1
|
Chakraborty S, Haast RAM, Onuska KM, Kanel P, Prado MAM, Prado VF, Khan AR, Schmitz TW. Multimodal gradients of basal forebrain connectivity across the neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.541324. [PMID: 37292595 PMCID: PMC10245994 DOI: 10.1101/2023.05.26.541324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cholinergic innervation of the cortex originates almost entirely from populations of neurons in the basal forebrain (BF). Structurally, the ascending BF cholinergic projections are highly branched, with individual cells targeting multiple different cortical regions. However, it is not known whether the structural organization of basal forebrain projections reflects their functional integration with the cortex. We therefore used high-resolution 7T diffusion and resting state functional MRI in humans to examine multimodal gradients of BF cholinergic connectivity with the cortex. Moving from anteromedial to posterolateral BF, we observed reduced tethering between structural and functional connectivity gradients, with the most pronounced dissimilarity localized in the nucleus basalis of Meynert (NbM). The cortical expression of this structure-function gradient revealed progressively weaker tethering moving from unimodal to transmodal cortex, with the lowest tethering in midcingulo-insular cortex. We used human [ 18 F] fluoroethoxy-benzovesamicol (FEOBV) PET to demonstrate that cortical areas with higher concentrations of cholinergic innervation tend to exhibit lower tethering between BF structural and functional connectivity, suggesting a pattern of increasingly diffuse axonal arborization. Anterograde viral tracing of cholinergic projections and [ 18 F] FEOBV PET in mice confirmed a gradient of axonal arborization across individual BF cholinergic neurons. Like humans, cholinergic neurons with the highest arborization project to cingulo-insular areas of the mouse isocortex. Altogether, our findings reveal that BF cholinergic neurons vary in their branch complexity, with certain subpopulations exhibiting greater modularity and others greater diffusivity in the functional integration of their cortical targets.
Collapse
|
2
|
Toscano-Márquez B, Oboti L, Harvey-Girard E, Maler L, Krahe R. Distribution of the cholinergic nuclei in the brain of the weakly electric fish, Apteronotus leptorhynchus: Implications for sensory processing. J Comp Neurol 2020; 529:1810-1829. [PMID: 33089503 DOI: 10.1002/cne.25058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
Acetylcholine acts as a neurotransmitter/neuromodulator of many central nervous system processes such as learning and memory, attention, motor control, and sensory processing. The present study describes the spatial distribution of cholinergic neurons throughout the brain of the weakly electric fish, Apteronotus leptorhynchus, using in situ hybridization of choline acetyltransferase mRNA. Distinct groups of cholinergic cells were observed in the telencephalon, diencephalon, mesencephalon, and hindbrain. These included cholinergic cell groups typically identified in other vertebrate brains, for example, motor neurons. Using both in vitro and ex vivo neuronal tracing methods, we identified two new cholinergic connections leading to novel hypotheses on their functional significance. Projections to the nucleus praeeminentialis (nP) arise from isthmic nuclei, possibly including the nucleus lateralis valvulae (nLV) and the isthmic nucleus (nI). The nP is a central component of all electrosensory feedback pathways to the electrosensory lateral line lobe (ELL). We have previously shown that some neurons in nP, TS, and tectum express muscarinic receptors. We hypothesize that, based on nLV/nI cell responses in other teleosts and isthmic connectivity in A. leptorhynchus, the isthmic connections to nP, TS, and tectum modulate responses to electrosensory and/or visual motion and, in particular, to looming/receding stimuli. In addition, we found that the octavolateral efferent (OE) nucleus is the likely source of cholinergic fibers innervating the ELL. In other teleosts, OE inhibits octavolateral hair cells during locomotion. In gymnotiform fish, OE may also act on the first central processing stage and, we hypothesize, implement corollary discharge modulation of electrosensory processing during locomotion.
Collapse
Affiliation(s)
| | - Livio Oboti
- Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany
| | - Erik Harvey-Girard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Rüdiger Krahe
- Department of Biology, McGill University, Montreal, Quebec.,Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany
| |
Collapse
|
3
|
Marcos P, Coveñas R. Neuroanatomical relationship between the cholinergic and tachykininergic systems in the adult human brainstem: An immunohistochemical study. J Chem Neuroanat 2019; 102:101701. [PMID: 31585148 DOI: 10.1016/j.jchemneu.2019.101701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Abstract
The cholinergic system plays an important role in brain homeostasis and interacts with the neuropeptidergic systems, and the functional relationships between both systems are well known. However, in the brainstem the possible physiological interactions between neurokinins and acetylcholine are unknown, although both substances have been detected in the same brainstem nuclei and have been implicated in similar functions controlled from brainstem regions such as some cranial motor nuclei. The aim of this work is to determine whether these possible physiological interactions might have a neuroanatomical basis by means of the double immunohistochemical detection of neurokinins (NK) and the enzyme choline acetyl-transferase (ChAT) in the human brainstem. No double-labelled structures were detected, although both NK and ChAT were observed in cell bodies and fibers of the same brainstem nuclei. The distribution of immunoreactive fibers is widespread, and NK and ChAT were observed in several motor cranial nerves as well as in the substantia nigra. The results obtained in the present work provide a neuroanatomical basis for possible physiological interactions between NK and ChAT that may be carried out by volume-transmission mechanisms. These interactions might participate in motor regulation or in limbic pathways as well as influence on other neurotransmitter systems such as the dopaminergic system.
Collapse
Affiliation(s)
- P Marcos
- Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Medicine, University of Castilla-La Mancha, CRIB (Regional Centre of Biomedical Research), Avenida de Almansa 14, 02006 Albacete, Spain.
| | - R Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
4
|
Localisation of pre- and postsynaptic cholinergic markers in the human brain. Behav Brain Res 2010; 221:341-55. [PMID: 20170687 DOI: 10.1016/j.bbr.2010.02.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
Abstract
The cholinergic neurotransmission in the central nervous system plays an important role in modulating cognitive processes such as learning, memory, arousal and sleep as well as in modulating locomotor activity. Dysfunction of the central cholinergic system is involved in numerous neuropsychiatric diseases. This review will provide a synopsis on the regional localisation of cholinergic and cholinoceptive structures within the adult human brain. On the cholinergic site data based on the distribution of choline acetyltransferase-immunoreactive structures are in the focus, complemented by data from acetylcholinesterase and vesicular acetylcholine transporter studies. On the cholinoceptive site, the distribution and localisation of receptors that transduce the acetylcholine message, i.e. the muscarinic and the nicotinic acetylcholine receptors is summarized. In addition to these data obtained on post mortem brain an overview of markers which allow for the in vivo monitoring of the cholinergic system in the brain is given. The detailed knowledge on the distribution and localisation of cholinergic markers in human brain will provide further information on the cholinergic circuits of neurotransmission - a prerequisite for the interpretation of in vivo imaging data and the development of selective diagnostic and therapeutic compounds.
Collapse
|
5
|
Abreu-Villaça Y, Filgueiras CC, Manhães AC. Developmental aspects of the cholinergic system. Behav Brain Res 2010; 221:367-78. [PMID: 20060019 DOI: 10.1016/j.bbr.2009.12.049] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 12/26/2009] [Indexed: 01/19/2023]
Abstract
Beyond its importance in sustaining or modulating different aspects of the activity of the central nervous system (CNS), the cholinergic system plays important roles during development. In the current review, we focus on the developmental aspects associated with major components of the cholinergic system: Acetylcholine, choline acetyltransferase, vesicular acetylcholine transporter, high-affinity choline transporter, acetylcholinesterase, nicotinic and muscarinic receptors. We describe when and where each one of these components is first identified in the CNS and the changes in their levels that occur during the course of prenatal and postnatal development. We also describe how these components are relevant to many events that occur during the development of the CNS, including progenitor cells proliferation and differentiation, neurogenesis, gliogenesis, neuronal maturation and plasticity, axonal pathfinding, regulation of gene expression and cell survival. It will be noticed that evidence regarding the developmental aspects of the cholinergic system comes mostly from studies that used agonists, such as nicotine, and antagonists, such as hemicholinium-3. Studies using immunohistochemistry and genetically altered mice also provided valuable information.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Av. Prof. Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil.
| | | | | |
Collapse
|
6
|
In situ hybridization study of the distribution of choline acetyltransferase mRNA and its splice variants in the mouse brain and spinal cord. Neuroscience 2009; 159:344-57. [DOI: 10.1016/j.neuroscience.2008.12.054] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/29/2008] [Accepted: 12/30/2008] [Indexed: 02/05/2023]
|
7
|
Menéndez L, Insua D, Rois JL, Santamarina G, Suárez ML, Pesini P. The immunohistochemical localization of neuronal nitric oxide synthase in the basal forebrain of the dog. J Chem Neuroanat 2006; 31:200-9. [PMID: 16488575 DOI: 10.1016/j.jchemneu.2006.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 01/18/2006] [Accepted: 01/18/2006] [Indexed: 11/24/2022]
Abstract
The present work describes for the first time the anatomical distribution of neuronal nitric oxide synthase (nNOS) immunoreactivity and NADPH-d activity in the basal forebrain of the dog. As in other species, small, intensely nNOS-immunoreactive cells were seen within the olfactory tubercle, caudate nucleus, putamen, nucleus accumbens and amygdala. In addition, a population of mixed large and small nNOS positive cells was found in the medial septum, diagonal band and nucleus basalis overlapping the distribution of the magnocellular cholinergic system of the basal forebrain. Our results show that the distribution of NOS containing neurons in these nuclei in the dog is more extensive and uniform than that reported in rodents and primates. When double labeling of nNOS and NADPH-d was performed in the same tissue section most neurons were double labeled. However, a considerable number of large perikarya in the diagonal band and nucleus basalis appeared to be single labeled for nNOS. Thought a certain degree of interference between the two procedures could not be completely excluded, these findings suggest that NADPH-d histochemistry, which is frequently used to show the presence of NOS, underestimates the potential of basal forebrains neurons to produce nitric oxide. In addition, a few neurons mainly localized among the fibers of the internal capsule, appeared to be labeled only for NADPH-d. These neurons could be expressing a different isoform of NOS, not recognized by our anti-nNOS antibody, as has been reported in healthy humans and AD patients.
Collapse
Affiliation(s)
- Laura Menéndez
- Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago, 27002 Lugo, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Sánchez-Camacho C, López JM, González A. Basal forebrain cholinergic system of the anuran amphibianRana perezi: Evidence for a shared organization pattern with amniotes. J Comp Neurol 2005; 494:961-75. [PMID: 16385484 DOI: 10.1002/cne.20833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The organization of the basal forebrain cholinergic system (BFCS) in the frog was studied by means of choline acetyltransferase (ChAT) immunohistochemistry. The BFCS was observed as a conspicuous cholinergic cell population extending through the diagonal band, medial septal nucleus, bed nucleus of the stria terminalis, and pallidal regions. Abundant fiber labeling was also found around the labeled cell bodies. The combination of retrograde tract tracing with dextran amines and ChAT immunohistochemistry revealed intraseptal and intra-BFCS cholinergic connections. In addition, an extratelencephalic cholinergic input from the laterodorsal tegemental nucleus was demonstrated. The possible influence of monoaminergic inputs on the BFCS neurons was examined by means of tyrosine hydroxylase and serotonin immunohistochemistry combined with ChAT immunolabeling. Our results showed that catecholaminergic fibers overlapped the BFCS, with the exception of the medial septal nucleus. Serotoninergic innervation was widespread, but less abundant in the caudal extent of the BFCS. Taken together, our results on the localization of the cholinergic neurons in the basal forebrain and their relationship with cholinergic, catecholaminergic, and serotoninergic afferents have shown numerous common features with amniotes. In particular, anurans and mammals (for which most data is available) share a strikingly comparable organization pattern of the BFCS.
Collapse
Affiliation(s)
- Cristina Sánchez-Camacho
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | |
Collapse
|
9
|
Sheehan TP, Chambers RA, Russell DS. Regulation of affect by the lateral septum: implications for neuropsychiatry. ACTA ACUST UNITED AC 2004; 46:71-117. [PMID: 15297155 DOI: 10.1016/j.brainresrev.2004.04.009] [Citation(s) in RCA: 379] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2004] [Indexed: 11/17/2022]
Abstract
Substantial evidence indicates that the lateral septum (LS) plays a critical role in regulating processes related to mood and motivation. This review presents findings from the basic neuroscience literature and from some clinically oriented research, drawing from behavioral, neuroanatomical, electrophysiological, and molecular studies in support of such a role, and articulates models and hypotheses intended to advance our understanding of these functions. Neuroanatomically, the LS is connected with numerous regions known to regulate affect, such as the hippocampus, amygdala, and hypothalamus. Through its connections with the mesocorticolimbic dopamine system, the LS regulates motivation, both by stimulating the activity of midbrain dopamine neurons and regulating the consequences of this activity on the ventral striatum. Evidence that LS function could impact processes related to schizophrenia and other psychotic spectrum disorders, such as alterations in LS function following administration of antipsychotics and psychotomimetics in animals, will also be presented. The LS can also diminish or enable fear responding when its neural activity is stimulated or inhibited, respectively, perhaps through its projections to the hypothalamus. It also regulates behavioral manifestations of depression, with antidepressants stimulating the activity of LS neurons, and depression-like phenotypes corresponding to blunted activity of LS neurons; serotonin likely plays a key role in modulating these functions by influencing the responsiveness of the LS to hippocampal input. In conclusion, a better understanding of the LS may provide important and useful information in the pursuit of better treatments for a wide range of psychiatric conditions typified by disregulation of affective functions.
Collapse
Affiliation(s)
- Teige P Sheehan
- Department of Psychology, Brown University, P.O. Box 1853, Providence, RI 02912, USA.
| | | | | |
Collapse
|
10
|
Semba K. Phylogenetic and ontogenetic aspects of the basal forebrain cholinergic neurons and their innervation of the cerebral cortex. PROGRESS IN BRAIN RESEARCH 2003; 145:3-43. [PMID: 14650904 DOI: 10.1016/s0079-6123(03)45001-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Kazue Semba
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Tupper Medical Building, 6850 College Street, Halifax, NS B3H 1X5, Canada.
| |
Collapse
|
11
|
López-Giménez JF, Mengod G, Palacios JM, Vilaró MT. Regional distribution and cellular localization of 5-HT2C receptor mRNA in monkey brain: comparison with [3H]mesulergine binding sites and choline acetyltransferase mRNA. Synapse 2001; 42:12-26. [PMID: 11668587 DOI: 10.1002/syn.1095] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The distribution of serotonin 5-HT(2C) receptor mRNA in monkey brain was studied by in situ hybridization and compared with the distribution of [3H]mesulergine binding sites as visualized by receptor autoradiography. 5-HT(2C) receptor transcripts showed a widespread and heterogeneous distribution. The strongest hybridization signal was detected in choroid plexus. In neocortex, 5-HT(2C) mRNA was detected in layer V of all cortical regions examined except in the calcarine sulcus, which was devoid of signal. Several structures within the striatum and basal forebrain were strongly labeled: nucleus accumbens, ventral aspects of anterior caudate and putamen, septal nuclei, diagonal band, ventral striatum, and extended amygdala. Several thalamic, midbrain, and brainstem nuclei also contained 5-HT(2C) mRNA. Comparison of the distributions of 5-HT(2C) mRNA and specific [3H]mesulergine binding sites showed a good agreement in the majority of brain regions, suggesting a predominant somatodendritic localization of 5-HT(2C) receptors. A possible localization to axon terminals of 5-HT(2C) receptors is suggested by the disagreement observed in some regions such as septal nuclei and horizontal limb of the diagonal band (presence of mRNA with apparent absence of binding sites) and interpeduncular nucleus (presence of binding sites with apparent absence of mRNA). Comparison of 5-HT(2C) receptor and choline acetyltransferase mRNA distributions indicate that some regions where cholinergic cells are located are also enriched in cells containing 5-HT(2C) mRNA. Although the present methodology does not allow strict colocalization of both mRNA species to the same cells, the codistribution observed in several regions provides a possible anatomical substrate for the described modulation of acetylcholine release by 5-HT(2C) receptors.
Collapse
Affiliation(s)
- J F López-Giménez
- Department of Neurochemistry, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas (IIBB-CSIC, IDIBAPS), E-08036 Barcelona, Spain
| | | | | | | |
Collapse
|
12
|
Oda Y. Choline acetyltransferase: the structure, distribution and pathologic changes in the central nervous system. Pathol Int 1999; 49:921-37. [PMID: 10594838 DOI: 10.1046/j.1440-1827.1999.00977.x] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Choline acetyltransferase (ChAT), the enzyme responsible for the biosynthesis of acetylcholine, is presently the most specific indicator for monitoring the functional state of cholinergic neurones in the central and peripheral nervous systems. ChAT is a single-strand globular protein. The enzyme is synthesized in the perikaryon of cholinergic neurones and transported to the nerve terminals probably by both slow and rapid axoplasmic flows. ChAT exists in at least two forms in cholinergic nerve terminals: (i) soluble; and (ii) non-ionically membrane-bound forms. Multiple mRNA species of ChAT (R-, N-and M-types) are transcribed from different promoter regions and produced by different splicing in the mouse, rat, and human. All transcripts encode the same ChAT protein in rodents, while in human M-type mRNA has the capability to generate both large and small forms of ChAT proteins and R-and N-types ChAT mRNA generate a small form, which corresponds to the rodent ChAT. The genomic structure of ChAT is unique compared with other enzymes for neurotransmitters. The first intron of the ChAT gene encompasses the open reading frame encoding another protein, vesicular acetylcholine transporter (VAChT), which is responsible for the transportation of acetylcholine from the cytoplasm into the synaptic vesicles. The expressions of ChAT and VAChT appear to be coordinately regulated by multiple regulatory elements in cholinergic neurones. Immunohistochemical and in situ hybridization studies have revealed the localization of cholinergic neurones in the central nervous system: the medial septal nucleus, the nucleus of the diagonal band of Broca, the basal nucleus of Meynert, the caudate nucleus, the putamen, the nucleus accumbens, the pedunculopontine tegmental nucleus, the laterodorsal tegmental nucleus, the medial habenular nucleus, the parabigeminal nucleus, some cranial nerve nuclei, and the anterior horn of the spinal cord. Focally distributed cholinergic neurones project fibers to many areas in the central nervous system and construct a complicated cholinergic network, playing an important role in neuropsychic activities, such as learning, memory, arousal, sleep and movement. Central cholinergic neurones are involved in several neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis, in which disturbance of the central cholinergic system does not appear to be closely related to the etiology, but rather to the development of clinical symptoms. In addition, abnormalities of ChAT in the brain have been recently demonstrated in schizophrenia and sudden infant death syndrome.
Collapse
Affiliation(s)
- Y Oda
- First Department of Pathology, Faculty of Medicine, Kanazawa Univesity, Japan.
| |
Collapse
|
13
|
Feuerstein TJ, Albrecht C, Wessler I, Zentner J, Jackisch R. delta 1-Opioid receptor-mediated control of acetylcholine (ACh) release in human neocortex slices. Int J Dev Neurosci 1998; 16:795-802. [PMID: 10198826 DOI: 10.1016/s0736-5748(98)00086-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In slices of human neocortex, prelabelled with [3H]-choline, the release of [3H]-acetylcholine reflects the evoked release of endogenous acetylcholine which was elicited by the same electrical stimulation paradigm. [3H]-Acetylcholine release was depressed by the delta-opioid receptor agonist D-Pen2-D-Pen5-enkephalin. When the nerve endings were depolarized by elevating extracellular potassium the evoked [3H]-acetylcholine release was similarly depressed by D-Pen2-D-Pen5-enkephalin in the absence, but not in the presence, of tetrodotoxin which blocks action potential propagation. Therefore, the delta-opioid receptor inhibiting [3H]-acetylcholine release should not be located to cholinergic nerve terminals, but rather to interneurons. The somatostatin2 receptor partial agonist octreotide per se did not influence action potential-evoked [3H]-acetylcholine release, but prevented the inhibition of release of [3H]-acetylcholine by D-Pen2-D-Pen5-enkephalin. Similarly, the delta 1-opioid receptor antagonist 7-benzylidenenaltrexon per se did not influence [3H]-acetylcholine release, but prevented of the inhibition of release by D-Pen2-D-Pen5-enkephalin. From the present findings we conclude: (1) The evoked release of [3H]-acetylcholine from human neocortex slices reflects the release of endogenous acetylcholine. (2) It is inhibited in an indirect manner by opioid receptors of the delta 1-subtype, which (3) are not localized on cholinergic axon terminals but on soma and dendrites of somatostatin-containing interneurons, where they inhibit somatostatin release. (4) These interneurons innervate cholinergic nerve endings in the human neocortex and appear to facilitate acetylcholine release via somatostatin2 receptors.
Collapse
Affiliation(s)
- T J Feuerstein
- Sektion Klinische Neuropharmakologie, Neurologischen Universitätsklinik, Neurozentrum, Freiburg, Germany.
| | | | | | | | | |
Collapse
|