hyperpolarization (n = 4), 3) longer term (> 0.3 s) hyperpolarization followed by depolarization (n = 11), and 4) hyperpolarization during the latter period of swallowing (n = 3). During coughing, PMs showed two types of membrane potential changes (n = 10). Nine neurons exhibited a ramp-like depolarization during the expiratory phase of coughing with the potential peak at the end of expiratory phase. This depolarization was interrupted by a transient repolarization just before the potential peak. The membrane potential of the remaining neuron abruptly depolarized at the onset of the expiratory phase and then gradually decreased even after the end of the expiratory phase. Single-shock stimulation of the superior laryngeal nerve (SLN) induced inhibitory postsynaptic potentials in 19 of 21 PMs. Two motoneurons exhibited an SLN-induced excitatory postsynaptic potential. The present study revealed that PMs receive the central drive, consisting of a combination of excitation and inhibition, from the pattern generator circuitry of breathing, swallowing, and coughing, which changes the properties of their membrane potential to generate these motor behaviors of the pharynx. Our data will provide the basis of studies of pharyngeal activity and its control from the medullary neuronal circuitry responsible for the upper airway motor activity.NEW & NOTEWORTHY We have provided the first demonstration of the multifunctional activity of the pharyngeal motoneurons at the level of membrane potential during respiration, swallowing, and coughing.
Collapse
Affiliation(s)
- Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, and the Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Keisuke Shiba
- Department of Otolaryngology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
8
|
Fuse S, Sugiyama Y, Hashimoto K, Umezaki T, Oku Y, Dutschmann M, Hirano S. Laryngeal afferent modulation of swallowing interneurons in the dorsal medulla in perfused rats. Laryngoscope 2019; 130:1885-1893. [PMID: 31498463 DOI: 10.1002/lary.28284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate the influence of laryngeal afferent inputs on brainstem circuits that mediate and transmit swallowing activity to the orofacial musculature. METHODS Experiments were performed on 19 arterially perfused juvenile rats. The activities of swallowing interneurons in relation to their respective motor outputs in the hypoglossal and vagus nerves were assessed during fictive swallowing with or without concurrent laryngeal sensory stimulation at intensities of 20, 40, and 60 μA. RESULTS The hypoglossal nerve activity was gradually enhanced with increasing intensity of the sensory stimulation, while the vagus nerve activity was not altered. The activities of various interneurons were modulated by the laryngeal stimulation, but more than 50% of the recorded neurons were inhibited by the stimulation. Some interneurons demonstrated no obvious change in their discharge rates with laryngeal sensory stimulation during fictive swallowing. CONCLUSION Laryngeal afferent inputs partially modulated the swallowing motor activity via enhanced or suppressed activities of the swallowing interneurons, while the essential motor pattern underlying the pharyngeal stage of swallowing remained basically unchanged. Thus, the output patterns of the complex sequential movements of swallowing could be basically predetermined and further adjusted according to sensory information related to the properties of the ingested food by a swallowing central pattern generator. LEVEL OF EVIDENCE NA Laryngoscope, 130: 1885-1893, 2020.
Collapse
Affiliation(s)
- Shinya Fuse
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Yoshitaka Oku
- Department of Physiology, Hyogo College of Medicine, Hyogo, Japan
| | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
9
|
Umezaki T, Sugiyama Y, Fuse S, Mukudai S, Hirano S. Supportive effect of interferential current stimulation on susceptibility of swallowing in guinea pigs. Exp Brain Res 2018; 236:2661-2676. [PMID: 29974148 DOI: 10.1007/s00221-018-5325-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Sensory-motor control of the pharyngeal swallow requires sensory afferent inputs from the pharynx and larynx evoked by introducing bolus into the pharynx. Patients with reduced sensitivity of the pharynx and larynx are likely to have a swallowing impairment, such as pre-swallow aspiration due to delayed swallow triggering. Interferential current stimulation applied to the neck is thought to improve the swallowing function of dysphagic patients, although the mechanism underlying the facilitatory effect of such stimulation remains unknown. In the present study, we examined the changes in the elicitability of swallowing due to the stimulation and the responses of the swallowing-related neurons in the nucleus tractus solitarius and in the area adjacent to the stimulation in decerebrate and paralyzed guinea pigs. The swallowing delay time was shortened by the stimulation, whereas the facilitatory effect of eliciting swallowing was attenuated by kainic acid injection into the nucleus tractus solitarius. Approximately half of the swallowing-related neurons responded to the stimulation. These data suggest that the interferential current stimulation applied to the neck could enhance the sensory afferent pathway of the pharynx and larynx, subserving excitatory inputs to the neurons of the swallowing pattern generator, thereby facilitating the swallowing reflex.
Collapse
Affiliation(s)
- Toshiro Umezaki
- Department of Speech and Hearing Sciences, International University of Health and Welfare, and the Voice and Swallowing Center, Fukuoka Sanno Hospital, Fukuoka, 814-0001, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, Kyoto, 602-8566, Japan.
| | - Shinya Fuse
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, Kyoto, 602-8566, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, Kyoto, 602-8566, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto, Kyoto, 602-8566, Japan
| |
Collapse
|
10
|
Fogarty MJ, Mantilla CB, Sieck GC. Breathing: Motor Control of Diaphragm Muscle. Physiology (Bethesda) 2018; 33:113-126. [PMID: 29412056 PMCID: PMC5899234 DOI: 10.1152/physiol.00002.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Breathing occurs without thought but is controlled by a complex neural network with a final output of phrenic motor neurons activating diaphragm muscle fibers (i.e., motor units). This review considers diaphragm motor unit organization and how they are controlled during breathing as well as during expulsive behaviors.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
11
|
Sugiyama Y, Shiba K, Mukudai S, Umezaki T, Sakaguchi H, Hisa Y. Role of the retrotrapezoid nucleus/parafacial respiratory group in coughing and swallowing in guinea pigs. J Neurophysiol 2015. [PMID: 26203106 DOI: 10.1152/jn.00332.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The retrotrapezoid/parafacial respiratory group (RTN/pFRG) located ventral to the facial nucleus plays a key role in regulating breathing, especially enhanced expiratory activity during hypercapnic conditions. To clarify the roles of the RTN/pFRG region in evoking coughing, during which reflexive enhanced expiration is produced, and in swallowing, during which the expiratory activity is consistently halted, we recorded extracellular activity from RTN/pFRG neurons during these fictive behaviors in decerebrate, paralyzed, and artificially ventilated guinea pigs. The activity of the majority of recorded respiratory neurons was changed in synchrony with coughing and swallowing. To further evaluate the contribution of RTN/pFRG neurons to these nonrespiratory behaviors, the motor output patterns during breathing, coughing, and swallowing were compared before and after brain stem transection at the caudal margin of RTN/pFRG region. In addition, the effects of transection at its rostral margin were also investigated to evaluate pontine contribution to these behaviors. During respiration, transection at the rostral margin attenuated the postinspiratory activity of the recurrent laryngeal nerve. Meanwhile, the late expiratory activity of the abdominal nerve was abolished after caudal transection. The caudal transection also decreased the amplitude of the coughing-related abdominal nerve discharge but did not abolish the activity. Swallowing could be elicited even after the caudal end transection. These findings raise the prospect that the RTN/pFRG contributes to expiratory regulation during normal respiration, although this region is not an essential element of the neuronal networks involved in coughing and swallowing.
Collapse
Affiliation(s)
- Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan;
| | - Keisuke Shiba
- Hikifune Otolaryngology Clinic, Sumida, Tokyo, Japan
| | - Shigeyuki Mukudai
- Department of Otolaryngology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan; and
| | - Toshiro Umezaki
- Department of Otolaryngology, Graduate School of Medicine, Kyushu University, Fukuoka, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
12
|
Balaban CD, Ogburn SW, Warshafsky SG, Ahmed A, Yates BJ. Identification of neural networks that contribute to motion sickness through principal components analysis of fos labeling induced by galvanic vestibular stimulation. PLoS One 2014; 9:e86730. [PMID: 24466215 PMCID: PMC3900607 DOI: 10.1371/journal.pone.0086730] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/15/2013] [Indexed: 02/01/2023] Open
Abstract
Motion sickness is a complex condition that includes both overt signs (e.g., vomiting) and more covert symptoms (e.g., anxiety and foreboding). The neural pathways that mediate these signs and symptoms are yet to identified. This study mapped the distribution of c-fos protein (Fos)-like immunoreactivity elicited during a galvanic vestibular stimulation paradigm that is known to induce motion sickness in felines. A principal components analysis was used to identify networks of neurons activated during this stimulus paradigm from functional correlations between Fos labeling in different nuclei. This analysis identified five principal components (neural networks) that accounted for greater than 95% of the variance in Fos labeling. Two of the components were correlated with the severity of motion sickness symptoms, and likely participated in generating the overt signs of the condition. One of these networks included neurons in locus coeruleus, medial, inferior and lateral vestibular nuclei, lateral nucleus tractus solitarius, medial parabrachial nucleus and periaqueductal gray. The second included neurons in the superior vestibular nucleus, precerebellar nuclei, periaqueductal gray, and parabrachial nuclei, with weaker associations of raphe nuclei. Three additional components (networks) were also identified that were not correlated with the severity of motion sickness symptoms. These networks likely mediated the covert aspects of motion sickness, such as affective components. The identification of five statistically independent component networks associated with the development of motion sickness provides an opportunity to consider, in network activation dimensions, the complex progression of signs and symptoms that are precipitated in provocative environments. Similar methodology can be used to parse the neural networks that mediate other complex responses to environmental stimuli.
Collapse
Affiliation(s)
- Carey D. Balaban
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Communication Sciences and Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah W. Ogburn
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Susan G. Warshafsky
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Abdul Ahmed
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Bill J. Yates
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Batchelor DJ, Devauchelle P, Elliott J, Elwood CM, Freiche V, Gualtieri M, Hall EJ, Hertog ED, Neiger R, Peeters D, Roura X, Savary-Bataille K, German AJ. Mechanisms, causes, investigation and management of vomiting disorders in cats: a literature review. J Feline Med Surg 2013; 15:237-65. [PMID: 23403690 PMCID: PMC10816764 DOI: 10.1177/1098612x12473466] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vomiting is a common presenting complaint in feline practice. This article differs from previous reviews in that it is an evidence-based review of the mechanisms, causes, investigation and management of vomiting in the domestic cat. Published evidence was reviewed, and then used to make recommendations for clinical assessment, diagnosis, antiemetic drug treatment, dietary management and monitoring of cats presenting with vomiting. The strength of the evidence on which recommendations are made (and areas where evidence is lacking for cats) has been highlighted throughout.
Collapse
Affiliation(s)
| | | | - Jonathan Elliott
- Department of Veterinary Basic Sciences, Royal Veterinary College, London, UK
| | | | | | - Massimo Gualtieri
- Department of Veterinary Clinical Science, University of Milan, Milan, Italy
| | - Edward J Hall
- School of Veterinary Sciences, University of Bristol, Langford, UK
| | | | - Reto Neiger
- Veterinärmedizinische Fakultät, Universität Giessen, Giessen, Germany
| | | | - Xavier Roura
- Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
14
|
Sugiyama Y, Shiba K, Nakazawa K, Suzuki T, Umezaki T, Ezure K, Abo N, Yoshihara T, Hisa Y. Axonal projections of medullary swallowing neurons in guinea pigs. J Comp Neurol 2011; 519:2193-211. [DOI: 10.1002/cne.22624] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Suzuki T, Nakazawa K, Shiba K. Swallow-related inhibition in laryngeal motoneurons. Neurosci Res 2010; 67:327-33. [DOI: 10.1016/j.neures.2010.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/13/2010] [Accepted: 04/21/2010] [Indexed: 11/26/2022]
|
16
|
Ono K, Shen TY, Chun HH, Solomon IC. Upper airway and abdominal motor output during sneezing: is the in vivo decererate rat an adequate model? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 669:173-6. [PMID: 20217343 DOI: 10.1007/978-1-4419-5692-7_34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While numerous studies have focused on identifying and characterizing the neural mechanisms mediating upper airway defense reflexes in the anesthetized or decerebrate adult cat, little is known about these behaviors in in vivo rodent models. The current study was undertaken to investigate whether the in vivo decelerate adult rat might serve as an acceptable model for studying these behaviors. To begin to address this possibility, we examined multiple respiratory motor activities in response to mechanical stimulation of the anterior nasal cavity (sufficient to elicit fictive sneezing) in in vivo decerebrate adult rats. We found that the neural activities observed during nasal stimulation were consistent with those previously reported during fictive sneezing in the adult cat model. We suggest that the in vivo decerebrate rat is an acceptable model for studying the sneezing reflex.
Collapse
Affiliation(s)
- Kenichi Ono
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA.
| | | | | | | |
Collapse
|
17
|
Shiba K, Isono S, Nakazawa K. Paradoxical vocal cord motion: A review focused on multiple system atrophy. Auris Nasus Larynx 2007; 34:443-52. [PMID: 17482397 DOI: 10.1016/j.anl.2007.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 02/10/2007] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Paradoxical vocal cord motion (PVCM) is a well recognized respiratory condition in which active adduction of the vocal cords during inspiration causes functional airway obstruction. It is considered that laryngeal reflex acceleration underlies the generation of nonorganic PVCM. In various situations producing PVCM, multiple system atrophy (MSA) is a representative neurological disease causing nocturnal laryngeal stridor attributed to PVCM. The purpose of this review is to identify the underlying mechanisms associated with nonorganic and MSA-related PVCM. The following issues are addressed in this review: (1) the pathophysiology of nonorganic and MSA-related PVCM, (2) the relationships between PVCM and airway reflexes, and (3) the treatment for MSA-related PVCM. METHODS Review. RESULTS AND CONCLUSIONS An abnormality of the laryngeal output-feedback control underlies nonorganic PVCM, which is usually triggered by an excessive response to external and internal airway stimuli. Similarly, several clinical and experimental evidence suggest that MSA-related PVCM is attributed to the airway reflex as well as to paradoxical central outputs resulting from the MSA-induced damage to the pontomedullary respiratory center. Application of continuous positive airway pressure (CPAP), which suppresses the reflexive inspiratory activation of adductors, is recommended as the treatment for MSA-related PVCM.
Collapse
Affiliation(s)
- Keisuke Shiba
- Department of Otolaryngology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba 260-8670, Japan.
| | | | | |
Collapse
|
18
|
Shiba K, Nakazawa K, Ono K, Umezaki T. Multifunctional laryngeal premotor neurons: their activities during breathing, coughing, sneezing, and swallowing. J Neurosci 2007; 27:5156-62. [PMID: 17494701 PMCID: PMC6672375 DOI: 10.1523/jneurosci.0001-07.2007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To examine whether motor commands of two or more distinct laryngeal motor patterns converge onto a common premotor network, we conducted dual recordings from the laryngeal adductor motoneuron and its premotor neuron within the brainstem respiratory circuitry during fictive breathing, coughing, sneezing, and swallowing in decerebrate paralyzed cats. Expiratory neurons with an augmenting firing pattern (EAUG), whose action potentials evoked monosynaptic IPSPs in the adductor motoneurons, sharply fired during the expulsive phases of fictive coughing and sneezing, during which the adductor motoneurons transiently repolarized. In contrast, these premotor neurons were silent during the swallow-related hyperpolarization in adductor motoneurons. These results show that one class of medullary respiratory neuron, EAUG, is multifunctional and shared among the central pattern generators (CPGs) for breathing, coughing, and sneezing. In addition, although the CPGs underlying these three behaviors and the swallowing CPG do overlap, EAUG neurons are not part of the swallowing CPG and, in contrast to the other three behaviors, are not a source of inhibitory input to adductor motoneurons during swallowing.
Collapse
Affiliation(s)
- Keisuke Shiba
- Departments of Otolaryngology and
- Department of Otolaryngology, Chiba Medical Center, Chiba City, Chiba 260-8606, Japan, and
| | - Ken Nakazawa
- Integrative Neurophysiology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan
| | - Kenichi Ono
- Departments of Otolaryngology and
- Integrative Neurophysiology, Graduate School of Medicine, Chiba University, Chiba City, Chiba 260-8670, Japan
| | - Toshiro Umezaki
- Department of Otolaryngology, Graduate School of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
19
|
Gestreau C, Dutschmann M, Obled S, Bianchi AL. Activation of XII motoneurons and premotor neurons during various oropharyngeal behaviors. Respir Physiol Neurobiol 2005; 147:159-76. [PMID: 15919245 DOI: 10.1016/j.resp.2005.03.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 03/11/2005] [Accepted: 03/13/2005] [Indexed: 12/11/2022]
Abstract
Neural control of tongue muscles plays a crucial role in a broad range of oropharyngeal behaviors. Tongue movements must be rapidly and accurately adjusted in response to the demands of multiple complex motor tasks including licking/mastication, swallowing, vocalization, breathing and protective reflexes such as coughing. Yet, central mechanisms responsible for motor and premotor control of hypoglossal (XII) activity during these behaviors are still largely unknown. The aim of this article is to review the functional organization of the XII motor nucleus with particular emphasis on breathing, coughing and swallowing. Anatomical localization of XII premotor neurons is also considered. We discuss results concerned with multifunctional activity of medullary and pontine populations of XII premotor neurons, representing a single network that can be reconfigured to produce different oromotor response patterns. In this context, we introduce new data on swallowing-related activity of XII (and trigeminal) motoneurons, and finally suggest a prominent role for the pontine Kölliker-Fuse nucleus in the control of inspiratory-related activity of XII motoneurons supplying tongue protrusor and retrusor muscles.
Collapse
Affiliation(s)
- Christian Gestreau
- Laboratoire de Physiologie Neurovégétative, UMR CNRS 6153 INRA 1147, Université Paul Cézanne Aix-Marseille III, Av. Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
20
|
Numasawa T, Shiba K, Nakazawa K, Umezaki T. Membrane potential changes in vocal cord tensor motoneurons during breathing, vocalization, coughing and swallowing in decerebrate cats. Neurosci Res 2004; 49:315-24. [PMID: 15196780 DOI: 10.1016/j.neures.2004.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Accepted: 03/26/2004] [Indexed: 11/25/2022]
Abstract
We studied the patterns of membrane potential changes in vocal cord tensor motoneurons, i.e. cricothyroid muscle motoneurons (CTMs), during fictive breathing, vocalization, coughing, and swallowing in decerebrate paralyzed cats to determine the nature of central drives to CTMs during these behaviors. CTMs were identified by antidromic activation from the superior laryngeal nerve. During breathing, CTMs always depolarized during the inspiratory phase, and sometimes depolarized during the expiratory phase as well. During vocalization, CTMs strongly depolarized. During coughing, CTMs exhibited depolarizations during both inspiratory and expiratory phases, but it was interrupted by a transient repolarization between the last part of the inspiratory phase and the first part of the abdominal burst during which chloride-dependent inhibitory postsynaptic potentials were revealed. During swallowing, most CTMs hyperpolarized, and this hyperpolarization was sometimes followed by a weak depolarization. We conclude that the main role of the cricothyroid muscle is vocalization but the functional roles in coughing and swallowing are minor, and that the CTM activity during resting breathing and vocalization are primarily controlled by excitatory inputs, while during coughing and swallowing, inhibitory inputs play roles in shaping membrane potential trajectories.
Collapse
Affiliation(s)
- Tamaki Numasawa
- Department of Otolaryngology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | | | | | | |
Collapse
|
21
|
Saito Y, Ezure K, Tanaka I. Intracellular activity of superior laryngeal nerve motoneurons during fictive swallowing in decerebrate rats. Brain Res 2002; 956:262-7. [PMID: 12445694 DOI: 10.1016/s0006-8993(02)03549-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We examined the swallowing-related intracellular activity of motoneurons of the superior laryngeal nerve (SLN) in decerebrate, paralyzed and artificially-ventilated rats, to elucidate the neuronal mechanism of the pharyngo-esophageal and laryngo-esophageal coordination during swallowing. The majority of the SLN motoneurons exhibited respiratory rhythm (n=16; 13 inspiratory, one expiratory and two non-respiratory neurons). During fictive swallowing evoked by electrical stimulation of the SLN, all these motoneurons showed a hyperpolarization-depolarization sequence in their membrane potentials. The hyperpolarization, which was shown to consist of inhibitory postsynaptic potentials, started at the onset of the hypoglossal swallowing burst, lasted during the burst, and was followed by a depolarization at the end of the burst. This hyperpolarization-depolarization pattern implies that the SLN motoneurons may be involved in the 'inhibitory chain' within the swallowing pattern generator, which may be cardinal in the sequential activation of different populations of motoneurons innervating the swallowing-related muscles.
Collapse
Affiliation(s)
- Yoshiaki Saito
- Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashi-dai, Fuchu, Tokyo 183-8526, Japan
| | | | | |
Collapse
|
22
|
Lang IM, Dana N, Medda BK, Shaker R. Mechanisms of airway protection during retching, vomiting, and swallowing. Am J Physiol Gastrointest Liver Physiol 2002; 283:G529-36. [PMID: 12181164 DOI: 10.1152/ajpgi.00062.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the mechanisms of airway protection and bolus transport during retching and vomiting by recording responses of the pharyngeal, laryngeal, and hyoid muscles and comparing them with responses during swallowing and responses of the gastrointestinal tract. Five dogs were chronically instrumented with electrodes on the striated muscles and strain gauges on smooth muscles. Retching and vomiting were stimulated by apomorphine (5-10 ug/kg iv). During retching, the hyoid and thyroid descending and laryngeal abductor muscles were activated; between retches, the hyoid, thyroid, and pharyngeal elevating, and laryngeal adductor muscles were activated. Vomiting always occurred during the ascending phase of retching and consisted of three sequential phases of hyoid and pharyngeal muscle activation culminating in simultaneous activation of all recorded elevating and descending laryngeal, hyoid, and pharyngeal muscles. Retrograde activation of esophagus and pharyngeal muscles occurred during the later phases, and laryngeal adductor was maximally activated in all phases of the vomit. During swallowing, the laryngeal adductor activation was followed immediately by brief activation of the laryngeal abductor. We concluded that retching functions to mix gastric contents with refluxed intestinal secretions and to impart an orad momentum to the bolus before vomiting. During retches, the airway is protected by glottal closure, and between retches, it is protected by ascent of the larynx and closure of the upper esophageal sphincter. The airway is protected by maximum glottal closure during vomiting. During swallowing, the airway is protected by laryngeal elevation and glottal closure followed by brief opening of the glottis, which may release subglottal pressure expelling material from the laryngeal vestibule.
Collapse
Affiliation(s)
- Ivan M Lang
- MCW Dysphagia Institute, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | |
Collapse
|
23
|
Roda F, Gestreau C, Bianchi AL. Discharge patterns of hypoglossal motoneurons during fictive breathing, coughing, and swallowing. J Neurophysiol 2002; 87:1703-11. [PMID: 11929892 DOI: 10.1152/jn.00347.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We performed a series of experiments to study the intracellular activity of 58 hypoglossal motoneurons (HMs) in decerebrate, paralyzed, and ventilated cats. Changes in membrane potentials (MP) and discharge activities were evaluated during fictive breathing (FB), swallowing (FS), and coughing (FC). FS and FC were elicited by electrical stimulation of the superior laryngeal nerves. FB, FS, and FC all exhibited characteristic discharge patterns of the phrenic, abdominal, pharyngeal branch of the vagus, and hypoglossal nerves. Thirty-nine HMs displayed respiratory modulation, and 19 were nonrespiratory modulated. Nine HMs did not exhibit MP changes during FB, FS, and FC. During FS, 49 HMs exhibited MP changes consisting of depolarization, hyperpolarization or hyperpolarization-depolarization. HMs involved in FS were either respiratory modulated (n = 38) or not (n = 11). Only 20 HMs displayed MP changes and/or discharge activity during FC. All but two HMs fired during the expiratory phase of FC or at the end of this reflex. All HMs involved in FC (n = 20) were also modulated during both FB and FS. Our results suggest that the XII nucleus is functionally divided into common and distinct subsets of HMs based on their spontaneous activities and responses observed during FS and FC. The changes in MP and discharge frequencies observed during the three behaviors also suggest that HMs are driven by specific premotor neurons during FS, whereas a common premotor pathway is involved during FB and FC.
Collapse
Affiliation(s)
- Fabrice Roda
- Laboratoire de Neurobiologie des Fonctions Végétatives, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Faculté des Sciences et Techniques Saint Jérôme, 13397 Marseille Cedex 20, France
| | | | | |
Collapse
|
24
|
Sawczuk A, Mosier KM. Neural control of tongue movement with respect to respiration and swallowing. ACTA ACUST UNITED AC 2001; 12:18-37. [PMID: 11349959 DOI: 10.1177/10454411010120010101] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The tongue must move with remarkable speed and precision between multiple orofacial motor behaviors that are executed virtually simultaneously. Our present understanding of these highly integrated relationships has been limited by their complexity. Recent research indicates that the tongue s contribution to complex orofacial movements is much greater than previously thought. The purpose of this paper is to review the neural control of tongue movement and relate it to complex orofacial behaviors. Particular attention will be given to the interaction of tongue movement with respiration and swallowing, because the morbidity and mortality associated with these relationships make this a primary focus of many current investigations. This review will begin with a discussion of peripheral tongue muscle and nerve physiology that will include new data on tongue contractile properties. Other relevant peripheral oral cavity and oropharyngeal neurophysiology will also be discussed. Much of the review will focus on brainstem control of tongue movement and modulation by neurons that control swallowing and respiration, because it is in the brainstem that orofacial motor behaviors sort themselves out from their common peripheral structures. There is abundant evidence indicating that the neural control of protrusive tongue movement by motoneurons in the ventral hypoglossal nucleus is modulated by respiratory neurons that control inspiratory drive. Yet, little is known of hypoglossal motoneuron modulation by neurons controlling swallowing or other complex movements. There is evidence, however, suggesting that functional segregation of respiration and swallowing within the brainstem is reflected in somatotopy within the hypoglossal nucleus. Also, subtle changes in the neural control of tongue movement may signal the transition between respiration and swallowing. The final section of this review will focus on the cortical integration of tongue movement with complex orofacial movements. This section will conclude with a discussion of the functional and clinical significance of cortical control with respect to recent advances in our understanding of the peripheral and brainstem physiology of tongue movement.
Collapse
Affiliation(s)
- A Sawczuk
- Department of Oral Pathology, University of Medicine and Dentistry of New Jersey, Newark 07103-2400, USA
| | | |
Collapse
|
25
|
Abstract
Swallowing movements are produced by a central pattern generator located in the medulla oblongata. It has been established on the basis of microelectrode recordings that the swallowing network includes two main groups of neurons. One group is located within the dorsal medulla and contains the generator neurons involved in triggering, shaping, and timing the sequential or rhythmic swallowing pattern. Interestingly, these generator neurons are situated within a primary sensory relay, that is, the nucleus tractus solitarii. The second group is located in the ventrolateral medulla and contains switching neurons, which distribute the swallowing drive to the various pools of motoneurons involved in swallowing. This review focuses on the brain stem mechanisms underlying the generation of sequential and rhythmic swallowing movements. It analyzes the neuronal circuitry, the cellular properties of neurons, and the neurotransmitters possibly involved, as well as the peripheral and central inputs which shape the output of the network appropriately so that the swallowing movements correspond to the bolus to be swallowed. The mechanisms possibly involved in pattern generation and the possible flexibility of the swallowing central pattern generator are discussed.
Collapse
Affiliation(s)
- A Jean
- Laboratoire de Neurobiologie des Fonctions Végétatives, Département de Physiologie et Neurophysiologie, Faculté des Sciences et Techniques Saint Jérôme, Marseille, France.
| |
Collapse
|
26
|
Nakazawa K, Granata AR, Cohen MI. Synchronized fast rhythms in inspiratory and expiratory nerve discharges during fictive vocalization. J Neurophysiol 2000; 83:1415-25. [PMID: 10712468 DOI: 10.1152/jn.2000.83.3.1415] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In precollicular decerebrate and paralyzed cats, respiratory nerve activities were recorded during fictive vocalization (FV), which consisted of a distinctive pattern of 1) decreased inspiratory (I) and expiratory (E) phase durations, 2) marked increase of phrenic activity and moderate changes of recurrent laryngeal (RL) and superior laryngeal (SL) I activities, and 3) massive recruitment of laryngeal and abdominal (ABD; lumbar) E activities. FV was produced by electrical stimulation (100 Hz) in the midbrain periaqueductal gray (PAG) or its putative descending pathways in the ventrolateral pons (VLP). Spectral and correlation analyses revealed three types of effect on fast rhythms during FV. 1) I activities: the coherent high-frequency oscillations in I (I-HFO, 60-90 Hz) present in phrenic and RL discharges during the control state did not change qualitatively, but there was an increase of power and a moderate increase (4-10 Hz) of frequency. Sometimes a distinct relatively weak stimulus-locked rhythm appeared. 2) RL and SL activities during E: in recruited discharges, a prominent intrinsic rhythm (coherent E-HFOs at 50-70 Hz) appeared; sometimes a distinct relatively strong stimulus-locked rhythm appeared. 3) ABD activities during E: this recruited activity had no intrinsic rhythm but had an evoked oscillation locked to the stimulus frequency. Thus FV is characterized by 1) appearance of prominent coherent intrinsic rhythms in RL and SL E discharges, which presumably arise as a result of excitation and increased interactions in laryngeal networks; 2) modification of intrinsic rhythmic interactions in inspiratory networks; and 3) evoked rhythms in augmenting-E neuron networks without occurrence of intrinsic rhythms.
Collapse
Affiliation(s)
- K Nakazawa
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
27
|
Abstract
We studied the patterns of membrane potential changes in laryngeal motoneurons (LMs) during vocalization, coughing, swallowing, sneezing, and the aspiration reflex in decerebrate paralyzed cats. LMs, identified by antidromic activation from the recurrent laryngeal nerve, were expiratory (ELMs) or inspiratory (ILMs) cells that depolarized during their respective phases in eupnea. During vocalization, most ELMs depolarized and most ILMs hyperpolarized. Some ILMs depolarized slightly during vocalization. During coughing, ELMs depolarized abruptly at the transition from the inspiratory to the expiratory phase. In one-third of ELMs, this depolarization persisted throughout the abdominal burst. In the remainder ("type A"), it was interrupted by a transient repolarization. ILMs exhibited a membrane potential trajectory opposite to that of type A ELMs during coughing. During swallowing, the membrane potential of ELMs decreased transiently at the onset of the hypoglossal burst and then depolarized strongly during the burst. ILMs hyperpolarized sharply at the onset of the burst and depolarized as hypoglossal activity ceased. During sneezing, ELMs and ILMs exhibited membrane potential changes similar to those of type A ELMs and ILMs during coughing. During the aspiration reflex, ELMs and ILMs exhibited bell-shaped hyperpolarization and depolarization trajectories, respectively. We conclude that central drives to LMs, consisting of complex combinations of excitation and inhibition, vary during vocalization and upper airway defensive reflexes. This study provides data for analysis of the neuronal networks that produce these various behaviors and analysis of network reorganization caused by changes in dynamic connections between the respiratory and nonrespiratory neuronal networks.
Collapse
|
28
|
Nakazawa K, Umezaki T, Zheng Y, Miller AD. Behaviors of bulbar respiratory interneurons during fictive swallowing and vomiting. Otolaryngol Head Neck Surg 1999; 120:412-8. [PMID: 10064648 DOI: 10.1016/s0194-5998(99)70285-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Behaviors of the same individual medullary respiratory interneurons were examined during both swallowing and vomiting. In 8 decerebrated and paralyzed cats, 18 neurons having either augmenting expiratory (E-AUG), decrementing expiratory (E-DEC), decrementing inspiratory (I-DEC), or constant inspiratory (I-CON) firing patterns were recorded near the most rostral part of the nucleus ambiguus. All neurons exhibited elementary reflexes to single-shock stimulation of the superior laryngeal nerve. During fictive swallowing elicited by superior laryngeal nerve stimulation, all neurons were basically inactive. During fictive vomiting induced by vagal stimulation and/or emetic drugs, all E-AUG and E-DEC neurons tested either were silent or fired weakly between successive retches, whereas I-DEC and I-CON neurons tested exhibited burst activity during the retching and early-expulsion phases. These results indicate that these bulbar respiratory neurons, which may be involved in respiratory rhythmogenesis, are multifunctional neurons that could also be involved in vomiting but not likely in swallowing.
Collapse
Affiliation(s)
- K Nakazawa
- Rockefeller University, New York, New York, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Motion sickness can occur when sensory inputs regarding body position in space are contradictory or are different from those predicted from experience. Signals from the vestibular system are essential for triggering motion sickness. The evolutionary significance of this malady is unclear, although it may simply represent the aberrant activation of vestibuloautonomic pathways that typically subserve homeostasis. The neural pathways that produce nausea and vomiting during motion sickness are presumed to be similar to those that generate illness after ingestion of toxins. The neural substrate of nausea is unknown but may include neurons in the hypothalamus and inferior frontal gyrus of the cerebral cortex. The principal motor act of vomiting is accomplished through the simultaneous contractions of inspiratory and expiratory respiratory muscles and is mediated by neurons in the lateral medullary reticular formation and perhaps by cells near the medullary midline. Cocontraction of the diaphragm and abdominal muscles increases pressure on the stomach, which causes gastric contents to be ejected through the mouth. Effective drugs for combating motion sickness include antihistamines, antimuscarinics, 5-HT1A (serotonergic) receptor agonists and neurokinin type 1 receptor antagonists. However, considerable information concerning the physiological basis and pharmacology of motion sickness is unknown; future research using animal models will be required to understand this condition.
Collapse
Affiliation(s)
- B J Yates
- Department of Otolaryngology, University of Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
30
|
Satoh I, Shiba K, Kobayashi N, Nakajima Y, Konno A. Upper airway motor outputs during sneezing and coughing in decerebrate cats. Neurosci Res 1998; 32:131-5. [PMID: 9858020 DOI: 10.1016/s0168-0102(98)00075-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purposes of the present study were to determine which upper airway movements cause a difference in the expiratory airflow pathway between sneezing and coughing, and to develop a new animal model for studying the neural mechanism of sneezing in paralyzed animals, i.e. fictive sneezing. We compared the upper airway motor patterns of sneezing and coughing, induced by electrical stimulation of the anterior ethmoidal nerve (AEN) and superior laryngeal nerve, respectively, in non-paralyzed decerebrate cats. Respiratory and laryngeal motor patterns that consisted of an inspiration phase, compression phase, and expulsion phase were observed for both sneezing and coughing. The main difference was observed in the activity of the elevator of the back of the tongue, styloglossus (SG) muscle, which was explosively activated during the expulsion phase of sneezing, whereas it was virtually silent during coughing. The nasopharyngeal closers were weakly to moderately activated during sneezing. Their activities during coughing were weaker than during sneezing. Furthermore, the AEN-induced activities of the phrenic and abdominal nerves and the lateral branch of the hypoglossal nerve (lat-XII), which innervates the SG muscle, in paralyzed cats were consistent with the activities of the diaphragm, abdominal, and SG muscles during actual sneezing in non-paralyzed cats. Thus, we conclude that tongue movement is the main difference in the motor outputs between sneezing and coughing, which probably causes greater nasal airflow in sneezing, and that it is necessary to record the activity of the lat-XII to identify fictive sneezing in paralyzed cats.
Collapse
Affiliation(s)
- I Satoh
- Department of Otolaryngology, School of Medicine, Chiba University, Japan.
| | | | | | | | | |
Collapse
|