1
|
Kojima Y, Chiba S, Horiuchi N, Kobayashi Y, Inokuma H. Evaluation of S100B in cerebrospinal fluid as a potential biomarker for neurological diseases in calves. J Vet Med Sci 2015; 77:605-7. [PMID: 25649061 PMCID: PMC4478743 DOI: 10.1292/jvms.14-0578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
S100B in cerebrospinal fluid (CSF-S100B) was measured in calves with 20 neurologic and 21
non-neurologic diseases to clarify its utility as a biomarker for neurologic diseases. The
median CSF-S100B value in the neurologic disease group (43.0
ng/ml) was significantly higher than that in the
non-neurologic disease group (10.2 ng/ml). As CSF-S100B
levels in calves with neurologic diseases widely differed, the utility of CSF-S100B as a
diagnostic marker for neurologic diseases in cattle remains inconclusive.
Collapse
Affiliation(s)
- Yuka Kojima
- Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan
| | | | | | | | | |
Collapse
|
2
|
Wang Q, Ishikawa T, Michiue T, Zhu BL, Guan DW, Maeda H. Evaluation of human brain damage in fatalities due to extreme environmental temperature by quantification of basic fibroblast growth factor (bFGF), glial fibrillary acidic protein (GFAP), S100β and single-stranded DNA (ssDNA) immunoreactivities. Forensic Sci Int 2012; 219:259-64. [DOI: 10.1016/j.forsciint.2012.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 11/14/2011] [Accepted: 01/04/2012] [Indexed: 11/28/2022]
|
3
|
Reali C, Pillai R, Saba F, Cabras S, Michetti F, Sogos V. S100B modulates growth factors and costimulatory molecules expression in cultured human astrocytes. J Neuroimmunol 2012; 243:95-9. [DOI: 10.1016/j.jneuroim.2011.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 11/24/2011] [Accepted: 11/25/2011] [Indexed: 12/18/2022]
|
4
|
Jin K, Xie L, Sun F, Mao X, Greenberg DA. Corpus callosum and experimental stroke: studies in callosotomized rats and acallosal mice. Stroke 2011; 42:2584-8. [PMID: 21737800 DOI: 10.1161/strokeaha.111.613349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Interhemispheric inhibition via the corpus callosum has been proposed as an exacerbating factor in outcome from stroke. METHODS We measured infarct volume and behavioral outcome after middle cerebral artery occlusion in callosotomized rats and acallosal mice. RESULTS Neither callosotomy in rats nor callosal agenesis in mice improved infarct volume or behavioral outcome after middle cerebral artery occlusion. CONCLUSIONS These findings argue against a role for transcallosal projections in exacerbating focal cerebral ischemia.
Collapse
Affiliation(s)
- Kunlin Jin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | | | | | | | | |
Collapse
|
5
|
Jones TA, Jefferson SC. Reflections of experience-expectant development in repair of the adult damaged brain. Dev Psychobiol 2011; 53:466-75. [PMID: 21678394 PMCID: PMC6645382 DOI: 10.1002/dev.20557] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Behavioral experience has long been known to influence functional outcome after brain injury, but only recently has its pervasive role in the reorganization of the adult brain after damage become appreciated. We briefly review findings from animal models on the role of experience in shaping neuronal events after stroke-like injury. Experience-dependent neural plasticity can be enhanced or impaired by brain damage, depending upon injury parameters and timing. The neuronal growth response to some experiences is heightened due to interactions with denervation-induced plasticity. This includes compensatory behavioral strategies developed in response to functional impairments. Early behavioral experiences can constrain later experience-dependent plasticity, leading to suboptimal functional outcome. Time dependencies and facets of neural growth patterns are reminiscent of experience-expectant processes that shape brain development. As with sensitive periods in brain development, this process may establish behavioral patterns early after brain injury which are relatively resistant to later change.
Collapse
Affiliation(s)
- Theresa A Jones
- Psychology Department and Neuroscience Institute, University of Texas at Austin, USA.
| | | |
Collapse
|
6
|
Coracini KF, Fernandes CJ, Barbarini AF, Silva CM, Scabello RT, Oliveira GP, Chadi G. Differential cellular FGF-2 upregulation in the rat facial nucleus following axotomy, functional electrical stimulation and corticosterone: a possible therapeutic target to Bell's palsy. J Brachial Plex Peripher Nerve Inj 2010; 5:16. [PMID: 21062430 PMCID: PMC2995486 DOI: 10.1186/1749-7221-5-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 11/09/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The etiology of Bell's palsy can vary but anterograde axonal degeneration may delay spontaneous functional recovery leading the necessity of therapeutic interventions. Corticotherapy and/or complementary rehabilitation interventions have been employed. Thus the natural history of the disease reports to a neurotrophic resistance of adult facial motoneurons leading a favorable evolution however the related molecular mechanisms that might be therapeutically addressed in the resistant cases are not known. Fibroblast growth factor-2 (FGF-2) pathway signaling is a potential candidate for therapeutic development because its role on wound repair and autocrine/paracrine trophic mechanisms in the lesioned nervous system. METHODS Adult rats received unilateral facial nerve crush, transection with amputation of nerve branches, or sham operation. Other group of unlesioned rats received a daily functional electrical stimulation in the levator labii superioris muscle (1 mA, 30 Hz, square wave) or systemic corticosterone (10 mgkg-1). Animals were sacrificed seven days later. RESULTS Crush and transection lesions promoted no changes in the number of neurons but increased the neurofilament in the neuronal neuropil of axotomized facial nuclei. Axotomy also elevated the number of GFAP astrocytes (143% after crush; 277% after transection) and nuclear FGF-2 (57% after transection) in astrocytes (confirmed by two-color immunoperoxidase) in the ipsilateral facial nucleus. Image analysis reveled that a seven days functional electrical stimulation or corticosterone led to elevations of FGF-2 in the cytoplasm of neurons and in the nucleus of reactive astrocytes, respectively, without astrocytic reaction. CONCLUSION FGF-2 may exert paracrine/autocrine trophic actions in the facial nucleus and may be relevant as a therapeutic target to Bell's palsy.
Collapse
Affiliation(s)
- Karen F Coracini
- Department of Neurology, University of São Paulo, Av. Dr. Arnaldo, 455 2nd floor, room 2119, São Paulo - 01246-903, Brazil
| | - Caio J Fernandes
- Department of Neurology, University of São Paulo, Av. Dr. Arnaldo, 455 2nd floor, room 2119, São Paulo - 01246-903, Brazil
| | - Almir F Barbarini
- Department of Neurology, University of São Paulo, Av. Dr. Arnaldo, 455 2nd floor, room 2119, São Paulo - 01246-903, Brazil
| | - César M Silva
- Department of Neurology, University of São Paulo, Av. Dr. Arnaldo, 455 2nd floor, room 2119, São Paulo - 01246-903, Brazil
| | - Rodrigo T Scabello
- Department of Neurology, University of São Paulo, Av. Dr. Arnaldo, 455 2nd floor, room 2119, São Paulo - 01246-903, Brazil
| | - Gabriela P Oliveira
- Department of Neurology, University of São Paulo, Av. Dr. Arnaldo, 455 2nd floor, room 2119, São Paulo - 01246-903, Brazil
| | - Gerson Chadi
- Department of Neurology, University of São Paulo, Av. Dr. Arnaldo, 455 2nd floor, room 2119, São Paulo - 01246-903, Brazil
| |
Collapse
|
7
|
Differential regulation of FGF-2 in neurons and reactive astrocytes of axotomized rat hypoglossal nucleus. A possible therapeutic target for neuroprotection in peripheral nerve pathology. Acta Histochem 2010; 112:604-17. [PMID: 19665173 DOI: 10.1016/j.acthis.2009.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 01/13/2023]
Abstract
Despite the favorable treatment of cranial nerve neuropathology in adulthood, some cases are resistant to therapy leading to permanent functional impairments. In many cases, suitable treatment is problematic as the therapeutic target remains unknown. Basic fibroblast growth factor (bFGF, FGF-2) is involved in neuronal maintenance and wound repair following nervous system lesions. It is one of few neurotrophic molecules acting in autocrine, paracrine and intracrine fashions depending upon specific circumstances. Peripheral cranial somatic motor neurons, i.e. hypoglossal (XII) neurons, may offer a unique opportunity to study cellular FGF-2 mechanisms as the molecule is present in the cytoplasm of neurons and in the nuclei of astrocytes of the central nervous system. FGF-2 may trigger differential actions during development, maintenance and lesion of XII neurons because axotomy of those cells leads to cell death during neonatal ages, but not in adult life. Moreover, the modulatory effects of astroglial FGF-2 and the Ca+2-binding protein S100β have been postulated in paracrine mechanisms after neuronal lesions. In our study, adult Wistar rats received a unilateral crush or transection (with amputation of stumps) of XII nerve, and were sacrificed after 72h or 11 days. Brains were processed for immunohistochemical localization of neurofilaments (NF), with or without counterstaining for Nissl substance, glial fibrillary acidic protein (GFAP, as a marker of astrocytes), S100β and FGF-2. The number of Nissl-positive neurons of axotomized XII nucleus did not differ from controls. The NF immunoreactivity increased in the perikarya and decreased in the neuropil of axotomized XII neurons 11 days after nerve crush or transection. An astrocytic reaction was seen in the ipsilateral XII nucleus of the crushed or transected animals 72h and 11 days after the surgery. The nerve lesions did not change the number of FGF-2 neurons in the ipsilateral XII nucleus; however, the nerve transection increased the number of FGF-2 glial profiles by 72h and 11 days. Microdensitometric image analysis revealed a short lasting decrease in the intensity of FGF-2 immunoreactivity in axotomized XII neurons by 72h after nerve crush or transection and also an elevation of FGF-2 in the ipsilateral of glial nuclei by 72h and 11 days after the two lesions. S100β decreased in astrocytes of 11-day-transected XII nucleus. The two-color immunoperoxidase for the simultaneous detection of the GFAP/FGF-2 indicated FGF-2 upregulation in the nuclei of reactive astrocytes of the lesioned XII nucleus. Astroglial FGF-2 may exert paracrine trophic actions in mature axotomized XII neurons and might represent a therapeutic target for neuroprotection in peripheral nerve pathology.
Collapse
|
8
|
Treadmill running protects spinal cord contusion from secondary degeneration. Brain Res 2010; 1346:266-78. [PMID: 20513364 DOI: 10.1016/j.brainres.2010.05.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/18/2010] [Accepted: 05/24/2010] [Indexed: 11/22/2022]
Abstract
It is known that physical activity triggers changes in the central nervous system. Adult rats, trained on treadmills for 4 weeks, and a group of sedentary rats was submitted to contuse moderate spinal cord injury. A group of sedentary rats was submitted to a sham operation. The trained group continued running on treadmill after lesion for 4 weeks. Motor behavior evaluated by BBB score was smaller in the sedentary group compared to the trained rats by 7 days after lesion. Computerized activity monitor showed clear-cut differences in spontaneous motor parameters in trained rats only before lesion. After surgery, sedentary rats showed changes in motor parameters but not in later periods of analysis. Animals were euthanized by 28 days after surgery, and their spinal cords were processed for Nissl staining and immunohistochemistry. The number of the remaining neurons and the lesion areal and lesion volume fractions were obtained by stereological method. The number of the remaining neurons did not change after training. Lesion volume and lesion areal fraction per section were smaller in the trained group. Lesion index was more pronounced in the sedentary group. Microdensitometric image analysis demonstrated a microglial reaction, astroglial activation, and glial FGF-2 production more pronounced in the spinal cord of sedentary animals. GAP-43 was higher in caudal levels of contusion in the sedentary group. In conclusion, treadmill running may favor a better functional recovery in the acute period after spinal cord lesion and wound repair processes leading to neuroprotection.
Collapse
|
9
|
The importance of molecular histology to study glial influence on neurodegenerative disorders. Focus on recent developed single cell laser microdissection. J Mol Histol 2009; 40:241-50. [PMID: 19882358 DOI: 10.1007/s10735-009-9235-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/13/2009] [Indexed: 12/15/2022]
Abstract
Neuron-glia interaction is involved in physiological function of neurons, however recent evidences have suggested glial cells as participants in neurotoxic and neurotrophic mechanisms of neurodegenerative/neuroregenerative processes. Histological techniques employing immunolabeling, historadiography and in situ hybridization have been useful to localize at cell levels molecules in normal and pathological situations. The intercellular accomplishment leading to neuronal injury in central nervous system disorders implies the performance of quantitative assays to better interpret the role of related molecules or signal pathways, however one limitation employing the whole tissue is the loss of cellular resolution. The laser capture microdissection was developed recently and allows the selection of specific cell types from their original environment after freezing and sectioning the tissue sampling, leading to the quantification of gene expression in individual cells, thus providing a unique opportunity to get new informations on cell signaling related to neurodegeneration. Here we reviewed the role of glial cell signaling on neurodegenerative disorders like ischemia, Parkinson and Alzheimer diseases, and also amyotrophic lateral sclerosis and what has been published with regards to single cell laser capture microdissection technique in the molecular biology investigation on these issues.
Collapse
|
10
|
Duobles T, Lima TDS, Levy BDFA, Chadi G. S100beta and fibroblast growth factor-2 are present in cultured Schwann cells and may exert paracrine actions on the peripheral nerve injury. Acta Cir Bras 2009; 23:555-60. [PMID: 19030756 DOI: 10.1590/s0102-86502008000600014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 10/21/2008] [Indexed: 11/21/2022] Open
Abstract
PURPOSE The neurotrophic factor fibroblast growth factor-2 (FGF-2, bFGF) and Ca++ binding protein S100beta are expressed by the Schwann cells of the peripheral nerves and by the satellite cells of the dorsal root ganglia (DRG). Recent studies have pointed out the importance of the molecules in the paracrine mechanisms related to neuronal maintenance and plasticity of lesioned motor and sensory peripheral neurons. Moreover, cultured Schwann cells have been employed experimentally in the treatment of central nervous system lesions, in special the spinal cord injury, a procedure that triggers an enhanced sensorymotor function. Those cells have been proposed to repair long gap nerve injury. METHODS Here we used double labeling immunohistochemistry and Western blot to better characterize in vitro and in vivo the presence of the proteins in the Schwann cells and in the satellite cells of the DRG as well as their regulation in those cells after a crush of the rat sciatic nerve. RESULTS FGF-2 and S100beta are present in the Schwann cells of the sciatic nerve and in the satellite cells of the DRG. S100beta positive satellite cells showed increased size of the axotomized DRG and possessed elevated amount of FGF-2 immunoreactivity. Reactive satellite cells with increased FGF-2 labeling formed a ring-like structure surrounding DRG neuronal cell bodies.Reactive S100beta positive Schwann cells of proximal stump of axotomized sciatic nerve also expressed higher amounts of FGF-2. CONCLUSION Reactive peripheral glial cells synthesizing FGF-2 and S100beta may be important in wound repair and restorative events in the lesioned peripheral nerves.
Collapse
Affiliation(s)
- Tatiana Duobles
- Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
11
|
Gomide VC, Silveira GA, Chadi G. Transient and Widespread Astroglial Activation in the Brain after a Striatal 6-Ohda-Induced Partial Lesion of the Nigrostriatal System. Int J Neurosci 2009; 115:99-117. [PMID: 15768855 DOI: 10.1080/00207450490512696] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The authors have previously described astroglial activation in the ipsilateral nigrostriatal system and ventral tegmental area following small doses of 6-hydroxydopamine (6-OHDA) injected unilaterally in the striatum. This article further evaluated astroglial reactivity in several brain regions after striatal 6-OHDA-induced punctate lesion in the nigrostriatal pathway. Adult male Wistar rats received a unilateral stereotaxical injection of the 6-OHDA (8 microg/4 microl) in the neostriatum and sacrificed 1 or 3 weeks later. Control animals received only solvent. Immunohistochemistry was employed for visualization of the tyrosine hydroxylase (TH), marker for dopamine cells, and glial fibrillary acidic protein (GFAP), marker for astrocytes. TH immunoreactive terminals disappeared in the striatum close to the injection site and a disappearance of a small number of a defined population of dopamine cell bodies was observed in the ipsilateral pars compacta of the substantia nigra (SNc). No dopamine lesion was detected in the contralateral nigrostriatal pathway. Astroglial reaction was seen close to the lesion in the neostriatum and in the ipsilateral SNc of the 1 week 6-OHDA lesioned rats. Specific stereological tools employing point intercepts and rotator, revealed an increased presence of reactive astrocytes in many forebrain regions like frontal, parietal and piriform cortex, septum, neostriatum and SNc, bilaterally, and also corpus callosum after 1 week of 6-OHDA injection. The astroglial activation was characterized by increases in the size of the cell body and/or processes. Astrocytic reaction was found only in the ipsilateral nigrostriatal pathway by 3 weeks of 6-OHDA, a slight activation also remaining in the ipsilateral septum and piriform cortex. Astrocytic reaction was seen in the solvent-injected rats only in the neostriatum close to the needle track. The transient widespread astroglial reaction observed in many brain regions following a striatal injection of 6-OHDA may represent a global paracrine trophic response in the brain.
Collapse
Affiliation(s)
- V C Gomide
- Laboratory of Neuroregeneration, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
12
|
Gomide V, Bibancos T, Chadi G. DOPAMINE CELL MORPHOLOGY AND GLIAL CELL HYPERTROPHY AND PROCESS BRANCHING IN THE NIGROSTRIATAL SYSTEM AFTER STRIATAL 6-OHDA ANALYZED BY SPECIFIC STEROLOGICAL TOOLS. Int J Neurosci 2009; 115:557-82. [PMID: 15804725 DOI: 10.1080/00207450590521118] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Morphological changes in the dopamine neurons and glial cells of the rat mid-brain ascending dopamine pathways were investigated after a partial lesion induced by unilateral striatal injection of a small dose of 6-hydroxydopamine (6-OHDA). Fourteen days after lesion, animals showed contralateral rotation induced by apomorphine injection. After behavioral analysis, fats were killed and their brains processed for the immunohistochemistry tyrosine hydroxylase (TH), a marker for dopamine cells, as well as glial fibrillary acidic protein (GFAP) and OX-42, markers for astrocyte and microglia, respectively. Stereological tools were employed in the quantifications. The volumes of the regions of the striatal TH immunoreactive disappearance, as well as the astroglial and microglial activation were several folds increased compared to control saline-injected rats. The optical disector detected decreases in the estimated total number of dopamine cells in the entire ipsilateral pars compacta of the substantia nigra (SNc) and the ventral tegmental area (VTA) as well as in the estimated total number of varicosity profiles in the entire ipsilateral neostriatum. The stereological tool rotator showed no changes either in the mean or in the histogram distribution of the cytoplasmic volume of the nigral and VTA dopamine cells of 6-OHDA lesioned rats. Increases in the estimated total number of GFAP positive astrocytes were found in the entire neostriatum bilaterally as well as in the ipsilateral entire SNc and VTA of 6-OHDA lesioned rats. The estimated total number of OX-42 immunoreactive microglial profiles was elevated only in the ipsilateral entire neostriatum of the lesioned rats. The rotator detected cytoplasmic hypertrophy in the astrocytes, and also a shift to the fight of the gaussian curves of the normal distribution of the logarithmic plotted values of the astroglial cell body volumes of the neostriatum bilaterally as well as in the ipsilateral SNc and VTA of the striatal 6-OHDA injected rats. Cytoplasmic hypertrophy of microglia, and also a shift to the right of the gaussian curves of the values of microglia cell body volumes were seen only in the ipsilateral neostriatum; however, the point intercepts revealed an increased amount of microglial processes in the ipsilateral SNc and VTA of the lesioned rats. Specific stereological methods can be applied on detection of regionally different forms of cellular astroglial and microglial reaction after a partial lesion of dopamine pathway.
Collapse
Affiliation(s)
- Vânia Gomide
- Laboratory of Neuroregeneration, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
13
|
Gomide VC, Laureano MR, Silveira GA, Chadi G. Neuropeptide Y in Rat Spiral Ganglion Neurons and Inner Hair Cells of Organ of Corti and Effects of a Nontraumatic Acoustic Stimulation. Int J Neurosci 2009; 119:508-30. [DOI: 10.1080/00207450802330462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Rodrigues RWP, Gomide VC, Chadi G. ASTROGLIAL AND MICROGLIAL ACTIVATION IN THE WISTAR RAT VENTRAL TEGMENTAL AREA AFTER A SINGLE STRIATAL INJECTION OF 6-HYDROXYDOPAMINE. Int J Neurosci 2009; 114:197-216. [PMID: 14702208 DOI: 10.1080/00207450490249338] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Astroglial and microglial activation were analyzed in the ventral tegmental area (VTA) in adult male Wistar rats, after an unilateral striatal 6-hydroxydopamine (6-OHDA) injection. Different doses (8, 4, and 1 microg) of 6-OHDA were injected in the left side of the neostriatum; animals were sacrificed 22 days later. Control animals received an injection of the same volume of the solvent. The tyrosine hydroxylase (TH) positive dopamine cells, the glial fibrillary acidic protein (GFAP) immuno -labeled astrocytes, and the OX42 immunoreactive microglia were visualized by means of immunohistochemistry and quantified by stereologic methods employing the optical dissector and the point intercepts. The number and the density of TH immunoreactive cell bodies were decreased by 45% and 46%, respectively, in the sampled field of the ipsilateral VTA of 8 microg 6-OHDA injected rats. The GFAP immunohistochemistry revealed in the ipsilateral VTA increases the number and density of astroglial cells (154% and 166% of control, respectively) in the rats with a higher dose of the 6-OHDA, and also in the volume fraction of the astroglial processes after 8 microg (41% of control) and 4 microg (24% of control) of 6-OHDA. Increased number (76% of control) and density (77% of control) of OX42 microglial labeled profiles and microglial processes (51% of control) were found in the ipsilateral VTA of the 8 microg 6-OHDA injected animals. These results suggest that the retrograde degeneration of the mesostriatal dopamine pathways, induced by a striatal injection of 6-OHDA, leads to astroglial and microglial reactions in the VTA. The interaction between activated glial cells may be involved in the wounding and repair events in the partial lesioned system, and also in the trophic paracrine responses in the surviving VTA dopamine neurons.
Collapse
Affiliation(s)
- R W P Rodrigues
- Laboratory of Neuroregeneration, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
15
|
Dallo JGM, Reichert BV, Valladão Júnior JBR, Silva C, Luca BAD, Levy BDFA, Chadi G. Differential astroglial responses in the spinal cord of rats submitted to a sciatic nerve double crush treated with local injection of cultured Schwann cell suspension or lesioned spinal cord extract: implications on cell therapy for nerve repair. Acta Cir Bras 2009; 22:485-94. [PMID: 18235939 DOI: 10.1590/s0102-86502007000600013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 07/18/2007] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Reactive astrocytes are implicated in several mechanisms after central or peripheral nervous system lesion, including neuroprotection, neuronal sprouting, neurotransmission and neuropathic pain. Schwann cells (SC), a peripheral glia, also react after nerve lesion favoring wound/repair, fiber outgrowth and neuronal regeneration. We investigated herein whether cell therapy for repair of lesioned sciatic nerve may change the pattern of astroglial activation in the spinal cord ventral or dorsal horn of the rat. METHODS Injections of a cultured SC suspension or a lesioned spinal cord homogenized extract were made in a reservoir promoted by a contiguous double crush of the rat sciatic nerve. Local injection of phosphate buffered saline (PBS) served as control. One week later, rats were euthanized and spinal cord astrocytes were labeled by immunohistochemistry and quantified by means of quantitative image analysis. RESULTS In the ipsilateral ventral horn, slight astroglial activations were seen after PBS or SC injections, however, a substantial activation was achieved after cord extract injection in the sciatic nerve reservoir. Moreover, SC suspension and cord extract injections were able to promote astroglial reaction in the spinal cord dorsal horn bilaterally. CONCLUSION Spinal cord astrocytes react according to repair processes of axotomized nerve, which may influence the functional outcome. The event should be considered during the neurosurgery strategies.
Collapse
|
16
|
Silva C, Fuxe K, Chadi G. Involvement of astroglial fibroblast growth factor-2 and microglia in the nigral 6-OHDA parkinsonism and a possible role of glucocorticoid hormone on the glial mediated local trophism and wound repair. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:185-202. [PMID: 20411778 DOI: 10.1007/978-3-211-92660-4_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have observed in previous studies that 6-hydroxydopamine (6-OHDA)-induced lesions in the nigrostriatal dopamine (DA) system promote increases of the astroglial basic fibroblast growth factor (FGF-2, bFGF) synthesis in the ascending DA pathways, event that could be modified by adrenosteroid hormones. Here, we first evaluated the changes of microglial reactivity in relation to the FGF-2-mediated trophic responses in the lesioned nigrostriatal DA system. 6-OHDA was injected into the left side of the rat substantia nigra. The OX42 immunohistochemistry combined with stereology showed the time course of the microglial activation. The OX42 immunoreactivity (IR) was already increased in the pars compacta of the substantia nigra (SNc) and ventral tegmental area (VTA) 2 h after the 6-OHDA injection, peaked on day 7, and remained increased on the 14th day time-interval. In the neostriatum, OX42 immunoreactive (ir) microglial profiles increased at 24 h, peaked at 72 h, was still increased at 7 days but not 14 days after the 6-OHDA injection. Two-colour immunofluorescence analysis of the tyrosine hydroxylase (TH) and OX42 IRs revealed the presence of small patches of TH IR within the activated microglia. A decreased FGF-2 IR was seen in the cytoplasm of DA neurons of the SNc and VTA as soon as 2 h after 6-OHDA injection. The majority of the DA FGF-2 ir cells of these regions had disappeared 72 h after neurotoxin. The astroglial FGF-2 IR increased in the SNc and VTA, which peaked on day 7. Two-colour immunofluorescence and immunoperoxidase analyses of the FGF-2 and OX42 IRs revealed no FGF-2 IR within the reactive or resting microglia. Second, we have evaluated in a series of biochemical experiments whether adrenocortical manipulation can interfere with the nigral lesion and the state of local astroglial reaction, looking at the TH and GFAP levels respectively. Rats were adrenalectomized (ADX) and received a nigral 6-OHDA stereotaxical injection 2 days later and sacrificed up to 3 weeks after the DA lesion. Western blot analysis showed time-dependent decrease and elevation of TH and GFAP levels, respectively, in the lesioned versus contralateral midbrain sides, events potentiated by ADX and worsened by corticosterone replacement. ADX decreased the levels of FGF-2 protein (23 kDa isoform) in the lesioned side of the ventral midbrain compared contralaterally. The results indicate that reactive astroglia, but not reactive microglia, showed an increased FGF-2 IR in the process of DA cell degeneration induced by 6-OHDA. However, interactions between these glial cells may be relevant to the mechanisms which trigger the increased astroglial FGF-2 synthesis and thus may be related to the trophic state of DA neurons and the repair processes following DA lesion. The findings also gave further evidence that adrenocortical hormones may regulate astroglial-mediated trophic mechanisms and wound repair events in the lesioned DA system that may be relevant to the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Camila Silva
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
17
|
Andrade MSR, Hanania FR, Daci K, Leme RJA, Chadi G. Contuse lesion of the rat spinal cord of moderate intensity leads to a higher time-dependent secondary neurodegeneration than severe one. An open-window for experimental neuroprotective interventions. Tissue Cell 2008; 40:143-56. [PMID: 18207478 DOI: 10.1016/j.tice.2007.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/12/2007] [Accepted: 11/14/2007] [Indexed: 11/27/2022]
Abstract
Secondary neurodegeneration takes place in the surrounding tissue of spinal cord trauma and modifies substantially the prognosis, considering the small diameter of its transversal axis. We analyzed neuronal and glial responses in rat spinal cord after different degree of contusion promoted by the NYU Impactor. Rats were submitted to vertebrae laminectomy and received moderate or severe contusions. Control animals were sham operated. After 7 and 30 days post surgery, stereological analysis of Nissl staining cellular profiles showed a time progression of the lesion volume after moderate injury, but not after severe injury. The number of neurons was not altered cranial to injury. However, same degree of diminution was seen in the caudal cord 30 days after both severe and moderate injuries. Microdensitometric image analysis demonstrated a microglial reaction in the white matter 30 days after a moderate contusion and showed a widespread astroglial reaction in the white and gray matters 7 days after both severities. Astroglial activation lasted close to lesion and in areas related to Wallerian degeneration. Data showed a more protracted secondary degeneration in rat spinal cord after mild contusion, which offered an opportunity for neuroprotective approaches. Temporal and regional glial responses corroborated to diverse glial cell function in lesioned spinal cord.
Collapse
Affiliation(s)
- M S R Andrade
- Neuroregeneration Center, Experimental Neurology, Department of Neurology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, CEP: 01246-903, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
18
|
Adrenalectomy counteracts the local modulation of astroglial fibroblast growth factor system without interfering with the pattern of 6-OHDA-induced dopamine degeneration in regions of the ventral midbrain. Brain Res 2008; 1190:23-38. [PMID: 18086466 DOI: 10.1016/j.brainres.2007.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 10/29/2007] [Accepted: 11/07/2007] [Indexed: 11/21/2022]
|
19
|
Levy BDFA, Cunha JDC, Chadi G. Cellular analysis of S100Beta and fibroblast growth factor-2 in the dorsal root ganglia and sciatic nerve of rodents. focus on paracrine actions of activated satellite cells after axotomy. Int J Neurosci 2007; 117:1481-503. [PMID: 17729158 DOI: 10.1080/15569520701502716] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The role of satellite cells, a type of peripheral glia, in the paracrine mechanisms related to neuronal maintenance and plasticity in the dorsal root ganglia (DRG) needs to be further investigated. This study employed immunohistochemistry and image analysis to investigate basic fibroblast growth factor (bFGF, FGF-2) and S100Beta immunoreactivities in the DRG and sciatic nerve of the rat and mouse. Well-characterized antibodies against bovine (residues 1-24) and rat (residues 1-23) FGF-2 were employed. Furthermore, the state of satellite cell reaction and changes in the FGF-2/S100Beta immunoreactivity were analyzed after axotomy of rat sciatic nerve. Scattered neurons and the majority of the satellite cells of the rat DRG and also Schwann cells of the rat sciatic nerve stained for S100Beta. In the mouse, strong S100Beta was encountered in the majority of sensory neurons and Schwann cells. Moderate FGF-2 (residues 1-24) immunoreactivity was found in scattered small size neurons of the rat DRG. A strong FGF-2 (residues 1-23) immunoreactivity was achieved in the satellite cells of rat DRG. Both FGF-2 antisera showed strong labeling in the mouse DRG sensory neurons. Activated satellite cells of the axotomized DRG possessed increased amount of FGF-2 and S100Beta immunoreactivity as demonstrated by quantitative image analysis. The proximal stump of the lesioned rat sciatic nerve showed increased FGF-2 (residues 1-24 and 1-23) in the Schwann cells, myelin sheaths, and neuronal fibers, without changes in the level of S100Beta immunoreactivity. Results suggested a possible interaction between FGF-2 and S100Beta in activated satellite cells of the DRG, which might trigger paracrine actions in the axotomized sensory neurons.
Collapse
|
20
|
Daginakatte GC, Gadzinski A, Emnett RJ, Stark JL, Gonzales ER, Yan P, Lee JM, Cross AH, Gutmann DH. Expression profiling identifies a molecular signature of reactive astrocytes stimulated by cyclic AMP or proinflammatory cytokines. Exp Neurol 2007; 210:261-7. [PMID: 18054918 DOI: 10.1016/j.expneurol.2007.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 10/06/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
Specialized glia, termed reactive astrocytes, accompany numerous pathologic conditions affecting the central nervous system, including stroke, multiple sclerosis, and neoplasia. To better define this important cell type, we employed high-density microarray gene expression profiling using two in vitro models of reactive gliosis (stimulation with dbcAMP or IL-1beta/IFNgamma). We identified 44 differentially expressed transcripts common to both in vitro models and demonstrated that a subset of these genes are also differentially expressed in response to experimental autoimmune encephalomyelitis and focal cerebral ischemia in vivo. Moreover, this pattern of differential gene expression is not observed in hyperproliferating or neoplastic glia.
Collapse
Affiliation(s)
- Girish C Daginakatte
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
do Carmo Cunha J, de Freitas Azevedo Levy B, de Luca BA, de Andrade MSR, Gomide VC, Chadi G. Responses of reactive astrocytes containing S100beta protein and fibroblast growth factor-2 in the border and in the adjacent preserved tissue after a contusion injury of the spinal cord in rats: implications for wound repair and neuroregeneration. Wound Repair Regen 2007; 15:134-46. [PMID: 17244329 DOI: 10.1111/j.1524-475x.2006.00194.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper demonstrates glial reaction and changes in the S100beta protein and basic fibroblast growth factor (bFGF, FGF-2) in the border and in the adjacent preserved tissue of the rat spinal cord after a contusion. In view of the expression of FGF-2 and S100beta in reactive glial cells and their ability to promote gliogenesis and neuronal trophism, the molecules have been considered to participate in the wound repair and regenerative events after nervous tissue injury. Adult rats were submitted to a moderate spinal cord (10th thoracic level) contusion induced by a New York University Impactor by dropping a 10 g rod from a distance of 25 mm onto the dorsal surface of the exposed dura spinal cord. Impactor curves and parameters were used to monitor the severity of the trauma. Control rats were submitted to sham operation. The motor behavioral spontaneous recovery was demonstrated by means of a BBB test and the combining behavior score up to 3 weeks after injury. Animals were killed 72 hours, 2, and 3 weeks after surgery and spinal cords were processed for immunohistochemistry to show glial fibrillary acidic protein positive astrocytes and OX-42-positive microglia/macrophages as well as changes in the S100beta and FGF-2 in the border and in the adjacent preserved tissue of the lesioned cords. The changes in the immunoreaction products were quantified by means of morphometric/microdensitometric image analysis, and the cell type expressing S100beta and FGF-2 was analyzed by means of two-color immunofluorescence procedures. Massive increases of S100beta and FGF-2 were found in reactive astrocytes, not in reactive microglia, in the border and in the white and gray matters of adjacent preserved tissue of the contused spinal cord in the periods studied. The results are discussed in view of possible paracrine trophic actions of the reactive astrocytes, mediated by S100beta and FGF-2, triggering wound repair events in the border of the trauma, and also leading to neurotrophism and neuronal plasticity in the adjacent regions. These cellular and molecular responses may interfere with the pattern of behavioral recovery after a contusion injury of the spinal cord.
Collapse
Affiliation(s)
- Jinger do Carmo Cunha
- Neuroregeneration Center, Department of Neurology, University of São Paulo School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
22
|
Kleindienst A, Hesse F, Bullock MR, Buchfelder M. The neurotrophic protein S100B: value as a marker of brain damage and possible therapeutic implications. PROGRESS IN BRAIN RESEARCH 2007; 161:317-25. [PMID: 17618987 DOI: 10.1016/s0079-6123(06)61022-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We provide a critical analysis of the value of S100B as a marker of brain damage and possible therapeutic implications. The early assessment of the injury severity and the consequent prognosis are of major concern for physicians treating patients suffering from traumatic brain injury (TBI). A reliable indicator to accurately determine the extent of the brain damage has to meet certain requirements: (i) to originate in the central nervous system (CNS) with no contribution from extracerebral sources; (ii) a passive release from damaged neurons and/or glial cells without any stimulated active release; (iii) a lack of specific effects on neurons and/or glial cells interfering with the initial injury; (iv) an unlimited passage through the blood-brain barrier (BBB). The measurement of putative biochemical markers, such as the S100B protein, has been proposed in this role. Over the past decade, numerous studies have reported a positive correlation of S100B serum levels with a poor outcome following TBI. However, some studies raise doubt whether the serum measurement of S100B is a valid biochemical marker of brain damage. We summarize the specific properties of S100B and analyze whether they support or counteract the necessary requirements to designate this protein as an indicator of brain damage. Finally, we report recent experimental findings suggesting a possible therapeutic potential of S100B.
Collapse
Affiliation(s)
- Andrea Kleindienst
- Department of Neurosurgery, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
| | | | | | | |
Collapse
|
23
|
O'Bryant A, Bernier B, Jones TA. Abnormalities in skilled reaching movements are improved by peripheral anesthetization of the less-affected forelimb after sensorimotor cortical infarcts in rats. Behav Brain Res 2006; 177:298-307. [PMID: 17173985 PMCID: PMC2426918 DOI: 10.1016/j.bbr.2006.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 10/27/2006] [Accepted: 11/14/2006] [Indexed: 11/17/2022]
Abstract
Unilateral damage to sensorimotor cortical (SMC) regions can profoundly impair skilled reaching function in the contralesional forelimb. Such damage also results in impairments and compensatory changes in the less-affected/ipsilesional forelimb, but these effects remain poorly understood. Furthermore, anesthetization of the ipsilesional hand in humans with cerebral infarcts has been reported to produce transient functional improvements in the paretic hand [Floel A, Nagorsen U, Werhahn KJ, Ravindran S, Birbaumer N, Knecht S, et al. Influence of somatosensory input on motor function in patients with chronic stroke. Ann Neurol 2004;56:206-12; Voller B, Floel A, Werhahn KJ, Ravindran S, Wu CW, Cohen LG. Contralateral hand anesthesia transiently improves poststroke sensory deficits. Ann Neurol 2006;59:385-8]. One aim of this study was to sensitively assay the bilateral effects of unilateral ischemic SMC damage on performance of a unimanual skilled reaching task (the single pellet retrieval task) that rats had acquired pre-operatively with each forelimb. The second aim was to determine whether partially recovered contralesional reaching function is influenced by anesthetization of the ipsilesional forelimb. Unilateral SMC lesions were found to result in transient ipsilesional impairments in reaching success and significant ipsilesional abnormalities in reaching movements compared with sham-operates. There were major contralesional reaching impairments which improved during a 4 week training period, but movements remained significantly abnormal. Anesthetization of the ipsilesional forelimb with lidocaine at this time attenuated the contralesional movement abnormalities. These findings indicate that unilateral ischemic SMC lesions impair skilled reaching behavior in both forelimbs. Furthermore, after partial recovery in the contralesional forelimb, additional improvements can be induced by transient anesthetization of the ipsilesional forelimb. This is consistent with the effects of unilateral anesthetization in humans which have been attributed to the modulation of competitive interhemispheric interactions. The present findings suggest that such interactions are also likely to influence skilled reaching function in rats.
Collapse
Affiliation(s)
- A O'Bryant
- Neuroscience Institute, University of Texas, Austin, TX, USA
| | | | | |
Collapse
|
24
|
Miu AC, Heilman RM, Paşca SP, Stefan CA, Spânu F, Vasiu R, Olteanu AI, Miclea M. Behavioral effects of corpus callosum transection and environmental enrichment in adult rats. Behav Brain Res 2006; 172:135-44. [PMID: 16764947 DOI: 10.1016/j.bbr.2006.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 05/03/2006] [Accepted: 05/05/2006] [Indexed: 10/24/2022]
Abstract
A common assumption about the corpus callosum transection (CCX) is that it only affects behaviors heavily relying on interhemispheric communication. However, cerebral laterality is ubiquitous across motor and perceptual, cognitive and emotional domains, and the corpus callosum is important for its establishment. Several recent studies showed that the partial denervation of the sensorimotor isocortex through CCX derepressed neural growth processes that were sensitive to motor demand (experience-dependent neural plasticity). We investigated whether the facilitatory effects of CCX on cortical neural plasticity, shaped by differential housing, extended beyond the motor domain. Adult rats were housed in enriched (EE), standard (SE) or impoverished environments (IE) for 10 weeks, that is, 2 weeks before they underwent CCX or sham surgery, and, then, 8 weeks throughout the experiments. After they recovered from surgery, the behavioral performance of rats was tested using open-field, spontaneous alternation in the T-maze, paw preference, Morris water maze, and tone fear conditioning. The results indicated that the effects of CCX and housing on open-field behavior were independent, with CCX increasing the time spent in the center of the field at the beginning of the observation (i.e., emotionality), and EE and IE increasing rearing (emotionality) and reducing teeth-chattering (habituation), respectively. CCX reduced the frequency of spontaneous alternation, denoting spatial working memory deficits, while housing did not influence this performance. Neither CCX, nor housing significantly affected paw preference lateralization, although CCX was associated with a leftward bias in paw preference. In the Morris water maze, housing had effects on spatial acquisition, while CCX reduced activity, without interfering with spatial memory. CCX did not influence tone fear conditioning, but context fear conditioning seemed to benefit from EE. We conclude that CCX in adult rats has subtle, but specific behavioral effects pertaining to emotionality, spatial working memory, and, possibly, aversively motivated exploration, and these effects are either independent or only peripherally interact with the effects of housing.
Collapse
Affiliation(s)
- Andrei C Miu
- Program of Cognitive Neuroscience, Department of Psychology, Babeş-Bolyai University, 37 Republicii Street, Cluj-Napoca, CJ 400015, Romania.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ermakova IV, Loseva EV, Hodges H, Sinden J. Transplantation of cultured astrocytes attenuates degenerative changes in rats with kainic acid-induced brain damage. Bull Exp Biol Med 2006; 140:677-81. [PMID: 16848222 DOI: 10.1007/s10517-006-0052-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Viability of astrocyte grafts introduced into CA1 pyramidal layer of the left dorsal hippocampus after injection of kainic acid into this brain region and the effects of these grafts on the hippocampus and amygdala were studied on Wistar rats. In rats with astrocyte grafts the degree of destruction in fields CA1-CA2 of the dorsal and ventral hippocampus, fields CA3-CA4 of the ventral hippocampus, and central and basolateral amygdala was lower compared to animals with kainic acid-induced hippocampal damage and control rats; destructions in the dentate fascia were absent. Our results suggest that astrocyte grafts stimulate neurogenesis in the mature brain of recipient rats with kainic acid-induced brain damage.
Collapse
Affiliation(s)
- I V Ermakova
- Institute of Higher nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow.
| | | | | | | |
Collapse
|
26
|
Kleindienst A, Ross Bullock M. A Critical Analysis of the Role of the Neurotrophic Protein S100B in Acute Brain Injury. J Neurotrauma 2006; 23:1185-200. [PMID: 16928177 DOI: 10.1089/neu.2006.23.1185] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We provide a critical analysis of the relevance of S100B in acute brain injury emphazising the beneficial effect of its biological properties. S100B is a calcium-binding protein, primarily produced by glial cells, and exerts auto- and paracrine functions. Numerous reports indicate, that S100B is released after brain insults and serum levels are positively correlated with the degree of injury and negatively correlated with outcome. However, new data suggest that the currently held view, that serum measurement of S100B is a valid "biomarker" of brain damage in traumatic brain injury (TBI), does not acknowlege the multifaceted release pattern and effect of the blood-brain barrier disruption upon S100B levels in serum. In fact, serum and brain S100B levels are poorly correlated, with serum levels dependent primarily on the integrity of the blood-brain barrier, and not the level of S100B in the brain. The time profile of S100B release following experimental TBI, both in vitro and in vivo, suggests a role of S100B in delayed reparative processes. Further, recent findings provide evidence, that S100B may decrease neuronal injury and/or contribute to repair following TBI. Hence, S100B, far from being a negative determinant of outcome, as suggested previously in the human TBI and ischemia literature, is of potential therapeutic value that could improve outcome in patients who sustain various forms of acute brain damage.
Collapse
Affiliation(s)
- Andrea Kleindienst
- Department of Neurosurgery, Georg August University, Göttingen, Germany.
| | | |
Collapse
|
27
|
Gomide VC, de Francisco AC, Chadi G. Localization of neurotensin immunoreactivity in neurons and organ of corti of rat cochlea. Hear Res 2005; 205:1-6. [PMID: 15953510 DOI: 10.1016/j.heares.2005.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 02/26/2005] [Indexed: 11/20/2022]
Abstract
The distribution of neurotensin-containing cell bodies and fibers has been observed in the central and peripheral nervous system, including sensory ganglia, but no description has been found in the peripheral auditory system. Here, we investigated the presence of neurotensin immunoreactivity in the cochlea of the adult Wistar rat. Strong neurotensin immunoreactivity was detected in the cytoplasm of the inner hair cells (IHC) and Deiters' cells of the organ of Corti. Outer hair cells (OHC) show weak immunoreaction. Neurotensin immunoreactivity was also found in the neurons and fibers of the spiral ganglia. Quantitative microdensitometric image analysis of the neurotensin immunoreactivity showed a strong immunoreaction in the hair cells of organ of Corti and a moderate to strong labeling in the spiral ganglion neurons. A series of double immunolabeling experiments demonstrated a strong neurotensin immunoreactivity in the parvalbumin immunoreactive IHC and also in the calbindin immunoreactive Deiters' cells. Weak neurotensin immunoreactivity was seen in the calbindin positive OHC. Neurofilament and parvalbumin immunoreactive neurons and fibers in the spiral ganglia showed neurotensin immunoreactivity. Calbindin immunoreactivity was not detected in the spiral ganglion neurons, which are labeled by neurotensin immunoreactivity. The presence of neurotensin in the cochlea may be related to its modulation of neurotransmission in the peripheral auditory pathway.
Collapse
Affiliation(s)
- Vânia C Gomide
- Laboratory of Neuroregeneration, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | | | | |
Collapse
|
28
|
Gomide V, Chadi G. Glial bFGF and S100 immunoreactivities increase in ascending dopamine pathways following striatal 6-OHDA-induced partial lesion of the nigrostriatal system: a sterological analysis. Int J Neurosci 2005; 115:537-55. [PMID: 15809219 DOI: 10.1080/00207450590521064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
S100, a calcium-binding protein, and basic fibroblast growth factor (bFGF, FGF-2) are found predominantly in astrocytes in the central nervous system. Those molecules show trophic properties to neurons and are upregulated after brain lesions. The present study investigated the changes in the S100beta and bFGF immunoreactivities after a partial lesion of the rat midbrain ascending dopamine pathways induced by intrastriatal injection of 6-hydroxydopamine (6-OHDA). Stereological method revealed increases in the estimated total number and density of bFGF immunoreactive astroglial profiles in the ipsilateral pars compacta of the substantia nigra (SNc) and ventral tegmental area (VTA). Increases in the counts of astroglial S100beta immunoreactive profiles were found in the striatum, SNc, and VTA mainly ipsilateral but also in the contralateral nuclei. These results open up the possibility that interactions between astroglial S100beta and bFGF may be relevant to paracrine events related to repair and maintenance of remaining dopamine neurons following striatal 6-OHDA induced partial lesion of ascending midbrain dopamine pathway.
Collapse
Affiliation(s)
- Vânia Gomide
- Laboratory of Neuroregeneration, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
29
|
Chadi G, Gomide VC, Rodrigues de Souza R, Scabello RT, Maurício da Silva C. Basic fibroblast growth factor, neurofilament, and glial fibrillary acidic protein immunoreactivities in the myenteric plexus of the rat esophagus and colon. J Morphol 2005; 261:323-33. [PMID: 15281060 DOI: 10.1002/jmor.10252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The enteric nervous system consists of a number of interconnected networks of neuronal cell bodies and fibers as well as satellite cells, the enteric glia. Basic fibroblast growth factor (bFGF) is a mitogen for a variety of mesodermal and neuroectodermal-derived cells and its presence has been described in many tissues. The present work employs immunohistochemistry to analyze neurons and glial cells in the esophageal and colic enteric plexus of the Wistar rat for neurofilament (NF) and glial fibrillary acidic proteins (GFAP) immunoreactivity as well as bFGF immunoreactivity in these cells. Rats were processed for immunohistochemistry; the distal esophagus and colon were opened and their myenteric plexuses were processed as whole-mount preparations. The membranes were immunostained for visualization of NF, GFAP, and bFGF. NF immunoreactivity was seen in neuronal cell bodies of esophageal and colic enteric ganglia. GFAP-immunoreactive enteric glial cells and processes were present in the esophageal and colic enteric plexuses surrounding neuronal cell bodies and axons. A dense net of GFAP-immunoreactive processes was seen in the ganglia and connecting strands of the myenteric plexus. bFGF immunoreactivity was observed in the cytoplasm of the majority of the neurons in the enteric ganglia of esophagus and colon. The two-color immunoperoxidase and immunofluorescence methods revealed bFGF immunoreactivity also in the nucleus of GFAP-positive enteric glial cells. The results suggest that immunohistochemical localization of NF and GFAP may be an important tool in the study of the plasticity in the enteric nervous system. The presence of bFGF in neurons and glia of the myenteric plexus of the esophagus and the colon indicates that this neurotrophic factor may exert autocrine and paracrine actions in the enteric nervous system.
Collapse
Affiliation(s)
- Gerson Chadi
- Laboratory of Neuroregeneration, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
30
|
Shimada N, Inoue T, Murata H. Cerebrospinal Fluid S-100B Concentrations in Normal and Diseased Cattle. J Vet Med Sci 2005; 67:621-3. [PMID: 15997193 DOI: 10.1292/jvms.67.621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We measured the concentrations of S-100B, a marker protein used in humans to detect brain damage, in the cerebrospinal fluid (CSF) of clinically normal cattle (n=15, mean age +/- SD: 31.8 +/- 37.5 months) and of cattle with various inflammatory disorders (n=43, 70.6 +/- 31.9 months). The mean +/- SD CSF S-100B level was 2.9 +/- 1.6 ng/ml in the normal group and 7.0 +/- 7.4 ng/ml in the diseased group. Thirteen diseased cattle that had developed no obvious neurological signs showed abnormally high S-100B concentrations (> 8.0 ng/ml), whereas the two cattle with neurological disorders did not. No particular disease could be related to the S-100B rise. Therefore, it remains inconclusive whether measurement of CSF S-100B concentration is useful in veterinary neurological diagnosis.
Collapse
Affiliation(s)
- Nobuaki Shimada
- Department of Safety Research, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
31
|
Bury SD, Jones TA. Facilitation of motor skill learning by callosal denervation or forced forelimb use in adult rats. Behav Brain Res 2004; 150:43-53. [PMID: 15033278 DOI: 10.1016/s0166-4328(03)00253-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Revised: 06/24/2003] [Accepted: 06/24/2003] [Indexed: 10/27/2022]
Abstract
Unilateral forelimb sensorimotor cortex lesions in adult rats produce a compensatory hyper-reliance on the forelimb ipsilateral to the lesion and temporally related glial and neural plasticity in the contralateral homotopic cortex. Recently, we found that these lesions enhance acquisition of a motor skills task with the ipsilateral, non-impaired, forelimb in comparison to shams. This effect might be related to a denervation-induced facilitation of neuroplastic changes in the motor cortex opposite the lesion and/or to the lesion-induced hyper-reliance on the non-impaired forelimb. The present study assessed whether increased forelimb use, denervation of motor cortical callosal afferents, or a combination of the two influences acquisition of a skilled reaching task. Adult rats with partial corpus callosum transections or sham procedures were either forced to rely on one forelimb or permitted normal forelimb use for 8 days. Rats were then trained for 14 days with their previously non-preferred forelimb (and the forced-use limb) on a unilateral pellet retrieval task. Compared to shams, transections produced a greater acquisition rate and asymptotic performance level on the task. Forced-use improved reaching performance relative to controls, but this effect was less enduring than the improvements produced by transections alone. The addition of forced-use to transections did not further enhance performance. These findings suggest that denervation-induced changes are likely to be a major contributor to the enhanced learning observed after unilateral sensorimotor cortex lesions.
Collapse
Affiliation(s)
- Scott D Bury
- Department of Psychology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
32
|
Silva TP, Silveira GA, Fior-Chadi DR, Chadi G. Effects of ethanol consumption on vasopressin and neuropeptide Y immunoreactivity and mRNA expression in peripheral and central areas related to cardiovascular regulation. Alcohol 2004; 32:213-22. [PMID: 15282115 DOI: 10.1016/j.alcohol.2004.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2003] [Revised: 02/20/2004] [Accepted: 02/28/2004] [Indexed: 11/17/2022]
Abstract
Results from previous studies have demonstrated that ethanol influences central neural mechanisms involved in the control of blood pressure. We studied the effects of ethanol consumption on vasopressin and neuropeptide Y immunoreactivity and mRNA expression in the nucleus tractus solitarius and paraventricular hypothalamic nucleus, as well as in the petrosal and nodose ganglia of rats. The ethanol-fed rats received liquid diet ad libitum containing 37.5% ethanol-derived calories (6.7% volume/volume), and the pair-fed rats received the same volume of diet containing isocaloric amounts of maltose-dextrin substituted for ethanol for 3 or 28 days. Arterial blood pressure was evaluated in a separate group of rats, which was unchanged by 3 days, but elevated by 21% after 28 days of ethanol consumption. Vasopressin immunoreactivity and mRNA signal were not detected in the ganglia, nor were they changed in the nucleus tractus solitarius and paraventricular hypothalamic nucleus, by 3 days of ethanol consumption. However, after 28 days of ethanol liquid diet consumption, vasopressin-positive terminals were decreased in the nucleus tractus solitarius and vasopressin immunoreactivity cell bodies and mRNA signal were decreased in the paraventricular hypothalamic nucleus. Neuropeptide Y-immunoreactive terminals were increased in the nucleus tractus solitarius only after 28 days of ethanol liquid diet consumption, but they were decreased in the paraventricular hypothalamic nucleus in rats treated with ethanol for 3 or 28 days. We concluded that the levels of both vasopressin and neuropeptide Y neurotransmitters are changed by long-term ethanol consumption in the neuronal pathways related to control of blood pressure.
Collapse
Affiliation(s)
- Teresa P Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil
| | | | | | | |
Collapse
|
33
|
Rodrigues RWP, Gomide VC, Chadi G. Striatal injection of 6-hydroxydopamine induces retrograde degeneration and glial activation in the nigrostriatal pathway. Acta Cir Bras 2003. [DOI: 10.1590/s0102-86502003000400004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PURPOSE: The effect of a highly selective 6-hydroxydopamine (6-OHDA)-induced lesion of the nigrostriatal system on the astroglial and microglial activation was analysed in adult Wistar rats after an unilateral striatal injection of the neurotoxin. METHODS: Male rats received an unilateral stereotaxical injection of the 6-OHDA in the left side of the neostriatum and were sacrificed 22 days later. Control animals received the injection of the solvent. The rotational behaviour was registered by a rotometer just before the sacrifice. Immunohistochemistry was employed for visualization of the tyrosine hydroxylase (TH) positive dopamine cells, glial fibrillary acidic protein (GFAP) immunolabeled astrocytes and OX42 immunoreactive microglia. Stereological method employing the optical disector was used to estimate the degree of the changes. RESULTS: The striatal injection of the 6-OHDA induced a massive disappearance (32% of control) of the TH immunoreactive terminals in a defined area within the striatum surrounding the injection site. A disappearance (54% of control) of dopamine cell bodies was observed in a small region of the ipsilateral pars compacta of the substantia nigra (SNc). The GFAP and OX42immunohistochemistry revealed astroglial and microglial reactions (increases in the number and size of the cells) in the ipsilateral neostriatum and SNc of the 6-OHDA injected rats. CONCLUSIONS: The striatal injection of 6-OHDA leads to retrograde degeneration as well as astroglial and microglial activation in the nigrostriatal dopamine pathway. Modulation of activated glial cells may be related to wound repair and to the trophic paracrine response in the lesioned nigrostriatal dopamine system.
Collapse
|
34
|
Logan A, Berry M. Cellular and molecular determinants of glial scar formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 513:115-58. [PMID: 12575819 DOI: 10.1007/978-1-4615-0123-7_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ann Logan
- Molecular Neuroscience, Department of Medicine, Wolfson Research Laboratories, Queen Elizabeth Hospital, Edgbaston, Birmingham, B15 2TH, UK
| | | |
Collapse
|
35
|
Unilateral sensorimotor cortex lesions in adult rats facilitate motor skill learning with the "unaffected" forelimb and training-induced dendritic structural plasticity in the motor cortex. J Neurosci 2002. [PMID: 12351733 DOI: 10.1523/jneurosci.22-19-08597.2002] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In humans and other animals, sufficient unilateral damage to the sensorimotor cortex can cause impairments in the opposite forelimb and the development of a hyper-reliance on the nonimpaired limb. This hyper-reliance is adaptive to the extent that it contributes to functional compensation for lesion-induced impairments. We have found that unilateral lesions of the forelimb region of the sensorimotor cortex (FLsmc) in rats, or callosal transections, cause neurons of the opposite motor cortex to become exceptionally responsive to changes in forelimb behavior. This enhanced responsiveness might facilitate learning of compensatory strategies with the nonimpaired forelimb after unilateral FLsmc lesions. The possibility that these lesions facilitate learning with the nonimpaired forelimb was addressed in this study. Rats were required to learn a skilled forelimb reaching task after either unilateral FLsmc lesions or sham operations. The trained limb in animals with lesions was the nonimpaired limb. Compared with shams, rats with unilateral lesions had a greater rate of acquisition and asymptotic performance level on the task, which was especially evident on more difficult trials. Quantitative measures of microtubule associated protein-2 (MAP2) immunostained dendrites indicated an enhancement of training-induced dendritic cytoskeletal changes in the motor cortex opposite lesions. Thus, unilateral FLsmc lesions facilitate learning of at least some types of motor skills using the nonimpaired forelimb as well as some of the neuronal changes associated with this learning. This facilitation could be a substrate underlying behavioral compensation for unilateral FLsmc damage and may contribute to the phenomenon of learned nonuse of the impaired limb.
Collapse
|
36
|
Chadi G, Andrade MS, Leme RJ, Gomide VC. Experimental models of partial lesion of rat spinal cord to investigate neurodegeneration, glial activation, and behavior impairments. Int J Neurosci 2002; 111:137-65. [PMID: 11912671 DOI: 10.3109/00207450108994227] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The article demonstrates two experimental models of spinal cord partial injury in rats: a contuse model promoted by the NYU impactor system and a partial hemitransection model achieved by a stereotaxic-positioned adjustable wire knife. By means of a defined impact weight (10 g) and a digital optical potentiometer linked to a computer, the impactor transferred and registered a moderate or a severe contusion to the rat spinal cord at a low thoracic level after dropping the weight from distances of 25 mm and 50 mm, respectively, to the dorsal surface of the exposed dura spinal cord. Impact curve was calculated and the parameters of the trauma, like impact velocity, cord compression distance and cord compression rates were obtained in order to demonstrate trauma severity. To promote partial hemitransection, rats were positioned in a spinal cord unit of a stereotaxic apparatus and lesion was made with the adjustable wire knife spatially oriented. By means of a computerized infrared motion sensor-home cage activity monitor and a noncomputerized evaluation of motor behavior using the inclined plane and the motor score of Tarlov tests, behavior was analyzed in an acute period postlesion. Rats were sacrificed and spinal cords were processed for routine staining to show neurons and for GFAP and OX42 immunohistochemistry to demonstrate glial cells. The tissue labelings were quantified using computer assisted stereology by means of an optical disector and microdensitometric image analysis by means of quantification of gray values of discriminated profiles. While partial hemitransection model favored a more accurate control of the lesion location, the contuse model allowed us to perform different degrees of lesion severity. A close correlation between behavioral impairment and severity of trauma was seen in the rats submitted to spinal cord contusion. The stereologic lesion index showed a correlation between severity of trauma and tissue damage by 7 days and demonstrated a time-dependent secondary degeneration after moderate but not after severe spinal cord contusion from 7 to 30 days after injury. Long-lasting activations of astrocytes and microglia seen by persisted increases in the specific mean gray values of immunoreactivities were also found in all levels of the white and gray matters of the partial hemitransected spinal cord until 3 months postinjury which can be related to wound/repair events and paracrine trophic support to spinal cord remaining neurons. The results showed that controlled partial lesions may provide an important toll to study trophism and plasticity in the spinal cord.
Collapse
Affiliation(s)
- G Chadi
- Laboratory of Neuroregeneration, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
37
|
Leme RJ, Chadi G. Distant microglial and astroglial activation secondary to experimental spinal cord lesion. ARQUIVOS DE NEURO-PSIQUIATRIA 2001; 59:483-92. [PMID: 11588623 DOI: 10.1590/s0004-282x2001000400002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper analysed whether glial responses following a spinal cord lesion is restricted to a scar formation close to the wound or they might be also related to widespread paracrine trophic events in the entire cord. Spinal cord hemitransection was performed in adult rats at the thoracic level. Seven days and three months later the spinal cords were removed and submitted to immunohistochemistry of glial fibrillary acidic protein (GFAP) and OX42, markers for astrocytes and microglia, as well as of basic fibroblast growth factor (bFGF), an astroglial neurotrophic factor. Computer assisted image analysis was employed in the quantification of the immunoreactivity changes. At the lesion site an increased number of GFAP positive astrocytes and OX42 positive phagocytic cells characterized a dense scar formation by seven days, which was further augmented after three months. Morphometric analysis of the area and microdensitometric analysis of the intensity of the GFAP and OX42 immunoreactivities showed reactive astrocytes and microglia in the entire spinal cord white and gray matters 7 days and 3 months after surgery. Double immunofluorescence demonstrated increased bFGF immunostaining in reactive astrocytes. The results indicated that glial reaction close to an injury site of the spinal cord is related to wounding and repair events. Although gliosis constitutes a barrier to axonal regeneration, glial activation far from the lesion may contribute to neuronal trophism and plasticity in the lesioned spinal cord favoring neuronal maintenance and fiber outgrowth.
Collapse
Affiliation(s)
- R J Leme
- Laboratory of Neuroregeneration, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
38
|
Rodrigues RW, Gomide VC, Chadi G. Astroglial and microglial reaction after a partial nigrostriatal degeneration induced by the striatal injection of different doses of 6-hydroxydopamine. Int J Neurosci 2001; 109:91-126. [PMID: 11699344 DOI: 10.3109/00207450108986528] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Astroglial and microglial activation was analyzed in adult male Wistar rats after a unilateral striatal injection of different doses (8, 4 and 1 micrograms) of 6-hydroxydopamine (6-OHDA). Control animals received the injection of the same volume of the solvent. The rotational behavior was registered by a rotometer 24 and 72 hours, 7, 10, 14 and 22 days after lesion. Following, animals were sacrificed and the tyrosine hydroxylase (TH) positive dopamine cells, the glial fibrillary acidic protein (GFAP) immunolabeled astrocytes and the OX42 immunoreactive microglia were visualized by mean of immunohistochemistry and quantified by stereologic method employing the optical disector and the point intercepts. The apomorphine (0.5 mg/kg)-induced circling behavior was seen only after 8 micrograms of 6-OHDA from 72 hours postlesion until sacrifice. Decreases of the TH immunoreactive terminals and cell bodies were found in the sampled fields of the striatum and pars compacta of the substantia nigra (SNc), respectively, after 8 and 4 micrograms of 6-OHDA. The GFAP immunohistochemistry revealed increases in the number/density of astroglial cells in the ipsilateral neostriatum (137% of control) and ipsilateral SNc (83% of control) and also in the volumeal fraction of the astroglial processes in the ipsilateral neostriatum (30% of control) and ipsilateral SNc (38% of control) in the rats with higher dose of the neurotoxin. Increases in the number of OX42 microglial labeled profiles and in the volumeal fraction of microglial processes were found in the ipsilateral neostriatum (67% and 27%, respectively, of control) and ipsilateral SNc (100% and 50%, respectively, of control) in the 8 micrograms 6-OHDA injected rats. These results suggest that the retrograde degeneration induced by a intrastriatal injection of a small dose of the 6-OHDA leads to an astroglial and microglial reaction in the nigrostriatal dopamine pathway. The interaction between activated glial cells may be involved in the wounding and repair events in the partial lesioned nigrostriatal system as well as in the paracrine responses to surviving dopamine neurons.
Collapse
Affiliation(s)
- R W Rodrigues
- Laboratory of Neuroregeneration, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 2415 05508-900-São Paulo, Brazil
| | | | | |
Collapse
|
39
|
Chuang JI, Chen ST, Chang YH, Jen LS. Alteration of Bcl-2 expression in the nigrostriatal system after kainate injection with or without melatonin co-treatment. J Chem Neuroanat 2001; 21:215-23. [PMID: 11382533 DOI: 10.1016/s0891-0618(01)00109-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to understand further the role of the anti-apoptotic Bcl-2 proto-oncogene protein in excitotoxin-induced brain injury and possible interaction between Bcl-2 and the antioxidant melatonin, the expression of Bcl-2 in various brain parts was studied after intrastriatal injection of kainate (KA, 2.5 nmol) with or without co-treatment of melatonin (10 mg/kg, intraperitoneally (i.p.)). Three days after unilateral injection of KA to the striatum in the rat, a dramatic direct cytotoxic effect was observed, as indicated an expression of Bcl-2 immunoreactivity in TUNEL- and OX-42-positive cells in the KA-injected striatum and traumatized cortical region. A less severe detrimental effect was also observed in the ipsilateral substantia nigra and peritraumatic cortex, as reflected by an upregulation of Bcl-2-immunostained neurons. Surprisingly, a reduction in Bcl-2-immunoreactive neurons that was accompanied by a less severe loss of tyrosine hydroxylase-immunoreactive neurons in the nigrostriatal pathway was observed after co-treatment with melatonin. Western blot analysis confirmed that Bcl-2 expression is elevated in striatum and cortex on the lesioned side, and that its expression was attenuated substantially after systemic administration of melatonin. The results showing an upregulation of Bcl-2 in nigral neurons and reactive microglia after KA lesion are consistent with the view that Bcl-2 is protective in function in the central nervous system.
Collapse
Affiliation(s)
- J I Chuang
- Department of Physiology, National Cheng Kung University, Taiwan 701, Taiwan, ROC
| | | | | | | |
Collapse
|
40
|
Abstract
Many experimental surgerical procedures have been perfomed in the analyse of the phenomenon of brain trophism and plasticity, however undesirable intercorrence can occour leading to specific changes in the results that should be taken into attention. To study this issue we have promoted a transient cardiogenic interruption of the blood flow together with a transient occlusion of the bilateral common carotid arteries (2VO) in rats and analysed the state of activation of astrocyte and microglia by means of the glial fibrillary acidic protein (GFAP) and OX42 immunohistochemistry, respectively. Rats were submitted to incomplete global cerebral ischemia (IGCI) by occlusion of the bilateral carotid arteries for 30 minutes. During the IGCI surgical, some rats received a higher dose of the chloral hydrate anaesthesia which promoted a cardiogenic interruption of the blood flow (CIBF) for a period of 10 minutes followed by and prompt reperfusion. During that period, animals were submited to a cardiac massage and ventilated. Sham operation were made in control animals. Rats were killed and their brains processed 14 days after the surgery. The animals that have received a IGCI showed a slight astroglial and microglial reaction in all subfields of the hippocampal formation, however the animal submitted to CIBF showed a massive infiltration of the reactive astrocyte and microglia in CA1 subfield. This results demonstrated that a transient occlusion of the bilateral common carotid arteries leads to activation of glial cells in the hippocampus, however this response can be remarkable changed in animal developing a transient systemic hypoperfusion during surgery. Thus, an accurated monitoration of the hemodinamic condition of the animal has to be done in experimental models of brain ischemia and the results have to be analysed in view of this aspect.
Collapse
|
41
|
Shults CW, Ray J, Tsuboi K, Gage FH. Fibroblast growth factor-2-producing fibroblasts protect the nigrostriatal dopaminergic system from 6-hydroxydopamine. Brain Res 2000; 883:192-204. [PMID: 11074048 DOI: 10.1016/s0006-8993(00)02900-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We tested the hypothesis that fibroblasts, which had been genetically engineered to produce fibroblast growth factor-2 (FGF-2), can protect nigrostriatal dopaminergic neurons. Three groups of rats received either a burr hole only (n=5) or implantation of fibroblasts, which had been genetically engineered to produce beta-galactosidase (beta-gal) (n=8) or FGF-2 (n=8), at two sites in the right striatum. Two weeks later, the animals received an injection of 25 microg of 6-hydroxydopamine hydrobromide (6-OHDA) midway between the two implant sites. The group that received FGF-2-fibroblasts had significantly fewer apomorphine-induced rotations than the groups that received a burr hole only or beta-gal-fibroblasts at weeks 2 and 3 following lesioning with 6-OHDA. Testing for amphetamine-induced rotation revealed a mild reduction in rotation in the beta-gal-fibroblast group compared to the burr hole only group, but a striking attenuation of amphetamine-induced rotation in the FGF-2-fibroblast group. There was also preservation of TH-IR neurons on the lesioned side relative to both control groups. The size of the grafts and the gliosis surrounding the injection sites did not differ between the FGF-2-fibroblast and beta-gal-fibroblast groups. To further characterize the production of FGF-2 by the FGF-2-fibroblasts, we implanted FGF-2-fibroblasts and beta-gal-fibroblast into the striatum of rats but did not lesion the animals with 6-OHDA. The animals were then sacrificed at 1, 2 and 5 weeks following implantation. Prior to implantation the FGF-2 fibroblasts contained 148 ng/mg of FGF-2-immunoreactive (FGF-2-IR) material per mg of protein of cell lysate. After implantation FGF-2-IR material was noted in the grafts of FGF-2-fibroblasts, most conspicuously at 1 and 2 weeks following implantation. We also noted FGF-2-IR material in the nuclei of reactive astrocytes adjacent to the implants, and OX-42-immunoreactive (OX-42-IR) cells adjacent and occasionally within the implants. Our work indicates that fibroblasts genetically engineered to produce FGF-2 and implanted in the striatum can protect the nigrostriatal dopaminergic system and may be useful in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- C W Shults
- Neurology Service, Veterans Affairs San Diego Healthcare System, VA Medical Center, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| | | | | | | |
Collapse
|
42
|
Bury SD, Adkins DL, Ishida JT, Kotzer CM, Eichhorn AC, Jones TA. Denervation facilitates neuronal growth in the motor cortex of rats in the presence of behavioral demand. Neurosci Lett 2000; 287:85-8. [PMID: 10854718 DOI: 10.1016/s0304-3940(00)01138-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study tests the hypothesis that degeneration of a neocortical pathway may facilitate behaviorally-induced growth of neurons in a connected region of the cortex. Degeneration of trancallosal afferents to the motor cortex and changes in forelimb use were independently manipulated in adult rats. The combination of degeneration and behavioral change resulted in the growth of layer V pyramidal neuron dendrites which was not found as a result of either denervation or behavioral manipulation alone. These results indicate that mild degeneration in the adult brain can facilitate neuronal growth when accompanied by appropriate behavioral demand, a finding which has implications for rehabilitative therapy after brain damage.
Collapse
Affiliation(s)
- S D Bury
- Department of Psychology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
43
|
Bury SD, Eichhorn AC, Kotzer CM, Jones TA. Reactive astrocytic responses to denervation in the motor cortex of adult rats are sensitive to manipulations of behavioral experience. Neuropharmacology 2000; 39:743-55. [PMID: 10699441 DOI: 10.1016/s0028-3908(99)00272-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent research has suggested that mild denervation of the neocortex of adult rats may facilitate neuronal growth in response to behavioral changes. Astrocytes react to denervation, produce growth-promoting factors and are a potential mediator of this denervation-facilitated growth. The present study assessed whether astrocytic reactions to denervation vary dependent upon post-injury behavioral experience. Denervation of the transcallosal afferents to the motor cortex was induced via partial transections of the corpus callosum. Transected- or sham-operated rats were then either forced to use the opposite forelimb (via limb-restricting vests) or permitted to use both forelimbs normally for 8 days. In the motor cortex, the surface density of glial fibrillary acidic protein (GFAP)-immunoreactive (IR) astrocytic processes and the density of basic fibroblast growth factor (FGF-2)-IR glial cells was significantly increased as a result of transections alone and as a result of forced forelimb-use alone in comparison to controls. The combination of transections and forced-use significantly enhanced GFAP-IR in comparison to all other groups, but did not further enhance FGF-2-IR. These findings are consistent with behavior and denervation having interactive influences on astrocytic reactivity in the motor cortex. These results also raise the possibility that astrocyte-mediated support of neural restructuring after brain injury might be enhanced with appropriate post-injury behavioral manipulations.
Collapse
Affiliation(s)
- S D Bury
- Psychology Department, University of Washington, Guthrie Hall Box 351525, Seattle 98195, USA
| | | | | | | |
Collapse
|