1
|
Ravikumaran KS, Armiento S, De Castro C, Molinaro A, Wilson JC, Peak IR, Grice ID. Isolation and characterisation of a heparosan capsular polysaccharide and a core oligosaccharide from Moraxella lincolnii strain CCUG 52988. Carbohydr Res 2025; 549:109361. [PMID: 39778380 DOI: 10.1016/j.carres.2024.109361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Moraxella lincolnii is a Gram-negative bacterium that resides in the upper respiratory tract (URT) of humans and may have a role as a member of a protective microbial community. Structural characterisation studies of its outer membrane glycan structures are very limited. We report here the isolation and structural characterisation (NMR, GLC-MS) of a capsular polysaccharide (CPS) and an oligosaccharide (OS) (lipooligosaccharide (LOS)-derived) isolated from strain CCUG 52988. The repeat disaccharide unit of the isolated CPS is unmodified heparosan: [→4)-β-D-GlcpA-(1→4)-α-D-GlcpNAc-(1→]n, a glycosaminoglycan (GAG) also present in mammalian hosts. The core OS isolated was identified as a branched tetrasaccharide composed of: β-D-Glcp-(1→4)-[β-D-Glcp-(1→6)]-α-D-Glcp-(1→5)-α-Kdo-OH. This core OS structure is without heptose residues and is consistent with previously reported core OS structures from Moraxella spp. Genes encoding homologues of the Lgt6 and Lgt3 glycosyltransferases that catalyse these additions were identified in the genome. Additional glycosyltransferases and other proteins encoded downstream of lgt3 were considered to form the LOS biosynthesis locus. This is the first report of the isolation of CPS and core OS from M. lincolnii.
Collapse
Affiliation(s)
- Kosala S Ravikumaran
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Samantha Armiento
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Cristina De Castro
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Antonio Molinaro
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Napoli, Italy
| | - Jennifer C Wilson
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Ian R Peak
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia; Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - I Darren Grice
- School of Pharmacy and Medical Science, Griffith University, Gold Coast Campus, Queensland, 4222, Australia; Institute for Biomedicine and Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| |
Collapse
|
2
|
Gao P, Wang L, Wang S, Li G, Yi C, Wang Y, Li L, Zhang A, Zhou H, Han L. The activity of hyaD contributed to the virulence of avian Pasteurella multocida. Microb Pathog 2024; 193:106768. [PMID: 38960217 DOI: 10.1016/j.micpath.2024.106768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Fowl cholera is an infectious disease that affects both poultry and wild birds, characterized by hemorrhagic and septicemic symptoms, caused by Pasteurella multocida (P. multocida), and leading to substantial economic losses in the poultry sector. The development of genetic engineering vaccines against avian P. multocida encountered early-stage challenges due to the limited availability of effective gene editing tools. Presently, NgAgoDM-enhanced homologous recombination stands as a potent technique for achieving efficient gene knockout in avian P. multocida. Hence, this study employed NgAgoDM-enhanced homologous recombination to target and knockout hyaE (239-359aa), hyaD, hexABC, and hexD, denoted as ΔhyaE (239-359aa), ΔhyaD, ΔhexABC, and ΔhexD, respectively. Additionally, we generated a hyaD recovery strain with two point mutations, designated as mhyaD. Thus, this study systematically examined the impact of capsular synthetic gene clusters on the pathogenicity of P. multocida. Moreover, the study demonstrated the critical role of hyaD activity in the virulence of avian P. multocida. This study offers novel insights for enhancing attenuated vaccines further.
Collapse
Affiliation(s)
- Peiying Gao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Libo Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Shan Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Wuhan Keqian Biology Co., Ltd, Wuhan, 430070, China
| | - Guohong Li
- Wuhan Keqian Biology Co., Ltd, Wuhan, 430070, China
| | - Chenyang Yi
- Wuhan Keqian Biology Co., Ltd, Wuhan, 430070, China
| | - Yuhua Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Long Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, China
| | - Li Han
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
3
|
Sheng LL, Cai YM, Li Y, Huang SL, Sheng JZ. Advancements in heparosan production through metabolic engineering and improved fermentation. Carbohydr Polym 2024; 331:121881. [PMID: 38388039 DOI: 10.1016/j.carbpol.2024.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Heparin is one of the most widely used natural drugs, and has been the preferred anticoagulant and antithrombotic agent in the clinical setting for nearly a century. Heparin also shows increasing therapeutic potential for treating inflammation, cancer, and microbial and viral diseases, including COVID-19. With advancements in synthetic biology, heparin production through microbial engineering of heparosan offers a cost-effective and scalable alternative to traditional extraction from animal tissues. Heparosan serves as the starting carbon backbone for the chemoenzymatic synthesis of bioengineered heparin, possessing a chain length that is critically important for the production of heparin-based therapeutics with specific molecular weight (MW) distributions. Recent advancements in metabolic engineering of microbial cell factories have resulted in high-yield heparosan production. This review systematically analyzes the key modules involved in microbial heparosan biosynthesis and the latest metabolic engineering strategies for enhancing production, regulating MW, and optimizing the fermentation scale-up of heparosan. It also discusses future studies, remaining challenges, and prospects in the field.
Collapse
Affiliation(s)
- Li-Li Sheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yi-Min Cai
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yi Li
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Si-Ling Huang
- Bloomage BioTechnology Corp., Ltd., Jinan 250010, China
| | - Ju-Zheng Sheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; The State Key Laboratory of Microbial Technology, Shandong University, Qingdao 250100, China.
| |
Collapse
|
4
|
Zhang W, Xu R, Chen J, Xiong H, Wang Y, Pang B, Du G, Kang Z. Advances and challenges in biotechnological production of chondroitin sulfate and its oligosaccharides. Int J Biol Macromol 2023; 253:126551. [PMID: 37659488 DOI: 10.1016/j.ijbiomac.2023.126551] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/04/2023]
Abstract
Chondroitin sulfate (CS) is a member of glycosaminoglycans (GAGs) and has critical physiological functions. CS is widely applied in medical and clinical fields. Currently, the supply of CS relies on traditional animal tissue extraction methods. From the perspective of medical applications, the biggest drawback of animal-derived CS is its uncontrollable molecular weight and sulfonated patterns, which are key factors affecting CS activities. The advances of cell-free enzyme catalyzed systems and de novo biosynthesis strategies have paved the way to rationally regulate CS sulfonated pattern and molecular weight. In this review, we first present a general overview of biosynthesized CS and its oligosaccharides. Then, the advances in chondroitin biosynthesis, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) synthesis and regeneration, and CS biosynthesis catalyzed by sulfotransferases are discussed. Moreover, the progress of mining and expression of chondroitin depolymerizing enzymes for preparation of CS oligosaccharides is also summarized. Finally, we analyze and discuss the challenges faced in synthesizing CS and its oligosaccharides using microbial and enzymatic methods. In summary, the biotechnological production of CS and its oligosaccharides is a promising method in addressing the drawbacks associated with animal-derived CS and enabling the production of CS oligosaccharides with defined structures.
Collapse
Affiliation(s)
- Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jiamin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Haibo Xiong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| | - Bo Pang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
5
|
Rampratap P, Lasorsa A, Perrone B, van der Wel PCA, Walvoort MTC. Production of isotopically enriched high molecular weight hyaluronic acid and characterization by solid-state NMR. Carbohydr Polym 2023; 316:121063. [PMID: 37321744 DOI: 10.1016/j.carbpol.2023.121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Hyaluronic acid (HA) is a naturally occurring polysaccharide that is abundant in the extracellular matrix (ECM) of all vertebrate cells. HA-based hydrogels have attracted great interest for biomedical applications due to their high viscoelasticity and biocompatibility. In both ECM and hydrogel applications, high molecular weight (HMW)-HA can absorb a large amount of water to yield matrices with a high level of structural integrity. To understand the molecular underpinnings of structural and functional properties of HA-containing hydrogels, few techniques are available. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for such studies, e.g. 13C NMR measurements can reveal the structural and dynamical features of (HMW) HA. However, a major obstacle to 13C NMR is the low natural abundance of 13C, necessitating the generation of HMW-HA that is enriched with 13C isotopes. Here we present a convenient method to obtain 13C- and 15N-enriched HMW-HA in good yield from Streptococcus equi subsp. zooepidemicus. The labeled HMW-HA has been characterized by solution and magic angle spinning (MAS) solid-state NMR spectroscopy, as well as other methods. These results will open new ways to study the structure and dynamics of HMW-HA-based hydrogels, and interactions of HMW-HA with proteins and other ECM components, using advanced NMR techniques.
Collapse
Affiliation(s)
- Pushpa Rampratap
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, the Netherlands.
| | - Alessia Lasorsa
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, the Netherlands.
| | - Barbara Perrone
- Bruker Switzerland AG, Industriestrasse 26, CH-8117, Switzerland.
| | - Patrick C A van der Wel
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, the Netherlands.
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, the Netherlands.
| |
Collapse
|
6
|
Nasser H, Eikmanns BJ, Tolba MM, El-Azizi M, Abou-Aisha K. The Superiority of Bacillus megaterium over Escherichia coli as a Recombinant Bacterial Host for Hyaluronic Acid Production. Microorganisms 2022; 10:microorganisms10122347. [PMID: 36557601 PMCID: PMC9787986 DOI: 10.3390/microorganisms10122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
(1) Background: Hyaluronic acid (HA) is a polyanionic mucopolysaccharide extensively used in biomedical and cosmetic industries due to its unique rheological properties. Recombinant HA production using other microbial platforms has received increasing interest to avoid potential toxin contamination associated with its production by streptococcal fermentation. In this study, the Gram-negative strains Escherichia coli (pLysY/Iq), E. coli Rosetta2, E. coli Rosetta (DE3) pLysS, E. coli Rosetta2 (DE3), E. coli Rosetta gammiB(DE3)pLysS, and the Gram-positive Bacillus megaterium (MS941) were investigated as new platforms for the heterologous production of HA. (2) Results: The HA biosynthesis gene hasA, cloned from Streptococcus equi subsp. zoopedemicus, was ligated into plasmid pMM1522 (MoBiTec), resulting in pMM1522 hasA, which was introduced into E. coli Rosetta-2(DE3) and B. megaterium (MS941). The initial HA titer by the two hosts in the LB medium was 5 mg/L and 50 mg/L, respectively. Streptococcal hasABC and hasABCDE genes were ligated into plasmid pPT7 (MoBiTec) and different E. coli host strains were then transformed with the resulting plasmids pPT7hasABC and pPT7hasABCDE. For E. coli Rosetta-gamiB(DE3)pLysS transformed with pPT7hasABC, HA production was 500 ± 11.4 mg/L in terrific broth (TB) medium. Productivity was slightly higher (585 ± 2.9 mg/L) when the same host was transformed with pPT7 carrying the entire HA operon. We also transformed B. megaterium (MS941) protoplasts carrying T7-RNAP with pPT7hasABC and pPT7hasABCDE. In comparison, the former plasmid resulted in HA titers of 2116.7 ± 44 and 1988.3 ± 19.6 mg/L in LB media supplemented with 5% sucrose and A5 medium + MOPSO, respectively; the latter plasmid boosted the titer final concentration further to reach 2476.7 ± 14.5 mg/L and 2350 ± 28.8 mg/L in the two media, respectively. The molecular mass of representative HA samples ranged from 105 − 106 Daltons (Da), and the polydispersity index (PDI) was <2. Fourier transform infrared spectroscopy (FTIR) spectra of the HA product were identical to those obtained for commercially available standard polymers. Finally, scanning electron microscopic examination revealed the presence of extensive HA capsules in E. coli Rosetta-gamiB(DE3)pLysS, while no HA capsules were produced by B. megaterium. (3) Conclusions: Our results suggested that Gram-positive bacteria are probably superior host strains for recombinant HA production over their Gram-negative counters. The titers and the molecular weight (MW) of HA produced by B. megaterium were significantly higher than those obtained by different E. coli host strains used in this study.
Collapse
Affiliation(s)
- HebaT’Allah Nasser
- Department of Microbiology, Immunology, and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11435, Egypt
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
- Correspondence:
| | | | - Mahmoud M. Tolba
- Pharmaceutical Division, Ministry of Health and Population, Faiyum City 63723, Egypt
| | - Mohamed El-Azizi
- Department of Microbiology, Immunology, and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11435, Egypt
| | - Khaled Abou-Aisha
- Department of Microbiology, Immunology, and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11435, Egypt
| |
Collapse
|
7
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
8
|
Chondroitin Sulfate and Its Derivatives: A Review of Microbial and Other Production Methods. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chondroitin sulfate (CS) is widely used across the world as a nutraceutical and pharmaceutical. Its high demand and potential limitations in current methods of extraction call for an alternative method of production. This review highlights glycosaminoglycan’s structure, its medical significance, animal extraction source, and the disadvantages of the extraction process. We cover alternative production strategies for CS and its precursor, chondroitin. We highlight chemical synthesis, chemoenzymatic synthesis, and extensively discuss how strains have been successfully metabolically engineered to synthesize chondroitin and chondroitin sulfate. We present microbial engineering as the best option for modern chondroitin and CS production. We also explore the biosynthetic pathway for chondroitin production in multiple microbes such as Escherichia coli, Bacillus subtilis, and Corynebacterium glutamicum. Lastly, we outline how the manipulation of pathway genes has led to the biosynthesis of chondroitin derivatives.
Collapse
|
9
|
Couto MR, Rodrigues JL, Rodrigues LR. Heterologous production of chondroitin. BIOTECHNOLOGY REPORTS 2022; 33:e00710. [PMID: 35242620 PMCID: PMC8858990 DOI: 10.1016/j.btre.2022.e00710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 01/01/2023]
Abstract
Chondroitin sulfate (CS) is a glycosaminoglycan with a growing variety of applications. CS can be produced from microbial fermentation of native or engineered strains. Synthetic biology tools are being used to improve CS yields in different hosts. Integrated polymerization and sulfation can generate cost-effective CS.
Chondroitin sulfate (CS) is a glycosaminoglycan with a broad range of applications being a popular dietary supplement for osteoarthritis. Usually, CS is extracted from animal sources. However, the known risks of animal products use have been driving the search for alternative methods and sources to obtain this compound. Several pathogenic bacteria naturally produce chondroitin-like polysaccharides through well-known pathways and, therefore, have been the basis for numerous studies that aim to produce chondroitin using non-pathogenic hosts. However, the yields obtained are not enough to meet the high demand for this glycosaminoglycan. Metabolic engineering strategies have been used to construct improved heterologous hosts. The identification of metabolic bottlenecks and regulation points, and the screening for efficient enzymes are key points for constructing microbial cell factories with improved chondroitin yields to achieve industrial CS production. The recent advances on enzymatic and microbial strategies to produce non-animal chondroitin are herein reviewed. Challenges and prospects for future research are also discussed.
Collapse
Affiliation(s)
- Márcia R. Couto
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana L. Rodrigues
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
- Corresponding author.
| | - Lígia R. Rodrigues
- Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
10
|
Cloning, Expression and Characterization of UDP-Glucose Dehydrogenases. Life (Basel) 2021; 11:life11111201. [PMID: 34833077 PMCID: PMC8617651 DOI: 10.3390/life11111201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 01/17/2023] Open
Abstract
Uridine diphosphate-glucose dehydrogenase (UGD) is an enzyme that produces uridine diphosphate-glucuronic acid (UDP-GlcA), which is an intermediate in glycosaminoglycans (GAGs) production pathways. GAGs are generally extracted from animal tissues. Efforts to produce GAGs in a safer way have been conducted by constructing artificial biosynthetic pathways in heterologous microbial hosts. This work characterizes novel enzymes with potential for UDP-GlcA biotechnological production. The UGD enzymes from Zymomonas mobilis (ZmUGD) and from Lactobacillus johnsonii (LbjUGD) were expressed in Escherichia coli. These two enzymes and an additional eukaryotic one from Capra hircus (ChUGD) were also expressed in Saccharomyces cerevisiae strains. The three enzymes herein studied represent different UGD phylogenetic groups. The UGD activity was evaluated through UDP-GlcA quantification in vivo and after in vitro reactions. Engineered E. coli strains expressing ZmUGD and LbjUGD were able to produce in vivo 28.4 µM and 14.9 µM UDP-GlcA, respectively. Using S. cerevisiae as the expression host, the highest in vivo UDP-GlcA production was obtained for the strain CEN.PK2-1C expressing ZmUGD (17.9 µM) or ChUGD (14.6 µM). Regarding the in vitro assays, under the optimal conditions, E. coli cell extract containing LbjUGD was able to produce about 1800 µM, while ZmUGD produced 407 µM UDP-GlcA, after 1 h of reaction. Using engineered yeasts, the in vitro production of UDP-GlcA reached a maximum of 533 µM using S. cerevisiae CEN.PK2-1C_pSP-GM_LbjUGD cell extract. The UGD enzymes were active in both prokaryotic and eukaryotic hosts, therefore the genes and expression chassis herein used can be valuable alternatives for further industrial applications.
Collapse
|
11
|
Pasomboon P, Chumnanpuen P, E-Kobon T. Comparison of Hyaluronic Acid Biosynthetic Genes From Different Strains of Pasteurella multocida. Bioinform Biol Insights 2021; 15:11779322211027406. [PMID: 34220200 PMCID: PMC8221702 DOI: 10.1177/11779322211027406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022] Open
Abstract
Pasteurella multocida produces a capsule composed of different polysaccharides according to the capsular serotype (A, B, D, E, and F). Hyaluronic acid (HA) is a component of certain capsular types of this bacterium, especially capsular type A. Previously, 2 HA biosynthetic genes from a capsular type A strain were studied for the industrial-scale improvement of HA production. Molecular comparison of these genes across different capsular serotypes of P multocida has not been reported. This study aimed to compare 8 HA biosynthetic genes (pgi, pgm, galU, hyaC, glmS, glmM, glmU, and hyaD) of 22 P multocida strains (A:B:D:F = 6:6:6:4) with those of other organisms using sequence and structural bioinformatics analyses. These 8 genes showed a high level of within-species similarity (98%-99%) compared with other organisms. Only the last gene of 4 strains with capsular type F (HN07, PM70, HNF01, and HNF02) significantly differed from those of other strains (82%). Analysis of amino acid patterns together with phylogenetic results showed that the HA biosynthetic genes of the type A were closely related within the group. The genes in the capsular type F strain were notably similar to those of the capsular type A strain. Protein structural analysis supported structural similarities of the encoded enzymes between the strains of capsular types A, B, D, and F, except for the Pgm, GlmS, GlmU, and HyaD proteins. Our bioinformatics analytic workflow proposed that variations observed within these genes could be useful for genetic engineering–based improvement of hyaluronic acid–producing enzymes.
Collapse
Affiliation(s)
- Pailin Pasomboon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Pramote Chumnanpuen
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand.,Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Teerasak E-Kobon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
12
|
He F, Zhao Z, Wu X, Duan L, Li N, Fang R, Li P, Peng Y. Transcriptomic Analysis of High- and Low-Virulence Bovine Pasteurella multocida in vitro and in vivo. Front Vet Sci 2021; 8:616774. [PMID: 33644147 PMCID: PMC7902865 DOI: 10.3389/fvets.2021.616774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
Pasteurella multocida is a gram-negative opportunistic pathogen that causes various diseases in poultry, livestock, and humans, resulting in huge economic losses. Pasteurella multocida serotype A CQ6 (PmCQ6) is a naturally occurring attenuated strain, while P. multocida serotype A strain CQ2 (PmCQ2) is a highly virulent strain isolated from calves. Compared with PmCQ2, it was found that bacterial loads and tissue lesions of lung tissue significantly decreased and survival rates significantly improved in mice infected with PmCQ6 by intranasal infection. However, comparative genome analysis showed that the similarity between the two strains is more than 99%. To further explore the virulence difference mechanism of PmCQ2 and PmCQ6, transcriptome sequencing analysis of the two strains was performed. The RNA sequencing analysis of PmCQ2 and PmCQ6 showed a large number of virulence-related differentially expressed genes (DEGs) in vivo and in vitro. Among them, 38 virulence-related DGEs were significantly up-regulated due to PmCQ6 infection, while the number of PmCQ2 infection was 46, much more than PmCQ6. In addition, 18 virulence-related DEGs (capsule, iron utilization, lipopolysaccharide, and outer membrane protein-related genes) were up-regulated in PmCQ2 infection compared to PmCQ6 infection, exhibiting a higher intensive expression level in vivo. Our findings indicate that these virulence-related DEGs (especially capsule) might be responsible for the virulence of PmCQ2 and PmCQ6, providing prospective candidates for further studies on pathogenesis.
Collapse
Affiliation(s)
- Fang He
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Zongling Zhao
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiaoyan Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lijie Duan
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Nengzhang Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Rendong Fang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Pan Li
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yuanyi Peng
- College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Michael FS, Cairns CM, Fleming P, Vinogradov EV, Boyce JD, Harper M, Cox AD. The capsular polysaccharides of Pasteurella multocida serotypes B and E: Structural, genetic and serological comparisons. Glycobiology 2020; 31:307-314. [PMID: 32839812 DOI: 10.1093/glycob/cwaa069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/06/2020] [Accepted: 07/20/2020] [Indexed: 01/28/2023] Open
Abstract
We describe the structural characterization of the capsular polysaccharides (CPSs) of Pasteurella multocida serotypes B and E. CPS was isolated following organic solvent precipitation of the supernatant from flask grown cells. Structural analysis utilizing nuclear magnetic resonance spectroscopy enabled the determination of the CPS structures and revealed significant structural similarities between the two serotypes, but also provided an explanation for the serological distinction. This observation was extended by the development of polyclonal sera to the glycoconjugate of serotype B CPS that corroborated the structural likenesses and differences. Finally, identification of these structures enabled a more comprehensive interrogation of the genetic loci and prediction of roles for some of the encoded proteins in repeat unit biosynthesis.
Collapse
Affiliation(s)
- Frank St Michael
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, 1200 Montreal Road, Ottawa K1A 0R6, Canada
| | - Chantelle M Cairns
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, 1200 Montreal Road, Ottawa K1A 0R6, Canada
| | - Perry Fleming
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, 1200 Montreal Road, Ottawa K1A 0R6, Canada
| | - Evgeny V Vinogradov
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, 1200 Montreal Road, Ottawa K1A 0R6, Canada
| | - John D Boyce
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Wellington Rd, Melbourne 3800, Australia
| | - Marina Harper
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Wellington Rd, Melbourne 3800, Australia
| | - Andrew D Cox
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, 1200 Montreal Road, Ottawa K1A 0R6, Canada
| |
Collapse
|
14
|
Guan L, Zhang L, Xue Y, Yang J, Zhao Z. Molecular pathogenesis of the hyaluronic acid capsule of Pasteurella multocida. Microb Pathog 2020; 149:104380. [PMID: 32645423 DOI: 10.1016/j.micpath.2020.104380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022]
Abstract
Pasteurella multocida possesses a viscous capsule polysaccharide on the cell surface, which is a critical structural component and virulence factor. Capsular polysaccharides are structurally similar to vertebrate glycosaminoglycans, providing an immunological mechanism for bacterial molecular mimicry, resistance to phagocytosis, and immune evasion during the infection process. Based on the capsular antigen, P. multocida is divided into A, B, D, E, and F five serogroups. Previously, we systematically reported the biosynthesis and regulation mechanisms of the P. multocida capsule. In this paper, we take serogroup A capsular polysaccharide as the representative, systematically illuminating the P. multocida capsular virulence and epidemiology, molecular camouflage, adhesion and colonization, anti-phagocytosis, anti-complement system, cell invasion and signal transduction mechanism, to provide a theoretical basis for the research of molecular pathogenic mechanism of P. multocida capsule and the development of polysaccharides vaccine.
Collapse
Affiliation(s)
- Lijun Guan
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Lin Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Science, Wuhan, 430223, China
| | - Yun Xue
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinqian Yang
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhanqin Zhao
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
15
|
Zhang J, Yu H, Harris B, Zheng Y, Celik U, Na L, Faller R, Chen X, Haudenschild DR, Liu GY. New Means to Control Molecular Assembly. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:6405-6412. [PMID: 33569091 PMCID: PMC7869855 DOI: 10.1021/acs.jpcc.9b11377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While self-assembly of molecules is relatively well-known and frequently utilized in chemical synthesis and material science, controlled assembly of molecules represents a new concept and approach. The present work demonstrates the concept of controlled molecular assembly using a non-spherical biomolecule, heparosan tetrasaccharide (MW = 1.099 kD). The key to controlled assembly is the fact that ultra-small solution droplets exhibit different evaporation dynamics from those of larger ones. Using an independently controlled microfluidic probe in an atomic force microscope, sub-femtoliter aqueous droplets containing designed molecules produce well-defined features with dimensions as small as tens of nanometers. The initial shape of the droplet and the concentration of solute within the droplet dictate the final assembly of molecules due to the ultrafast evaporation rate and dynamic spatial confinement of the droplets. The level of control demonstrated in this work brings us closer to programmable synthesis for chemistry and materials science which can be used to develop vehicles for drug delivery three-dimensional nanoprinting in additive manufacturing.
Collapse
Affiliation(s)
- Jiali Zhang
- Department of Chemistry, University of California, Davis, California, 95616, United States
| | - Hai Yu
- Department of Chemistry, University of California, Davis, California, 95616, United States
| | - Bradley Harris
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
| | - Yunbo Zheng
- Department of Chemistry, University of California, Davis, California, 95616, United States
| | - Umit Celik
- Department of Chemistry, University of California, Davis, California, 95616, United States
| | - Lan Na
- Department of Chemistry, University of California, Davis, California, 95616, United States
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California, 95616, United States
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, University of California, Davis Medical Center, Sacramento, California, 95817, United States
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, California, 95616, United States
| |
Collapse
|
16
|
Wang Y, Li S, Xu X, Tan Y, Liu XW, Fang J. Chemoenzymatic synthesis of homogeneous chondroitin polymers and its derivatives. Carbohydr Polym 2019; 232:115822. [PMID: 31952617 DOI: 10.1016/j.carbpol.2019.115822] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 01/21/2023]
Abstract
Chondroitin sulfate is a linear glycosaminoglycan widely distributed as an important extracellular matrix component of mammalian cells. It participates in numerous pathological processes, however, illustration of its diverse biological roles is hampered by the unavailability of structurally defined chondroitin polymers and their derivatives. Herein, we report a novel homogeneous chondroitin polymers synthetic strategy which combines stepwise oligosaccharides synthesis with one-pot homogeneous chondroitin chain polymerization. Exogenous trisaccharide was proved to be the necessary acceptor for PmCS-catalyzed homogeneous chondroitin polymers synthetic reactions. The strategy exhibited a well-controlled relationship between the final sugar chain length and the molar ratios of reaction substrates that could synthesize homogenous chondroitin polymers with unprecedented narrow molecular weight distribution. More importantly, the strategy was further expanded to synthesis of unnatural zwitterionic and N-sulfonated chondroitin polymers by incorporation of sugar nucleotide derivatives into the synthetic approach.
Collapse
Affiliation(s)
- Yaqian Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Shuang Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Xuan Xu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Yujie Tan
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Xian-Wei Liu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| | - Junqiang Fang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, Shandong 266237, People's Republic of China.
| |
Collapse
|
17
|
Wang J, Sang L, Sun S, Chen Y, Chen D, Xie X. Characterization of Pasteurella multocida isolated from dead rabbits with respiratory disease in Fujian, China. BMC Vet Res 2019; 15:438. [PMID: 31801544 PMCID: PMC6894249 DOI: 10.1186/s12917-019-2191-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/25/2019] [Indexed: 11/30/2022] Open
Abstract
Background Pasteurella multocida is one of the important pathogens that infect rabbits, causing major economic losses in commercial rabbit farming. In this study, 205 P. multocida isolates recovered from lungs of dead rabbits with respiratory disease were defined by capsular serogroups, lipopolysaccharide (LPS) genotypes, multi-locus sequence types and screened virulence factors by using PCR assays, and tested antimicrobial susceptibility. Results The 205 isolates were assigned into 2 capsular types, A and D, and 2 LPS genotypes, L3 and L6. When combining capsular types with LPS genotypes, 4 serotypes were detected. A:L3 (51.22%, 105/205) was the most predominant serotype, followed by A:L6 (24.88%, 51/205), D:L6 (19.02%, 39/205) and D:L3 (4.88%, 10/205). The 205 isolates were grouped into 3 sequence types, ST10, ST11 and ST12. ST12 (56.10%, 115/205) was the most prevalent sequence type, followed by ST10 (24.88%, 51/205) and ST11 (19.02%, 39/205). In the 205 isolates, virulence associated genes ptfA, fur, hgbB, ompA, ompH and oma87 were positive in the PCR screening, whereas the toxA and tbpA genes were negative. Notably, the 156 capsular serogroup A isolates carried the pmHAS gene. All the 205 isolates were susceptible to most of the used antibiotics, except for streptomycin, gentamycin, kanamycin and ceftriaxone, and the resistance rates of which were 27.80, 15.61, 9.27 and 2.44%, respectively. Conclusions This study, for the first time, described the prevalence and characteristics of P. multocida causing respiratory disease in rabbits in Fujian Province, which might be useful for tracking the epidemic strains and development of efficient vaccines and methods to prevent and control the pathogen.
Collapse
Affiliation(s)
- Jinxiang Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, No. 100 Pudang Road, Xindian Town, Jin'an District, Fuzhou, Fujian Province, People's Republic of China
| | - Lei Sang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, No. 100 Pudang Road, Xindian Town, Jin'an District, Fuzhou, Fujian Province, People's Republic of China
| | - Shikun Sun
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, No. 100 Pudang Road, Xindian Town, Jin'an District, Fuzhou, Fujian Province, People's Republic of China
| | - Yanfeng Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, No. 100 Pudang Road, Xindian Town, Jin'an District, Fuzhou, Fujian Province, People's Republic of China
| | - Dongjin Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, No. 100 Pudang Road, Xindian Town, Jin'an District, Fuzhou, Fujian Province, People's Republic of China
| | - Xiping Xie
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, No. 100 Pudang Road, Xindian Town, Jin'an District, Fuzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
18
|
Guan L, Xue Y, Ding W, Zhao Z. Biosynthesis and regulation mechanisms of the Pasteurella multocida capsule. Res Vet Sci 2019; 127:82-90. [PMID: 31678457 DOI: 10.1016/j.rvsc.2019.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 12/27/2022]
Abstract
Pasteurella multocida possesses a polysaccharide capsule composed of a viscous surface layer that acts as a critical structural component and virulence factor. Capsular polysaccharides are structurally similar to vertebrate glycosaminoglycans, providing an immunological mechanism for bacterial molecular mimicry, resistance to phagocytosis, and immune evasion during the infection process. In recent years, a series of important research advances have been made in understanding the biosynthesis and regulatory aspects of the P. multocida capsule. This review systematically examines the serogroups, polysaccharide composition and structures, biosynthetic loci and functions, biosynthesis pathways, and expression regulation mechanisms of the P. multocida capsule, supplying a theoretical basis for the molecular pathogenesis of the P. multocida capsule and the future development of capsular polysaccharide vaccines.
Collapse
Affiliation(s)
- Lijun Guan
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yun Xue
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenwen Ding
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhanqin Zhao
- Laboratory of Veterinary Biologics Engineering, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Key-Disciplines Lab of Safety of Environment and Animal Product, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
19
|
Li T, Xu XF, Du HH, Li L, Li NZ, Zhou ZY, Peng YY. PamulDB: a comprehensive genomic resource for the study of human- and animal-pathogenic Pasteurella multocida. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5363829. [PMID: 30799499 PMCID: PMC6387869 DOI: 10.1093/database/baz025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/29/2018] [Accepted: 02/04/2019] [Indexed: 01/30/2023]
Abstract
Pasteurella multocida can infect a wide range of host, including humans and animals of economic importance. Genomics studies on the pathogen have produced a large amount of omics data, which are deposited in GenBank but lacks a dedicated and comprehensive resource for further analysis and integration so that need to be brought together centrally in a coherent and systematic manner. Here we have collected the genomic data for 176 P. multocida strains that are categorized into 11 host groups and 9 serotype groups, and developed the open-access P. multocida Database (PamulDB) to make this resource readily available. The PamulDB implements and integrates Chado for genome data management, Drupal for web content management, and bioinformatics tools like NCBI BLAST, HMMER, PSORTb and OrthoMCL for data analysis. All the P. multocida genomes have been further annotated for search and analysis of homologous sequence, phylogeny, gene ontology, transposon, protein subcellular localization and secreted protein. Transcriptomic data of P. multocida are also selectively adopted for gene expression analysis. The PamulDB has been developing and improving to better aid researchers with identifying and classifying of pathogens, dissecting mechanisms of the pathogen infection and host response.
Collapse
Affiliation(s)
- Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiao-Fei Xu
- College of Computer and Information Science, Chongqing Normal University, Chongqing, China
| | - Hui-Hui Du
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Li Li
- College of Computer and Information Science, Chongqing Normal University, Chongqing, China
| | - Neng-Zhang Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Ze-Yang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,College of Life Science, Chongqing Normal University, Chongqing, China
| | - Yuan-Yi Peng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
20
|
GlcNAc De- N-Acetylase from the Hyperthermophilic Archaeon Sulfolobus solfataricus. Appl Environ Microbiol 2019; 85:AEM.01879-18. [PMID: 30446550 DOI: 10.1128/aem.01879-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/04/2018] [Indexed: 01/17/2023] Open
Abstract
Sulfolobus solfataricus is an aerobic crenarchaeal hyperthermophile with optimum growth at temperatures greater than 80°C and pH 2 to 4. Within the crenarchaeal group of Sulfolobales, N-acetylglucosamine (GlcNAc) has been shown to be a component of exopolysaccharides, forming their biofilms, and of the N-glycan decorating some proteins. The metabolism of GlcNAc is still poorly understood in Archaea, and one approach to gaining additional information is through the identification and functional characterization of carbohydrate active enzymes (CAZymes) involved in the modification of GlcNAc. The screening of S. solfataricus extracts allowed the detection of a novel α-N-acetylglucosaminidase (α-GlcNAcase) activity, which has never been identified in Archaea Mass spectrometry analysis of the purified activity showed a protein encoded by the sso2901 gene. Interestingly, the purified recombinant enzyme, which was characterized in detail, revealed a novel de-N-acetylase activity specific for GlcNAc and derivatives. Thus, assays to identify an α-GlcNAcase found a GlcNAc de-N-acetylase instead. The α-GlcNAcase activity observed in S. solfataricus extracts did occur when SSO2901 was used in combination with an α-glucosidase. Furthermore, the inspection of the genomic context and the preliminary characterization of a putative glycosyltransferase immediately upstream of sso2901 (sso2900) suggest the involvement of these enzymes in the GlcNAc metabolism in S. solfataricus IMPORTANCE In this study, a preliminary screening of cellular extracts of S. solfataricus allowed the identification of an α-N-acetylglucosaminidase activity. However, the characterization of the corresponding recombinant enzyme revealed a novel GlcNAc de-N-acetylase, which, in cooperation with the α-glucosidase, catalyzed the hydrolysis of O-α-GlcNAc glycosides. In addition, we show that the product of a gene flanking the one encoding the de-N-acetylase is a putative glycosyltransferase, suggesting the involvement of the two enzymes in the metabolism of GlcNAc. The discovery and functional analysis of novel enzymatic activities involved in the modification of this essential sugar represent a powerful strategy to shed light on the physiology and metabolism of Archaea.
Collapse
|
21
|
Abstract
Heparin and heparan sulfate (HS) are polydisperse mixtures of polysaccharide chains between 5 and 50 kDa. Sulfate modifications to discreet regions along the chains form protein binding sites involved in cell signaling cascades and other important cellular physiological and pathophysiological functions. Specific protein affinities of the chains vary among different tissues and are determined by the arrangements of sulfated residues in discreet regions along the chains which in turn appear to be determined by the expression levels of particular enzymes in the biosynthetic pathway. Although not all the rules governing synthesis and modification are known, analytical procedures have been developed to determine composition, and all of the biosynthetic enzymes have been identified and cloned. Thus, through cell engineering, it is now possible to direct cellular synthesis of heparin and HS to particular compositions and therefore particular functional characteristics. For example, directing heparin producing cells to reduce the level of a particular type of polysaccharide modification may reduce the risk of heparin induced thrombocytopenia (HIT) without reducing the potency of anticoagulation. Similarly, HS has been linked to several biological areas including wound healing, cancer and lipid metabolism among others. Presumably, these roles involve specific HS compositions that could be produced by engineering cells. Providing HS reagents with a range of identified compositions should help accelerate this research and lead to new clinical applications for specific HS compositions. Here I review progress in engineering CHO cells to produce heparin and HS with compositions directed to improved properties and advancing medical research.
Collapse
|
22
|
Metabolic engineering of capsular polysaccharides. Emerg Top Life Sci 2018; 2:337-348. [DOI: 10.1042/etls20180003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/11/2018] [Accepted: 06/27/2018] [Indexed: 11/17/2022]
Abstract
With rising concerns about sustainable practices, environmental complications, and declining resources, metabolic engineers are transforming microorganisms into cellular factories for producing capsular polysaccharides (CPSs). This review provides an overview of strategies employed for the metabolic engineering of heparosan, chondroitin, hyaluronan, and polysialic acid — four CPSs that are of interest for manufacturing a variety of biomedical applications. Methods described include the exploitation of wild-type and engineered native CPS producers, as well as genetically engineered heterologous hosts developed through the improvement of naturally existing pathways or newly (de novo) designed ones. The implementation of methodologies like gene knockout, promoter engineering, and gene expression level control has resulted in multiple-fold improvements in CPS fermentation titers compared with wild-type strains, and substantial increases in productivity, reaching as high as 100% in some cases. Optimization of these biotechnological processes can permit the adoption of industrially competitive engineered microorganisms to replace traditional sources that are generally toxic, unreliable, and inconsistent in product quality.
Collapse
|
23
|
Singh S, Grice ID, Peak IR, Frost T, Yue G, Wilson JC. The role of lipooligosaccharide in the biological activity of Moraxella bovis strains Epp63, Mb25 and L183/2, and isolation of capsular polysaccharide from L183/2. Carbohydr Res 2018; 467:1-7. [DOI: 10.1016/j.carres.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/26/2022]
|
24
|
Enhancing fructosylated chondroitin production in Escherichia coli K4 by balancing the UDP-precursors. Metab Eng 2018; 47:314-322. [PMID: 29654832 DOI: 10.1016/j.ymben.2018.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/27/2018] [Accepted: 04/11/2018] [Indexed: 11/23/2022]
Abstract
Microbial production of chondroitin and chondroitin-like polysaccharides from renewable feedstock is a promising and sustainable alternative to extraction from animal tissues. In this study, we attempted to improve production of fructosylated chondroitin in Escherichia coli K4 by balancing intracellular levels of the precursors UDP-GalNAc and UDP-GlcA. To this end, we deleted pfkA to favor the production of Fru-6-P. Then, we identified rate-limiting enzymes in the synthesis of UDP-precursors. Third, UDP-GalNAc synthesis, UDP-GlcA synthesis, and chondroitin polymerization were combinatorially optimized by altering the expression of relevant enzymes. The ratio of intracellular UDP-GalNAc to UDP-GlcA increased from 0.17 in the wild-type strain to 1.05 in a 30-L fed-batch culture of the engineered strain. Titer and productivity of fructosylated chondroitin also increased to 8.43 g/L and 227.84 mg/L/h; the latter represented the highest productivity level achieved to date.
Collapse
|
25
|
Peerboom N, Block S, Altgärde N, Wahlsten O, Möller S, Schnabelrauch M, Trybala E, Bergström T, Bally M. Binding Kinetics and Lateral Mobility of HSV-1 on End-Grafted Sulfated Glycosaminoglycans. Biophys J 2017; 113:1223-1234. [PMID: 28697896 DOI: 10.1016/j.bpj.2017.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 01/08/2023] Open
Abstract
Many viruses, including herpes simplex (HSV), are recruited to their host cells via interaction between their envelope glycoproteins and cell-surface glycosaminoglycans (GAGs). This initial attachment is of a multivalent nature, i.e., it requires the establishment of multiple bonds between amino acids of viral glycoproteins and sulfated saccharides on the GAG chain. To gain understanding of how this binding process is modulated, we performed binding kinetics and mobility studies using end-grafted GAG chains that mimic the end attachment of these chains to proteoglycans. Total internal reflection fluorescence microscopy was used to probe binding and release, as well as the diffusion of single HSV-1 particles. To verify the hypothesis that the degree of sulfation, but also the arrangement of sulfate groups along the GAG chain, plays a key role in HSV binding, we tested two native GAGs (chondroitin sulfate and heparan sulfate) and compared our results to chemically sulfated hyaluronan. HSV-1 recognized all sulfated GAGs, but not the nonsulfated hyaluronan, indicating that binding is specific to the presence of sulfate groups. Furthermore we observed that a notable fraction of GAG-bound virions exhibit lateral mobility, although the multivalent binding to the immobilized GAG brushes ensures firm virus attachment to the interface. Diffusion was faster on the two native GAGs, one of which, chondroitin sulfate, was also characterized by the highest association rate per GAG chain. This highlights the complexity of multivalent virus-GAG interactions and suggests that the spatial arrangement of sulfates along native GAG chains may play a role in modulating the characteristics of the HSV-GAG interaction. Altogether, these results, obtained with a minimal and well-controlled model of the cell membrane, provide, to our knowledge, new insights into the dynamics of the HSV-GAG interaction.
Collapse
Affiliation(s)
- Nadia Peerboom
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden
| | - Stephan Block
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden; Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Noomi Altgärde
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden
| | - Olov Wahlsten
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden
| | | | | | - Edward Trybala
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Marta Bally
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
| |
Collapse
|
26
|
Green DE, DeAngelis PL. Identification of a chondroitin synthase from an unexpected source, the green sulfur bacterium Chlorobium phaeobacteroides. Glycobiology 2017; 27:469-476. [PMID: 28104786 PMCID: PMC5444263 DOI: 10.1093/glycob/cwx008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/10/2017] [Accepted: 01/13/2017] [Indexed: 11/14/2022] Open
Abstract
Glycosaminoglycans (GAGs) are known to be present in all animals as well as some pathogenic microbes. Chondroitin sulfate is the most abundant GAG in mammals where it has various structural and adhesion roles. The Gram-negative bacteria Pasteurella multocida Type F and Escherichia coli K4 produce extracellular capsules composed of unsulfated chondroitin or a fructosylated chondroitin, respectively. Such polysaccharides that are structurally related to host molecules do not generally provoke a strong antibody response thus are thought to be employed as molecular camouflage during infection. We observed a sequence from the photosynthetic green sulfur bacteria, Chlorobium phaeobacteroides DSM 266, which was very similar (~62% identical) to the open reading frames of the known bifunctional chondroitin synthases (PmCS and KfoC); some segments are strikingly conserved amongst the three proteins. Recombinant E. coli-derived Chlorobium enzyme preparations were found to possess bona fide chondroitin synthase activity in vitro. This new catalyst, CpCS, however, has a more promiscuous acceptor usage than the prototypical PmCS, which may be of utility in novel chimeric GAG syntheses. The finding of such a similar chondroitin synthase enzyme in C. phaeobacteroides is unexpected for several reasons including (a) a free-living nonpathogenic organism should not "need" an animal self molecule for protection, (b) the Proteobacteria and the green sulfur bacterial lineages diverged ~2.5-3 billion years ago and (c) the ecological niches of these bacteria are not thought to overlap substantially to facilitate horizontal gene transfer. CpCS provides insight into the structure/function relationship of this class of enzymes.
Collapse
Affiliation(s)
- Dixy E Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 853,Oklahoma City, OK73126-0901, USA
| | - Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 853,Oklahoma City, OK73126-0901, USA
| |
Collapse
|
27
|
Senchenkova SN, Zhang Y, Perepelov AV, Guo X, Shashkov AS, Liu B, Knirel YA. Structure and Biosynthesis Gene Cluster of the O-Antigen of Escherichia coli O12. BIOCHEMISTRY (MOSCOW) 2017; 81:401-6. [PMID: 27293097 DOI: 10.1134/s0006297916040106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two polysaccharides were isolated from Escherichia coli O12, the major being identified as the O12-antigen and the minor as the K5-antigen. The polysaccharides were studied by sugar analysis, Smith degradation, and one- and two-dimensional (1)H and (13)C NMR spectroscopy. As a result, the following structure of the O12-polysaccharide was elucidated, which, to our knowledge, has not been hitherto found in bacterial carbohydrates: →2)-β-d-Glcp-(1→6)-α-d-GlcpNAc-(1→3)-α-l-FucpNAc-(1→3)-β-d-GlcpNAc-(1→. The →4)-β-d-GlcpA-(1→4)-α-d-GlcpNAc-(1→ structure established for the K5-polysaccharide (heparosan) is previously known. Functions of genes in the O-antigen biosynthesis gene cluster of E. coli O12 were assigned by comparison with sequences in the available databases and found to be consistent with the O12-polysaccharide structure.
Collapse
Affiliation(s)
- S N Senchenkova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
29
|
Englaender JA, Zhu Y, Shirke AN, Lin L, Liu X, Zhang F, Gross RA, Koffas MAG, Linhardt RJ. Expression and secretion of glycosylated heparin biosynthetic enzymes using Komagataella pastoris. Appl Microbiol Biotechnol 2016; 101:2843-2851. [PMID: 27975137 DOI: 10.1007/s00253-016-8047-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023]
Abstract
Heparin, an anticoagulant drug, is biosynthesized in selected animal cells. The heparin biosynthetic enzymes mainly consist of sulfotransferases and all are integral transmembrane glycoproteins. These enzymes are generally produced in engineered Escherichia coli as without their transmembrane domains as non-glycosylated fusion proteins. In this study, we used the yeast, Komagataella pastoris, to prepare four sulfotransferases involved in heparin biosynthesis as glycoproteins. While the yields of these yeast-expressed enzymes were considerably lower than E. coli-expressed enzymes, these enzymes were secreted into the fermentation media simplifying their purification and were endotoxin free. The activities of these sulfotransferases, expressed as glycoproteins in yeast, were compared to the bacterially expressed proteins. The yeast-expressed sulfotransferase glycoproteins showed improved kinetic properties than the bacterially expressed proteins.
Collapse
Affiliation(s)
- Jacob A Englaender
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Yuanyuan Zhu
- Department of Chemical Processing Engineering of Forest Products, Nanjing Forestry University, Nanjing, China
| | - Abhijit N Shirke
- Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Lei Lin
- Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xinyue Liu
- Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Fuming Zhang
- Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Richard A Gross
- Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mattheos A G Koffas
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Robert J Linhardt
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Chemical and Biological Engineering and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
30
|
Einarsdottir T, Gunnarsson E, Sigurdardottir OG, Jorundsson E, Fridriksdottir V, Thorarinsdottir GE, Hjartardottir S. Variability of Pasteurella multocida isolated from Icelandic sheep and detection of the toxA gene. J Med Microbiol 2016; 65:897-904. [PMID: 27381564 DOI: 10.1099/jmm.0.000306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pasteurella multocida can be part of the upper respiratory flora of animals, but under conditions of stress or immunocompromisation, the bacteria can cause severe respiratory symptoms. In this study, we compared 10 P. multocida isolates from Icelandic sheep with respiratory symptoms and 19 isolates from apparently healthy abattoir sheep. We examined capsule type, genetic variability and the presence of the toxA gene in the two groups. Surprisingly, we found that all ovine P. multocida isolates examined in this study carried the toxA gene, which markedly differs from what has been published from other studies. Interestingly, all isolates from abattoir animals were capsule type D, whilst bacteria isolated from animals with clinical respiratory symptoms had capsule type A, D or F. Examination of seven housekeeping genes indicated that the clinical respiratory isolates were significantly more heterogeneous than the abattoir isolates (P<0.05, two-tailed Mann-Whitney U test). The results suggest that there may be at least two groups of P. multocida in sheep - a genetically homogeneous group that resides in the respiratory tract and a genetically heterogeneous group that is the predominant cause of disease.
Collapse
Affiliation(s)
- Thorbjorg Einarsdottir
- Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland.,BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Eggert Gunnarsson
- Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Olof G Sigurdardottir
- Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland.,BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Einar Jorundsson
- Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland.,BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Vala Fridriksdottir
- Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | | | - Sigridur Hjartardottir
- Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| |
Collapse
|
31
|
Huang H, Liu X, Lv S, Zhong W, Zhang F, Linhardt RJ. Recombinant Escherichia coli K5 strain with the deletion of waaR gene decreases the molecular weight of the heparosan capsular polysaccharide. Appl Microbiol Biotechnol 2016; 100:7877-85. [PMID: 27079575 DOI: 10.1007/s00253-016-7511-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 01/02/2023]
Abstract
Heparosan, the capsular polysaccharide of Escherichia coli K5 having a carbohydrate backbone similar to that of heparin, has become a potential precursor for bioengineering heparin. In the heparosan biosynthesis pathway, the gene waaR encoding α-1-, 2- glycosyltransferase catalyze s the third glucosyl residues linking to the oligosaccharide chain. In the present study, a waaR deletion mutant of E. coli K5 was constructed. The mutant showed improvement of capsule polysaccharide yield. It is interesting that the heparosan molecular weight of the mutant is reduced and may become more suitable as a precursor for the production of low molecular weight heparin derived from the wild-type K5 capsular polysaccharide.
Collapse
Affiliation(s)
- Haichan Huang
- College of Biological Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaobo Liu
- College of Biological Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shencong Lv
- College of Biological Engineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Weihong Zhong
- College of Biological Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
32
|
Jin P, Zhang L, Yuan P, Kang Z, Du G, Chen J. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydr Polym 2016; 140:424-32. [DOI: 10.1016/j.carbpol.2015.12.065] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/07/2015] [Accepted: 12/27/2015] [Indexed: 10/22/2022]
|
33
|
Furian TQ, Borges KA, Laviniki V, Rocha SLDS, de Almeida CN, do Nascimento VP, Salle CTP, Moraes HLDS. Virulence genes and antimicrobial resistance of Pasteurella multocida isolated from poultry and swine. Braz J Microbiol 2016; 47:210-6. [PMID: 26887247 PMCID: PMC4822770 DOI: 10.1016/j.bjm.2015.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 06/24/2015] [Indexed: 11/24/2022] Open
Abstract
Pasteurella multocida causes atrophic rhinitis in swine and fowl cholera in birds, and is a secondary agent in respiratory syndromes. Pathogenesis and virulence factors involved are still poorly understood. The aim of this study was to detect 22 virulence-associated genes by PCR, including capsular serogroups A, B and D genes and to evaluate the antimicrobial susceptibility of P. multocida strains from poultry and swine. ompH, oma87, plpB, psl, exbD-tonB, fur, hgbA, nanB, sodA, sodC, ptfA were detected in more than 90% of the strains of both hosts. 91% and 92% of avian and swine strains, respectively, were classified in serogroup A. toxA and hsf-1 showed a significant association to serogroup D; pmHAS and pfhA to serogroup A. Gentamicin and amoxicillin were the most effective drugs with susceptibility higher than 97%; however, 76.79% of poultry strains and 85% of swine strains were resistant to sulphonamides. Furthermore, 19.64% and 36.58% of avian and swine strains, respectively, were multi-resistant. Virulence genes studied were not specific to a host and may be the result of horizontal transmission throughout evolution. High multidrug resistance demonstrates the need for responsible use of antimicrobials in animals intended for human consumption, in addition to antimicrobial susceptibility testing to P. multocida.
Collapse
Affiliation(s)
- Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP: 91540-000, Brazil.
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP: 91540-000, Brazil
| | - Vanessa Laviniki
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP: 91540-000, Brazil
| | - Silvio Luis da Silveira Rocha
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP: 91540-000, Brazil
| | - Camila Neves de Almeida
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP: 91540-000, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP: 91540-000, Brazil
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP: 91540-000, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS CEP: 91540-000, Brazil
| |
Collapse
|
34
|
Altgärde N, Eriksson C, Peerboom N, Phan-Xuan T, Moeller S, Schnabelrauch M, Svedhem S, Trybala E, Bergström T, Bally M. Mucin-like Region of Herpes Simplex Virus Type 1 Attachment Protein Glycoprotein C (gC) Modulates the Virus-Glycosaminoglycan Interaction. J Biol Chem 2015; 290:21473-85. [PMID: 26160171 DOI: 10.1074/jbc.m115.637363] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 01/09/2023] Open
Abstract
Glycoprotein C (gC) mediates the attachment of HSV-1 to susceptible host cells by interacting with glycosaminoglycans (GAGs) on the cell surface. gC contains a mucin-like region located near the GAG-binding site, which may affect the binding activity. Here, we address this issue by studying a HSV-1 mutant lacking the mucin-like domain in gC and the corresponding purified mutant protein (gCΔmuc) in cell culture and GAG-binding assays, respectively. The mutant virus exhibited two functional alterations as compared with native HSV-1 (i.e. decreased sensitivity to GAG-based inhibitors of virus attachment to cells and reduced release of viral particles from the surface of infected cells). Kinetic and equilibrium binding characteristics of purified gC were assessed using surface plasmon resonance-based sensing together with a surface platform consisting of end-on immobilized GAGs. Both native gC and gCΔmuc bound via the expected binding region to chondroitin sulfate and sulfated hyaluronan but not to the non-sulfated hyaluronan, confirming binding specificity. In contrast to native gC, gCΔmuc exhibited a decreased affinity for GAGs and a slower dissociation, indicating that once formed, the gCΔmuc-GAG complex is more stable. It was also found that a larger number of gCΔmuc bound to a single GAG chain, compared with native gC. Taken together, our data suggest that the mucin-like region of HSV-1 gC is involved in the modulation of the GAG-binding activity, a feature of importance both for unrestricted virus entry into the cells and release of newly produced viral particles from infected cells.
Collapse
Affiliation(s)
- Noomi Altgärde
- From the Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Charlotta Eriksson
- the Department of Clinical Virology, University of Gothenburg, 413 46 Göteborg, Sweden
| | - Nadia Peerboom
- From the Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Tuan Phan-Xuan
- From the Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Stephanie Moeller
- the Department of Biomaterials, INNOVENT e.V., Pruessingstrasse 27 B, D-07745 Jena, Germany, and
| | - Matthias Schnabelrauch
- the Department of Biomaterials, INNOVENT e.V., Pruessingstrasse 27 B, D-07745 Jena, Germany, and
| | - Sofia Svedhem
- From the Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Edward Trybala
- the Department of Clinical Virology, University of Gothenburg, 413 46 Göteborg, Sweden
| | - Tomas Bergström
- the Department of Clinical Virology, University of Gothenburg, 413 46 Göteborg, Sweden
| | - Marta Bally
- From the Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden, the Institut Curie, Centre de Recherche, CNRS, UMR 168, Physico-Chimie Curie, F-75248 Paris, France
| |
Collapse
|
35
|
Whitfield GB, Marmont LS, Howell PL. Enzymatic modifications of exopolysaccharides enhance bacterial persistence. Front Microbiol 2015; 6:471. [PMID: 26029200 PMCID: PMC4432689 DOI: 10.3389/fmicb.2015.00471] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022] Open
Abstract
Biofilms are surface-attached communities of bacterial cells embedded in a self-produced matrix that are found ubiquitously in nature. The biofilm matrix is composed of various extracellular polymeric substances, which confer advantages to the encapsulated bacteria by protecting them from eradication. The matrix composition varies between species and is dependent on the environmental niche that the bacteria inhabit. Exopolysaccharides (EPS) play a variety of important roles in biofilm formation in numerous bacterial species. The ability of bacteria to thrive in a broad range of environmental settings is reflected in part by the structural diversity of the EPS produced both within individual bacterial strains as well as by different species. This variability is achieved through polymerization of distinct sugar moieties into homo- or hetero-polymers, as well as post-polymerization modification of the polysaccharide. Specific enzymes that are unique to the production of each polymer can transfer or remove non-carbohydrate moieties, or in other cases, epimerize the sugar units. These modifications alter the physicochemical properties of the polymer, which in turn can affect bacterial pathogenicity, virulence, and environmental adaptability. Herein, we review the diversity of modifications that the EPS alginate, the Pel polysaccharide, Vibrio polysaccharide, cepacian, glycosaminoglycans, and poly-N-acetyl-glucosamine undergo during biosynthesis. These are EPS produced by human pathogenic bacteria for which studies have begun to unravel the effect modifications have on their physicochemical and biological properties. The biological advantages these polymer modifications confer to the bacteria that produce them will be discussed. The expanding list of identified modifications will allow future efforts to focus on linking these modifications to specific biosynthetic genes and biofilm phenotypes.
Collapse
Affiliation(s)
- Gregory B Whitfield
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children Toronto, ON, Canada ; Department of Biochemistry, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Lindsey S Marmont
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children Toronto, ON, Canada ; Department of Biochemistry, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - P Lynne Howell
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children Toronto, ON, Canada ; Department of Biochemistry, Faculty of Medicine, University of Toronto Toronto, ON, Canada
| |
Collapse
|
36
|
He W, Fu L, Li G, Andrew Jones J, Linhardt RJ, Koffas M. Production of chondroitin in metabolically engineered E. coli. Metab Eng 2014; 27:92-100. [PMID: 25461828 DOI: 10.1016/j.ymben.2014.11.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/15/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
Abstract
Chondroitin sulfates, widely used in the treatment of arthritis, are glycosaminoglycans extracted from food animal tissues. As part of our ongoing efforts to separate the food chain from the drug chain, we are examining the possibility of using metabolic engineering to produce chondroitin sulfate in Escherichia coli. Chondroitin is a valuable precursor in the synthesis of chondroitin sulfate. This study proposes a safer and more feasible approach to metabolically engineer chondroitin production by expressing genes from the pathogenic E. coli K4 strain, which natively produces a capsular polysaccharide that shares the similar structure with chondroitin, into the non-pathogenic E. coli BL21 Star™ (DE3) strain. The ePathBrick vectors, allowing for multiple gene addition and expression regulatory signal control, are used for metabolic balancing needed to obtain the maximum potential yield. The resulting engineered strain produced chondroitin, as demonstrated by (1)H NMR and disaccharide analysis, relying on chondrotinase treatment followed by liquid chromatography-mass spectrometry. The highest yield from shake flask experiment was 213mg/L and further increased to 2.4g/L in dissolved oxygen-stat fed batch bioreactor.
Collapse
Affiliation(s)
- Wenqin He
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Li Fu
- Department of Chemistry, Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Guoyun Li
- Department of Chemistry, Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - J Andrew Jones
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Chemistry, Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA; Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
37
|
Cress BF, Englaender JA, He W, Kasper D, Linhardt RJ, Koffas MAG. Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. FEMS Microbiol Rev 2014; 38:660-97. [PMID: 24372337 PMCID: PMC4120193 DOI: 10.1111/1574-6976.12056] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/16/2013] [Accepted: 12/19/2013] [Indexed: 11/27/2022] Open
Abstract
The increasing prevalence of antibiotic-resistant bacteria portends an impending postantibiotic age, characterized by diminishing efficacy of common antibiotics and routine application of multifaceted, complementary therapeutic approaches to treat bacterial infections, particularly multidrug-resistant organisms. The first line of defense for most bacterial pathogens consists of a physical and immunologic barrier known as the capsule, commonly composed of a viscous layer of carbohydrates that are covalently bound to the cell wall in Gram-positive bacteria or often to lipids of the outer membrane in many Gram-negative bacteria. Bacterial capsular polysaccharides are a diverse class of high molecular weight polysaccharides contributing to virulence of many human pathogens in the gut, respiratory tree, urinary tract, and other host tissues, by hiding cell surface components that might otherwise elicit host immune response. This review highlights capsular polysaccharides that are structurally identical or similar to polysaccharides found in mammalian tissues, including polysialic acid and glycosaminoglycan capsules hyaluronan, heparosan, and chondroitin. Such nonimmunogenic coatings render pathogens insensitive to certain immune responses, effectively increasing residence time in host tissues and enabling pathologically relevant population densities to be reached. Biosynthetic pathways and capsular involvement in immune system evasion are described, providing a basis for potential therapies aimed at supplementing or replacing antibiotic treatment.
Collapse
Affiliation(s)
- Brady F Cress
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | | | | | | | | |
Collapse
|
38
|
Elucidation of the structure of the oligosaccharide from wild type Moraxella bovis Epp63 lipooligosaccharide. Carbohydr Res 2014; 388:81-6. [DOI: 10.1016/j.carres.2013.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/26/2013] [Accepted: 10/14/2013] [Indexed: 01/19/2023]
|
39
|
Higman VA, Briggs DC, Mahoney DJ, Blundell CD, Sattelle BM, Dyer DP, Green DE, DeAngelis PL, Almond A, Milner CM, Day AJ. A refined model for the TSG-6 link module in complex with hyaluronan: use of defined oligosaccharides to probe structure and function. J Biol Chem 2014; 289:5619-34. [PMID: 24403066 PMCID: PMC3937638 DOI: 10.1074/jbc.m113.542357] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 11/25/2022] Open
Abstract
Tumor necrosis factor-stimulated gene-6 (TSG-6) is an inflammation-associated hyaluronan (HA)-binding protein that contributes to remodeling of HA-rich extracellular matrices during inflammatory processes and ovulation. The HA-binding domain of TSG-6 consists solely of a Link module, making it a prototypical member of the superfamily of proteins that interacts with this high molecular weight polysaccharide composed of repeating disaccharides of D-glucuronic acid and N-acetyl-D-glucosamine (GlcNAc). Previously we modeled a complex of the TSG-6 Link module in association with an HA octasaccharide based on the structure of the domain in its HA-bound conformation. Here we have generated a refined model for a HA/Link module complex using novel restraints identified from NMR spectroscopy of the protein in the presence of 10 distinct HA oligosaccharides (from 4- to 8-mers); the model was then tested using unique sugar reagents, i.e. chondroitin/HA hybrid oligomers and an octasaccharide in which a single sugar ring was (13)C-labeled. The HA chain was found to make more extensive contacts with the TSG-6 surface than thought previously, such that a D-glucuronic acid ring makes stacking and ionic interactions with a histidine and lysine, respectively. Importantly, this causes the HA to bend around two faces of the Link module (resembling the way that HA binds to CD44), potentially providing a mechanism for how TSG-6 can reorganize HA during inflammation. However, the HA-binding site defined here may not play a role in TSG-6-mediated transfer of heavy chains from inter-α-inhibitor onto HA, a process known to be essential for ovulation.
Collapse
Affiliation(s)
- Victoria A. Higman
- From the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - David C. Briggs
- Wellcome Trust Centre for Cell Matrix Research
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - David J. Mahoney
- From the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Charles D. Blundell
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Benedict M. Sattelle
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Douglas P. Dyer
- Wellcome Trust Centre for Cell Matrix Research
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Dixy E. Green
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Paul L. DeAngelis
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Andrew Almond
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Caroline M. Milner
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| | - Anthony J. Day
- Wellcome Trust Centre for Cell Matrix Research
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT United Kingdom, and
| |
Collapse
|
40
|
Wu Q, Yang A, Zou W, Duan Z, Liu J, Chen J, Liu L. Transcriptional engineering ofEscherichia coliK4 for fructosylated chondroitin production. Biotechnol Prog 2013; 29:1140-9. [DOI: 10.1002/btpr.1777] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/01/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Qiulin Wu
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- Key Laboratory of Industrial Biotechnology; Ministry of Education, Jiangnan University; Wuxi Jiangsu 214122 China
- Laboratory of Food Microbial-Manufacturing Engineering; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Aihua Yang
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Wei Zou
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Zuoying Duan
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Jie Liu
- Jiangsu Jiangshan Pharmaceutical Co., Ltd.; Jingjiang Jiangsu 214500 China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology; Ministry of Education, Jiangnan University; Wuxi Jiangsu 214122 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- Key Laboratory of Industrial Biotechnology; Ministry of Education, Jiangnan University; Wuxi Jiangsu 214122 China
- Laboratory of Food Microbial-Manufacturing Engineering; Jiangnan University; Wuxi Jiangsu 214122 China
| |
Collapse
|
41
|
Abstract
In a world where most emerging and reemerging infectious diseases are zoonotic in nature and our contacts with both domestic and wild animals abound, there is growing awareness of the potential for human acquisition of animal diseases. Like other Pasteurellaceae, Pasteurella species are highly prevalent among animal populations, where they are often found as part of the normal microbiota of the oral, nasopharyngeal, and upper respiratory tracts. Many Pasteurella species are opportunistic pathogens that can cause endemic disease and are associated increasingly with epizootic outbreaks. Zoonotic transmission to humans usually occurs through animal bites or contact with nasal secretions, with P. multocida being the most prevalent isolate observed in human infections. Here we review recent comparative genomics and molecular pathogenesis studies that have advanced our understanding of the multiple virulence mechanisms employed by Pasteurella species to establish acute and chronic infections. We also summarize efforts being explored to enhance our ability to rapidly and accurately identify and distinguish among clinical isolates and to control pasteurellosis by improved development of new vaccines and treatment regimens.
Collapse
Affiliation(s)
- Brenda A Wilson
- Department of Microbiology and Host-Microbe Systems Theme of the Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | |
Collapse
|
42
|
DeAngelis PL, Liu J, Linhardt RJ. Chemoenzymatic synthesis of glycosaminoglycans: re-creating, re-modeling and re-designing nature's longest or most complex carbohydrate chains. Glycobiology 2013; 23:764-77. [PMID: 23481097 PMCID: PMC3671772 DOI: 10.1093/glycob/cwt016] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 02/03/2023] Open
Abstract
Glycosaminoglycans (GAGs) are complex polysaccharides composed of hexosamine-containing disaccharide repeating units. The three most studied classes of GAGs, heparin/heparan sulfate, hyaluronan and chondroitin/dermatan sulfate, are essential macromolecules. GAGs isolated from animal and microbial sources have been utilized therapeutically, but naturally occurring GAGs are extremely heterogeneous limiting further development of these agents. These molecules pose difficult targets to construct by classical organic syntheses due to the long chain lengths and complex patterns of modification by sulfation and epimerization. Chemoenzymatic synthesis, a process that employs exquisite enzyme catalysts and various defined precursors (e.g. uridine 5'-diphosphosphate-sugar donors, sulfate donors, acceptors and oxazoline precursors), promises to deliver homogeneous GAGs. This review covers both theoretical and practical issues of GAG oligosaccharide and polysaccharide preparation as single molecular entities and in library formats. Even at this early stage of technology development, nearly monodisperse GAGs can be made with either natural or artificial structures.
Collapse
Affiliation(s)
- Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma Center for Medical Glycobiology, Oklahoma City, OK 73126, USA.
| | | | | |
Collapse
|
43
|
Willis LM, Whitfield C. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr Res 2013; 378:35-44. [PMID: 23746650 DOI: 10.1016/j.carres.2013.05.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/06/2013] [Accepted: 05/11/2013] [Indexed: 12/11/2022]
Abstract
Bacterial capsules are formed primarily from long-chain polysaccharides with repeat-unit structures. A given bacterial species can produce a range of capsular polysaccharides (CPSs) with different structures and these help distinguish isolates by serotyping, as is the case with Escherichia coli K antigens. Capsules are important virulence factors for many pathogens and this review focuses on CPSs synthesized via ATP-binding cassette (ABC) transporter-dependent processes in Gram-negative bacteria. Bacteria utilizing this pathway are often associated with urinary tract infections, septicemia, and meningitis, and E. coli and Neisseria meningitidis provide well-studied examples. CPSs from ABC transporter-dependent pathways are synthesized at the cytoplasmic face of the inner membrane through the concerted action of glycosyltransferases before being exported across the inner membrane and translocated to the cell surface. A hallmark of these CPSs is a conserved reducing terminal glycolipid composed of phosphatidylglycerol and a poly-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) linker. Recent discovery of the structure of this conserved lipid terminus provides new insights into the early steps in CPS biosynthesis.
Collapse
Affiliation(s)
- Lisa M Willis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
44
|
Donor substrate promiscuity of the N-acetylglucosaminyltransferase activities of Pasteurella multocida heparosan synthase 2 (PmHS2) and Escherichia coli K5 KfiA. Appl Microbiol Biotechnol 2013; 98:1127-34. [DOI: 10.1007/s00253-013-4947-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/19/2013] [Accepted: 04/23/2013] [Indexed: 02/05/2023]
|
45
|
Willis LM, Stupak J, Richards MR, Lowary TL, Li J, Whitfield C. Conserved glycolipid termini in capsular polysaccharides synthesized by ATP-binding cassette transporter-dependent pathways in Gram-negative pathogens. Proc Natl Acad Sci U S A 2013; 110:7868-73. [PMID: 23610430 PMCID: PMC3651472 DOI: 10.1073/pnas.1222317110] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bacterial capsules are surface layers made of long-chain polysaccharides. They are anchored to the outer membrane of many Gram-negative bacteria, including pathogens such as Escherichia coli, Neisseria meningitidis, Haemophilus influenzae, and Pasteurella multocida. Capsules protect pathogens from host defenses including complement-mediated killing and phagocytosis and therefore represent a major virulence factor. Capsular polysaccharides are synthesized by enzymes located in the inner (cytoplasmic) membrane and are then translocated to the cell surface. Whereas the enzymes that synthesize the polysaccharides have been studied in detail, the structure and biosynthesis of the anchoring elements have not been definitively resolved. Here we determine the structure of the glycolipid attached to the reducing terminus of the polysialic acid capsular polysaccharides from E. coli K1 and N. meningitidis group B and the heparosan-like capsular polysaccharide from E. coli K5. All possess the same unique glycolipid terminus consisting of a lyso-phosphatidylglycerol moiety with a β-linked poly-(3-deoxy-d-manno-oct-2-ulosonic acid) (poly-Kdo) linker attached to the reducing terminus of the capsular polysaccharide.
Collapse
Affiliation(s)
- Lisa M. Willis
- Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Jacek Stupak
- National Research Council Canada, Ottawa, ON, Canada K1A 0Z3; and
| | - Michele R. Richards
- Alberta Glycomics Centre and
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Todd L. Lowary
- Alberta Glycomics Centre and
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada T6G 2G2
| | - Jianjun Li
- National Research Council Canada, Ottawa, ON, Canada K1A 0Z3; and
| | - Chris Whitfield
- Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| |
Collapse
|
46
|
Oral administration of heparin or heparosan increases the Lactobacillus population in gut microbiota of rats. Carbohydr Polym 2013; 94:100-5. [DOI: 10.1016/j.carbpol.2013.01.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 01/14/2013] [Accepted: 01/24/2013] [Indexed: 11/24/2022]
|
47
|
Kamhi E, Joo EJ, Dordick JS, Linhardt RJ. Glycosaminoglycans in infectious disease. Biol Rev Camb Philos Soc 2013; 88:928-43. [DOI: 10.1111/brv.12034] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 02/07/2013] [Accepted: 02/27/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Eyal Kamhi
- Department of Chemistry and Chemical Biology; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Drughoming Ltd; Rehovot Israel
| | - Eun Ji Joo
- Department of Chemistry and Chemical Biology; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
| | - Jonathan S. Dordick
- Department of Biology; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Department of Biomedical Engineering; Center for Biotechnology & Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Department of Biology; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Department of Chemical and Biological Engineering; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
- Department of Biomedical Engineering; Center for Biotechnology & Interdisciplinary Studies; Rensselaer Polytechnic Institute; Troy New York 12180-3590 U.S.A
| |
Collapse
|
48
|
Zhang C, Liu L, Teng L, Chen J, Liu J, Li J, Du G, Chen J. Metabolic engineering of Escherichia coli BL21 for biosynthesis of heparosan, a bioengineered heparin precursor. Metab Eng 2012; 14:521-7. [PMID: 22781283 DOI: 10.1016/j.ymben.2012.06.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/06/2012] [Accepted: 06/28/2012] [Indexed: 11/29/2022]
Abstract
As a precursor of bioengineered heparin, heparosan is currently produced from Escherichia coli K5, which is pathogenic bacteria potentially causing urinary tract infection. Thus, it would be advantageous to develop an alternative source of heparosan from a non-pathogeneic strain. In this work we reported the biosynthesis of heparosan via the metabolic engineering of non-pathogenic E. coli BL21 as a production host. Four genes, KfiA, KfiB, KfiC and KfiD, encoding enzymes for the biosynthesis of heparosan in E. coli K5, were cloned into inducible plasmids pETDuet-1 and pRSFDuet-1 and further transformed into E. coli BL21, yielding six recombinant strains as follows: sA, sC, sAC, sABC, sACD and sABCD. The single expression of KfiA (sA) or KfiC (sC) in E. coli BL21 did not produce heparosan, while the co-expression of KfiA and KfiC (sAC) could produce 63 mg/L heparosan in shake flask. The strain sABC and sACD could produce 100 and 120 mg/L heparosan, respectively, indicating that the expression of KfiB or KfiD was beneficial for heparosan production. The strain sABCD could produce 334 mg/L heparosan in shake flask and 652 mg/L heparosan in 3-L batch bioreactor. The heparosan yield was further increased to 1.88 g/L in a dissolved oxygen-stat fed-batch culture in 3-L bioreactor. As revealed by the nuclear magnetic resonance analysis, the chemical structure of heparosan from recombinant E. coli BL21 and E. coli K5 was identical. The weight average molecular weight of heparosan from E. coli K5, sAC, sABC, sACD, and sABCD was 51.67, 39.63, 91.47, 64.51, and 118.30 kDa, respectively. This work provides a viable process for the production of heparosan as a precursor of bioengineered heparin from a safer bacteria strain.
Collapse
Affiliation(s)
- Chunyu Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chen X, Ling P, Duan R, Zhang T. Effects of heparosan and heparin on the adhesion and biofilm formation of several bacteria in vitro. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2012.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Li P, Sheng J, Liu Y, Li J, Liu J, Wang F. Heparosan-derived heparan sulfate/heparin-like compounds: one kind of potential therapeutic agents. Med Res Rev 2012; 33:665-92. [PMID: 22495734 DOI: 10.1002/med.21263] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heparan sulfate (HS) is a highly sulfated glycosaminoglycan and exists in all animal tissues. HS and heparin are very similar, except that heparin has higher level of sulfation and higher content of iduronic acid. Despite the fact that it is a century-old drug, heparin remains as a top choice for treating thrombotic disorders. Pharmaceutical heparin is derived from porcine intestine or bovine lung via a long supply chain. This supply chain is vulnerable to the contamination of animal pathogens. Therefore, new methods for manufacturing heparin or heparin-like substances devoid of animal tissues have been explored by many researchers, among which, modifications of heparosan, the capsular polysaccharide of Escherichia coli K5 strain, is one of the promising approaches. Heparosan has a structure similar to unmodified backbone of natural HS and heparin. It is feasible to obtain HS or heparin derivatives by modifying heparosan with chemical or enzymatic methods. These derivatives display different biological activities, such as anticoagulant, anti-inflammatory, anticancer, and antiviral activities. This review focuses on the recent studies of synthesis, activity, and structure-activity relationship of HS/heparin-like derivatives prepared from heparosan.
Collapse
Affiliation(s)
- Pingli Li
- Institute of Biochemical and Biotechnological Drug & National Glycoengineering Research Center, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | | | | | | | | | | |
Collapse
|