1
|
Crestini A, Vona R, Lo Giudice M, Sbriccoli M, Piscopo P, Borrelli A, Rivabene R, Ricceri L, Mancini A, Confaloni A. Differentiation-Dependent Effects of a New Recombinant Manganese Superoxide Dismutase on Human SK-N-BE Neuron-Like Cells. Neurochem Res 2018; 44:400-411. [PMID: 30471001 DOI: 10.1007/s11064-018-2686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 09/24/2018] [Accepted: 11/16/2018] [Indexed: 11/29/2022]
Abstract
We have recently isolated a new isoform of recombinant manganese superoxide dismutase (rMnSOD) which provides a potent antitumor activity and strongly counteracts the occurrence of oxidative stress and tissue inflammation. This isoform, in addition to the enzymatic action common to all SODs, also shows special functional and structural properties, essentially due to the presence of a first leader peptide that allows the protein to enter easily into cells. Among endogenous antioxidants, SOD constitutes the first line of natural defence against pathological effects induced by an excess of free radicals. Here, we firstly describe the effects of our rMnSOD administration on the proliferant and malignant undifferentiated human neuroblastoma SK-N-BE cell line. Moreover, we also test the effects of rMnSOD in the all trans retinoic-differentiated SK-N-BE neuron-like cells, a quiescent "not malignant" model. While rMnSOD showed an antitumor activity on proliferating cells, a poor sensitivity to rMnSOD overload in retinoid-differentiated neuron-like cells was observed. However, in the latter case, in presence of experimental-induced oxidative stress, overcharge of rMnSOD enhanced the oxidant effects, through an increase of H2O2 due to low activity of both catalase and glutathione peroxidase. In conclusion, our data show that rMnSOD treatment exerts differential effects, which depend upon both cell differentiation and redox balance, addressing attention to the potential use of the recombinant enzyme on differentiated neurons. These facts ultimately pave the way for further preclinical studies aimed at evaluation of rMnSOD effects in models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessio Crestini
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - Rosa Vona
- Biomarkers Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Rome, Italy
| | - Maria Lo Giudice
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - Marco Sbriccoli
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - Antonella Borrelli
- Molecular Biology and Viral Oncology Unit, Department of Experimental Oncology, Istituto Nazionale Tumori, "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Roberto Rivabene
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - Laura Ricceri
- Centre for Behavioural Sciences and Mental Health, Italian National Institute of Health, Rome, Italy
| | - Aldo Mancini
- Leadhexa Biotechnologies Inc., San Francisco, CA, USA
| | - Annamaria Confaloni
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy.
| |
Collapse
|
2
|
Kim S, Jeong J, Jung HS, Kim B, Kim YE, Lim DS, Kim SD, Song YS. Anti-inflammatory Effect of Glucagon Like Peptide-1 Receptor Agonist, Exendin-4, through Modulation of IB1/JIP1 Expression and JNK Signaling in Stroke. Exp Neurobiol 2017; 26:227-239. [PMID: 28912645 PMCID: PMC5597553 DOI: 10.5607/en.2017.26.4.227] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 12/18/2022] Open
Abstract
Glucagon like peptide-1 (GLP-1) stimulates glucose-dependent insulin secretion. Dipeptidyl peptidase-4 (DPP-4) inhibitors, which block inactivation of GLP-1, are currently in clinical use for type 2 diabetes mellitus. Recently, GLP-1 has also been reported to have neuroprotective effects in cases of cerebral ischemia. We therefore investigated the neuroprotective effects of GLP-1 receptor (GLP-1R) agonist, exendin-4 (ex-4), after cerebral ischemia-reperfusion injury. Transient middle cerebral artery occlusion (tMCAO) was induced in rats by intracerebroventricular (i.c.v.) administration of ex-4 or ex9-39. Oxygen-glucose deprivation was also induced in primary neurons, bEnd.3 cells, and BV-2. Ischemia-reperfusion injury reduced expression of GLP-1R. Additionally, higher oxidative stress in SOD2 KO mice decreased expression of GLP-1R. Downregulation of GLP-1R by ischemic injury was 70% restored by GLP-1R agonist, ex-4, which resulted in significant reduction of infarct volume. Levels of intracellular cyclic AMP, a second messenger of GLP-1R, were also increased by 2.7-fold as a result of high GLP-1R expression. Moreover, our results showed that ex-4 attenuated pro-inflammatory cyclooxygenase-2 (COX-2) and prostaglandin E2 after MCAO. C-Jun NH2 terminal kinase (JNK) signaling, which stimulates activation of COX-2, was 36% inhibited by i.c.v. injection of ex-4 at 24 h. Islet-brain 1 (IB1), a scaffold regulator of JNK, was 1.7-fold increased by ex-4. GLP-1R activation by ex-4 resulted in reduction of COX-2 through increasing IB1 expression, resulting in anti-inflammatory neuroprotection during stroke. Our study suggests that the anti-inflammatory action of GLP-1 could be used as a new strategy for the treatment of neuroinflammation after stroke accompanied by hyperglycemia.
Collapse
Affiliation(s)
- Soojin Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Jaewon Jeong
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Hye-Seon Jung
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Bokyung Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Ye-Eun Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Da-Sol Lim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - So-Dam Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Yun Seon Song
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| |
Collapse
|
3
|
Tanshinone IIA Inhibits Glutamate-Induced Oxidative Toxicity through Prevention of Mitochondrial Dysfunction and Suppression of MAPK Activation in SH-SY5Y Human Neuroblastoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4517486. [PMID: 28690763 PMCID: PMC5485345 DOI: 10.1155/2017/4517486] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/17/2017] [Accepted: 05/02/2017] [Indexed: 01/27/2023]
Abstract
Glutamate excitotoxicity is associated with many neurological diseases, including cerebral ischemia and neurodegenerative diseases. Tanshinone IIA, a diterpenoid naphthoquinone from Salvia miltiorrhiza, has been shown to suppress presynaptic glutamate release, but its protective mechanism against glutamate-induced neurotoxicity is lacking. Using SH-SY5Y human neuroblastoma cells, we show here that excessive glutamate exposure decreases cell viability and proliferation and increases LDH release. Pretreatment with tanshinone IIA, however, prevents the decrease in cell viability and proliferation and the increase in LDH release induced by glutamate. Tanshinone IIA also attenuates glutamate-induced oxidative stress by reducing reactive oxygen species level and malondialdehyde and protein carbonyl contents and by enhancing activities and protein levels of superoxide dismutase and catalase. We then show that tanshinone IIA prevents glutamate-induced mitochondrial dysfunction by increasing mitochondrial membrane potential and ATP content and by reducing mitochondrial protein carbonyl content. Moreover, tanshinone IIA can inhibit glutamate-induced apoptosis through regulation of apoptosis-related protein expression and MAPK activation, including elevation of Bcl-2 protein level, decrease in Bax and cleaved caspase-3 levels, and suppression of JNK and p38 MAPK activation. Collectively, our findings demonstrate that tanshinone IIA protects SH-SY5Y cells against glutamate toxicity by reducing oxidative stress and regulating apoptosis and MAPK pathways.
Collapse
|
4
|
Sheshadri P, Kumar A. Managing odds in stem cells: insights into the role of mitochondrial antioxidant enzyme MnSOD. Free Radic Res 2016; 50:570-84. [DOI: 10.3109/10715762.2016.1155708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Cheng A, Yang Y, Zhou Y, Maharana C, Lu D, Peng W, Liu Y, Wan R, Marosi K, Misiak M, Bohr VA, Mattson MP. Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges. Cell Metab 2016; 23:128-42. [PMID: 26698917 PMCID: PMC5141613 DOI: 10.1016/j.cmet.2015.10.013] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/18/2015] [Accepted: 10/21/2015] [Indexed: 10/22/2022]
Abstract
The impact of mitochondrial protein acetylation status on neuronal function and vulnerability to neurological disorders is unknown. Here we show that the mitochondrial protein deacetylase SIRT3 mediates adaptive responses of neurons to bioenergetic, oxidative, and excitatory stress. Cortical neurons lacking SIRT3 exhibit heightened sensitivity to glutamate-induced calcium overload and excitotoxicity and oxidative and mitochondrial stress; AAV-mediated Sirt3 gene delivery restores neuronal stress resistance. In models relevant to Huntington's disease and epilepsy, Sirt3(-/-) mice exhibit increased vulnerability of striatal and hippocampal neurons, respectively. SIRT3 deficiency results in hyperacetylation of several mitochondrial proteins, including superoxide dismutase 2 and cyclophilin D. Running wheel exercise increases the expression of Sirt3 in hippocampal neurons, which is mediated by excitatory glutamatergic neurotransmission and is essential for mitochondrial protein acetylation homeostasis and the neuroprotective effects of running. Our findings suggest that SIRT3 plays pivotal roles in adaptive responses of neurons to physiological challenges and resistance to degeneration.
Collapse
Affiliation(s)
- Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| | - Ying Yang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA; Department of Neurology, Wuhan University, Wuhan, Hubei 430071, China
| | - Ye Zhou
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Chinmoyee Maharana
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Daoyuan Lu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Wei Peng
- Laboratory of Genetics, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Yong Liu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Ruiqian Wan
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Magdalena Misiak
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA; Laboratory of Molecular Gerontology, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Melo SC, Santos RX, Melgaço AC, Pereira ACF, Pungartnik C, Brendel M. Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene. Int J Mol Sci 2015; 16:12324-44. [PMID: 26039235 PMCID: PMC4490446 DOI: 10.3390/ijms160612324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 04/08/2015] [Indexed: 12/23/2022] Open
Abstract
Heterologous expression of a putative manganese superoxide dismutase gene (SOD2) of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF) coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs) located the protein of M. perniciosa (MpSod2p) in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet-C (UVC) radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN) that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE)-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT) level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Sônia C Melo
- Departamento de Ciências Biológicas, Laboratório de Biologia de Fungos, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus, Bahia CEP 45662-900, Brazil.
| | - Regineide X Santos
- Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia (UESB), Estrada do Bem Querer, km 4, Vitória da Conquista, Bahia CEP 45083-900, Brazil.
| | - Ana C Melgaço
- Departamento de Ciências Biológicas, Laboratório de Biologia de Fungos, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus, Bahia CEP 45662-900, Brazil.
| | - Alanna C F Pereira
- Departamento de Ciências Biológicas, Laboratório de Biologia de Fungos, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus, Bahia CEP 45662-900, Brazil.
| | - Cristina Pungartnik
- Departamento de Ciências Biológicas, Laboratório de Biologia de Fungos, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus, Bahia CEP 45662-900, Brazil.
| | - Martin Brendel
- Departamento de Ciências Biológicas, Laboratório de Biologia de Fungos, Centro de Biotecnologia e Genética, Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus, Bahia CEP 45662-900, Brazil.
| |
Collapse
|
7
|
Bonova P, Danielisova V, Nemethova M, Matiasova M, Bona M, Gottlieb M. Scheme of Ischaemia-triggered Agents during Brain Infarct Evolution in a Rat Model of Permanent Focal Ischaemia. J Mol Neurosci 2015; 57:73-82. [PMID: 25972121 DOI: 10.1007/s12031-015-0578-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
The impact of therapeutic intervention in stroke depends on its appropriate timing during infarct evolution. We have studied markers of brain tissue damage initiated by permanent occlusion of the middle cerebral artery (MCAO) at three time points during which the infarct spread (1, 3 and 6 h). Based on Evans Blue extravasation and immunohistochemical detection of neurons, we confirmed continuous disruption of blood-brain barrier and loss of neurons in the ischaemic hemisphere that peaked at the sixth hour, especially in the core. Glutamate content started to rise dramatically in the entire hemisphere during the first 3 h; the highest level was determined in the core 6 h after MCAO (141 % increase). Moreover, the enzyme antioxidant defence grew by about 42 % since the first hour in the ipsilateral penumbra. Enzymes of the apoptotic pathway as well as mitochondrial enzyme release were detected since the third hour of MCAO in the ischaemic hemisphere; all achieved their maxima in the penumbra during both time periods (except cytochrome C). In conclusion, the preserved integrity of mitochondrial membrane and incompletely developed process of apoptosis may contribute to the better therapeutic outcome after ischaemic attack; however, a whole brain response should not be omitted.
Collapse
Affiliation(s)
- Petra Bonova
- Institute of Neurobiology, Slovak Academy of Sciences, Košice, Slovakia,
| | | | | | | | | | | |
Collapse
|
8
|
Liang JM, Xu HY, Zhang XJ, Li X, Zhang HB, Ge PF. Role of mitochondrial function in the protective effects of ischaemic postconditioning on ischaemia/reperfusion cerebral damage. J Int Med Res 2013; 41:618-27. [PMID: 23569028 DOI: 10.1177/0300060513476587] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To investigate the effects of ischaemic postconditioning on brain injury and mitochondria in focal ischaemia and reperfusion, in rats. Methods Adult male Wistar rats ( n = 15 per group) underwent sham surgery, ischaemia (2-h middle cerebral artery occlusion), or ischaemia followed by ischaemic postconditioning (three cycles of 30 s reperfusion/30 s reocclusion). Brain infarction size, neurological function, mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential and mitochondrial swelling were evaluated 24 h postsurgery. Results Infarct size was significantly smaller, and neurological function was significantly better, in the ischaemic postconditioning group than in the ischaemia group. Ischaemia resulted in significant increases in mitochondrial ROS production and swelling, and a reduction in mitochondrial membrane potential, all of which were significantly reversed by postconditioning. Conclusions The protective role of ischaemic postconditioning in focal ischaemia/reperfusion may be due to decreased mitochondrial ROS production, reduced mitochondrial membrane potential and suppressed mitochondria swelling. Mitochondria are potential targets for new therapies to prevent brain damage caused by ischaemia and reperfusion.
Collapse
Affiliation(s)
- Jian-min Liang
- Department of Peediatrics, First Bethune Hospital of Jilin University, Changchun, China
| | - Hai-yang Xu
- Department of Neurosurgery, First Bethune Hospital of Jilin University, Changchun, China
| | - Xiao-jie Zhang
- Department of Surgery, Changchun Children’s Hospital, Changchun, China
| | - Xungeng Li
- Department of Breast Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Hong-bo Zhang
- Department of Peediatrics, First Bethune Hospital of Jilin University, Changchun, China
| | - Peng-fei Ge
- Department of Neurosurgery, First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Abstract
Manganese is an important metal for human health, being absolutely necessary for development, metabolism, and the antioxidant system. Nevertheless, excessive exposure or intake may lead to a condition known as manganism, a neurodegenerative disorder that causes dopaminergic neuronal death and parkinsonian-like symptoms. Hence, Mn has a paradoxal effect in animals, a Janus-faced metal. Extensive work has been carried out to understand Mn-induced neurotoxicity and to find an effective treatment. This review focuses on the requirement for Mn in human health as well as the diseases associated with excessive exposure to this metal.
Collapse
Affiliation(s)
- Daiana Silva Avila
- Biochemistry Graduation Program, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil,
| | | | | |
Collapse
|
10
|
Bonova P, Burda J, Danielisova V, Nemethova M, Gottlieb M. Development of a pattern in biochemical parameters in the core and penumbra during infarct evolution after transient MCAO in rats. Neurochem Int 2013; 62:8-14. [DOI: 10.1016/j.neuint.2012.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/04/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
|
11
|
Yang J, Ahn HN, Chang M, Narasimhan P, Chan PH, Song YS. Complement component 3 inhibition by an antioxidant is neuroprotective after cerebral ischemia and reperfusion in mice. J Neurochem 2012. [PMID: 23199288 DOI: 10.1111/jnc.12111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Oxidative stress after stroke is associated with the inflammatory system activation in the brain. The complement cascade, especially the degradation products of complement component 3, is a key inflammatory mediator of cerebral ischemia. We have shown that pro-inflammatory complement component 3 is increased by oxidative stress after ischemic stroke in mice using DNA array. In this study, we investigated whether up-regulation of complement component 3 is directly related to oxidative stress after transient focal cerebral ischemia in mice and oxygen-glucose deprivation in brain cells. Persistent up-regulation of complement component 3 expression was reduced in copper/zinc-superoxide dismutase transgenic mice, and manganese-superoxide dismutase knock-out mice showed highly increased complement component 3 levels after transient focal cerebral ischemia. Antioxidant N-tert-butyl-α-phenylnitrone treatment suppressed complement component 3 expression after transient focal cerebral ischemia. Accumulation of complement component 3 in neurons and microglia was decreased by N-tert-butyl-α-phenylnitrone, which reduced infarct volume and impaired neurological deficiency after cerebral ischemia and reperfusion in mice. Small interfering RNA specific for complement component 3 transfection showed a significant increase in brain cells viability after oxygen-glucose deprivation. Our study suggests that the neuroprotective effect of antioxidants through complement component 3 suppression is a new strategy for potential therapeutic approaches in stroke.
Collapse
Affiliation(s)
- Jiwon Yang
- Department of Pharmacology, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
12
|
Oxygen versus Reactive Oxygen in the Regulation of HIF-1α: The Balance Tips. Biochem Res Int 2012; 2012:436981. [PMID: 23091723 PMCID: PMC3474226 DOI: 10.1155/2012/436981] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/14/2012] [Accepted: 09/15/2012] [Indexed: 12/02/2022] Open
Abstract
Hypoxia inducible factor (HIF) is known as the master regulator of the cellular response to hypoxia and is of pivotal importance during development as well as in human disease, particularly in cancer. It is composed of a constitutively expressed β subunit (HIF-1β) and an oxygen-regulated α subunit (HIF-1α and HIF-2α), whose stability is tightly controlled by a family of oxygen- and iron-dependent prolyl hydroxylase enzymes. Whether or not mitochondria-derived reactive oxygen species (ROS) are involved in the regulation of Hypoxia Inducible Factor-1α has been a matter of contention for the last 10 years, with equally compelling evidence in favor and against their contribution. A number of recent papers appear to tip the balance against a role for ROS. Thus, it has been demonstrated that HIF prolyl hydroxylases are unlikely to be physiological targets of ROS and that the increase in ROS that is associated with downregulation of Thioredoxin Reductase in hypoxia does not affect HIF-1α stabilization. Finally, the protein CHCHD4, which modulates cellular HIF-1α concentrations by promoting mitochondrial electron transport chain activity, has been proposed to exert its regulatory effect by affecting cellular oxygen availability. These reports are consistent with the hypothesis that mitochondria play a critical role in the regulation of HIF-1α by controlling intracellular oxygen concentrations.
Collapse
|
13
|
Takano K, Tanaka N, Kawabe K, Moriyama M, Nakamura Y. Extracellular superoxide dismutase induced by dopamine in cultured astrocytes. Neurochem Res 2012; 38:32-41. [PMID: 22983620 DOI: 10.1007/s11064-012-0882-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/31/2012] [Indexed: 11/24/2022]
Abstract
Under some pathological conditions in brain, a large amount of superoxide anion (O(2)(-)) is produced, causing various cellular damages. Among three isozymes of superoxide dismutase (SOD), extracellular (EC)-SOD should play a role to detoxify O(2)(-) in extracellular space; however, a little is known about EC-SOD in brain. Although dopamine (DA) stored in the synaptic vesicle is stable, the excess leaked DA is spontaneously oxidized to yield O(2)(-) and reactive DA quinones, causing damages of dopaminergic neurons. In the present study, we examined the effects of DA on SOD expression in cultured rat cortical astrocytes. By means of RT-PCR, all mRNA of three isozymes of SOD could be detected; however, only EC-SOD was increased by DA exposure for 24 h, dose-dependently. The expression of EC-SOD protein and the cell-surface SOD activity in astrocytes also increased with 100 μM DA exposure. The increase of EC-SOD mRNA by DA was inhibited by a DA transporter inhibitor, GBR12909, whereas it was not changed by DA receptor antagonists, SKF-83566 (D1) and haloperidol (D2). Furthermore, a monoamine oxidase inhibitor, pargyline, and antioxidants, N-acetyl-L-cysteine and glutathione, also did not affect the DA-induced expression of EC-SOD mRNA. On the other hand, an inhibitor of nuclear factor kappaB (NF-κB), ammonium pyrrolidine-1-carbodithioate, suppressed the DA-induced expression of EC-SOD mRNA. These results suggest that DA incorporated into the cells caused the induction of EC-SOD mRNA followed by the enhancements of EC-SOD protein level and the enzyme activity, and that NF-κB activation is involved in the mechanisms of the EC-SOD induction. The regulation of EC-SOD in astrocytes surrounding dopaminergic neurons may contribute to the defensive mechanism against oxidative stress in brain.
Collapse
Affiliation(s)
- Katsura Takano
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58, Rinku-Ourai Kita, Izumisano, Osaka 598-8531, Japan.
| | | | | | | | | |
Collapse
|
14
|
Holley AK, Dhar SK, Xu Y, St. Clair DK. Manganese superoxide dismutase: beyond life and death. Amino Acids 2012; 42:139-58. [PMID: 20454814 PMCID: PMC2975048 DOI: 10.1007/s00726-010-0600-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 04/16/2010] [Indexed: 02/07/2023]
Abstract
Manganese superoxide dismutase (MnSOD) is a nuclear-encoded antioxidant enzyme that localizes to the mitochondria. Expression of MnSOD is essential for the survival of aerobic life. Transgenic mice expressing a luciferase reporter gene under the control of the human MnSOD promoter demonstrate that the level of MnSOD is reduced prior to the formation of cancer. Overexpression of MnSOD in transgenic mice reduces the incidences and multiplicity of papillomas in a DMBA/TPA skin carcinogenesis model. However, MnSOD deficiency does not lead to enhanced tumorigenicity of skin tissue similarly treated because MnSOD can modulate both the p53-mediated apoptosis and AP-1-mediated cell proliferation pathways. Apoptosis is associated with an increase in mitochondrial levels of p53 suggesting a link between MnSOD deficiency and mitochondrial-mediated apoptosis. Activation of p53 is preventable by application of a SOD mimetic (MnTE-2-PyP(5+)). Thus, p53 translocation to mitochondria and subsequent inactivation of MnSOD explain the observed mitochondrial dysfunction that leads to transcription-dependent mechanisms of p53-induced apoptosis. Administration of MnTE-2-PyP(5+) following apoptosis but prior to proliferation leads to suppression of protein carbonyls and reduces the activity of AP-1 and the level of the proliferating cellular nuclear antigen, without reducing the activity of p53 or DNA fragmentation following TPA treatment. Remarkably, the incidence and multiplicity of skin tumors are drastically reduced in mice that receive MnTE-2-PyP(5+) prior to cell proliferation. The results demonstrate the role of MnSOD beyond its essential role for survival and suggest a novel strategy for an antioxidant approach to cancer intervention.
Collapse
Affiliation(s)
| | | | - Yong Xu
- University of Kentucky, Lexington, USA
| | | |
Collapse
|
15
|
Santos D, Milatovic D, Andrade V, Batoreu MC, Aschner M, Marreilha dos Santos AP. The inhibitory effect of manganese on acetylcholinesterase activity enhances oxidative stress and neuroinflammation in the rat brain. Toxicology 2011; 292:90-8. [PMID: 22154916 DOI: 10.1016/j.tox.2011.11.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 01/18/2023]
Abstract
BACKGROUND Manganese (Mn) is a naturally occurring element and an essential nutrient for humans and animals. However, exposure to high levels of Mn may cause neurotoxic effects. The pathological mechanisms associated with Mn neurotoxicity are poorly understood, but several reports have established it is mediated, at least in part, by oxidative stress. OBJECTIVES The present study was undertaken to test the hypothesis that a decrease in acetylcholinesterase (AChE) activity mediates Mn-induced neurotoxicity. METHODS Groups of 6 rats received 4 or 8 intraperitoneal (i.p.) injections of 25mg MnCl(2)/kg/day, every 48 h. Twenty-four hours after the last injection, brain AChE activity and the levels of F(2)-isoprostanes (F(2)-IsoPs) and F(4)-neuroprostanes (F(4)-NPs) (biomarkers of oxidative stress), as well as prostaglandin E(2) (PGE(2)) (biomarker of neuroinflammation) were analyzed. RESULTS The results showed that after either 4 or 8 Mn doses, brain AChE activity was significantly decreased (p<0.05), to 60 ± 16% and 55 ± 13% of control levels, respectively. Both treated groups exhibited clear signs of neurobehavioral toxicity, characterized by a significant (p<0.001) decrease in ambulation and rearings in open-field. Furthermore, Mn treatment caused a significant increase (p<0.05) in brain F(2)-IsoPs and PGE(2) levels, but only after 8 doses. In rats treated with 4 Mn doses, a significant increase (p<0.05) in brain F(4)-NPs levels was found. To evaluate cellular responses to oxidative stress, we assessed brain nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and Mn-superoxide dismutase (Mn-SOD, SOD2) protein expression levels. A significant increase in Mn-SOD protein expression (p<0.05) and a trend towards increased Nrf2 protein expression was noted in rat brains after 4 Mn doses vs. the control group, but the expression of these proteins was decreased after 8 Mn doses. Taken together, these results suggest that the inhibitory effect of Mn on AChE activity promotes increased levels of neuronal oxidative stress and neuroinflammatory biomarkers.
Collapse
Affiliation(s)
- Dinamene Santos
- I-Med.UL, Department of Toxicology and Food Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
16
|
Holley AK, Bakthavatchalu V, Velez-Roman JM, St. Clair DK. Manganese superoxide dismutase: guardian of the powerhouse. Int J Mol Sci 2011; 12:7114-62. [PMID: 22072939 PMCID: PMC3211030 DOI: 10.3390/ijms12107114] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/28/2011] [Accepted: 10/08/2011] [Indexed: 12/18/2022] Open
Abstract
The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS) production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component.
Collapse
Affiliation(s)
- Aaron K. Holley
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| | - Vasudevan Bakthavatchalu
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| | - Joyce M. Velez-Roman
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| | - Daret K. St. Clair
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| |
Collapse
|
17
|
Yang JL, Tadokoro T, Keijzers G, Mattson MP, Bohr VA. Neurons efficiently repair glutamate-induced oxidative DNA damage by a process involving CREB-mediated up-regulation of apurinic endonuclease 1. J Biol Chem 2010; 285:28191-9. [PMID: 20573957 PMCID: PMC2934684 DOI: 10.1074/jbc.m109.082883] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 06/03/2010] [Indexed: 11/06/2022] Open
Abstract
Glutamate, the major excitatory neurotransmitter in the brain, activates receptors coupled to membrane depolarization and Ca(2+) influx that mediates functional responses of neurons including processes such as learning and memory. Here we show that reversible nuclear oxidative DNA damage occurs in cerebral cortical neurons in response to transient glutamate receptor activation using non-toxic physiological levels of glutamate. This DNA damage was prevented by intracellular Ca(2+) chelation, the mitochondrial superoxide dismutase mimetic MnTMPyP (Mn-5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine chloride tetrakis(methochloride)), and blockade of the permeability transition pore. The repair of glutamate-induced DNA damage was associated with increased DNA repair activity and increased mRNA and protein levels of apurinic endonuclease 1 (APE1). APE1 knockdown induced accumulation of oxidative DNA damage after glutamate treatment, suggesting that APE1 is a key repair protein for glutamate-induced DNA damage. A cAMP-response element-binding protein (CREB) binding sequence is present in the Ape1 gene (encodes APE1 protein) promoter and treatment of neurons with a Ca(2+)/calmodulin-dependent kinase inhibitor (KN-93) blocked the ability of glutamate to induce CREB phosphorylation and APE1 expression. Selective depletion of CREB using RNA interference prevented glutamate-induced up-regulation of APE1. Thus, glutamate receptor stimulation triggers Ca(2+)- and mitochondrial reactive oxygen species-mediated DNA damage that is then rapidly repaired by a mechanism involving Ca(2+)-induced, CREB-mediated APE1 expression. Our findings reveal a previously unknown ability of neurons to efficiently repair oxidative DNA lesions after transient activation of glutamate receptors.
Collapse
Affiliation(s)
- Jenq-Lin Yang
- From the Laboratories of Molecular Gerontology and
- Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | | | | | - Mark P. Mattson
- Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | | |
Collapse
|
18
|
Kravcukova P, Danielisova V, Nemethova M, Burda J, Gottlieb M. Transient forebrain ischemia impact on lymphocyte DNA damage, glutamic acid level, and SOD activity in blood. Cell Mol Neurobiol 2009; 29:887-94. [PMID: 19259803 DOI: 10.1007/s10571-009-9371-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
Abstract
AIMS Brain ischemia-reperfusion injury remains incompletely understood but appears to involve a complex series of interrelated biochemical pathways caused mainly by a burst of reactive oxygen species (ROS). In the present work we studied the impact of postischemic condition in the early phase of reperfusion on plasma and blood cells. METHODS Transient forebrain ischemia was induced in Wistar rats by four-vessel occlusion model. Blood samples collected during postischemic reperfusion 20, 40, 60, 90, and 120 min after ischemia were used for assessing breaks of lymphocyte DNA, fluorimetric measurement of whole blood glutamate concentration, and spectrophotometrical determination of SOD activity in plasma and blood cells. RESULTS Our results showed the most interesting changes of all observed parameters mainly at 40 and 120 min of reperfusion, when we observed peak DNA damage of lymphocytes and highest glutamate level and total and Cu/Zn SOD activity. At those time points, Mn SOD activity was low in plasma, as well as in blood cells. On the contrary, at 60 and 90 min, all studied parameters were approximately at the level of control. CONCLUSION Ischemia/reperfusion injury has influence on blood cells and has at least two waves of impact on DNA damage of peripheral lymphocytes, affects activity of major antioxidant enzymes SODs, as well as blood glutamic acid level. Elevation of Mn SOD activity probably plays an important role in the processes of elimination of postischemic damage in blood cells.
Collapse
Affiliation(s)
- Petra Kravcukova
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice,040 01, Slovak Republic.
| | | | | | | | | |
Collapse
|
19
|
Regulation of Mn-superoxide dismutase activity and neuroprotection by STAT3 in mice after cerebral ischemia. J Neurosci 2009; 29:7003-14. [PMID: 19474327 DOI: 10.1523/jneurosci.1110-09.2009] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cerebral ischemia and reperfusion increase superoxide anions (O(2)(*-)) in brain mitochondria. Manganese superoxide dismutase (Mn-SOD; SOD2), a primary mitochondrial antioxidant enzyme, scavenges superoxide radicals and its overexpression provides neuroprotection. However, the regulatory mechanism of Mn-SOD expression during cerebral ischemia and reperfusion is still unclear. In this study, we identified the signal transducer and activator of transcription 3 (STAT3) as a transcription factor of the mouse Mn-SOD gene, and elucidated the mechanism of O(2)(*-) overproduction after transient focal cerebral ischemia (tFCI). We found that Mn-SOD expression is significantly reduced by reperfusion in the cerebral ischemic brain. We also found that activated STAT3 is usually recruited into the mouse Mn-SOD promoter and upregulates transcription of the mouse Mn-SOD gene in the normal brain. However, at early postreperfusion periods after tFCI, STAT3 was rapidly downregulated, and its recruitment into the Mn-SOD promoter was completely blocked. In addition, transcriptional activity of the mouse Mn-SOD gene was significantly reduced by STAT3 inhibition in primary cortical neurons. Moreover, we found that STAT3 deactivated by reperfusion induces accumulation of O(2)(*-) in mitochondria. The loss of STAT3 activity induced neuronal cell death by reducing Mn-SOD expression. Using SOD2-/+ heterozygous knock-out mice, we found that Mn-SOD is a direct target of STAT3 in reperfusion-induced neuronal cell death. Our study demonstrates that STAT3 is a novel transcription factor of the mouse Mn-SOD gene and plays a crucial role as a neuroprotectant in regulating levels of reactive oxygen species in the mouse brain.
Collapse
|
20
|
Morello M, Zatta P, Zambenedetti P, Martorana A, D'Angelo V, Melchiorri G, Bernardi G, Sancesario G. Manganese intoxication decreases the expression of manganoproteins in the rat basal ganglia: an immunohistochemical study. Brain Res Bull 2007; 74:406-15. [PMID: 17920449 DOI: 10.1016/j.brainresbull.2007.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 06/12/2007] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
Manganese (Mn) is a cofactor for some metalloprotein enzymes, including Mn-superoxide dismutase (Mn-SOD), a mitochondrial enzyme predominantly localized in neurons, and glutamine synthetase (GS), which is selectively expressed in astroglial cells. The detoxifying effects of GS and Mn-SOD in the brain, involve catabolizing glutamate and scavenging superoxide anions, respectively. Mn intoxication is characterized by impaired function of the basal ganglia. However, it is unclear whether regional central nervous system expression of manganoproteins is also affected. Here, we use immunocytochemistry in the adult rat brain, to examine whether Mn overload selectively affects the expression of GS, Mn-SOD, Cu/Zn-SOD, another component of the SOD family, and glial fibrillary acid protein (GFAP), a specific marker of astrocytes. After chronic Mn overload in drinking water for 13 weeks, we found that the number and immunostaining intensity of GS- and Mn-SOD-positive cells was significantly decreased in the striatum and globus pallidus, but not in the cerebral frontal cortex. In addition, we found that GS enzymatic activity was decreased in the strio-pallidal regions but not in the cerebral cortex of Mn-treated animals. In contrast, Cu/Zn-SOD- and GFAP-immunoreactivity was unchanged in both the cerebral cortex and basal ganglia of Mn-treated rats. Thus, we conclude that in response to chronic Mn overload, a down-regulation of some manganoproteins occurs in neurons and astrocytes of the striatum and globus pallidus, probably reflecting the vulnerability of these regions to Mn toxicity.
Collapse
Affiliation(s)
- M Morello
- Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tangpong J, Cole MP, Sultana R, Estus S, Vore M, St Clair W, Ratanachaiyavong S, St Clair DK, Butterfield DA. Adriamycin-mediated nitration of manganese superoxide dismutase in the central nervous system: insight into the mechanism of chemobrain. J Neurochem 2007; 100:191-201. [PMID: 17227439 DOI: 10.1111/j.1471-4159.2006.04179.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adriamycin (ADR), a potent anti-tumor agent, produces reactive oxygen species (ROS) in cardiac tissue. Treatment with ADR is dose-limited by cardiotoxicity. However, the effect of ADR in the other tissues, including the brain, is unclear because ADR does not pass the blood-brain barrier. Some cancer patients receiving ADR treatment develop a transient memory loss, inability to handle complex tasks etc., often referred to by patients as chemobrain. We previously demonstrated that ADR causes CNS toxicity, in part, via systemic release of cytokines and subsequent generation of reactive oxygen and nitrogen species (RONS) in the brain. Here, we demonstrate that treatment with ADR led to an increased circulating level of tumor necrosis factor-alpha in wild-type mice and in mice deficient in the inducible form of nitric oxide (iNOSKO). However, the decline in mitochondrial respiration and mitochondrial protein nitration after ADR treatment was observed only in wild-type mice, not in the iNOSKO mice. Importantly, the activity of a major mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), was reduced and the protein was nitrated. Together, these results suggest that NO is an important mediator, coupling the effect of ADR with cytokine production and subsequent activation of iNOS expression. We also identified the mitochondrion as an important target of ADR-induced NO-mediated CNS injury.
Collapse
Affiliation(s)
- Jitbanjong Tangpong
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ferrington DA, Tran TN, Lew KL, Van Remmen H, Gregerson DS. Different death stimuli evoke apoptosis via multiple pathways in retinal pigment epithelial cells. Exp Eye Res 2006; 83:638-50. [PMID: 16682026 DOI: 10.1016/j.exer.2006.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 02/01/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Abstract
Loss of retinal pigment epithelial (RPE) cells via apoptosis plays a prominent role in several retinal degenerative diseases, such as age-related macular degeneration, and with light damage. Strategies for preservation of vision that would interrupt the apoptotic cascade require understanding the molecular events associated with apoptosis. This study investigated the susceptibility of RPE to caspase-dependent and -independent apoptotic pathways when challenged with different stimuli, including oxidants, anti-Fas antibody, and activated cytotoxic T lymphocytes (CTLs). These experiments used novel RPE cell lines developed from wildtype and heterozygous mice with reduced levels of either Mn superoxide dismutatse (SOD) or CuZnSOD. Peroxide and 4-hydroxynonenal induced apoptosis through both caspase-independent and -dependent pathways, respectively. With both oxidants, translocation of apoptosis inducing factor into the nucleus was observed. Cells containing reduced levels of CuZnSOD were the most susceptible to oxidant-induced cell death. Targeted killing by CTLs and activation of the Fas death receptor induced caspase-dependent apoptosis. These results show stimulus-specific activation of either the caspase-dependent or -independent pathway. Since cultured RPE express the protein components required for different apoptotic pathways, they provide a good model system for studying molecular events associated with multiple signals that lead to cell death.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology, University of Minnesota, 380 Lions Research Building, 2001 6th Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
23
|
Liu J, Narasimhan P, Song YS, Nishi T, Yu F, Lee YS, Chan PH. Epo protects SOD2-deficient mouse astrocytes from damage by oxidative stress. Glia 2006; 53:360-5. [PMID: 16288465 DOI: 10.1002/glia.20289] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Erythropoietin (Epo) expression, which regulates erythropoiesis, has been shown in rat and mouse brain after hypoxia. A previous study from our laboratory showed that astrocytes from manganese-superoxide dismutase (SOD2) homozygous knockout (SOD2(-/-)) mice can survive under 5% O(2), but not under normal aerobic conditions. However, the mechanism involved is not clear. Our preliminary study using reverse transcriptase-polymerase chain reaction showed increased Epo mRNA expression in astrocytes cultured with 5% hypoxia compared with astrocytes under normal conditions. After administration of anti-sense Epo, protection decreased with time. Dose-dependent administration of Epo to SOD2(-/-) mouse astrocytes improved their survivability under normal conditions. Survivability of heterozygous SOD2(-/+) mutant and wild-type mouse astrocyte cultures was the same under normal conditions but, after administration of 2 mM of paraquat, a reactive oxygen species generator, survivability of the SOD2(-/+) astrocytes decreased remarkably compared with the wild-type cells. Epo administration 24 h before exposure to paraquat significantly improved the survivability of the SOD2(-/+) astrocytes. Western blot studies suggest that Jak-Stat signal transduction pathways are involved in this process. Our study demonstrates an important role for Epo in the protection of astrocytes from reactive oxygen species. We suggest that Epo can compensate in part for the antioxidant properties of mitochondrial SOD2 deficiency.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurosurgery, Program in Neurosciences, Stanford University School of Medicine, California, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Das A, Sribnick EA, Wingrave JM, Del Re AM, Woodward JJ, Appel SH, Banik NL, Ray SK. Calpain activation in apoptosis of ventral spinal cord 4.1 (VSC4.1) motoneurons exposed to glutamate: calpain inhibition provides functional neuroprotection. J Neurosci Res 2005; 81:551-62. [PMID: 15968645 DOI: 10.1002/jnr.20581] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glutamate toxicity has been implicated in cell death in neurodegenerative diseases and injuries. Glutamate-induced Ca2+ influx may mediate activation of calpain, a Ca2+-dependent cysteine protease, which in turn may degrade key cytoskeletal proteins. We investigated glutamate-mediated apoptosis of VSC4.1 motoneurons and functional neuroprotection by calpain inhibition. Exposure of VSC4.1 cells to 10 microM glutamate for 24 hr caused significant increases in intracellular free [Ca2+], as determined by fura-2 assay. Pretreatment of cells with 10 or 25 microM calpeptin (a cell-permeable calpain-specific inhibitor) for 1 hr prevented glutamate-induced Ca2+ influx. Western blot analyses showed an increase in Bax:Bcl-2 ratio, release of cytochrome c from mitochondria, and calpain and caspase-3 activities during apoptosis. Cell morphology, as evaluated by Wright staining, indicated predominantly apoptotic features following glutamate exposure. ApopTag assay further substantiated apoptotic features morphologically as well as biochemically. Our data showed that calpeptin mainly prevented calpain-mediated proteolysis and apoptosis and maintained whole-cell membrane potential, indicating functional neuroprotection. The results imply that calpeptin may serve as a therapeutic agent for preventing motoneuron degeneration, which occurs in amyotrophic lateral sclerosis and spinal cord injury. In this investigation, we also examined glutamate receptor subtypes involved in the initiation of apoptosis in VSC4.1 cells following exposure to glutamate. Our results indicated that the N-methyl-D-aspartate (NMDA) receptors contributed more than alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptors to glutamate-mediated Ca2+ influx and cell death mechanism. Inhibition of the activities of both NMDA and AMPA receptors protected VSC4.1 cells from glutamate toxicity and preserved whole-cell membrane potential.
Collapse
Affiliation(s)
- Arabinda Das
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Regner A, Schunemann DP, Grivicich I, Diel CL, Farias CB, Kowaleski G, Mondadori E, Schwartsmann G, da Rocha AB. Effects of toxic doses of glutamate on Cu-Zn and Mn/superoxide dismutases activities in human glioma cell lines. J Neurooncol 2005; 71:9-17. [PMID: 15719268 DOI: 10.1007/s11060-004-9178-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent research has implicated glutamate in the growth and invasive migration of gliomas. Superoxide dismutase (SOD) is involved in excitotoxicity and may influence cellular proliferative status. Thus, this study investigated the effects of gliotoxic doses of glutamate on Cu-Zn and Mn/SODs activities in human glioma cell lines. To this end, glioma cell lines (U87MG, U138MG and U251MG) were treated with glutamate (5-200 mM) during 48 h. Then, cell viability assays, clonogenic assay and Cu-Zn and Mn/SODs activities of the cell lines were performed. IC50values of glutamate were similar for both U87MG and U138MG cells (56 and 69 mM, respectively), while a higher value was detected for U251MG cells (110 mM). In the long term, 14 days after glutamate was removed from the culture media, cells showed partial or complete recovery. The effects of glutamate treatment on Cu-Zn and Mn/SODs activities varied among the distinct cell lines. While acute treatment with toxic doses of glutamate caused a significant decrease in the Cu-Zn/SOD activity of U138MG and U251MG cells, it did not affect Cu-Zn/SOD activity in U87MG cells. Only in U251MG cells, acute glutamate treatment decreased significantly Mn/SOD activity. In the long term (14 days after the 48 h treatment), glutamate did not affect either Cu-Zn or Mn/SODs activities. Thus, it may be suggested that SOD vulnerability to glutamate-mediated effects may be related to distinct tumoral cell behavior.
Collapse
Affiliation(s)
- Andrea Regner
- Centro de Pesquisas em Ciências Médicas, Universidade Luterana do Brasil (ULBRA), Rua Miguel Tostes, 101, Prédio 22, 5 andar, Bairro São Luis, Canoas/RS, CEP: 9240-280 Brasil.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Acharya MM, Katyare SS. Structural and functional alterations in mitochondrial membrane in picrotoxin-induced epileptic rat brain. Exp Neurol 2005; 192:79-88. [PMID: 15698621 DOI: 10.1016/j.expneurol.2004.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 10/09/2004] [Accepted: 11/09/2004] [Indexed: 11/26/2022]
Abstract
Mitochondrial function is a key determinant of both excitability and viability of neurons. Present studies were carried out to decipher cerebral mitochondrial oxidative energy metabolism and membrane function in the chronic condition of generalized seizures induced by picrotoxin (PTX) in rats. PTX-induced convulsions resulted in decreased respiration rates (14-41%) with glutamate, pyruvate + malate, and succinate as substrate. The ADP phosphorylation rates were drastically reduced by 44-65%. An opposite trend was observed with ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine [corrected] (TMPD) as substrate. In general, uncoupling of the mitochondrial electron transport was observed after PTX treatment. Malate dehydrogenase (MDH) and succinate dehydrogenase (SDH) activities were decreased by 20-80%; also, there was significant reduction in cytochrome b content after PTX treatment, while the F(o)F(1) ATPase (complex V) activity increased in basal and 2,4-dinitrophenol (DNP)-stimulated condition, indicating increased membrane fragility. The substrate kinetics analysis had shown that K(m) and V(max) of the higher affinity kinetic component of ATPase increased significantly by 1.2- to 1.4-fold in epileptic condition. Temperature kinetic analysis revealed 1.2-fold increase in energies of activation with decreased transition temperature. The total phospholipid (TPL) and cholesterol (CHL) contents decreased significantly with lowering of diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS), while lysophospholipid (lyso), sphingomyelin (SPM), and phosphatidylcholine components were found to be elevated. Brain mitochondrial membrane was somewhat more fluidized in epileptic animals. Possible consequences of mitochondrial respiratory chain (MRC) dysfunction are discussed. In conclusion, impairment of MRC function along with structural alterations suggests novel pathophysiological mechanisms important for chronic epileptic condition.
Collapse
Affiliation(s)
- Munjal M Acharya
- Department of Biochemistry, Faculty of Science, M.S. University of Baroda, Vadodara 390 002, Gujarat, India.
| | | |
Collapse
|
27
|
Abstract
We investigated superoxide production and MnSOD activity after kainate injection into the CA3 region of the rat hippocampus. The measurements took place at different times in hippocampus, forebrain cortex, striatum, and cerebellum homogenates. Free radicals including superoxide are responsible for post-lesional cytotoxicity. Neuronal cells responded to oxidative stress in kainate-induced neurotoxicity and caused the protective mechanism to increase MnSOD levels. The increase of MnSOD in distinct brain regions functionally connected via afferents and efferent suggests that these regions are affected by the injury. It implies that MnSOD protects the cells in these regions from superoxide-induced damage and therefore may limit the retrograde and anterograde spread of neurotoxicity. <br><br><font color="red"><b> This article has been retracted. Link to the retraction <u><a href="http://dx.doi.org/10.2298/ABS150318027E">10.2298/ABS150318027E</a><u></b></font>
Collapse
|
28
|
Mitochondrial superoxide production and MnSOD activity following exposure to an agonist and antagonists of ionotropic receptors in rat brain. ARCH BIOL SCI 2005. [DOI: 10.2298/abs0501001r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The involvement of NMDA and AMPA/kainate receptors in the induction of superoxide production in the rat brain was examined after intrahippocampal injection of kainate, a non-NMDA receptor agonist; kainate plus CNQX, a selective AMPA/kainate receptor antagonist; or kainate plus APV, a selective NMDA receptor antagonist. The measurements took place at different times in the ipsi- and contralateral hippocampus, forebrain cortex, striatum, and cerebellum homogenates. The used glutamate antagonists both ensured sufficient neuroprotection in the sense of lowering superoxide production and raising MnSOD levels, but in the mechanisms and time dynamics of their effects were different. Our findings suggest that NMDA and AMPA/kainate receptors are differentially involved in superoxide production. <br><br><font color="red"><b> This article has been retracted. Link to the retraction <u><a href="http://dx.doi.org/10.2298/ABS150318026E">10.2298/ABS150318026E</a><u></b></font>
Collapse
|
29
|
Radenovic L, Selakovic V, Kartelija G, Todorovic N, Nedeljkovic M. Differential effects of NMDA and AMPA/kainate receptor antagonists on superoxide production and MnSOD activity in rat brain following intrahippocampal injection. Brain Res Bull 2004; 64:85-93. [PMID: 15275961 DOI: 10.1016/j.brainresbull.2004.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 05/31/2004] [Accepted: 06/01/2004] [Indexed: 11/17/2022]
Abstract
The involvement of NMDA and AMPA/kainate receptors in the induction of superoxide radical production in the rat brain was examined after injection of kainate, non-NMDA receptor agonist, kainate plus 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), selective AMPA/kainate receptor antagonist, or kainate plus 2-amino-5-phosphonopentanoic acid (APV), selective NMDA receptor antagonist. Competitive glutamate receptor antagonists were injected with kainate unilaterally into the CA3 region of the rat hippocampus. We investigated superoxide production and mitochondrial MnSOD activity after injection. The measurements took place at different times (5, 15 min, 2, 48 h and 7 days) in the ipsi- and contralateral hippocampus, forebrain cortex, striatum, and cerebellum homogenates. Used glutamate antagonists APV and CNQX both expressed sufficient neuroprotection in sense of decreasing superoxide production and increasing MnSOD levels, but with differential effect in mechanisms and time dynamics. Our findings suggest that NMDA and AMPA/kainate receptors are differentially involved in superoxide production. Following intrahippocampal antagonists injection they, also, interpose different neuroprotection effect on the induction of MnSOD activity in distinct brain regions affected by the injury, which are functionally connected via afferents and efferents. It suggests that MnSOD protects the cells in these regions from superoxide-induced damage and therefore may limit the retrograde and anterograde spread of neurotoxicity.
Collapse
Affiliation(s)
- L Radenovic
- Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, p.f. 52, Studentski trg 16, 11000 Belgrade, Serbia and Montenegro.
| | | | | | | | | |
Collapse
|
30
|
Baud O, Haynes RF, Wang H, Folkerth RD, Li J, Volpe JJ, Rosenberg PA. Developmental up-regulation of MnSOD in rat oligodendrocytes confers protection against oxidative injury. Eur J Neurosci 2004; 20:29-40. [PMID: 15245476 DOI: 10.1111/j.0953-816x.2004.03451.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Periventricular leukomalacia, the predominant pathological lesion underlying cerebral palsy in premature infants, is thought to be the result of hypoxic-ischemic injury to the cerebral white matter. The main cell type injured is the developing oligodendrocyte (OL), which has been shown to be more sensitive than mature OLs to both excitotoxic and oxidative mechanisms of injury. A maturation dependence of OL vulnerability to cystine deprivation-induced glutathione depletion has been previously demonstrated in culture. We hypothesized that mitochondria could be involved in this toxicity by generating superoxide and that increased superoxide dismutase (SOD) activity in mature OLs may account for their greater resistance. Cystine deprivation toxicity was found to be associated with mitochondrial dysfunction and intracellular superoxide accumulation in developing OLs. CuZnSOD protein expression and enzyme activity was similar along the OL lineage. In contrast, MnSOD was up-regulated in mature OLs, as manifested by a 53% increase in its expression and a four-fold increase in its activity. Overexpressing MnSOD in developing OLs was associated with a protective effect on mitochondrial membrane potential and a decrease in cell death induced by mild cystine deprivation. The greater challenge presented by total cystine deprivation was resistant to MnSOD overexpression and appeared to be related to hydrogen peroxide toxicity. These data suggest a primary involvement of superoxide in glutathione depletion toxicity in developing OLs, and suggest an important role for MnSOD in the resistance observed in mature OLs.
Collapse
Affiliation(s)
- Olivier Baud
- Department of Neurology, Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Veach J. Functional dichotomy: glutathione and vitamin E in homeostasis relevant to primary open-angle glaucoma. Br J Nutr 2004; 91:809-29. [PMID: 15182385 DOI: 10.1079/bjn20041113] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Primary open-angle glaucoma (POAG) is a complex chronic neurological disease that can result in blindness. The goal of understanding the aetiology of POAG is to be able to target effective treatment to individuals who will eventually go blind without it. Epidemiological studies of POAG have not specifically addressed the possibility that nutrition may play a role in the development of POAG. A handful of papers have considered that nutrition may have an impact on POAG patients. POAG is not believed to be a 'vitamin-deficiency disease'. The concept of 'vitamin-deficiency diseases' and the recommended daily allowances have not kept pace with the growing understanding of the cellular and molecular functions of vitamins and other micronutrients. The aetiology of POAG remains a mystery. Discoveries in cell physiology can be assimilated from the literature and applied to known homeostatic mechanisms of the eye. In this way the possible roles of nutritional components involved in the aetiology of POAG can be described. The mechanisms may be subject to many influences in ways that have yet to be defined. Two distinct changes in the trabecular meshwork can be identified: trabecular meshwork changes that cause intra-ocular pressure to increase and trabecular meshwork changes that are directly correlated to optic nerve atrophy. Compelling evidence suggests that collagen trabecular meshwork extracellular matrix (ECM) remodelling is correlated to increased intraocular pressure in POAG. Elastin trabecular meshwork ECM remodelling is correlated to POAG optic nerve atrophy. There appear to be two different pathways of ECM remodelling and apoptosis induction in POAG. The pathway for collagen remodelling and apoptosis induction seems to be exogenously influenced by water-soluble antioxidants, for example, glutathione. The pathway for elastin remodelling and apoptosis induction seems to be influenced by endogenous lipid-soluble antioxidants, for example, vitamin E. Roles can be defined for antioxidants in the two different pathways of ECM remodelling and apoptosis induction. This suggests that antioxidants are important in maintaining cellular homeostasis relevant to the aetiology of POAG.
Collapse
|
32
|
Solenski NJ, Kostecki VK, Dovey S, Periasamy A. Nitric-oxide-induced depolarization of neuronal mitochondria: implications for neuronal cell death. Mol Cell Neurosci 2003; 24:1151-69. [PMID: 14697675 DOI: 10.1016/j.mcn.2003.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Nitric oxide (NO(*)) has known toxic effects on central nervous system neurons. This study characterized the effect of NO(*) on mitochondrial membrane changes by exploring the relationship among NO(*), excitatory receptor activation, and the induction of peroxynitrite, a highly toxic NO(*) reactant, to neuronal injury. Cultured rat cortical neurons were exposed to the NO(*) generator, diethylenetriamine/nitric oxide adduct, and were examined for signs of cell death, mitochondrial membrane potential changes (Deltapsi(m)), and the induction of a mitochondrial permeability transition (MPT). Neurons were also examined for nitrotyrosine (NT) immunoreactivity, a marker of reactive nitrogen species (RNS) formation. Neurons exposed to NO(*) or to N-methyl-D-aspartate (NMDA) exhibited similar rapid depolarization of mitochondria, which was prevented by an NMDA receptor antagonist. Electrophysiological studies demonstrated NO(*) potentiation of NMDA-induced NMDA receptor currents. NO(*) and NMDA-treated neurons had evidence of mitochondrial-specific NT immunoreactivity that was prevented by a SOD/catalase mimetic (EUK-134). EUK-134 treatment reduced both NO(*) and NMDA-induced NT formation and neuronal cell death. EUK-134 did not prevent NO-induced Deltapsi(m) but partially prevented NMDA-induced Deltapsi(m) loss. Although NO(*) and NMDA both induced MPT and MPT inhibitors prevented NO-induced Deltapsi(m), they did not result in significant neuroprotection, in contrast to treatment designed to decrease peroxynitrite formation. These data suggest that NO-induced NMDA receptor activation is closely linked to intramitochondrial NO-peroxynitrite/RNS formation and thereby acts as a major mediator of neuronal cell death.
Collapse
Affiliation(s)
- Nina J Solenski
- Department of Neurology, University of Virginia Health Sciences System, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|
33
|
Abstract
The objective of this study was to determine whether metalloporphyrin catalytic antioxidants influence the survival of neuronal cultures in an in vitro model of age-related mitochondrial oxidative stress. Neuronal cultures were prepared from cerebral cortices of manganese superoxide dismutase (MnSOD or Sod2) knockout (homozygous -/-, heterozygous -/+ or wild-type +/+) mice. The ability of catalytic antioxidants, manganese tetrakis-(4-benzoic acid) porphyrin (MnTBAP) and manganese tetrakis-(N-ethyl-2-pyridyl) porphyrin (MnTE-2-PyP) to influence the survival of cultured cerebrocortical neurones from Sod2-replete (+/+) and Sod2-deficient (+/- or -/-) mice was assessed. Sod2-/- cultures showed accelerated cell death in serum-free conditions when grown in ambient oxygen. MnTBAP and MnTE-2-PyP delayed the death of Sod2-/- cultures and improved the survival of Sod2+/+ and Sod2+/- cultures in serum-free conditions. The results suggest that metalloporphyrin antioxidants can delay neuronal death resulting specifically from increased mitochondrial oxidative stress. Furthermore, Sod2-deficient neuronal cultures provide a simple model system to screen the biological efficacy of mitochondrial antioxidants.
Collapse
Affiliation(s)
- Manisha N Patel
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center Denver, CO 80262, USA.
| |
Collapse
|
34
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a late onset, rapidly progressive and ultimately fatal neurological disorder, caused by the loss of motor neurons in the brain and spinal cord. Familial aggregation of ALS, with an age-dependent but high penetrance, is a major risk factor for ALS. Familial ALS (FALS) is clinically and genetically heterogeneous. Three genes and linkage to four additional gene loci have been identified so far and may either predominantly lead to ALS (ALSI-ALS6) or cause multisystem neurodegeneration with ALS as an occasional symptom (tauopathies, ALS-dementia complex). This review presents a tentative classification of the "major" ALS genes and ALS "susceptibility" genes, that may act as susceptibility factors for neurodegeneration in interaction with other genetic or environmental risk factors. Considering that mutations in ALS genes explain approximately 10% of familial as well as sporadic ALS, and most remaining cases of the discase are thought to result form the interaction of several genes and environmental factors, ALS is a paradigm for multifactorial discases.
Collapse
Affiliation(s)
- D Majoor-Krakauer
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands.
| | | | | |
Collapse
|
35
|
Borg J, London J. Copper/zinc superoxide dismutase overexpression promotes survival of cortical neurons exposed to neurotoxins in vitro. J Neurosci Res 2002; 70:180-9. [PMID: 12271467 DOI: 10.1002/jnr.10404] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Oxidative stress and excitotoxicity have been implicated as triggering factors in various neurodegenerative diseases or acute neurological insults. Cu/Zn superoxide dismutase (SOD1), a potent free radical scavenging factor, may prevent the progression of such diseases. In the present study, we show that SOD1 overexpression promoted the survival of cortical neuronal cultures originating from mice carrying the human SOD1 transgene. SOD1 overexpression significantly protected against the deleterious effect of reactive oxygen species, ceramide, or N-methyl-D-aspartate (NMDA). It also preserved cortical neurons against apoptosis induced by NMDA or ceramide, as revealed by a smaller increase in caspase 3 activity. SOD1 overexpression was correlated with higher SOD1 activity, and neurotoxins induced an increase in SOD1 activity in cultures from both mice. Moreover, the ratio of increase of SOD1 in cultures from nontransgenic vs. transgenic mice was similar in control cultures or following neurotoxins administration. The highest amount of neurotoxin-induced SOD1 activity was generated by NMDA. Moreover, following exposure to hydrogen peroxide, the cytoskeletal organization was altered, as evidenced by modifications of beta-tubulin or MAP2 labelling. The fact that increased superoxide dismutase activity protected neurons suggests that appropriate control of SOD1 activity is required for neuronal survival under stressful conditions.
Collapse
Affiliation(s)
- Jacques Borg
- Faculté de Médecine, Laboratoire de Survie Cellulaire et Handicaps Neurologiques, Strasbourg, France.
| | | |
Collapse
|
36
|
Kim GW, Chan PH. Involvement of superoxide in excitotoxicity and DNA fragmentation in striatal vulnerability in mice after treatment with the mitochondrial toxin, 3-nitropropionic acid. J Cereb Blood Flow Metab 2002; 22:798-809. [PMID: 12142565 DOI: 10.1097/00004647-200207000-00005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Oxidative stress and excitotoxicity have been implicated in selective striatal vulnerability caused by the mitochondrial toxin, 3-nitropropionic acid (3-NP), which may simulate Huntington's disease in animals and humans. The detailed mechanism of the role of superoxide in striatal vulnerability induced by 3-NP is still unknown. The authors investigated oxidative cellular injury and DNA fragmentation after systemic 3-NP injection in wild-type (Wt) mice and mutant mice with a deficiency in manganese superoxide dismutase (MnSOD; Sod2 -/+). Furthermore, they investigated the effects of decortication after 3-NP treatment in Sod2 -/+ mice, and copper/zinc SOD (CuZnSOD) treatment in recently developed Sod2 -/+ mice that overexpress CuZnSOD (SOD1 +/- / Sod2 -/+ mice). Oxidized hydroethidine, 8-hydroxyguanosine immunoreactivity, and nitrotyrosine immunoreactivity were increased in the Sod2 -/+ mice compared with the Wt mice after 3-NP treatment (P < 0.001). Decortication completely abolished oxidative striatal damage after 3-NP treatment in the Sod2 -/+ mice. Increased CuZnSOD attenuated DNA fragmentation and striatal lesion volume after 3-NP treatment in the Sod2 -/+ mice (P < 0.001). These data suggest that production of superoxide may be a critical step to excitotoxicity and subsequent DNA fragmentation in selective striatal vulnerability after 3-NP treatment.
Collapse
Affiliation(s)
- Gyung W Kim
- Department of Neurosurgery, Stanford University School of Medicine, California 94305-5487, USA
| | | |
Collapse
|
37
|
Kim GW, Kondo T, Noshita N, Chan PH. Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals. Stroke 2002; 33:809-15. [PMID: 11872908 DOI: 10.1161/hs0302.103745] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Superoxide anion radicals (O2*-) are implicated in ischemia/reperfusion injury, although a direct relationship has not been elucidated. Recently, a specific method of hydroethidine (HEt) oxidation by O2*- was developed to detect O2*- production in a variety of experimental brain injury models. To clarify the role of O2*- in the mechanism of ischemia/reperfusion, we investigated O2*- production after ischemia/reperfusion and ischemia/reperfusion injury in mutant mice deficient in mitochondrial manganese superoxide dismutase (MnSOD) and in wild-type littermates. METHODS Ischemia/reperfusion was performed for 60 minutes using intraluminal suture blockade of the middle cerebral artery in the mutant or wild-type mice. We evaluated fluorescent kinetics of HEt or ethidium, the oxidized form of HEt, in brains after an intravenous injection of HEt, followed by measurement of cellular O2*- production using specific HEt oxidation by O2*- before and after ischemia/reperfusion. Furthermore, we compared O2*- production and subsequent infarct volume in the mice using triphenyltetrazolium chloride after ischemia/reperfusion. RESULTS HEt oxidation to ethidium is primarily a result of mitochondrially produced O2*- under physiological conditions. Cerebral ischemia/reperfusion produced O2*- prominently in neurons shortly after reperfusion, followed by a delayed increase in endothelial cells. A deficiency in MnSOD in mutant mice increased mitochondrial O2*- production and exacerbated cerebral infarction, worsening neurological deficits after ischemia/reperfusion. CONCLUSION These results suggest that mitochondrial O2*- production may be a critical step underlying the mechanism of ischemia/reperfusion injury and that MnSOD may protect against ongoing oxidative cell death after ischemia/reperfusion.
Collapse
Affiliation(s)
- Gyung W Kim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, Calif, USA
| | | | | | | |
Collapse
|
38
|
Fukui S, Ookawara T, Nawashiro H, Suzuki K, Shima K. Post-ischemic transcriptional and translational responses of EC-SOD in mouse brain and serum. Free Radic Biol Med 2002; 32:289-98. [PMID: 11827754 DOI: 10.1016/s0891-5849(01)00804-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) is neuroprotective, but its role in cerebral ischemia remains to be determined. We herein describe the topographical localization and quantitative changes in EC-SOD and its mRNA expression following cerebral ischemia in mice. Mice were subjected to transient forebrain ischemia and varied intervals of reperfusion. The measurements of EC-SOD using ELISA showed increased brain EC-SOD after 24 h of reperfusion and an increase in EC-SOD brain/serum ratio after 3 h. The immunohistochemical examination in normal mice showed strong EC-SOD immunoreactivity in the choroid plexus, pia mater, and ventral tuberal area of the hypothalamus. EC-SOD immunoreactivity in cortical and striatal capillary wall was conspicuous after 3 h. EC-SOD immunoreactivity was also noted in cortical neurons after 24 h. Northern blot analysis showed an increased EC-SOD mRNA expression in the brain after 24 h. An in situ hybridization study in normal mice demonstrated the mRNA expression of EC-SOD in choroid plexus and neurons through the brain especially in the cortex or ventral tuberal area of the hypothalamus, but demonstrated no mRNA expression of EC-SOD in the capillary wall. These findings suggest that EC-SOD accumulates on endothelial cells in response to this injury by an unknown mechanism, while cortical neurons produce EC-SOD themselves after cerebral ischemia with reperfusion.
Collapse
Affiliation(s)
- Shinji Fukui
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan.
| | | | | | | | | |
Collapse
|
39
|
Penkowa M, Molinero A, Carrasco J, Hidalgo J. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience 2001; 102:805-18. [PMID: 11182244 DOI: 10.1016/s0306-4522(00)00515-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of interleukin-6 in hippocampal tissue damage after injection with kainic acid, a rigid glutamate analogue inducing epileptic seizures, has been studied by means of interleukin-6 null mice. At 35mg/kg, kainic acid induced convulsions in both control (75%) and interleukin-6 null (100%) mice, and caused a significant mortality (62%) only in the latter mice, indicating that interleukin-6 deficiency increased the susceptibility to kainic acid-induced brain damage. To compare the histopathological damage caused to the brain, control and interleukin-6 null mice were administered 8.75mg/kg kainic acid and were killed six days later. Morphological damage to the hippocampal field CA1-CA3 was seen after kainic acid treatment. Reactive astrogliosis and microgliosis were prominent in kainic acid-injected normal mice hippocampus, and clear signs of increased oxidative stress were evident. Thus, the immunoreactivity for inducible nitric oxide synthase, peroxynitrite-induced nitration of proteins and byproducts of fatty acid peroxidation were dramatically increased, as was that for metallothionein I+II, Mn-superoxide dismutase and Cu/Zn-superoxide dismutase. In accordance, a significant neuronal apoptosis was caused by kainic acid, as revealed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and interleukin-1beta converting enzyme/Caspase-1 stainings. In kainic acid-injected interleukin-6 null mice, reactive astrogliosis and microgliosis were reduced, while morphological hippocampal damage, oxidative stress and apoptotic neuronal death were increased. Since metallothionein-I+II levels were lower, and those of inducible nitric oxide synthase higher, these concomitant changes are likely to contribute to the observed increased oxidative stress and neuronal death in the interleukin-6 null mice. The present results demonstrate that interleukin-6 deficiency increases neuronal injury and impairs the inflammatory response after kainic acid-induced seizures.
Collapse
Affiliation(s)
- M Penkowa
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
40
|
Ahlemeyer B, Bauerbach E, Plath M, Steuber M, Heers C, Tegtmeier F, Krieglstein J. Retinoic acid reduces apoptosis and oxidative stress by preservation of SOD protein level. Free Radic Biol Med 2001; 30:1067-77. [PMID: 11369496 DOI: 10.1016/s0891-5849(01)00495-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retinoic acid (RA) has already been shown to exert antiapoptotic and antioxidative activity in various cells. In this study, we determined the effect of RA on the mRNA and protein levels of the Cu-,Zn-superoxide dismutase (SOD-1) and Mn-superoxide dismutase (SOD-2) during staurosporine-induced apoptosis in primary cultures from neonatal rat hippocampus. Exposure to staurosporine (300 nM, 24 h) increased the percentage of apoptotic neurons to 62% compared with 18% in controls. We determined an increase in the reactive oxygen species (ROS) content from 4 up to 48 h after the induction of the injury. Treatment with staurosporine did not significantly change the mRNA levels of SOD-1 and SOD-2. However, the SOD-1 and SOD-2 protein levels markedly decreased 24 and 48 h after the addition of staurosporine. Compared with staurosporine-exposed controls, RA (10 nM)-treated cultures showed a significant increase in neuronal survival, a reduced neuronal ROS content, and enhanced protein levels of SOD-1 and SOD-2 24 and 48 h after the start of the exposure to staurosporine. The results suggest that RA reduced staurosporine-induced oxidative stress and apoptosis by preventing the decrease in the protein levels of SOD-1 and SOD-2, and thus supported the antioxidant defense system.
Collapse
Affiliation(s)
- B Ahlemeyer
- Institut für Pharmakologie und Toxikologie, Fachbereich Pharmazie der Philipps-Universität Marburg, Marburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Copin JC, Gasche Y, Li Y, Chan PH. Prolonged hypoxia during cell development protects mature manganese superoxide dismutase-deficient astrocytes from damage by oxidative stress. FASEB J 2001; 15:525-34. [PMID: 11156968 DOI: 10.1096/fj.00-0330com] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mouse astrocytes deficient in the mitochondrial form of superoxide dismutase do not grow in culture under 20% atmospheric O2 levels. By flow cytometry, immunocytochemistry, and enzymatic analysis we have shown that the oxygen block of cell division is due to a decrease in the number of cells entering the S phase of the cell cycle and is concomitant with higher DNA oxidation and impairment of mitochondrial functions. Seeding the cells under 5% O2 until the cultures become confluent can circumvent this problem. An initial hypoxic environment increases the resistance of manganese superoxide dismutase-deficient astrocytes to superoxide radicals artificially produced by paraquat treatment, preserves respiratory activity, and allows normoxic division during a subsequent passage. DNA oxidation is then not higher than in wild-type control cells. However, the adaptation of the cells is not due to compensation by other enzymes of the antioxidant defense system and is specific to cells totally lacking manganese superoxide dismutase. Alteration of the phenotype by prior hypoxia exposure in the SOD2-deficient mutant provide a unique model to study adaptative mechanisms of cellular resistance to oxygen toxicity.
Collapse
Affiliation(s)
- J C Copin
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305-5487 USA
| | | | | | | |
Collapse
|
42
|
Rodríguez-Martínez E, Camacho A, Maldonado PD, Pedraza-Chaverrí J, Santamaría D, Galván-Arzate S, Santamaría A. Effect of quinolinic acid on endogenous antioxidants in rat corpus striatum. Brain Res 2000; 858:436-9. [PMID: 10708698 DOI: 10.1016/s0006-8993(99)02474-9] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The response of endogenous antioxidants to the N-methyl-D-aspartate (NMDA) receptor agonist and excitotoxin, quinolinic acid (QUIN), was investigated in rat corpus striatum. Animals treated with QUIN (240 nmol/microl), were sacrificed at 120 min after a single intrastriatal injection to examine the alterations in the levels of both reduced (GSH) and oxidized (GSSG) glutathione, and the activities of the antioxidant enzymes, superoxide dismutase (SOD) and glutathione peroxidase (Gpx). Changes in the rate of lipid peroxidation (LP) were also measured after exposure to different doses of QUIN (60, 120, 240 and 480 nmol/microl) as an index of oxidative stress. When compared to control, lipid peroxidation was increased at QUIN doses of 240 and 480 nmol/microl. Striatal levels of GSH and GSSG were decreased and increased, respectively, after QUIN injection; whereas GPx activity was unchanged. Cytosolic copper/zinc SOD (CuZn-SOD) activity decreased after treatment, while mitochondrial manganese SOD (Mn-SOD) was unchanged. The alterations observed on these antioxidant systems suggest that QUIN toxicity is mediated by specific mechanisms leading to oxidative stress.
Collapse
Affiliation(s)
- E Rodríguez-Martínez
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, SSA, Av. Insurgentes Sur # 3877, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
43
|
Huang TT, Carlson EJ, Raineri I, Gillespie AM, Kozy H, Epstein CJ. The use of transgenic and mutant mice to study oxygen free radical metabolism. Ann N Y Acad Sci 2000; 893:95-112. [PMID: 10672232 DOI: 10.1111/j.1749-6632.1999.tb07820.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To distinguish the role of Mn superoxide dismutase (MnSOD) from that of cytoplasmic CuZn superoxide dismutase (CuZnSOD), the mouse MnSOD gene (Sod2) was inactivated by homologous recombination. Sod2 -/- mice on a CD1 (outbred) genetic background die within the first 10 days of life (mean, 5.4 days) with a complex phenotype that includes dilated cardiomyopathy, accumulation of lipid in liver and skeletal muscle, metabolic acidosis and ketosis, and a severe reduction in succinate dehydrogenase (complex II) and aconitase (a TCA cycle enzyme) activities in the heart and, to a lesser extent, in other organs. These findings indicate that MnSOD is required to maintain the integrity of mitochondrial enzymes susceptible to direct inactivation by superoxide. On the other hand, Lebovitz et al. reported an independently derived MnSod null mouse (Sod2tmlLeb) on a mixed C57BL/6 and 129Sv background with a different phenotype. Because a difference in genetic background is the most likely explanation for the phenotypic differences, the two mutant lines were crossed into different genetic backgrounds for further analyses. To study the phenotype of Sod2tmlLeb mice CD1 background, the Sod2tmlLeb mice were crossed to CD1 for two generations before the -/+ mice were intercrossed to generate -/- mice. The life span distribution of CD1 < Sod2-/- > Leb was shifted to the left, indicating a shortened life span on the CD1 background. Furthermore, the CD1 < Sod2-/- > Leb mice develop metabolic acidosis at an early stage as was observed with CD1 < Sod2-/- > Cje. When Sod2tmlCje was placed on C57BL/6J (B6) background, the -/- mice were found to die either during midgestation or within the first 4 days after birth. However, when the B6 < Sod2 -/+ > Cje were crossed with DBA/2J (D2) for the generation of B6D2F2 < Sod2-/- > Cje mice, an entirely different phenotype, similar to that described by Lebovitz et al., was observed. The F2 Sod -/- mice were able to survive up to 18 days, and the animals that lived for more than 15 days displayed neurological abnormalities including ataxia and seizures. Their hearts were not as severely affected as were those of the CD1 mice, and neurological degeneration rather than heart defect appears to be the cause of death.
Collapse
Affiliation(s)
- T T Huang
- Department of Pediatrics, University of California, San Francisco 94143-0748, USA
| | | | | | | | | | | |
Collapse
|
44
|
Van Landeghem GF, Tabatabaie P, Beckman G, Beckman L, Andersen PM. Manganese-containing superoxide dismutase signal sequence polymorphism associated with sporadic motor neuron disease. Eur J Neurol 1999; 6:639-44. [PMID: 10529750 DOI: 10.1046/j.1468-1331.1999.660639.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An alanin-9valin (Ala-9Val) polymorphism in the mitochondrial targeting sequence of manganese-containing superoxide dismutase (Mn-SOD) has recently been described. We studied this polymorphism in 72 Swedish patients with sporadic motor neuron diseases (MND) and controls using an oligonucleotide ligation assay. There were significant differences in genotype between MND patients and controls (P = 0.025), and between male and female MND patients (P = 0.009). Individuals homozygous for the Ala allele had a higher risk for MND [odds ratio, 2.9; 95% confidence interval (CI), 1.3-6.6], which was increased when including only females in the analysis (odds ratio, 5.0; 95% CI, 1.8-14.0). In classical amyotrophic lateral sclerosis, the odds ratio was 3.8 (95% CI, 1.3-10.0), and 5. 5 (95% CI, 1.5-19.9) when including only females. The results suggest that mutations influencing the cellular allocation of Mn-SOD may be a risk factor in MND, especially in females, and that MND may be a disease of misdistribution of the superoxide dismutase enzymes.
Collapse
|