1
|
Wei Y, Guo X, Li L, Xue W, Wang L, Chen C, Sun S, Yang Y, Yao W, Wang W, Zhao J, Duan X. The role of N6-methyladenosine methylation in PAHs-induced cancers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118078-118101. [PMID: 37924411 DOI: 10.1007/s11356-023-30710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), which are a wide range of environmental toxicants, may act on humans through inhalation, ingestion, and skin contact, resulting in a range of toxic reactions. Epidemiological studies showed that long-term exposure to PAHs in the occupational and living environment results in a substantial rise in the incidence rate of many cancers in the population, so the prevention and treatment of these diseases have become a major worldwide public health problem. N6-methyladenosine (m6A) modification greatly affects the metabolism of RNA and is implicated in the etiopathogenesis of many kinds of diseases. In addition, m6A-binding proteins have an important role in disease development. The abnormal expression of these can cause the malignant proliferation, migration, invasion, and metastasis of cancers. Furthermore, a growing number of studies revealed that environmental toxicants are one of the cancer risk factors and are related to m6A modifications. Exposure to environmental toxicants can alter the methylation level of m6A and the expression of the m6A-binding protein, thus promoting the occurrence and development of cancers through diverse mechanisms. m6A may serve as a biomarker for early environmental exposure. Through the study of m6A, we can find the health injury early, thus providing a new sight for preventing and curing environmental health-related diseases.
Collapse
Affiliation(s)
- Yujie Wei
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaona Guo
- Medical School, Huanghe Science and Technology University, Zhengzhou, Henan, China
| | - Lifeng Li
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Longhao Wang
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Chengxin Chen
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shilong Sun
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaqi Yang
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Zhao
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoran Duan
- National Engineering Laboratory for Internet Medical Systems and Applications, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1 Jianshe Road, Erqi District, Zhengzhou, 450052, Henan, China.
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Medical School, Huanghe Science and Technology University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Osimitz TG, Droege W. Perspectives on interpretation of Rivera-González et al., (2021). CHEMOSPHERE 2022; 288:132599. [PMID: 34673040 DOI: 10.1016/j.chemosphere.2021.132599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/19/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Thomas G Osimitz
- Science Strategies, LLC, 1001 East Market St., Suite 202, Charlottesville, VA, 22902, USA.
| | - Wiebke Droege
- Science Strategies, LLC, 1001 East Market St., Suite 202, Charlottesville, VA, 22902, USA
| |
Collapse
|
3
|
Dračínská H, Indra R, Jelínková S, Černá V, Arlt VM, Stiborová M. Benzo[ a]pyrene-Induced Genotoxicity in Rats Is Affected by Co-Exposure to Sudan I by Altering the Expression of Biotransformation Enzymes. Int J Mol Sci 2021; 22:8062. [PMID: 34360828 PMCID: PMC8347376 DOI: 10.3390/ijms22158062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/05/2023] Open
Abstract
The environmental pollutant benzo[a]pyrene (BaP) is a human carcinogen that reacts with DNA after metabolic activation catalysed by cytochromes P450 (CYP) 1A1 and 1B1 together with microsomal epoxide hydrolase. The azo dye Sudan I is a potent inducer of CYP1A1/2. Here, Wistar rats were either treated with single doses of BaP (150 mg/kg bw) or Sudan I (50 mg/kg bw) alone or with both compounds in combination to explore BaP-derived DNA adduct formation in vivo. Using 32P-postlabelling, DNA adducts generated by BaP-7,8-dihydrodiol-9,10-epoxide were found in livers of rats treated with BaP alone or co-exposed to Sudan I. During co-exposure to Sudan I prior to BaP treatment, BaP-DNA adduct levels increased 2.1-fold in comparison to BaP treatment alone. Similarly, hepatic microsomes isolated from rats exposed to Sudan I prior to BaP treatment were also the most effective in generating DNA adducts in vitro with the activated metabolites BaP-7,8-dihydrodiol or BaP-9-ol as intermediates. DNA adduct formation correlated with changes in the expression and/or enzyme activities of CYP1A1, 1A2 and 1B1 in hepatic microsomes. Thus, BaP genotoxicity in rats in vivo appears to be related to the enhanced expression and/or activity of hepatic CYP1A1/2 and 1B1 caused by exposure of rats to the studied compounds. Our results indicate that the industrially employed azo dye Sudan I potentiates the genotoxicity of the human carcinogen BaP, and exposure to both substances at the same time seems to be hazardous to humans.
Collapse
Affiliation(s)
- Helena Dračínská
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Prague, Czech Republic; (R.I.); (S.J.); (V.Č.)
| | - Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Prague, Czech Republic; (R.I.); (S.J.); (V.Č.)
| | - Sandra Jelínková
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Prague, Czech Republic; (R.I.); (S.J.); (V.Č.)
| | - Věra Černá
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Prague, Czech Republic; (R.I.); (S.J.); (V.Č.)
| | | | - Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Prague, Czech Republic; (R.I.); (S.J.); (V.Č.)
| |
Collapse
|
4
|
Piperonyl butoxide: Mode of action analysis for mouse liver tumour formation and human relevance. Toxicology 2020; 439:152465. [PMID: 32320717 DOI: 10.1016/j.tox.2020.152465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/31/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022]
Abstract
In a 79 week bioassay the pesticide synergist piperonyl butoxide (PBO) was shown to significantly increase the incidence of hepatocellular adenoma (but not hepatocellular carcinoma) in male CD-1 mice at dietary levels of 100 and 300 mg/kg/day PBO and in female mice at a dietary level of 300 mg/kg/day. As PBO is not a genotoxic agent, a series of investigative studies were undertaken to elucidate the mode of action (MOA) for PBO-induced mouse liver tumour formation. Male CD-1 mice were fed diets to provide intakes of 0 (control), 30, 100 and 300 mg/kg/day PBO and for purposes of comparison 500 ppm sodium phenobarbital (NaPB), a known constitutive androstane receptor (CAR) activator, for 7 and 14 days. Treatment with 100 and 300 mg/kg/day PBO and 500 ppm NaPB increased relative liver weight which was associated with hepatocyte hypertrophy, with hepatocyte replicative DNA synthesis (RDS) being increased after 7 days treatment. The treatment of CD-1 mice with 30-300 mg/kg/day PBO for 14 days resulted in significant dose-dependent increases in hepatic microsomal cytochrome P450 (CYP) content and 7-pentoxyresorufin O-depentylase (PROD) activity and in hepatic Cyp2b10 mRNA levels. In contrast, PBO produced a biphasic effect on markers of activation of the peroxisome proliferator-activated receptor alpha (PPARα), with small increases in microsomal lauric acid 12-hydroxylase activity and hepatic Cyp4a10 mRNA levels being observed in mice given 100 mg/kg/day with PBO, with either no increase or a significant inhibition being observed in mice given 300 mg/kg/day PBO. The hepatic effects of PBO in male CD-1 mice were generally similar to those produced by NaPB and were reversible after the cessation of treatment for 28 days. Studies were also performed in male C57BL/6J (wild type) mice and in hepatic CAR and pregnane X receptor (PXR) knockout mice (CAR KO/PXR KO mice), where in the CAR KO/PXR KO mice PBO had little effect on markers of CAR activation, but produced some increases in markers of PPARα activation. The treatment of male CD-1 mouse hepatocytes for 4 days with 5-50 μM PBO, 10-1000 μM NaPB and 25 ng/mL epidermal growth factor (EGF) resulted in significant increases in hepatocyte RDS. While treatment of hepatocytes from one male and one female human donor with 5-500 μM PBO and 10-1000 μM NaPB for 4 days had no effect on hepatocyte RDS, treatment with EGF resulted in significant increases in RDS in both human hepatocyte preparations. In summary, PBO is predominantly a hepatic CAR activator at carcinogenic dose levels in CD-1 mice, with activation of hepatic CAR resulting in a suppression of the effect of PBO on hepatic PPARα. A robust MOA for PBO-induced mouse liver tumour formation has been established, this MOA being similar to that previously identified for NaPB and some other rodent liver CAR activators. Based on the lack of effect of PBO on RDS in human hepatocytes, it is considered that the MOA for PBO-induced mouse liver tumour formation is qualitatively not plausible for humans.
Collapse
|
5
|
Cavallin JE, Jensen KM, Kahl MD, Villeneuve DL, Lee KE, Schroeder AL, Mayasich J, Eid EP, Nelson KR, Milsk RY, Blackwell BR, Berninger JP, LaLone CA, Blanksma C, Jicha T, Elonen C, Johnson R, Ankley GT. Pathway-based approaches for assessment of real-time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:702-716. [PMID: 26332155 DOI: 10.1002/etc.3228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/03/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, which can affect the hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined reproductive effects in fathead minnows exposed for 21 d to a historically estrogenic WWTP effluent. Fathead minnow breeding pairs were held in control water or 1 of 3 effluent concentrations (5%, 20%, and 100%) in a novel onsite, flow-through system providing real-time exposure. The authors examined molecular and biochemical endpoints representing key events along adverse outcome pathways linking estrogen receptor activation and other molecular initiating events to reproductive impairment. In addition, the authors used chemical analysis of the effluent to construct a chemical-gene interaction network to aid in targeted gene expression analyses and identifying potentially impacted biological pathways. Cumulative fecundity was significantly reduced in fish exposed to 100% effluent but increased in those exposed to 20% effluent, the approximate dilution factor in the receiving waters. Plasma vitellogenin concentrations in males increased in a dose-dependent manner with effluent concentration; however, male fertility was not impacted. Although in vitro analyses, analytical chemistry, and biomarker responses confirmed the effluent was estrogenic, estrogen receptor agonists were unlikely the primary driver of impaired reproduction. The results provide insights into the significance of pathway-based effects with regard to predicting adverse reproductive outcomes.
Collapse
Affiliation(s)
- Jenna E Cavallin
- ORISE Research Participation Program, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
- Integrated Biosciences Graduate Program, University of Minnesota-Duluth, Duluth, Minnesota, USA
| | - Kathleen M Jensen
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Michael D Kahl
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Daniel L Villeneuve
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Kathy E Lee
- Toxic Substances Hydrology Program, US Geological Survey, Grand Rapids, Minnesota, USA
| | - Anthony L Schroeder
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, University of Minnesota-Water Resources Center, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Joe Mayasich
- Western Lake Superior Sanitary District, Duluth, Minnesota, USA
| | - Evan P Eid
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Krysta R Nelson
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Rebecca Y Milsk
- ORISE Research Participation Program, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Brett R Blackwell
- ORISE Research Participation Program, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Jason P Berninger
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Carlie A LaLone
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Chad Blanksma
- Badger Technical Services, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Terri Jicha
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Colleen Elonen
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Rodney Johnson
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Gerald T Ankley
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| |
Collapse
|
6
|
Nemoto K, Ikeda A, Tanaka T, Inoue K, Yoshida M, Nishikawa A, Gamou T, Habano W, Ozawa S, Degawa M. Change in the gene expression of the N-methyl-D-aspartate receptor 2C subunit by dietary β-naphthoflavone, indole-3-carbinol, or acetaminophen in the rat liver. J Toxicol Sci 2013; 38:611-7. [PMID: 23824016 DOI: 10.2131/jts.38.611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We have previously demonstrated super-induced expression of the Grin2c gene encoding the N-methyl-D-aspartate receptor 2C subunit during the process of liver enlargement induced by phenobarbital, clofibrate, piperonyl butoxide, or lead nitrate. In the present study, hepatic Grin2c gene expression levels were assessed by real-time RT-PCR in male F344 rats fed for 3 days, 4 weeks, and 13 weeks a diet containing either β-naphthoflavone (BNF) (5,000 ppm), indole-3-carbinol (I3C) (2,000 ppm), or acetaminophen (AA) (12,500 ppm until the first 14 days; 10,000 ppm from 15 days on), each of which is capable of inducing hepatocellular hypertrophy. Especially, either the 4-week or the 13-week treatment with each chemical, except for BNF, resulted in a drastic increase in the expression level of the Grin2c gene. DNA microarray analysis using RNAs of 13-week-treated rats showed that in the I3C- and AA-treated rats, the fold-increase rates of the Grin2c gene ranked second and first, respectively, among the genes analyzed. Histopathological analyses indicated that the slight hepatocellular hypertrophy in the periportal area and the hepatocellular necrosis in a portion of the centrilobular area developed in the BNF-treated and AA-treated rats, respectively. In addition, relative liver weight was significantly higher in the rats treated with BNF and I3C than in the control rats. The present findings suggest the possibility that the induction of Grin2c gene expression is not necessarily dependent on only the development of liver enlargement, although the significance of this induction remains unclear.
Collapse
Affiliation(s)
- Kiyomitsu Nemoto
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Honma M, Kozawa M, Suzuki H. Methods for the quantitative evaluation and prediction of CYP enzyme induction using human in vitro systems. Expert Opin Drug Discov 2012; 5:491-511. [PMID: 22823132 DOI: 10.1517/17460441003762717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD For successful drug development, it is important to investigate the potency of candidate drugs causing drug-drug interactions (DDI) during the early stages of development. The most common mechanisms of DDIs are the inhibition and induction of CYP enzymes. Therefore, it is important to develop co.mpounds with lower potencies for CYP enzyme induction. AREAS COVERED IN THIS REVIEW The aim of the present paper is to present an overview of the current knowledge of CYP induction mechanisms, particularly focusing on the transcriptional gene activation mediated by pregnane X receptor, aryl hydrocarbon receptor and constitutive androstane receptor. The adoptable options of in vitro assay methods for evaluating CYP induction are also summarized. Finally, we introduce a method for the quantitative prediction of CYP3A4 induction considering the turnover of CYP3A4 mRNA and protein in hepatocytes based on the data obtained from a reporter gene assay. WHAT THE READER WILL GAIN In order to predict in vivo CYP enzyme induction quantitatively based on in vitro information, an understanding of the physiological induction mechanisms and the features of each in vitro assay system is essential. We also present the estimation method of in vivo CYP induction potency of each compound based on the in vitro data which are routinely obtained but not necessarily utilized maximally in pharmaceutical companies. TAKE HOME MESSAGE It is desirable to select compounds with lower potencies for the inductive effect. For this purpose, an accurate prioritization procedure to evaluate the induction potency of each compound in a quantitative manner considering the pharmacologically effective concentration of each compound is necessary.
Collapse
Affiliation(s)
- Masashi Honma
- The University of Tokyo Hospital, Faculty of Medicine, Department of Pharmacy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan +81 3 3815 5411 ; +81 3 3816 6159 ;
| | | | | |
Collapse
|
8
|
Fujimoto N, Inoue K, Yoshida M, Nishikawa A, Ozawa S, Gamou T, Nemoto K, Degawa M. Estrogen and androgen receptor status in hepatocellular hypertrophy induced by phenobarbital, clofibrate, and piperonyl butoxide in F344 rats. J Toxicol Sci 2012; 37:281-6. [PMID: 22467018 DOI: 10.2131/jts.37.281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The present study examined hepatic estrogen receptor (ER) and androgen receptor (AR) levels as well as estrogen-signaling status in a model of rat hepatic hypertrophy induced by phenobarbital (PB), chlofibrate (CF), or piperonyl butoxide (PBO). Male F344 rats were fed with PB at 2,500 ppm, CF at 2,500 ppm, and PBO at 20,000 ppm for 3 days, 4 weeks, and 13 weeks. CF and PBO induced diffuse hypertrophy, while centrilobular hypertrophy was observed with PB administration. The levels of mRNA for ERα, AR and leukemia inhibitory factor receptor (LIFR) which was found to be estrogen responsive in the present study, were determined by quantitative RT-PCR. In the CF and PBO groups, ERα mRNA expression was reduced, and consequently, the expression of a responsive gene, LIFR, was also decreased, while PB had no effect on ER mRNA levels. AR mRNA expression decreased in all the treated groups, but reduction was persistent only in PB group. Recently, LIFR was identified as a tumor suppressor gene in human HCC. Thus, LIFR may be one of the key mediators of hepatic carcinogenesis induced by CF and PBO, but PB appears to act via different mechanisms.
Collapse
Affiliation(s)
- Nariaki Fujimoto
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nemoto K, Tanaka T, Ikeda A, Ito S, Mizukami M, Hikida T, Gamou T, Habano W, Ozawa S, Inoue K, Yoshida M, Nishikawa A, Degawa M. Super-induced gene expression of the N-methyl-D-aspartate receptor 2C subunit in chemical-induced hypertrophic liver in rats. J Toxicol Sci 2011; 36:507-14. [DOI: 10.2131/jts.36.507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Kiyomitsu Nemoto
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Takahiro Tanaka
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Ayaka Ikeda
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Sei Ito
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Masanori Mizukami
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tokihiro Hikida
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Toshie Gamou
- Department of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University
| | - Wataru Habano
- Department of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University
| | - Shogo Ozawa
- Department of Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University
| | - Kaoru Inoue
- Division of Pathology, National Institute of Health Sciences
| | - Midori Yoshida
- Division of Pathology, National Institute of Health Sciences
| | | | - Masakuni Degawa
- Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
- Global Center of Excellence (COE) Program, University of Shizuoka
| |
Collapse
|
10
|
Graham MJ, Lake BG. Induction of drug metabolism: Species differences and toxicological relevance. Toxicology 2008; 254:184-91. [PMID: 18824059 DOI: 10.1016/j.tox.2008.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
|
11
|
Köhler CU, Roos PH. Focus on the intermediate state: immature mRNA of cytochromes P450--methods and insights. Anal Bioanal Chem 2008; 392:1109-22. [PMID: 18762920 DOI: 10.1007/s00216-008-2352-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/11/2008] [Accepted: 08/14/2008] [Indexed: 01/28/2023]
Abstract
The scattered and limited data on hnRNAs (pre-mRNAs) of cytochromes P450 (CYP) are compiled and discussed for the first time. The methods for determination and quantification of hnRNAs are compared. In most cases, CYP hnRNA levels were determined as a parameter of transcriptional activity. It is known, however, that some CYPs, in particular CYP2E1, are in addition specifically and extensively regulated by post-transcriptional processes. Obviously, these processes also influence the processing of CYP hnRNAs so that their levels cannot be considered a mere result of transcription. The underlying mechanisms of post-transcriptional CYP hnRNA and mRNA regulation are not well understood. It is our aim therefore to bring together available data on CYP hnRNA and to discuss them in the light of recent advances in knowledge concerning pre-mRNA processing and interactions between RNA and low molecular weight interfering RNAs. By doing this, we hope to drive research in a direction which appears promising in providing some long-awaited answers with respect to mechanisms of post-transcriptional CYP regulation.
Collapse
Affiliation(s)
- Christina U Köhler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| | | |
Collapse
|
12
|
Gammon DW. Public safety aspects of pyrethroid insecticides used in West Nile virus-carrying mosquito control. PEST MANAGEMENT SCIENCE 2007; 63:625-7. [PMID: 17546629 DOI: 10.1002/ps.1395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
West Nile virus is becoming increasingly prevalent in the USA, causing fever, encephalitis, meningitis and many fatalities. Spread of the disease is reduced by controlling the mosquito vectors by a variety of means, including the use of pyrethroid insecticides, which are currently under scrutiny for potential carcinogenic effects in humans. Pyrethrins and resmethrin, a pyrethroid, have been shown to cause tumours in rat and mouse models respectively. However, the tumours appear to be caused by liver enzyme induction and hypertrophy rather than genotoxicity, and the results are therefore unlikely to be applicable to humans. Nonetheless, for resmethrin, the US Environmental Protection Agency (EPA) has concluded that there is a likely risk of carcinogenicity in humans, requiring the manufacturers to provide more detailed data to prove that it can be used safely in vector control. Reproductive toxicity of resmethrin in the rat is also discussed.
Collapse
Affiliation(s)
- Derek W Gammon
- Department of Pesticide Regulation, California EPA, Sacramento, CA, USA.
| |
Collapse
|
13
|
Molecular pathological analysis for determining the possible mechanism of piperonyl butoxide-induced hepatocarcinogenesis in mice. Toxicology 2006; 228:178-87. [PMID: 17014948 DOI: 10.1016/j.tox.2006.08.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 08/21/2006] [Accepted: 08/22/2006] [Indexed: 11/29/2022]
Abstract
Piperonyl butoxide (PBO), alpha-[2-(2-butoxyethoxy)ethoxy]-4,5-methylene-dioxy-2-propyltoluene, is widely used as a synergist for pyrethrins. In order to clarify the possible mechanism of non-genotoxic hepatocarcinogenesis induced by PBO, molecular pathological analyses consisting of low-density microarray analysis and real-time reverse transcriptase (RT)-PCR were performed in male ICR mice fed a basal powdered diet containing 6000 or 0 ppm PBO for 1, 4, or 8 weeks. The animals were sacrificed at weeks 1, 4, and 8, and the livers were histopathologically examined and analyzed for gene expression using the microarray at weeks 1 and 4 followed by real-time RT-PCR at each time point. Reactive oxygen species (ROS) products were also measured using liver microsomes. At each time point, the hepatocytes of PBO-treated mice showed centrilobular hypertrophy and increased lipofuscin deposition in Schmorl staining. The ROS products were significantly increased in the liver microsomes of PBO-treated mice. In the microarray analysis, the expression of oxidative and metabolic stress-related genes--cytochrome P450 (Cyp) 1A1, Cyp2A5 (week 1 only), Cyp2B9, Cyp2B10, and NADPH-cytochrome P450 oxidoreductase (Por) was over-expressed in mice given PBO at weeks 1 and 4. Fluctuations of these genes were confirmed by real-time RT-PCR in PBO-treated mice at each time point. In additional real-time RT-PCR, the expression of Cyclin D1 gene, key regulator of cell-cycle progression, and Xrcc5 gene, DNA damage repair-related gene, was significantly increased at each time point and at week 8, respectively. These results suggest the possibility that PBO has the potential to generate ROS via the metabolic pathway and to induce oxidative stress, including oxidative DNA damage, resulting in the induction of hepatocellular tumors in mice.
Collapse
|
14
|
Ghanayem BI, Wang H, Sumner S. Using cytochrome P-450 gene knock-out mice to study chemical metabolism, toxicity, and carcinogenicity. Toxicol Pathol 2000; 28:839-50. [PMID: 11127301 DOI: 10.1177/019262330002800613] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytochrome P-450 (CYP) enzymes are heme-containing proteins that carry out oxidative metabolism of a wide range of structurally diverse exogenous chemicals and therapeutic agents as well as endogenous compounds. For some of these xenobiotics, oxidative metabolism results in the formation of toxic, mutagenic, or carcinogenic metabolites. In the past, the role of CYP enzymes in metabolism and chemical-induced toxicity was studied indirectly through use of specific antibodies or inducers and inhibitors of these enzymes. Progress in molecular biology and the ability to bioengineer animal models that do not express CYP1A2, CYP1A1, CYP1B1, CYP2E1, or both CYP1A2 and CYP2E1 isozymes has allowed for direct investigations of the in vivo role of these enzymes in the metabolism, toxicity, and carcinogenicity of xenobiotics. This article reviews research conducted to date that utilizes these genetically bioengineered mice in metabolism, toxicity, or carcinogenicity studies of chemicals. Some studies showed a positive correlation between in vivo results and in vitro predictions for the role of a specific CYP in chemical-induced effects, whereas other studies did not support in vitro predictions. Work reviewed herein demonstrates the importance of using animal models for investigating the role of specific CYP enzymes in metabolism and chemical-induced toxicity or carcinogenicity rather than relying solely on in vitro techniques. Eventually, studies of this nature will facilitate a more accurate assessment of human risks with regard to chemicals by helping us to understand the relationships between chemical metabolism, carcinogenicity, and polymorphisms in CYP enzymes.
Collapse
Affiliation(s)
- B I Ghanayem
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
15
|
Takahashi O, Oishi S, Fujitani T, Tanaka T, Yoneyama M. Chronic toxicity studies of piperonyl butoxide in CD-1 mice: induction of hepatocellular carcinoma. Toxicology 1997; 124:95-103. [PMID: 9457999 DOI: 10.1016/s0300-483x(97)00136-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Male and female CD-1 mice (51-104 mice/group) were administered piperonyl butoxide (alpha-[2-(2-butoxyethoxy)ethoxy-4,5-methylenedioxy-2-propyltol uene) in the diet at levels of 0 (control), 0.6 and 1.2% for 52 weeks (1 year). Hepatocellular carcinomas were induced in treated groups in a dose-dependent manner. The incidences of hepatocellular carcinoma were 11.3 and 52.0% in male mice given 0.6 and 1.2% piperonyl butoxide, and 41.2% in female mice given 1.2%. Piperonyl butoxide is thus a hepatocarcinogen to mice as it is known to be to rats.
Collapse
Affiliation(s)
- O Takahashi
- Department of Toxicology, Tokyo Metropolitan Research Laboratory of Public Health, Japan
| | | | | | | | | |
Collapse
|