1
|
Lee JM, Yoo MC, Kim YJ, Kim SS, Yeo SG. Expression of ChAT, Iba-1, and nNOS in the Central Nervous System following Facial Nerve Injury. Antioxidants (Basel) 2024; 13:595. [PMID: 38790700 PMCID: PMC11118893 DOI: 10.3390/antiox13050595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Facial nerve injury can cause significant functional impairment, impacting both the peripheral and central nervous systems. The present study evaluated changes in facial motor function, numbers of cholinergic neurons and microglia, and nNOS levels in the facial nucleus of the central nervous system (CNS) following peripheral facial nerve injury. Facial nerve function, as determined by eyeblink and whisker-movement reflexes, was evaluated at baseline and 1, 2, 3, 4, 8, and 12 weeks after inducing facial nerve injury through compression or axotomy. The expression of choline acetyltransferase (ChAT), ionized calcium-binding adaptor molecule 1 (Iba-1), and neuronal nitric oxide synthase (nNOS) in the facial nucleus of the CNS was analyzed 2, 4, and 12 weeks after peripheral facial nerve injury. Compression-induced facial nerve injury was found to lead to temporary facial motor impairment, whereas axotomy resulted in persistent impairment. Moreover, both compression and axotomy reduced ChAT expression and increased Iba-1 and nNOS expression in the facial nucleus, indicating upregulation of an inflammatory response and neurodegeneration. These results indicate that, compared with compression-induced injury, axotomy-induced facial nerve injury results in greater facial motor dysfunction and more persistent microglial and nitric oxide activation in the facial nucleus of the CNS.
Collapse
Affiliation(s)
- Jae Min Lee
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
2
|
Feng S, Zhang T, He Z, Zhang W, Chen Y, Yue C, Jing N. Continuous immunosuppression is required for suppressing immune responses to xenografts in non-human primate brains. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:8. [PMID: 38583099 PMCID: PMC10999398 DOI: 10.1186/s13619-024-00191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Continuous immunosuppression has been widely used in xenografts into non-human primate brains. However, how immune responses change after transplantation in host brains under continuous immunosuppressive administration and whether immunosuppression can be withdrawn to mitigate side effects remain unclear. Human induced neural stem/progenitor cells (iNPCs) have shown long-term survival and efficient neuronal differentiation in primate brains. Here, we evaluate the immune responses in primate brains triggered by human grafts. The results show that the immune responses, including the evident activation of microglia and the strong infiltration of lymphocytes (both T- and B-cells), are caused by xenografts at 4 months post transplantation (p.t.), but significantly reduced at 8 months p.t. under continuous administration of immunosuppressant Cyclosporin A. However, early immunosuppressant withdrawal at 5 months p.t. results in severe immune responses at 10 months p.t. These results suggest that continuous long-term immunosuppression is required for suppressing immune responses to xenografts in primate brains.
Collapse
Affiliation(s)
- Su Feng
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Ting Zhang
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- National Clinical Research Center for Eye Disease, Shanghai, 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China
| | - Zhengxiao He
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | | | - Yingying Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Chunmei Yue
- Suzhou Yuanzhan Biotechs, Suzhou, 215000, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
3
|
Rezaie P, Hanisch UK. History of Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:15-37. [PMID: 39207684 DOI: 10.1007/978-3-031-55529-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The term 'microglia' was first introduced into the scientific literature a century ago. The various eras of microglial research have been defined not only by the number of reports subsequently generated but, more critically, also by the concepts that have shaped our present-day views and understanding of microglia. Key methods, technologies, and models, as well as seminal discoveries made possible through their deployment have enabled breakthroughs, and now pave the way for lines of investigation that could not have been anticipated even a decade ago. Advances in our understanding of the microglial origin, forms, and functions have relied fundamentally on parallel developments in immunology. As the 'neuro-immune' cells of the brain, microglia are now under the spotlight in various disciplines. This chapter surveys the gradual processes and precipitous events that helped form ideas concerning the developmental origin of microglia and their roles in health and disease. It first covers the dawning phase during which the early pioneers of microglial research discovered cellular entities and already assigned functions to them. Following a recess period, the 1960s brought about a renaissance of active interest, with the development of tools and models-and fundamental notions on microglial contributions to central nervous system (CNS) pathologies. These seminal efforts laid the foundation for the awakening of a sweeping research era beginning in the 1980s and spurred on by a blast of immunological discoveries. Finally, this chapter stresses the advancements in molecular, genetic, and imaging approaches to the study of microglia with the turn of the millennium, enabling insights into virtually all facets of microglial physiology. Moving forward, it is clear that the future holds substantial promise for further discoveries. The next epoch in the history of microglial research has just begun.
Collapse
Affiliation(s)
- Payam Rezaie
- School of Life, Health & Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK.
| | | |
Collapse
|
4
|
Ishijima T, Nakajima K. Mechanisms of Microglia Proliferation in a Rat Model of Facial Nerve Anatomy. BIOLOGY 2023; 12:1121. [PMID: 37627005 PMCID: PMC10452325 DOI: 10.3390/biology12081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Although microglia exist as a minor glial cell type in the normal state of the brain, they increase in number in response to various disorders and insults. However, it remains unclear whether microglia proliferate in the affected area, and the mechanism of the proliferation has long attracted the attention of researchers. We analyzed microglial mitosis using a facial nerve transection model in which the blood-brain barrier is left unimpaired when the nerves are axotomized. Our results showed that the levels of macrophage colony-stimulating factor (M-CSF), cFms (the receptor for M-CSF), cyclin A/D, and proliferating cell nuclear antigen (PCNA) were increased in microglia in the axotomized facial nucleus (axotFN). In vitro experiments revealed that M-CSF induced cFms, cyclin A/D, and PCNA in microglia, suggesting that microglia proliferate in response to M-CSF in vivo. In addition, M-CSF caused the activation of c-Jun N-terminal kinase (JNK) and p38, and the specific inhibitors of JNK and p38 arrested the microglial mitosis. JNK and p38 were shown to play roles in the induction of cyclins/PCNA and cFms, respectively. cFms was suggested to be induced through a signaling cascade of p38-mitogen- and stress-activated kinase-1 (MSK1)-cAMP-responsive element binding protein (CREB) and/or p38-activating transcription factor 2 (ATF2). Microglia proliferating in the axotFN are anticipated to serve as neuroprotective cells by supplying neurotrophic factors and/or scavenging excite toxins and reactive oxygen radicals.
Collapse
Affiliation(s)
- Takashi Ishijima
- Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan;
| | - Kazuyuki Nakajima
- Graduate School of Science and Engineering, Soka University, Tokyo 192-8577, Japan;
- Glycan & Life Systems Integration Center, Soka University, Tokyo 192-8577, Japan
| |
Collapse
|
5
|
Lee JM, Choi YJ, Yoo MC, Yeo SG. Central Facial Nervous System Biomolecules Involved in Peripheral Facial Nerve Injury Responses and Potential Therapeutic Strategies. Antioxidants (Basel) 2023; 12:antiox12051036. [PMID: 37237902 DOI: 10.3390/antiox12051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Peripheral facial nerve injury leads to changes in the expression of various neuroactive substances that affect nerve cell damage, survival, growth, and regeneration. In the case of peripheral facial nerve damage, the injury directly affects the peripheral nerves and induces changes in the central nervous system (CNS) through various factors, but the substances involved in these changes in the CNS are not well understood. The objective of this review is to investigate the biomolecules involved in peripheral facial nerve damage so as to gain insight into the mechanisms and limitations of targeting the CNS after such damage and identify potential facial nerve treatment strategies. To this end, we searched PubMed using keywords and exclusion criteria and selected 29 eligible experimental studies. Our analysis summarizes basic experimental studies on changes in the CNS following peripheral facial nerve damage, focusing on biomolecules that increase or decrease in the CNS and/or those involved in the damage, and reviews various approaches for treating facial nerve injury. By establishing the biomolecules in the CNS that change after peripheral nerve damage, we can expect to identify factors that play an important role in functional recovery from facial nerve damage. Accordingly, this review could represent a significant step toward developing treatment strategies for peripheral facial palsy.
Collapse
Affiliation(s)
- Jae-Min Lee
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - You Jung Choi
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Myung Chul Yoo
- Department of Physical Medicine & Rehabilitation, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology, Head & Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Events Occurring in the Axotomized Facial Nucleus. Cells 2022; 11:cells11132068. [PMID: 35805151 PMCID: PMC9266054 DOI: 10.3390/cells11132068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
Transection of the rat facial nerve leads to a variety of alterations not only in motoneurons, but also in glial cells and inhibitory neurons in the ipsilateral facial nucleus. In injured motoneurons, the levels of energy metabolism-related molecules are elevated, while those of neurofunction-related molecules are decreased. In tandem with these motoneuron changes, microglia are activated and start to proliferate around injured motoneurons, and astrocytes become activated for a long period without mitosis. Inhibitory GABAergic neurons reduce the levels of neurofunction-related molecules. These facts indicate that injured motoneurons somehow closely interact with glial cells and inhibitory neurons. At the same time, these events allow us to predict the occurrence of tissue remodeling in the axotomized facial nucleus. This review summarizes the events occurring in the axotomized facial nucleus and the cellular and molecular mechanisms associated with each event.
Collapse
|
7
|
Panayotacopoulou MT, Papageorgiou I, Pagida M, Katsogridaki AE, Chrysanthou-Piterou M, Valous NA, Halama N, Patsouris E, Konstantinidou AE. Microglia Activation in the Midbrain of the Human Neonate: The Effect of Perinatal Hypoxic-Ischemic Injury. J Neuropathol Exp Neurol 2022; 81:208-224. [PMID: 35092294 DOI: 10.1093/jnen/nlab135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Perinatal hypoxia-ischemia (PHI) is a major risk factor for the development of neuropsychiatric deficits later in life. We previously reported that after prolonged PHI, the dopaminergic neurons of the human neonate showed a dramatic reduction of tyrosine hydroxylase (TH) in the substantia nigra, without important signs of neuronal degeneration despite the significant reduction in their cell size. Since microglia activation could precede neuronal death, we now investigated 2 microglia activation markers, ionized calcium-binding adapter molecule 1 (Iba1), and the phagocytosis marker Cd68. The highest Iba1 immunoreactivity was found in neonates with neuropathological lesions of severe/abrupt PHI, while the lowest in subjects with moderate/prolonged or older PHI. Subjects with very severe/prolonged or chronic PHI showed an increased Iba1 expression and very activated microglial morphology. Heavy attachment of microglia on TH neurons and remarkable expression of Cd68 were also observed indicating phagocytosis in this group. Females appear to express more Iba1 than males, suggesting a gender difference in microglia maturation and immune reactivity after PHI insult. PHI-induced microglial "priming" during the sensitive for brain development perinatal/neonatal period, in combination with genetic or other epigenetic factors, could predispose the survivors to neuropsychiatric disorders later in life, possibly through a sexually dimorphic way.
Collapse
Affiliation(s)
- Maria T Panayotacopoulou
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Ismini Papageorgiou
- Institute for Diagnostic and Interventional Radiology, University Hospital of Jena, Jena, Germany (IP).,Institute of Radiology, Südharz Hospital Nordhausen, Nordhausen, Germany (IP)
| | - Marianna Pagida
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Alexandra E Katsogridaki
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Margarita Chrysanthou-Piterou
- From the Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P).,University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP)
| | - Nektarios A Valous
- Applied Tumor Immunity Clinical Cooperation Unit, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany (NAV)
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD), Heidelberg, Germany (NH).,Division of Translational Immunotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany (NH)
| | - Efstratios Patsouris
- University Mental Health, Neurosciences and Precision Medicine Research Institute "Kostas Stefanis", National and Kapodistrian University of Athens, Athens, Greece (MTP, MP, AEK, MC-P, EP).,1st Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece (EP, AEK)
| | | |
Collapse
|
8
|
Huang CT, Wen YT, Desai TD, Tsai RK. Intravitreal Injection of Long-Acting Pegylated Granulocyte Colony-Stimulating Factor Provides Neuroprotective Effects via Antioxidant Response in a Rat Model of Traumatic Optic Neuropathy. Antioxidants (Basel) 2021; 10:1934. [PMID: 34943037 PMCID: PMC8750325 DOI: 10.3390/antiox10121934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022] Open
Abstract
Traumatic optic neuropathy (TON) may cause severe visual loss following direct or indirect head trauma which may result in optic nerve injuries and therefore contribute to the subsequent loss of retinal ganglion cells by inflammatory mediators and reactive oxygen species (ROS). Granulocyte colony-stimulating factor (G-CSF) provides the anti-inflammatory and anti-oxidative actions but has a short half-life and also induces leukocytosis upon typical systemic administration. The purpose of the present study was to investigate the relationship between the anti-oxidative response and neuroprotective effects of long-acting pegylated human G-CSF (PEG-G-CSF) in a rat model of optic nerve crush (ONC). Adult male Wistar rats (150-180 g) were chosen to have a sham operation in one eye and have ONC in the other. PEG-G-CSF or phosphate-buffered saline (PBS control) was immediately administered after ONC by intravitreal injection (IVI). We found the IVI of PEG-G-CSF does not induce systemic leukocytosis, but increases survival of RGCs and preserves the visual function after ONC. TUNEL assays showed fewer apoptotic cells in the retina in the PEG-G-CSF-treated eyes. The number of sorely ED1-positive cells was attenuated at the lesion site in the PEG-G-CSF-treated eyes. Immunoblotting showed up-regulation of p-Akt1, Nrf2, Sirt3, and HO-1 in the ON of the PEG-G-CSF-treated eyes. Our results demonstrated that one IVI of long-acting PEG-G-CSF is neuroprotective in the rONC. PEG-G-CSF activates the p-Akt1/Nrf2/Sirt3 and the p-Akt1/Nrf2/HO-1 axes to provide the antioxidative action and further attenuated RGC apoptosis and neuroinflammation. This provides crucial preclinical information for the development of alternative therapy with IVI of PEG-G-CSF in TON.
Collapse
Affiliation(s)
- Chin-Te Huang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (Y.-T.W.); (T.D.D.)
- Department of Ophthalmology, Chung Shan Medical University Hospital, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (Y.-T.W.); (T.D.D.)
| | - Tushar Dnyaneshwar Desai
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (Y.-T.W.); (T.D.D.)
| | - Rong-Kung Tsai
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan;
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (Y.-T.W.); (T.D.D.)
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien 970, Taiwan
| |
Collapse
|
9
|
Choi Y, Jung K, Kim HJ, Chun J, Ahn M, Jee Y, Ko HJ, Moon C, Matsuda H, Tanaka A, Kim J, Shin T. Attenuation of Experimental Autoimmune Uveitis in Lewis Rats by Betaine. Exp Neurobiol 2021; 30:308-317. [PMID: 34483144 PMCID: PMC8424381 DOI: 10.5607/en21011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Experimental autoimmune uveitis (EAU) is an animal model of human autoimmune uveitis that is characterized by the infiltration of autoimmune T cells with concurrent increases in pro-inflammatory cytokines and reactive oxygen species. This study aimed to assess whether betaine regulates the progression of EAU in Lewis rats. EAU was induced via immunization with the interphotoreceptor retinoid-binding protein (IRBP) and oral administration of either a vehicle or betaine (100 mg/kg) for 9 consecutive days. Spleens, blood, and retinas were sampled from the experimental rats at the time of sacrifice and used for the T cell proliferation assay, serological analysis, real-time polymerase chain reaction, and immunohistochemistry. The T cell proliferation assay revealed that betaine had little effect on the proliferation of splenic T cells against the IRBP antigen in an in vitro assay on day 9 post-immunization. The serological analysis showed that the level of serum superoxide dismutase increased in the betaine-treated group compared with that in the vehicle-treated group. The anti-inflammatory effect of betaine was confirmed by the downregulation of pro-inflammation-related molecules, including vascular cell adhesion molecule 1 and interleukin-1β in the retinas of rats with EAU. The histopathological findings agreed with those of ionized calcium-binding adaptor molecule 1 immunohistochemistry, further verifying that inflammation in the retina and ciliary bodies was significantly suppressed in the betaine-treated group compared with the vehicle-treated group. Results of the present study suggest that betaine is involved in mitigating EAU through anti-oxidation and anti-inflammatory activities.
Collapse
Affiliation(s)
- Yuna Choi
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Kyungsook Jung
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea
| | - Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, Jeju 63243, Korea
| | - Jiyoon Chun
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Korea
| | - Youngheun Jee
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Hyun Ju Ko
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Korea
| | - Hiroshi Matsuda
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Division of Animal Life Science, Graduate School, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-850
| | - Akane Tanaka
- Laboratory of Veterinary Molecular Pathology and Therapeutics, Division of Animal Life Science, Graduate School, Institute of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-850
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan 49267, Korea
| | - Taekyun Shin
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
10
|
Understanding the Heterogeneity of Human Pericyte Subsets in Blood-Brain Barrier Homeostasis and Neurological Diseases. Cells 2021; 10:cells10040890. [PMID: 33919664 PMCID: PMC8069782 DOI: 10.3390/cells10040890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Pericytes are increasingly recognized as being important in the control of blood–brain barrier permeability and vascular flow. Research on this important cell type has been hindered by widespread confusion regarding the phenotypic identity and nomenclature of pericytes and other perivascular cell types. In addition, pericyte heterogeneity and mouse–human species differences have contributed to confusion. Herein we summarize our present knowledge on the identification of pericytes and pericyte subsets in humans, primarily focusing on recent findings in humans and nonhuman primates. Precise identification and definition of pericytes and pericyte subsets in humans may help us to better understand pericyte biology and develop new therapeutic approaches specifically targeting disease-associated pericyte subsets.
Collapse
|
11
|
Liu DX, Perry DL, Cooper TK, Huzella LM, Hart RJ, Hischak AMW, Bernbaum JG, Hensley LE, Bennett RS. Peripheral Neuronopathy Associated With Ebola Virus Infection in Rhesus Macaques: A Possible Cause of Neurological Signs and Symptoms in Human Ebola Patients. J Infect Dis 2021; 222:1745-1755. [PMID: 32498080 DOI: 10.1093/infdis/jiaa304] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/27/2020] [Indexed: 01/26/2023] Open
Abstract
Neurological signs and symptoms are the most common complications of Ebola virus disease. However, the mechanisms underlying the neurologic manifestations in Ebola patients are not known. In this study, peripheral ganglia were collected from 12 rhesus macaques that succumbed to Ebola virus (EBOV) disease from 5 to 8 days post exposure. Ganglionitis, characterized by neuronal degeneration, necrosis, and mononuclear leukocyte infiltrates, was observed in the dorsal root, autonomic, and enteric ganglia. By immunohistochemistry, RNAscope in situ hybridization, transmission electron microscopy, and confocal microscopy, we confirmed that CD68+ macrophages are the target cells for EBOV in affected ganglia. Further, we demonstrated that EBOV can induce satellite cell and neuronal apoptosis and microglial activation in infected ganglia. Our results demonstrate that EBOV can infect peripheral ganglia and results in ganglionopathy in rhesus macaques, which may contribute to the neurological signs and symptoms observed in acute and convalescent Ebola virus disease in human patients.
Collapse
Affiliation(s)
- David X Liu
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Donna L Perry
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Timothy K Cooper
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Louis M Huzella
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Randy J Hart
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Amanda M W Hischak
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - John G Bernbaum
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Richard S Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
12
|
Marzan DE, Brügger-Verdon V, West BL, Liddelow S, Samanta J, Salzer JL. Activated microglia drive demyelination via CSF1R signaling. Glia 2021; 69:1583-1604. [PMID: 33620118 DOI: 10.1002/glia.23980] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Microgliosis is a prominent pathological feature in many neurological diseases including multiple sclerosis (MS), a progressive auto-immune demyelinating disorder. The precise role of microglia, parenchymal central nervous system (CNS) macrophages, during demyelination, and the relative contributions of peripheral macrophages are incompletely understood. Classical markers used to identify microglia do not reliably discriminate between microglia and peripheral macrophages, confounding analyses. Here, we use a genetic fate mapping strategy to identify microglia as predominant responders and key effectors of demyelination in the cuprizone (CUP) model. Colony-stimulating factor 1 (CSF1), also known as macrophage colony-stimulating factor (M-CSF) - a secreted cytokine that regulates microglia development and survival-is upregulated in demyelinated white matter lesions. Depletion of microglia with the CSF1R inhibitor PLX3397 greatly abrogates the demyelination, loss of oligodendrocytes, and reactive astrocytosis that results from CUP treatment. Electron microscopy (EM) and serial block face imaging show myelin sheaths remain intact in CUP treated mice depleted of microglia. However, these CUP-damaged myelin sheaths are lost and robustly phagocytosed upon-repopulation of microglia. Direct injection of CSF1 into CNS white matter induces focal microgliosis and demyelination indicating active CSF1 signaling can promote demyelination. Finally, mice defective in adopting a toxic astrocyte phenotype that is driven by microglia nevertheless demyelinate normally upon CUP treatment implicating microglia rather than astrocytes as the primary drivers of CUP-mediated demyelination. Together, these studies indicate activated microglia are required for and can drive demyelination directly and implicate CSF1 signaling in these events.
Collapse
Affiliation(s)
- Dave E Marzan
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA.,Translational Neuroscience Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Valérie Brügger-Verdon
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
| | | | - Shane Liddelow
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Jayshree Samanta
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - James L Salzer
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
13
|
Amtul Z, Najdat AN, Hill DJ, Arany EJ. Differential temporal and spatial post-injury alterations in cerebral cell morphology and viability. J Comp Neurol 2020; 529:421-433. [PMID: 32447764 DOI: 10.1002/cne.24955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/04/2020] [Accepted: 05/15/2020] [Indexed: 01/05/2023]
Abstract
Combination of ischemia and β-amyloid (Aβ) toxicity has been shown to simultaneously increase neuro-inflammation, endogenous Aβ deposition, and neurodegeneration. However, studies on the evolution of infarct and panorama of cellular degeneration as a synergistic or overlapping mechanism between ischemia and Aβ toxicity are lacking. Here, we compared fluorojade B (FJB) and hematoxylin and eosin (H&E) stains primarily to examine the chronology of infarct, and the viability and morphological changes in neuroglia and neurons located in different brain regions on d1, d7, and d28 post Aβ toxicity and endothelin-1 induced ischemia (ET1) in rats. We demonstrated a regional difference in cellular degeneration between cortex, corpus callosum, striatum, globus pallidus, and thalamus after cerebral injury. Glial cells in the cortex and corpus callosum underwent delayed FJB staining from d7 to d28, but neurons in cortex disappeared within the first week of cerebral injury. Striatal lesion core and globus pallidus of Aβ + ET1 rats showed extensive degeneration of neuronal cells compared with ET1 rats alone starting from d1. Differential and exacerbated expressions of cyclooxygenase-2 might be the cause of excessive neuronal demise in the striatum of Aβ + ET1 rats. Such an investigation may improve our understanding to identify and manipulate a critical therapeutic window post comorbid injury.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Canada
| | - Abdullah N Najdat
- Department of Biology, University of Western Ontario, London, Canada
| | - David J Hill
- Departments of Medicine, Physiology, and Pharmacology, and Pediatrics, University of Western Ontario, London, Canada.,Lawson Health Research Institute, London, Ontario, Canada
| | - Edith J Arany
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Canada
| |
Collapse
|
14
|
Neuronal/astrocytic expression of chemokine (C-C motif) ligand 2 is associated with monocyte/macrophage recruitment in male chronic pelvic pain. Pain 2020; 161:2581-2591. [PMID: 32541388 DOI: 10.1097/j.pain.0000000000001954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic pelvic pain syndrome is a multisymptom syndrome with unknown etiology. The experimental autoimmune prostatitis (EAP) mouse model of chronic pelvic pain syndrome is associated with immune cell infiltration into the prostate, expression of C-C chemokine ligand 2 (CCL2), and neuroinflammation in the spinal cord. Here, we studied CCL2 expression in tissues along the nociceptive pathway and its association with neuroimmune cells during pain development. Examination of prostate tissues at days 14 and 28 after EAP induction revealed CCL2 expression was increased in epithelial cells and was associated with increased numbers of macrophages lying in close apposition to PGP9.5-positive afferent neuronal fibers. C-C Chemokine ligand 2 immunoreactivity was elevated to a similar degree in the dorsal root ganglia at day 14 and day 28. D14 of EAP was associated with elevated IBA1 cells in the dorsal root ganglia that were not evident at D28. Adoptive transfer of green fluorescent protein+ leukocytes into EAP mice demonstrated monocytes are capable of infiltrating the spinal cord from peripheral blood with what seemed to be a proinflammatory phenotype. In the lower dorsal spinal cord, CCL2 expression localized to NeuN expressing neurons and GFAP-expressing astrocytes. Myeloid derived cell infiltration into the spinal cord in EAP was observed in the L6-S2 dorsal horn. Myeloid-derived CD45 IBA1+ cells were localized with IBA1+ TMEM199+ microglia in the dorsal horn of the spinal cord in EAP, with intimate association of the 2 cell types suggesting cell-cell interactions. Finally, intrathecal administration of liposomal clodronate ameliorated pelvic pain symptoms, suggesting a mechanistic role for macrophages and microglia in chronic pelvic pain.
Collapse
|
15
|
Amtul Z, Randhawa J, Najdat AN, Hill DJ, Arany EJ. Role of Delayed Neuroglial Activation in Impaired Cerebral Blood Flow Restoration Following Comorbid Injury. Cell Mol Neurobiol 2020; 40:369-380. [PMID: 31522299 PMCID: PMC11448772 DOI: 10.1007/s10571-019-00735-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/04/2019] [Indexed: 11/27/2022]
Abstract
Besides other causes, ischemia and Alzheimer's disease pathology is also linked to decreased cerebral blood flow (CBF). There is little or no consensus about the role of neuroglial cells in maintaining CBF in various neuropathologies. This consensus becomes scarcer when it comes to clinical and experimental cases of comorbid Abeta-amyloid (Aβ) toxicity and ischemia. Here, a comorbid rat model of Aβ toxicity and endothelin-1 induced ischemia (ET1) not only demonstrated the appearance of axotomized phagocytosed pyknotic neurons (NeuN) immediately after the injury, but also showed a diversity of continuously changing neuroglia (MHC Class II/OX6, Iba1) and macrophage (Iba1/CD68) phenotypes with round, stout somas, and retracted processes. This is indicative of a response to a concomitant increase in large fluid-filled spaces due to the vascular leakage. Ironically 4 weeks after the injury despite a conclusive reduction in neurons, CBF restoration in ET1 rats was associated with a massive increase in neuroglial cell numbers, hypertrophy, ramification, and soma sizes bordering the continuously reducing lesion core and inflamed vasculature, possibly to shield their leaky phenotype. Astrocytes were also found to be releasing matrix metalloproteinase9 (MMP9), which stabilized matrix ligand β-dystroglycan (β-DG) in repaired or functional vessels. Changing neuroglia phenotypes, responses, motility, astrocytic recruitment of MMP9, and β-DG stabilization implies the role of communication between neuroglia and endothelium in recovering CBF, in the absence of neurons, in ET1 rats compared to Aβ+ET1 rats, which showed characteristics delayed neuroglial activation. Stimulation of timely neuroglial reactivity may serve as a viable strategy to compensate for the neuronal loss in restoring CBF in comorbid cases of ischemia and Aβ toxicity.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1, Canada.
| | - Jasmine Randhawa
- Department of Biology, University of Western Ontario, London, N6A 5B7, Canada
| | - Abdullah N Najdat
- Department of Biology, University of Western Ontario, London, N6A 5B7, Canada
| | - David J Hill
- Departments of Medicine, Physiology, and Pharmacology, and Pediatrics, University of Western Ontario, London, N6A 5C1, Canada
- Lawson Health Research Institute, London, ON, N6A 4V2, Canada
| | - Edith J Arany
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, N6A 5C1, Canada
| |
Collapse
|
16
|
Riquier AJ, Sollars SI. Astrocytic response to neural injury is larger during development than in adulthood and is not predicated upon the presence of microglia. Brain Behav Immun Health 2020; 1:100010. [PMID: 38377419 PMCID: PMC8474582 DOI: 10.1016/j.bbih.2019.100010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
While contributions of microglia and astrocytes are regularly studied in various injury models, how these contributions differ across development remains less clear. We previously demonstrated developmental differences in microglial profiles across development in an injury model of the gustatory system. Nerves of the rat gustatory system have limited capacity to regenerate if injured during neonatal ages but show robust recovery if the injury occurs in adulthood. Using this developmentally disparate model of regenerative capacity, we quantified microglia and astrocytes in the rostral nucleus of the solitary tract (rNTS) following transection of the gustatory chorda tympani nerve (CTX) of neonatal and adult rats. We found that neonatal CTX induced an attenuated microglia response but a larger astrocyte response compared to adult CTX. To elucidate the interplay between the microglia and astrocyte responses in the CTX model, we used our novel intraperitoneal injection protocol for the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia in the neonatal and adult rat brain prior to and after CTX. PLX5622 depleted microglia by 80-90% within 3 days of treatment, which increased to > 90% by 7 days. After 14 days of PLX5622 treatment, microglia were depleted by > 96% in both neonates and adults while preserving baseline astrocyte quantity. Microglia depletion eliminated the adult astrocyte response to CTX, while the neonatal astrocyte response after injury remained robust. Our results show injecting PLX5622 is a viable means to deplete microglia in neonatal and adult rats and suggest developmentally distinct mechanisms for astrogliosis following neural injury.
Collapse
Affiliation(s)
- Andrew J. Riquier
- University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| | - Suzanne I. Sollars
- University of Nebraska at Omaha, 6001 Dodge Street, Omaha, NE, 68182, USA
| |
Collapse
|
17
|
Illing RB, Buschky H, Tadic A. Mitotic activity, modulation of DNA processing, and purinergic signalling in the adult rat auditory brainstem following sensory deafferentation. Eur J Neurosci 2019; 50:3985-4003. [PMID: 31325398 DOI: 10.1111/ejn.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/13/2019] [Accepted: 07/15/2019] [Indexed: 11/30/2022]
Abstract
A complex scenario of cellular network reorganization is caused by unilateral sensory deafferentation (USD) in the adult rat central auditory system. We asked whether this plasticity response involves mitosis. Immunohistochemistry was applied to brainstem sections for the detection and localization of mitotic markers Ki67 and PCNA, the growth-associated protein Gap43 and purine receptor P2X4. Fluorescent double staining was done for Ki67:PCNA and for both of them with HuC/HuD (neurons), S100 (astrocytes), Iba1 (microglia) and P2X4. Inquiring 1-7 days after USD, we found Ki67 expression to be changed in cellular profiles of cochlear nucleus (CN) with a significant increase in number by 1-3 days, followed by reset to control level within 1 week. USD-induced mitosis exclusively occurred in microglia and was absent elsewhere in the auditory brainstem. PCNA staining of small cellular profiles increased similarly but remained elevated. PCNA staining intensity also changed in CN, superior olive and inferior colliculus in neuronal nuclei, suggesting shifts in DNA processing. No apoptotic cell death was detected in any region of the adult auditory brainstem after USD. A comparison of anterograde and retrograde effects of nerve damage revealed proliferating microglia expressing P2X4 receptors in CN upon USD, but not in the facial nucleus after facial nerve transection. In conclusion, the deafferentation model studied here permits insight into the capacity of the adult mammalian brain to invoke mitosis among glia cells, adjustment of gene processing in neurons and purinergic signalling between them, jointly accounting for a multilayered neuro- and glioplastic response.
Collapse
Affiliation(s)
- Robert-Benjamin Illing
- Neurobiological Research Laboratory, Section for Clinical-Experimental Otology, Department of Otorhinolaryngology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Helena Buschky
- Neurobiological Research Laboratory, Section for Clinical-Experimental Otology, Department of Otorhinolaryngology, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Annamaria Tadic
- Neurobiological Research Laboratory, Section for Clinical-Experimental Otology, Department of Otorhinolaryngology, University Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Affiliation(s)
- Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Singapore, Singapore. .,Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| |
Collapse
|
19
|
Blume T, Focke C, Peters F, Deussing M, Albert NL, Lindner S, Gildehaus FJ, von Ungern-Sternberg B, Ozmen L, Baumann K, Bartenstein P, Rominger A, Herms J, Brendel M. Microglial response to increasing amyloid load saturates with aging: a longitudinal dual tracer in vivo μPET-study. J Neuroinflammation 2018; 15:307. [PMID: 30400912 PMCID: PMC6220478 DOI: 10.1186/s12974-018-1347-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/26/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Causal associations between microglia activation and β-amyloid (Aβ) accumulation during the progression of Alzheimer's disease (AD) remain a matter of controversy. Therefore, we used longitudinal dual tracer in vivo small animal positron emission tomography (μPET) imaging to resolve the progression of the association between Aβ deposition and microglial responses during aging of an Aβ mouse model. METHODS APP-SL70 mice (N = 17; baseline age 3.2-8.5 months) and age-matched C57Bl/6 controls (wildtype (wt)) were investigated longitudinally for 6 months using Aβ (18F-florbetaben) and 18 kDa translocator protein (TSPO) μPET (18F-GE180). Changes in cortical binding were transformed to Z-scores relative to wt mice, and microglial activation relative to amyloidosis was defined as the Z-score difference (TSPO-Aβ). Using 3D immunohistochemistry for activated microglia (Iba-1) and histology for fibrillary Aβ (methoxy-X04), we measure microglial brain fraction relative to plaque size and the distance from plaque margins. RESULTS Aβ-PET binding increased exponentially as a function of age in APP-SL70 mice, whereas TSPO binding had an inverse U-shape growth function. Longitudinal Z-score differences declined with aging, suggesting that microglial response declined relative to increasing amyloidosis in aging APP-SL70 mice. Microglial brain volume fraction was inversely related to adjacent plaque size, while the proximity to Aβ plaques increased with age. CONCLUSIONS Microglial activity decreases relative to ongoing amyloidosis with aging in APP-SL70 mice. The plaque-associated microglial brain fraction saturated and correlated negatively with increasing plaque size with aging.
Collapse
Affiliation(s)
- Tanja Blume
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Carola Focke
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Finn Peters
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Maximilian Deussing
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Franz-Josef Gildehaus
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | | | - Laurence Ozmen
- Roche, Pharma Research and Early Development, NORD DTA / Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Karlheinz Baumann
- Roche, Pharma Research and Early Development, NORD DTA / Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.,Department of Nuclear Medicine, Inselspital, University Hospital Bern, Freiburgstrasse 4, 3010, Bern, Switzerland.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE) Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany.,Center of Neuropathology and Prion Research, Feodor-Lynen-Straße 23, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
20
|
Spiller KJ, Restrepo CR, Khan T, Dominique MA, Fang TC, Canter RG, Roberts CJ, Miller KR, Ransohoff RM, Trojanowski JQ, Lee VMY. Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat Neurosci 2018; 21:329-340. [PMID: 29463850 PMCID: PMC5857237 DOI: 10.1038/s41593-018-0083-7] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022]
Abstract
Though motor neurons (MNs) selectively degenerate in amyotrophic lateral sclerosis (ALS), other cell types are likely involved in this disease. We recently generated rNLS8 mice in which human TDP-43 (hTDP-43) pathology could be reversibly induced in neurons and expected microglia would contribute to neurodegeneration. However, only subtle microglial changes were detected during disease in the spinal cord, despite progressive MN loss, but microglia still reacted to inflammatory triggers in these mice. Notably, after the hTDP-43 expression was suppressed, microglia dramatically proliferated and changed their morphology and gene expression profiles. These abundant, reactive microglia selectively cleared neuronal hTDP-43. Finally, when microgliosis was blocked during the early recovery phase using PLX3397, a CSF1R/c-kit inhibitor, rNLS8 mice failed to regain full motor function, revealing an important neuroprotective role for microglia. Therefore, reactive microglia exert neuroprotective functions in this ALS model and definition of the underlying mechanism could point towards novel therapeutic strategies.
Collapse
Affiliation(s)
- Krista J Spiller
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Clark R Restrepo
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tahiyana Khan
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Myrna A Dominique
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Kelly R Miller
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - John Q Trojanowski
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Response of the GABAergic System to Axotomy of the Rat Facial Nerve. Neurochem Res 2017; 43:324-339. [PMID: 29164431 DOI: 10.1007/s11064-017-2427-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/24/2017] [Accepted: 10/21/2017] [Indexed: 12/31/2022]
Abstract
The responses of inhibitory neurons/synapses to motoneuron injury in the cranial nervous system remain to be elucidated. In this study, we analyzed GABAA receptor (GABAAR) and GABAergic neurons at the protein level in the transected rat facial nucleus. Immunoblotting revealed that the GABAARα1 protein levels in the axotomized facial nucleus decreased significantly 5-14 days post-insult, and these levels remained low for 5 weeks. Immunohistochemical analysis indicated that the GABAARα1-expressing cells were motoneurons. We next examined the specific components of GABAergic neurons, including glutamate decarboxylase (GAD), vesicular GABA transporter (VGAT) and GABA transporter-1 (GAT-1). Immunoblotting indicated that the protein levels of GAD, VGAT and GAT-1 decreased transiently in the transected facial nucleus from 5 to 14 days post-insult, but returned to the control levels at 5 weeks post-insult. Although GABAARα1 protein levels in the transected nucleus did not return to their control levels for 5 weeks post-insult, the administration of glial cell line-derived neurotrophic factor at the cut site significantly ameliorated the reductions. Through these findings, we verified that the injured facial motoneurons suppressed the levels of GABAARα1 protein over the 5 weeks post-insult, presumably due to the deprivation of neurotrophic factor. On the other hand, the levels of the GAD, VGAT and GAT-1 proteins in GABAergic neurons were transiently reduced in the axotomized facial nucleus at 5-14 days post-insult, but recovered at 4-5 weeks post-insult.
Collapse
|
22
|
Füger P, Hefendehl JK, Veeraraghavalu K, Wendeln AC, Schlosser C, Obermüller U, Wegenast-Braun BM, Neher JJ, Martus P, Kohsaka S, Thunemann M, Feil R, Sisodia SS, Skodras A, Jucker M. Microglia turnover with aging and in an Alzheimer's model via long-term in vivo single-cell imaging. Nat Neurosci 2017; 20:1371-1376. [PMID: 28846081 DOI: 10.1038/nn.4631] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/02/2017] [Indexed: 12/29/2022]
Abstract
To clarify the role of microglia in brain homeostasis and disease, an understanding of their maintenance, proliferation and turnover is essential. The lifespan of brain microglia, however, remains uncertain, and reflects confounding factors in earlier assessments that were largely indirect. We genetically labeled single resident microglia in living mice and then used multiphoton microscopy to monitor these cells over time. Under homeostatic conditions, we found that neocortical resident microglia were long-lived, with a median lifetime of well over 15 months; thus, approximately half of these cells survive the entire mouse lifespan. While proliferation of resident neocortical microglia under homeostatic conditions was low, microglial proliferation in a mouse model of Alzheimer's β-amyloidosis was increased threefold. The persistence of individual microglia throughout the mouse lifespan provides an explanation for how microglial priming early in life can induce lasting functional changes and how microglial senescence may contribute to age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Petra Füger
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,DZNE-German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Jasmin K Hefendehl
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,DZNE-German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | - Ann-Christin Wendeln
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,DZNE-German Center for Neurodegenerative Diseases, Tübingen, Germany.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Christine Schlosser
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ulrike Obermüller
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,DZNE-German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Bettina M Wegenast-Braun
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,DZNE-German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Jonas J Neher
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,DZNE-German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Peter Martus
- Institute of Medical Biometry, University of Tübingen, Tübingen, Germany
| | - Shinichi Kohsaka
- Department of Neurochemistry, National Institute of Neuroscience, Kodaira, Tokyo, Japan
| | - Martin Thunemann
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Sangram S Sisodia
- Department of Neurobiology, The University of Chicago, Chicago, Illinois, USA
| | - Angelos Skodras
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,DZNE-German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,DZNE-German Center for Neurodegenerative Diseases, Tübingen, Germany
| |
Collapse
|
23
|
Corrigan F, Arulsamy A, Collins-Praino LE, Holmes JL, Vink R. Toll like receptor 4 activation can be either detrimental or beneficial following mild repetitive traumatic brain injury depending on timing of activation. Brain Behav Immun 2017; 64:124-139. [PMID: 28412141 DOI: 10.1016/j.bbi.2017.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/30/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022] Open
Abstract
A history of repeated concussion has been linked to the later development of neurodegeneration, which is associated with the accumulation of hyperphosphorylated tau and the development of behavioral deficits. However, the role that exogenous factors, such as immune activation, may play in the development of neurodegeneration following repeated mild traumatic brain injury (rmTBI) has not yet been explored. To investigate, male Sprague-Dawley rats were administered three mTBIs 5days apart using the diffuse impact-acceleration model to generate ∼100G. Sham animals underwent surgery only. At 1 or 5days following the last injury rats were given the TLR4 agonist, lipopolysaccharide (LPS, 0.1mg/kg), or saline. TLR4 activation had differential effects following rmTBI depending on the timing of activation. When given at 1day post-injury, LPS acutely activated microglia, but decreased production of pro-inflammatory cytokines like IL-6. This was associated with a reduction in neuronal injury, both acutely, with a restoration of levels of myelin basic protein (MBP), and chronically, preventing a loss of both MBP and PSD-95. Furthermore, these animals did not develop behavioral deficits with no changes in locomotion, anxiety, depressive-like behavior or cognition at 3months post-injury. Conversely, when LPS was given at 5days post-injury, it was associated acutely with an increase in pro-inflammatory cytokine production, with an exacerbation of neuronal damage and increased levels of aggregated and phosphorylated tau. At 3months post-injury, there was a slight exacerbation of functional deficits, particularly in cognition and depressive-like behavior. This highlights the complexity of the immune response following rmTBI and the need to understand how a history of rmTBI interacts with environmental factors to influence the potential to develop later neurodegeneration.
Collapse
Affiliation(s)
- Frances Corrigan
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Alina Arulsamy
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Lyndsey E Collins-Praino
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Joshua L Holmes
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
24
|
Riquier AJ, Sollars SI. Microglia density decreases in the rat rostral nucleus of the solitary tract across development and increases in an age-dependent manner following denervation. Neuroscience 2017; 355:36-48. [PMID: 28478126 DOI: 10.1016/j.neuroscience.2017.04.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/17/2017] [Accepted: 04/24/2017] [Indexed: 01/04/2023]
Abstract
Microglia are critical for developmental pruning and immune response to injury, and are implicated in facilitating neural plasticity. The rodent gustatory system is highly plastic, particularly during development, and outcomes following nerve injury are more severe in developing animals. The mechanisms underlying developmental plasticity in the taste system are largely unknown, making microglia an attractive candidate. To better elucidate microglia's role in the taste system, we examined these cells in the rostral nucleus of the solitary tract (rNTS) during normal development and following transection of the chorda tympani taste nerve (CTX). Rats aged 5, 10, 25, or 50days received unilateral CTX or no surgery and were sacrificed four days later. Brain tissue was stained for Iba1 or CD68, and both the density and morphology of microglia were assessed on the intact and transected sides of the rNTS. We found that the intact rNTS of neonatal rats (9-14days) shows a high density of microglia, most of which appear reactive. By 29days of age, microglia density significantly decreased to levels not significantly different from adults and microglia morphology had matured, with most cells appearing ramified. CD68-negative microglia density increased following CTX and was most pronounced for juvenile and adult rats. Our results show that microglia density is highest during times of normal gustatory afferent pruning. Furthermore, the quantity of the microglia response is higher in the mature system than in neonates. These findings link increased microglia presence with instances of normal developmental and injury induced alterations in the rNTS.
Collapse
Affiliation(s)
- Andrew J Riquier
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Suzanne I Sollars
- Department of Psychology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| |
Collapse
|
25
|
Microglia derived from the axotomized adult rat facial nucleus uptake glutamate and metabolize it to glutamine in vitro. Neurochem Int 2016; 102:1-12. [PMID: 27816478 DOI: 10.1016/j.neuint.2016.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/12/2016] [Accepted: 10/31/2016] [Indexed: 11/22/2022]
Abstract
Microglia in the axotomized adult rat facial nucleus (axoFN) have been shown to highly express a glutamate transporter (GLT-1). The microglia appear to serve as glutamate (Glu) scavengers in the axoFN. However, there is no evidence that the microglia actually have the ability to uptake Glu and convert it to Gln. In this study, we investigated whether axoFN-derived microglia (axoFN-microglia) can uptake Glu and metabolize it to Gln. Microglia obtained by explant culture of axoFN on poly(N-isopropylacrylamide)-grafted dishes were non-invasively sub-cultured onto dishes or wells. Immunoblotting and Glu-uptake experiments revealed that the axoFN-microglia uptake 14C-Glu mainly by GLT-1 activity. Immunoblotting and immunocytochemical methods clarified that axoFN-microglia express the Gln synthetase (GS) protein in the same manner as newborn rat brain-derived primary microglia (NRB-microglia). Biochemical analysis demonstrated that the specific activity of GS of axoFN-microglia is similar to that of NRB-microglia, suggesting that these microglia play equivalent roles in the metabolic conversion of Glu to Gln. Nuclear magnetic resonance analysis clarified that NRB-microglia metabolize [13C]Glu to [13C]Gln depending on the incubation time, inferring the similar potential of axoFN-microglia. Taken together, these results demonstrate that axoFN-microglia express functional GLT-1 and GS proteins, and are strongly suggested to serve as Glu scavengers in vivo.
Collapse
|
26
|
Wiberg R, Kingham PJ, Novikova LN. A Morphological and Molecular Characterization of the Spinal Cord after Ventral Root Avulsion or Distal Peripheral Nerve Axotomy Injuries in Adult Rats. J Neurotrauma 2016; 34:652-660. [PMID: 27297543 DOI: 10.1089/neu.2015.4378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Retrograde cell death in sensory dorsal root ganglion cells following peripheral nerve injury is well established. However, available data regarding the underlying mechanism behind injury induced motoneuron death are conflicting. By comparing morphological and molecular changes in spinal motoneurons after L4-L5 ventral root avulsion (VRA) and distal peripheral nerve axotomy (PNA) 7 and 14 days postoperatively, we aimed to gain more insight about the mechanism behind injury-induced motoneuron degeneration. Morphological changes in spinal cord were assessed by using quantitative immunohistochemistry. Neuronal degeneration was revealed by decreased immunostaining for microtubule-associated protein-2 in dendrites and synaptophysin in presynaptic boutons after both VRA and PNA. Significant motoneuron atrophy was already observed at 7 days post-injury, independently of injury type. Immunostaining for ED1 reactive microglia was significantly elevated in all experimental groups, as well as the astroglial marker glial fibrillary acidic protein (GFAP). Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis of the ventral horn from L4-L5 spinal cord segments revealed a significant upregulation of genes involved in programmed cell death including caspase-3, caspase-8, and related death receptors TRAIL-R, tumor necrosis factor (TNF)-R, and Fas following VRA. In contrast, following PNA, caspase-3 and the death receptor gene expression levels did not differ from the control, and there was only a modest increased expression of caspase-8. Moreover, the altered gene expression correlated with protein changes. These results show that the spinal motoneurons reacted in a similar fashion with respect to morphological changes after both proximal and distal injury. However, the increased expression of caspase-3, caspase-8, and related death receptors after VRA suggest that injury- induced motoneuron degeneration is mediated through an apoptotic mechanism, which might involve both the intrinsic and the extrinsic pathways.
Collapse
Affiliation(s)
- Rebecca Wiberg
- 1 Department of Integrative Medical Biology, Section of Anatomy, Umeå University , Umeå, Sweden .,2 Department of Surgical and Perioperative Sciences, Section of Hand and Plastic Surgery, Umeå University , Umeå, Sweden
| | - Paul J Kingham
- 1 Department of Integrative Medical Biology, Section of Anatomy, Umeå University , Umeå, Sweden
| | - Liudmila N Novikova
- 1 Department of Integrative Medical Biology, Section of Anatomy, Umeå University , Umeå, Sweden
| |
Collapse
|
27
|
Streit WJ, Xue QS. Microglia in dementia with Lewy bodies. Brain Behav Immun 2016; 55:191-201. [PMID: 26518296 DOI: 10.1016/j.bbi.2015.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/27/2022] Open
Abstract
Microglial activation (neuroinflammation) is often cited as a pathogenic factor in the development of neurodegenerative diseases. However, there are significant caveats associated with the idea that inflammation directly causes either α-synuclein pathology or neurofibrillary degeneration (NFD). We have performed immunohistochemical studies on microglial cells in five cases of dementia with Lewy bodies (DLB), median age 87, and nine cases of non-demented (ND) controls, median age 74, using tissue samples from the temporal lobe and the superior frontal gyrus. Three different antibodies known to label microglia and macrophages were employed: iba1, anti-CD68, and anti-ferritin. All DLB cases showed both α-synuclein pathology (Lewy bodies and neurites) and NFD ranging from Braak stage II to IV. In contrast, all controls were devoid of α-synuclein pathology but did show NFD ranging from Braak stage I to III. Using iba1 labeling, our current results show a notable absence of activated microglia in all cases with the exception of two controls that showed small focal areas of microglial activation and macrophage formation. Both iba1 and ferritin antibodies revealed a mixture of ramified and dystrophic microglial cells throughout the regions examined, and there were no measurable differences in the prevalence of dystrophic microglial cells between DLB and controls. Double-labeling for α-synuclein and iba1-positive microglia showed that cortical Lewy bodies were surrounded by both ramified and dystrophic microglial cells. We found an increase in CD68 expression in DLB cases relative to controls. Since microglial dystrophy has been linked to NFD and since it did not appear to be worse in DLB cases over controls, our findings support the idea that the additional Lewy body pathology in DLB is not the result of intensified microglial dystrophy. CD68 is likely associated with lipofuscin deposits in microglial cells which may be increased in DLB cases because of impaired proteostasis. Overall, we conclude that neurodegenerative changes in DLB are unlikely to result directly from activated microglia but rather from dysfunctional ones.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610, USA.
| | - Qing-Shan Xue
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, FL 32610, USA
| |
Collapse
|
28
|
Holmannová D, Koláčková M, Kondělková K, Kuneš P, Krejsek J, Andrýs C. CD200/CD200R Paired Potent Inhibitory Molecules Regulating Immune and Inflammatory Responses; part I: CD200/CD200R Structure, Activation, and Function. ACTA MEDICA (HRADEC KRÁLOVÉ) 2015; 55:12-7. [DOI: 10.14712/18059694.2015.68] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CD200/CD200R are highly conserved type I paired membrane glycoproteins that belong to the Ig superfamily containing a two immunoglobulin‑like domain (V, C). CD200 is broadly distributed in a variety of cell types, whereas CD200R is primarily expressed in myeloid and lymphoid cells. They fulfill multiple functions in regulating inflammation. The interaction between CD200/CD200R results in activation of the intracellular inhibitory pathway with RasGAP recruitment and thus contributes to effector cell inhibition. It was confirmed that the CD200R activation stimulates the differentiation of T cells to the Treg subset, upregulates indoleamine 2,3‑dioxygenase activity, modulates cytokine environment from a Th1 to a Th2 pattern, and facilitates an antiinflammatory IL‑10 and TGF‑β synthesis. CD200/CD200R are required for maintaining self‑tolerance. Many studies have demonstrated the importance of CD200 in controlling autoimmunity, inflammation, the development and spread of cancer, hypersensitivity, and spontaneous fetal loss.
Collapse
|
29
|
Abstract
Microglia, the major myeloid cells of the central nervous system (CNS) are implicated in physiologic processes and in the pathogenesis of several CNS disorders. Since their initial description early in the 20th century, our ability to identify and isolate microglia has significantly improved and new research is providing insight into the functions of these cells in sickness and in health. Here, we review recent advances in our understanding of the role of microglia in physiological and pathological processes of the CNS with a focus on multiple sclerosis and Alzheimer's disease. Because of the prominent roles CX3CR1 and its ligand fractalkine played in bringing about these advances, we discuss the physiological and pathological roles of microglia as viewed from the CX3CR1-fractalkine perspective, providing a unique viewpoint. Based on the most recent studies of molecular profiling of microglia, we also propose a molecular and functional definition of microglia that incorporates the properties attributed to these cells in recent years.
Collapse
Affiliation(s)
- Richard M Ransohoff
- Neuroinflammation Research Center, Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195
| | - Joseph El Khoury
- Division of Infectious Diseases and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129
| |
Collapse
|
30
|
Takezawa Y, Baba O, Kohsaka S, Nakajima K. Accumulation of glycogen in axotomized adult rat facial motoneurons. J Neurosci Res 2015; 93:913-21. [DOI: 10.1002/jnr.23546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/25/2014] [Accepted: 11/30/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Yosuke Takezawa
- Department of Bioinformatics; Faculty of Engineering, Soka University; Tokyo Japan
| | - Otto Baba
- Department of Oral Function and Molecular Biology; School of Dentistry, Ohu University; Koriyamashi Japan
| | - Shinichi Kohsaka
- Department of Neurochemistry; National Institute of Neuroscience; Tokyo Japan
| | - Kazuyuki Nakajima
- Department of Bioinformatics; Faculty of Engineering, Soka University; Tokyo Japan
| |
Collapse
|
31
|
Takezawa Y, Kohsaka S, Nakajima K. Transient down-regulation and restoration of glycogen synthase levels in axotomized rat facial motoneurons. Brain Res 2014; 1586:34-45. [PMID: 25152465 DOI: 10.1016/j.brainres.2014.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 11/19/2022]
Abstract
In adult rats, transection of the facial nerve causes a functional down-regulation of motoneurons and glial activation/proliferation. It has not been clear how energy-supplying systems are regulated in an axotomized facial nucleus. Here we investigated the regulation of molecules involved in glycogen degradation/synthesis in axotomized facial nuclei in rats. Immunoblotting revealed that the amounts of glycogen phosphorylase in the contralateral and ipsilateral nuclei were unchanged for the first 14 days, whereas the amount of glycogen synthase in the axotomized facial nuclei was significantly decreased from days 7-14 post-insult. A quantitative analysis estimated that the glycogen synthase levels in the transected nucleus were reduced to approx. 50% at 14 days post-injury. An immunohistochemical study showed that the injured motoneurons had decreased expressions of glycogen synthase proteins. The glycogen synthase levels in the axotomized facial nucleus had returned to control levels by 5 weeks post-insult, as had the cholinergic markers. The immunohistochemical study also revealed the recovery of glycogen synthase levels at the later stage. The glycogen phosphorylase levels in the injured nucleus were not significantly changed during weeks 3-5 post-insult. Taken together, these results demonstrated that the injured facial motoneurons transiently reduced glycogen synthase levels at around 1-2 weeks post-insult, but restored the levels at 4-5 weeks post-insult.
Collapse
Affiliation(s)
- Yosuke Takezawa
- Department of Bioinformatics, Faculty of Engineering, Soka University, Tokyo 192-8577, Japan
| | - Shinichi Kohsaka
- Department of Neurochemistry, National Institute of Neuroscience, Tokyo 187-8502, Japan
| | - Kazuyuki Nakajima
- Department of Bioinformatics, Faculty of Engineering, Soka University, Tokyo 192-8577, Japan.
| |
Collapse
|
32
|
Lab-on-a-brain: implantable micro-optical fluidic devices for neural cell analysis in vivo. Sci Rep 2014; 4:6721. [PMID: 25335545 PMCID: PMC4205880 DOI: 10.1038/srep06721] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/03/2014] [Indexed: 12/02/2022] Open
Abstract
The high-resolution imaging of neural cells in vivo has brought about great progress in neuroscience research. Here, we report a novel experimental platform, where the intact brain of a living mouse can be studied with the aid of a surgically implanted micro-optical fluidic device; acting as an interface between neurons and the outer world. The newly developed device provides the functions required for the long-term and high-resolution observation of the fine structures of neurons by two-photon laser scanning microscopy and the microfluidic delivery of chemicals or drugs directly into the brain. A proof-of-concept experiment of single-synapse stimulation by two-photon uncaging of caged glutamate and observation of dendritic spine shrinkage over subsequent days demonstrated a promising use for the present technology.
Collapse
|
33
|
Sierra A, Navascués J, Cuadros MA, Calvente R, Martín-Oliva D, Ferrer-Martín RM, Martín-Estebané M, Carrasco MC, Marín-Teva JL. Expression of inducible nitric oxide synthase (iNOS) in microglia of the developing quail retina. PLoS One 2014; 9:e106048. [PMID: 25170849 PMCID: PMC4149512 DOI: 10.1371/journal.pone.0106048] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/28/2014] [Indexed: 12/17/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS), which produce large amounts of nitric oxide (NO), is induced in macrophages and microglia in response to inflammatory mediators such as LPS and cytokines. Although iNOS is mainly expressed by microglia that become activated in different pathological and experimental situations, it was recently reported that undifferentiated amoeboid microglia can also express iNOS during normal development. The aim of this study was to investigate the pattern of iNOS expression in microglial cells during normal development and after their activation with LPS by using the quail retina as model. iNOS expression was analyzed by iNOS immunolabeling, western-blot, and RT-PCR. NO production was determined by using DAR-4M AM, a reliable fluorescent indicator of subcellular NO production by iNOS. Embryonic, postnatal, and adult in situ quail retinas were used to analyze the pattern of iNOS expression in microglial cells during normal development. iNOS expression and NO production in LPS-treated microglial cells were investigated by an in vitro approach based on organotypic cultures of E8 retinas, in which microglial cell behavior is similar to that of the in situ retina, as previously demonstrated in our laboratory. We show here that amoeboid microglia in the quail retina express iNOS during normal development. This expression is stronger in microglial cells migrating tangentially in the vitreal part of the retina and is downregulated, albeit maintained, when microglia differentiate and become ramified. LPS treatment of retina explants also induces changes in the morphology of amoeboid microglia compatible with their activation, increasing their lysosomal compartment and upregulating iNOS expression with a concomitant production of NO. Taken together, our findings demonstrate that immature microglial cells express iNOS during normal development, suggesting a certain degree of activation. Furthermore, LPS treatment induces overactivation of amoeboid microglia, resulting in a significant iNOS upregulation.
Collapse
Affiliation(s)
- Ana Sierra
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Julio Navascués
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Miguel A. Cuadros
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Ruth Calvente
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - David Martín-Oliva
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Rosa M. Ferrer-Martín
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - María Martín-Estebané
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - María-Carmen Carrasco
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - José L. Marín-Teva
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
34
|
Butt MT, Whitney KM, Davis W, Akella S, Parker S, Foley GL. Microscopic background changes in brains of cynomolgus monkeys. Toxicol Pathol 2014; 43:513-8. [PMID: 24935239 DOI: 10.1177/0192623314537723] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brain sections from control cynomolgus monkeys (Macaca fascicularis) used in toxicology studies were evaluated retrospectively in order to better understand spontaneous background changes in this species. Hematoxylin and eosin-stained slides from 76 animals (38 males and 38 females) of 9 studies were examined. Eleven animals (9 males and 2 females) were each observed to have 1 to 3 findings within the brain sections examined, for a total of 19 findings. No findings were noted in the spinal cord. The most common finding was focal to multifocal perivascular infiltration of mononuclear cells, affecting the parenchyma, the meninges, or the choroid plexus. Additionally, focal gliosis was observed in 6 animals and a single focus of hemosiderin deposition (coincident with focal gliosis and mononuclear cell infiltrate) was noted in 1 animal. Most of the glial foci were composed of cells consistent with microglial cells, with or without admixed lymphocytes. All findings were of slight or minimal severity, lacked an apparent cause, and were considered incidental and of negligible biologic significance. An awareness of the spontaneous incidence of these background findings may facilitate the discernment of toxicologically relevant effects when these findings are observed.
Collapse
Affiliation(s)
| | | | - Wendell Davis
- Biogen Idec, Cambridge, Massachusetts, USA Present Address: Charles River Laboratories, Sherbrooke, Quebec, Canada
| | - Surekha Akella
- Biotherapeutics, AbbVie Inc., Redwood City, California, USA
| | | | - George L Foley
- Global Preclinical Safety, AbbVie Inc., North Chicago, Illinois, USA
| |
Collapse
|
35
|
Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function. J Neurosci 2014; 34:6495-509. [PMID: 24806676 DOI: 10.1523/jneurosci.0073-14.2014] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The sleep disorder narcolepsy results from loss of hypothalamic orexin/hypocretin neurons. Although narcolepsy onset is usually postpubertal, current mouse models involve loss of either orexin peptides or orexin neurons from birth. To create a model of orexin/hypocretin deficiency with closer fidelity to human narcolepsy, diphtheria toxin A (DTA) was expressed in orexin neurons under control of the Tet-off system. Upon doxycycline removal from the diet of postpubertal orexin-tTA;TetO DTA mice, orexin neurodegeneration was rapid, with 80% cell loss within 7 d, and resulted in disrupted sleep architecture. Cataplexy, the pathognomic symptom of narcolepsy, occurred by 14 d when ∼5% of the orexin neurons remained. Cataplexy frequency increased for at least 11 weeks after doxycycline. Temporary doxycycline removal followed by reintroduction after several days enabled partial lesion of orexin neurons. DTA-induced orexin neurodegeneration caused a body weight increase without a change in food consumption, mimicking metabolic aspects of human narcolepsy. Because the orexin/hypocretin system has been implicated in the control of metabolism and addiction as well as sleep/wake regulation, orexin-tTA; TetO DTA mice are a novel model in which to study these functions, for pharmacological studies of cataplexy, and to study network reorganization as orexin input is lost.
Collapse
|
36
|
Li J, Lin L, Du L, Xu C, Wang Y, Cao J, Wang Q, Fan F, Wang X, Wang Y, Liu Q. Radioprotective effect of a pan-caspase inhibitor in a novel model of radiation injury to the nucleus of the abducens nerve. Mol Med Rep 2014; 10:1433-7. [PMID: 24939579 DOI: 10.3892/mmr.2014.2334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 05/19/2014] [Indexed: 11/06/2022] Open
Abstract
There is increasing evidence that neuronal cell death occurs via extrinsic (death receptors) and intrinsic (mitochondria) pathways. Radiation induces caspase activation fundamentally via the mitochondrial pathway. Caspases are the key regulators of apoptosis. Healthy male Sprague‑Dawley rats were used in the present study to examine the radioprotective effect of a type of pan-caspase inhibitor, z-VAD-fmk, following radiation, to investigate the effects of caspase blockade in a model of the nucleus of the abducens nerve. z-VAD-fmk was injected intracerebroventricularly as a bolus injection (0.2 µg/h for 1 h) into rats prior to exposure to radiation. Irradiation was conducted at room temperature at a dose of radiation of 4 Gy. The present study performed immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and western blot analysis and identified no significant changes in the expression of the X-linked inhibitor of apoptosis protein (XIAP) following radiation (P>0.05). As compared with the radiation alone group, the quantification of TUNEL-positive neurons was reduced in z-VAD‑fmk-treated animals following radiation (P<0.01). Inhibition of caspase induced by z-VAD‑fmk reduced the expression and activation of caspase-3, -8 and -9 (P<0.01). z-VAD-fmk effectively prevented radiation-induced apoptosis and this caspase inhibitor may be a potential therapeutic target in the treatment of brain radiation injury. The nucleus of the abducens nerve may be used as a radiation injury model, providing visual information and data on the apoptotic morphology of the abducens nucleus.
Collapse
Affiliation(s)
- Jianguo Li
- Department of Human Anatomy, The Medical School of Inner Mongolia University for the Nationalities, Neimenggu, Tongliao 028041, P.R. China
| | - Li Lin
- Key Laboratory of Cancer Prevention and Therapy, Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, P.R. China
| | - Liqing Du
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Chang Xu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Yan Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Jia Cao
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Qin Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Feiyue Fan
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Xiaoping Wang
- Department of Human Anatomy, The Medical School of Inner Mongolia University for the Nationalities, Neimenggu, Tongliao 028041, P.R. China
| | - Yafei Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, P.R. China
| | - Qiang Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| |
Collapse
|
37
|
Minocycline upregulates pro-survival genes and downregulates pro-apoptotic genes in experimental glaucoma. Graefes Arch Clin Exp Ophthalmol 2014; 252:761-72. [PMID: 24566901 DOI: 10.1007/s00417-014-2588-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/16/2014] [Accepted: 01/31/2014] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Minocycline, a second-generation tetracycline with anti-inflammatory and anti-apoptotic properties, was reported to be neuroprotective in experimental glaucoma and optic nerve transection as well as in other neurodegenerative diseases. The purpose of this study was to investigate the mechanism underlying that neuroprotective effect in murine glaucoma. METHODS Elevated intraocular pressure was induced in 159 rats by the translimbal photocoagulation laser model. Minocycline 22 mg/kg or saline was injected intraperitoneally starting 3 days before the induction of glaucoma, and continued daily until the animals were sacrificed. The effect of minocycline on gene expression was evaluated using a quantitative polymerase chain reaction (PCR) array for apoptosis. The involvement of selected pro-apoptotic, pro-survival, and inflammatory genes was further analyzed by quantitative real-time PCR at multiple time points. Immunohistochemistry was used to study the effect of minocycline on microglial activation and to localize Bcl-2 changes. RESULTS Minocycline significantly increased the anti-apoptotic gene Bcl-2 expression at day 8 and day 14 after the induction of glaucoma (p = 0.04 and p = 0.03 respectively), and decreased IL-18 expression in the retina at day 14 and day 30 (p = 0.04 and p < 0.001 respectively). PCR arrays suggested that additional genes were affected by minocycline, including Tp53bp2, TRAF4, osteoprotegerin, caspase 1 and 4, and members of the tumor necrosis factor superfamily. Additionally, minocycline decreased the amount of activated microglia in glaucomatous eyes. CONCLUSIONS These results suggest that minocycline upregulates pro-survival genes and downregulates apoptotic genes, thus shifting the balance toward the anti-apoptotic side in experimental glaucoma.
Collapse
|
38
|
Li J, Wang Y, DU L, Xu C, Cao J, Wang Q, Liu Q, Fan F. Radiation-induced cytochrome c release and the neuroprotective effects of the pan-caspase inhibitor z-VAD-fmk in the hypoglossal nucleus. Exp Ther Med 2013; 7:383-388. [PMID: 24396410 PMCID: PMC3881038 DOI: 10.3892/etm.2013.1419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 11/04/2013] [Indexed: 02/02/2023] Open
Abstract
Numerous studies have demonstrated that neuronal cell death occurs via extrinsic (death receptors) and intrinsic (mitochondria) pathways. Radiation induces caspase activation fundamentally via the mitochondrial pathway. To investigate the role of caspase, a cell permeable pan-caspase inhibitor, z-VAD-fmk [N-benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone], was used to investigate the effects of caspase blockade in vivo following irradiation. Adult male Sprague-Dawley rats (weight, 250–300 g) underwent irradiation at room temperature with a 4-Gy dose of radiation. Since z-VAD-fmk does not penetrate the blood-brain barrier, it was applied intracerebroventricularly via a bolus injection (0.2 μg/h for 1 h). Terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) demonstrated that z-VAD-fmk reduced the numbers of TUNEL-positive cells within the hypoglossal nucleus, suggesting that intervention in the caspase cascade following radiation may have therapeutic applications. The caspase inhibitor z-VAD-fmk reduced the expression and activation of caspase-3, caspase-8 and caspase-9 in the irradiated rats, indicating that caspase may be a potential therapeutic target in the treatment of brain radiation injury. Treatment with z-VAD-fmk also reduced the appearance of cytochrome c within the cytosolic fraction following radiation. The hypoglossal nucleus may be used as a model of radiation-induced injury in the central nervous system, providing visual information and displaying apoptotic nuclear morphology.
Collapse
Affiliation(s)
- Jianguo Li
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China ; Department of Human Anatomy, The Medical School of Inner Mongolia University for the Nationalities, Tongliao, Neimenggu 028041, P.R. China
| | - Yan Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Liqing DU
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Chang Xu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Jia Cao
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Qin Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Qiang Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| | - Feiyue Fan
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Nankai, Tianjin 300192, P.R. China
| |
Collapse
|
39
|
Hundeshagen G, Szameit K, Thieme H, Finkensieper M, Angelov D, Guntinas-Lichius O, Irintchev A. Deficient functional recovery after facial nerve crush in rats is associated with restricted rearrangements of synaptic terminals in the facial nucleus. Neuroscience 2013; 248:307-18. [DOI: 10.1016/j.neuroscience.2013.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/21/2013] [Accepted: 06/13/2013] [Indexed: 01/18/2023]
|
40
|
Casimiro I, Chinnasamy P, Sibinga NES. Genetic inactivation of the allograft inflammatory factor-1 locus. Genesis 2013; 51:734-40. [PMID: 23929822 DOI: 10.1002/dvg.22424] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 11/10/2022]
Abstract
Allograft inflammatory factor-1 (Aif-1) is a 17 kDa EF hand motif-bearing protein expressed primarily in developing spermatids and cells of monocyte/macrophage lineage. Increased Aif-1 expression has been identified in clinically important conditions, including rheumatoid arthritis, systemic sclerosis, endometriosis, and transplant-associated arteriosclerosis. Largely similar gene products arising from the same locus are known as ionized Ca(2+) binding adapter-1 (Iba1), microglial response factor-1 (MRF1), and daintain; Iba1 in particular has emerged as a histologic marker of microglia and their activation in pathologic CNS conditions, including the response to facial nerve axotomy and stroke, uveitis, and experimental autoimmune neuritis and encephalomyelitis. Nevertheless, how aif-1 gene products affect cellular function is only partly understood, and the physiologic significance of these products for male fertility, immune system development, and inflammation has not been described. To permit such investigations, we generated a mouse line with targeted deletion of the coding regions of the aif-1 gene. Here we report that mice lacking Aif-1 breed well and show normal post-natal growth, but show resistance to disease in a model of collagen-induced arthritis. We anticipate that these mice will be useful for studies of Aif-1 function in a variety of immune and inflammatory disease models.
Collapse
Affiliation(s)
- Isabel Casimiro
- Department of Medicine (Cardiovascular Division), Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461
| | | | | |
Collapse
|
41
|
Yamada J, Jinno S. Novel objective classification of reactive microglia following hypoglossal axotomy using hierarchical cluster analysis. J Comp Neurol 2013; 521:1184-201. [PMID: 22987820 DOI: 10.1002/cne.23228] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/01/2012] [Accepted: 09/10/2012] [Indexed: 12/30/2022]
Abstract
A total of 136 microglia were intracellularly labeled and their morphological features were evaluated by 3D morphometric measurement. According to hierarchical cluster analysis, microglia were objectively categorized into four groups termed types I-IV. The validity of this classification was confirmed by principal component analysis and linear discriminant analysis. Type I microglia were found in sham-operated mice and in mice sacrificed 28 days (D28) after axotomy. The appearance of type I cells was similar to so-called ramified microglia in a resting state. Type II microglia were mainly seen in D14 mice, which exhibited small cell bodies with thin and short processes. Interestingly, none of the already-known morphological types of microglia seemed to be comparable to type II cells. We thus named type II microglia "small ramified" cells. Types III and IV microglia were mainly seen in D3 and D7 mice and their appearances were similar to hypertrophied and bushy cells, respectively. Proliferating cell nuclear antigen (PCNA), a mitosis marker, was almost exclusively expressed in D3 mice. On the other hand, voltage-dependent potassium channels (Kv1.3/1.5), neurotoxicity-related molecules, were most highly expressed in D14 mice. Increased expression of Kv1.3/1.5 in D14 mice was suppressed by minocycline treatment. These findings indicate that type II and III microglia may be involved in neurotoxicity and mitosis, respectively. Type IV microglial cells are assumed to be in the process of losing mitotic activity and gaining neurotoxicity. Our data also suggest that type II microglia can be a potential therapeutic target against neurodegenerative diseases.
Collapse
Affiliation(s)
- Jun Yamada
- Department of Developmental Molecular Anatomy, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
42
|
Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Roddie C, Henry JY, Yagita H, Wolchok JD, Peggs KS, Ravetch JV, Allison JP, Quezada SA. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. ACTA ACUST UNITED AC 2013; 210:1695-710. [PMID: 23897981 PMCID: PMC3754863 DOI: 10.1084/jem.20130579] [Citation(s) in RCA: 1127] [Impact Index Per Article: 93.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anti–CTLA-4 antibody induces selective depletion of T reg cells within tumor lesions in a manner that is dependent on the presence of Fc gamma receptor-expressing macrophages within the tumor microenvironment. Treatment with monoclonal antibody specific for cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), an inhibitory receptor expressed by T lymphocytes, has emerged as an effective therapy for the treatment of metastatic melanoma. Although subject to debate, current models favor a mechanism of activity involving blockade of the inhibitory activity of CTLA-4 on both effector (T eff) and regulatory (T reg) T cells, resulting in enhanced antitumor effector T cell activity capable of inducing tumor regression. We demonstrate, however, that the activity of anti–CTLA-4 antibody on the T reg cell compartment is mediated via selective depletion of T reg cells within tumor lesions. Importantly, T reg cell depletion is dependent on the presence of Fcγ receptor–expressing macrophages within the tumor microenvironment, indicating that T reg cells are depleted in trans in a context-dependent manner. Our results reveal further mechanistic insight into the activity of anti-CTLA-4–based cancer immunotherapy, and illustrate the importance of specific features of the local tumor environment on the final outcome of antibody-based immunomodulatory therapies.
Collapse
Affiliation(s)
- Tyler R Simpson
- Department of Immunology, M D Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Iseki K, Hagino S, Nikaido T, Zhang Y, Mori T, Yokoya S, Hozumi Y, Goto K, Wanaka A, Tase C. Gliosis-specific transcription factor OASIS coincides with proteoglycan core protein genes in the glial scar and inhibits neurite outgrowth. Biomed Res 2013; 33:345-53. [PMID: 23268958 DOI: 10.2220/biomedres.33.345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OASIS gene, a member of the CREB/ATF transcription factor family, is upregulated in gliosis after CNS injury. However it remains to be determined how OASIS is implicated in gliotic reaction. In a glial scar, chondroitin sulfate proteoglycans (CSPGs) are also upregulated, which engenders the inhibition of axonal regeneration. We investigated the functional role of OASIS in gliosis in relation to CSPG core proteins that render lesions non-permissive for regenerating axons. We first examined the gene expression localization of OASIS using several markers in a cryo-injured mouse brain and compared the expression pattern of CSPG core protein genes with that of OASIS in a glial scar by double-labeling in situ hybridization. Our findings suggest that OASIS is induced in proximal reactive astrocytes that exhibit upregulated expression for CSPGs, including NG2 proteoglycan, versican, brevican, neurocan, and phosphacan core. Furthermore, the membrane fraction derived from OASIS-transfected C6 cells inhibits neurite outgrowth of NG108-15 cells, whereas its neurite outgrowth inhibitory effect is abrogated after chondroitinase ABC treatment. OASIS is likely to be involved in the regulatory mechanism of non-permissive environments for axonal outgrowth.
Collapse
Affiliation(s)
- Ken Iseki
- Department of Emergency and Critical Care Medicine, Yamagata University School of Medicine, Iida-nishi, Yamagata, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Functional down-regulation of axotomized rat facial motoneurons. Brain Res 2013; 1507:35-44. [DOI: 10.1016/j.brainres.2013.02.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/22/2013] [Accepted: 02/23/2013] [Indexed: 11/19/2022]
|
45
|
Raslan A, Ernst P, Werle M, Thieme H, Szameit K, Finkensieper M, Guntinas-Lichius O, Irintchev A. Reduced cholinergic and glutamatergic synaptic input to regenerated motoneurons after facial nerve repair in rats: potential implications for recovery of motor function. Brain Struct Funct 2013; 219:891-909. [DOI: 10.1007/s00429-013-0542-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/12/2013] [Indexed: 02/02/2023]
|
46
|
Wu B, Song B, Yang H, Huang B, Chi B, Guo Y, Liu H. Central nervous system damage due to acute paraquat poisoning: An experimental study with rat model. Neurotoxicology 2013; 35:62-70. [DOI: 10.1016/j.neuro.2012.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/08/2012] [Accepted: 12/08/2012] [Indexed: 12/17/2022]
|
47
|
Abstract
The type 1 membrane glycoprotein CD200, widely expressed on multiple cells/tissues, uses a structurally similar receptor (CD200R1), whose expression is more restricted to cells of the myeloid and lymphoid lineages, to transmit signals affecting responses in multiple physiological systems. Thus CD200 expression is reported to exert effects on cancer growth, autoimmune and allergic disorders, infection, transplantation, bone development and homeostasis, and reproductive biology. It was initially thought, based on the idea that CD200R1 was mostly expressed on cells of myeloid origin, that CD200:CD200R1 interactions were primarily dedicated to controlling myeloid cell function. However additional members of the CD200R family have now also been identified, although their function(s) remain unclear, and CD200R1 itself is now known to be expressed by subsets of T cells and other cells. Together these observations add layers of complexity to our understanding of CD200-related regulation. In common with a number of physiological systems, the mechanism(s) of CD200-induced signaling seem to fit within a similar framework of opposing actions of kinases and phosphatases. This paper highlights the advances in our knowledge of immunoregulation achieved following CD200:CD200R interaction and the potential clinical applicability of that information.
Collapse
Affiliation(s)
- Reginald M. Gorczynski
- Departments of Surgery and Immunology, University Health Network and The Toronto Hospital, Toronto, ON, Canada M5G 1L7
| |
Collapse
|
48
|
Minten C, Terry R, Deffrasnes C, King NJC, Campbell IL. IFN regulatory factor 8 is a key constitutive determinant of the morphological and molecular properties of microglia in the CNS. PLoS One 2012; 7:e49851. [PMID: 23166780 PMCID: PMC3498170 DOI: 10.1371/journal.pone.0049851] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 10/15/2012] [Indexed: 01/13/2023] Open
Abstract
IFN regulatory factor (IRF) 8 is a transcription factor that has a key role in the cellular response to IFN-γ and is pivotal in myeloid cell differentiation. Whether IRF8 plays a role in the development and function of microglia, the tissue-resident myeloid cells of the brain, is unknown. Here, we show IRF8 is a constitutively produced nuclear factor in microglia, which suggested that IRF8 might also be a key homeostatic transcriptional determinant of the microglial cell phenotype. In support of this, in mice with a targeted disruption of the IRF8 gene, microglia were increased in number and showed gross alterations in morphology and surface area. In situ analysis of some key myeloid markers revealed that IRF8-deficient microglia had significantly reduced levels of Iba1, but increased levels of CD206 (mannose receptor) and F4/80 as well as increased tomato lectin binding. Analysis of microglia ex vivo revealed IRF8-deficient microglia had significantly increased levels of CD45, CD11b and F4/80, but significantly decreased levels of the chemokine receptors CCR2, CCR5 and CX3CR1. The known involvement of some of these molecular markers in membrane dynamics and phagocytosis led us to examine the phagocytic capacity of cultured IRF8-deficient microglia, however, this was found to be similar to wild type microglia. We conclude IRF8 is a constitutively produced nuclear factor in resident microglia of the CNS being a crucial transcriptional determinant of the phenotype of these cells in the healthy brain.
Collapse
Affiliation(s)
- Carsten Minten
- The School of Molecular Bioscience, The University of Sydney, New South Wales, Australia
| | - Rachael Terry
- The Discipline of Pathology, The University of Sydney, New South Wales, Australia
| | - Celine Deffrasnes
- The Discipline of Pathology, The University of Sydney, New South Wales, Australia
| | - Nicholas J. C. King
- The Discipline of Pathology, The University of Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, New South Wales, Australia
| | - Iain L. Campbell
- The School of Molecular Bioscience, The University of Sydney, New South Wales, Australia
- The Bosch Institute, The University of Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
49
|
Spatiotemporal pattern of rod degeneration in the S334ter-line-3 rat model of retinitis pigmentosa. Cell Tissue Res 2012; 351:29-40. [DOI: 10.1007/s00441-012-1522-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/18/2012] [Indexed: 11/25/2022]
|
50
|
Horiuchi M, Wakayama K, Itoh A, Kawai K, Pleasure D, Ozato K, Itoh T. Interferon regulatory factor 8/interferon consensus sequence binding protein is a critical transcription factor for the physiological phenotype of microglia. J Neuroinflammation 2012; 9:227. [PMID: 23020843 PMCID: PMC3546867 DOI: 10.1186/1742-2094-9-227] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/13/2012] [Indexed: 01/15/2023] Open
Abstract
Background Recent fate-mapping studies establish that microglia, the resident mononuclear phagocytes of the CNS, are distinct in origin from the bone marrow-derived myeloid lineage. Interferon regulatory factor 8 (IRF8, also known as interferon consensus sequence binding protein) plays essential roles in development and function of the bone marrow-derived myeloid lineage. However, little is known about its roles in microglia. Methods The CNS tissues of IRF8-deficient mice were immunohistochemically analyzed. Pure microglia isolated from wild-type and IRF8-deficient mice were studied in vitro by proliferation, immunocytochemical and phagocytosis assays. Microglial response in vivo was compared between wild-type and IRF8-deficient mice in the cuprizon-induced demyelination model. Results Our analysis of IRF8-deficient mice revealed that, in contrast to compromised development of IRF8-deficient bone marrow myeloid lineage cells, development and colonization of microglia are not obviously affected by loss of IRF8. However, IRF8-deficient microglia demonstrate several defective phenotypes. In vivo, IRF8-deficient microglia have fewer elaborated processes with reduced expression of IBA1/AIF1 compared with wild-type microglia, suggesting a defective phenotype. IRF8-deficient microglia are significantly less proliferative in mixed glial cultures than wild-type microglia. Unlike IRF8-deficient bone marrow myeloid progenitors, exogenous macrophage colony stimulating factor (colony stimulating factor 1) (M-CSF (CSF1)) restores their proliferation in mixed glial cultures. In addition, IRF8-deficient microglia exhibit an exaggerated growth response to exogenous granulocyte-macrophage colony stimulating factor (colony stimulating factor 2) (GM-CSF (CSF2)) in the presence of other glial cells. IRF8-deficient microglia also demonstrate altered cytokine expressions in response to interferon-gamma and lipopolysaccharide in vitro. Moreover, the maximum phagocytic capacity of IRF8-deficient microglia is reduced, although their engulfment of zymosan particles is not overtly impaired. Defective scavenging activity of IRF8-deficient microglia was further confirmed in vivo in the cuprizone-induced demyelination model in mice. Conclusions This study is the first to demonstrate the essential contribution of IRF8-mediated transcription to a broad range of microglial phenotype. Microglia are distinct from the bone marrow myeloid lineage with respect to their dependence on IRF8-mediated transcription.
Collapse
Affiliation(s)
- Makoto Horiuchi
- Department of Neurology, University of California Davis, School of Medicine, 4860 Y Street, Sacramento, CA 95817, USA
| | | | | | | | | | | | | |
Collapse
|