1
|
Dekant R, Bertermann R, Serban J, Sharma S, Shinohara M, Morizawa Y, Okamoto H, Brock W, Dekant W, Mally A. Species-differences in the in vitro biotransformation of trifluoroethene (HFO-1123). Arch Toxicol 2023; 97:3095-3111. [PMID: 37792044 PMCID: PMC10567879 DOI: 10.1007/s00204-023-03603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023]
Abstract
1,1,2-Trifluoroethene (HFO-1123) is anticipated for use as a refrigerant with low global warming potential. Inhalation studies on HFO-1123 in rats indicated a low potential for toxicity (NOAELs ≥ 20,000 ppm). In contrast, single inhalation exposure of Goettingen® minipigs (≥ 500 ppm) and New Zealand white rabbits (≥ 1250 ppm) resulted in severe toxicity. It has been suggested that these pronounced species-differences in toxicity may be attributable to species-differences in biotransformation of HFO-1123 via the mercapturic acid pathway. Therefore, the overall objective of this study was to evaluate species-differences in glutathione (GSH) dependent in vitro metabolism of HFO-1123 in susceptible versus less susceptible species and humans as a basis for human risk assessment. Biotransformation of HFO-1123 to S-(1,1,2-trifluoroethyl)-L-glutathione (1123-GSH) and subsequent cysteine S-conjugate β-lyase-mediated cleavage of the corresponding cysteine conjugate (1123-CYS) was monitored in hepatic and renal subcellular fractions of mice, rats, minipigs, rabbits, and humans. While 1123-GSH formation occurred at higher rates in rat and rabbit liver S9 compared to minipig and human S9, increased β-lyase cleavage of 1123-CYS was observed in minipig kidney cytosol as compared to cytosolic fractions of other species. Increased β-lyase activity in minipig cytosol was accompanied by time-dependent formation of monofluoroacetic acid (MFA), a highly toxic compound that interferes with cellular energy production via inhibition of aconitase. Consistent with the significantly lower β-lyase activity in human cytosols, the intensity of the MFA signal in human cytosols was only a fraction of the signal obtained in minipig subcellular fractions. Even though the inconsistencies between GSH and β-lyase-dependent metabolism do not allow to draw a firm conclusion on the overall contribution of the mercapturic acid pathway to HFO-1123 biotransformation and toxicity in vivo, the β-lyase data suggest that humans may be less susceptible to HFO-1123 toxicity compared to minipigs.
Collapse
Affiliation(s)
- R Dekant
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - R Bertermann
- Department of Inorganic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - J Serban
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - S Sharma
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - M Shinohara
- Chemicals Company, AGC Inc, CSR Office, 1-5-1, Marunouchi, Chiyoda-ku, Tokyo, 100-8405, Japan
| | - Y Morizawa
- Chemicals Company, AGC Inc, CSR Office, 1-5-1, Marunouchi, Chiyoda-ku, Tokyo, 100-8405, Japan
| | - H Okamoto
- Chemicals Company, AGC Inc, CSR Office, 1-5-1, Marunouchi, Chiyoda-ku, Tokyo, 100-8405, Japan
| | - W Brock
- Brook Scientific Consulting LLC, Hilton Head Island, SC, USA
| | - W Dekant
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany
| | - A Mally
- Department of Toxicology, University of Würzburg, Versbacher Strasse 9, 97078, Würzburg, Germany.
| |
Collapse
|
2
|
Lash LH. Invited Perspective: Improved Risk Characterization for Trichloroethylene and Perchloroethylene Based on New Analyses of Glutathione Conjugation Rates. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:111307. [PMID: 36445295 PMCID: PMC9707492 DOI: 10.1289/ehp12295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Lawrence H. Lash
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
3
|
Valdiviezo A, Brown GE, Michell AR, Trinconi CM, Bodke VV, Khetani SR, Luo YS, Chiu WA, Rusyn I. Reanalysis of Trichloroethylene and Tetrachloroethylene Metabolism to Glutathione Conjugates Using Human, Rat, and Mouse Liver in Vitro Models to Improve Precision in Risk Characterization. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:117009. [PMID: 36445294 PMCID: PMC9707501 DOI: 10.1289/ehp12006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/16/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Both trichloroethylene (TCE) and tetrachloroethylene (PCE) are high-priority chemicals subject to numerous human health risk evaluations by a range of agencies. Metabolism of TCE and PCE determines their ultimate toxicity; important uncertainties exist in quantitative characterization of metabolism to genotoxic moieties through glutathione (GSH) conjugation and species differences therein. OBJECTIVES This study aimed to address these uncertainties using novel in vitro liver models, interspecies comparison, and a sensitive assay for quantification of GSH conjugates of TCE and PCE, S-(1,2-dichlorovinyl)glutathione (DCVG) and S-(1,2,2-trichlorovinyl) glutathione (TCVG), respectively. METHODS Liver in vitro models used herein were suspension, 2-D culture, and micropatterned coculture (MPCC) with primary human, rat, and mouse hepatocytes, as well as human induced pluripotent stem cell (iPSC)-derived hepatocytes (iHep). RESULTS We found that, although efficiency of metabolism varied among models, consistent with known differences in their metabolic capacity, formation rates of DCVG and TCVG generally followed the patterns human ≥ rat ≥ mouse , and primary hepatocytes > iHep . Data derived from MPCC were most consistent with estimates from physiologically based pharmacokinetic models calibrated to in vivo data. DISCUSSION For TCE, the new data provided additional empirical support for inclusion of GSH conjugation-mediated kidney effects as critical for the derivation of noncancer toxicity values. For PCE, the data reduced previous uncertainties regarding the extent of TCVG formation in humans; this information was used to update several candidate kidney-specific noncancer toxicity values. Overall, MPCC-derived data provided physiologically relevant estimates of GSH-mediated metabolism of TCE and PCE to reduce uncertainties in interspecies extrapolation that constrained previous risk evaluations, thereby increasing the precision of risk characterizations of these high-priority toxicants. https://doi.org/10.1289/EHP12006.
Collapse
Affiliation(s)
- Alan Valdiviezo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Grace E. Brown
- Department of Biomedical Engineering, University of Illinois Chicago, Illinois, USA
| | - Ashlin R. Michell
- Department of Biomedical Engineering, University of Illinois Chicago, Illinois, USA
| | | | - Vedant V. Bodke
- Department of Biomedical Engineering, University of Illinois Chicago, Illinois, USA
| | - Salman R. Khetani
- Department of Biomedical Engineering, University of Illinois Chicago, Illinois, USA
| | - Yu-Syuan Luo
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Weihsueh A. Chiu
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ivan Rusyn
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, Texas, USA
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Dalaijamts C, Cichocki JA, Luo YS, Rusyn I, Chiu WA. Incorporation of the glutathione conjugation pathway in an updated physiologically-based pharmacokinetic model for perchloroethylene in mice. Toxicol Appl Pharmacol 2018; 352:142-152. [PMID: 29857080 PMCID: PMC6051410 DOI: 10.1016/j.taap.2018.05.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Perchloroethylene (perc) induced target organ toxicity has been associated with tissue-specific metabolic pathways. Previous physiologically-based pharmacokinetic (PBPK) modeling of perc accurately predicted oxidative metabolites but suggested the need to better characterize glutathione (GSH) conjugation as well as toxicokinetic uncertainty and variability. OBJECTIVES We updated the previously published "harmonized" perc PBPK model in mice to better characterize GSH conjugation metabolism as well as the uncertainty and variability of perc toxicokinetics. METHODS The updated PBPK model includes expanded models for perc and its oxidative metabolite trichloroacetic acid (TCA), and physiologically-based sub-models for conjugative metabolites. Previously compiled mouse kinetic data in B6C3F1 and Swiss-Webster mice were augmented to include data from a recent study in male C57BL/6J mice that measured perc and metabolites in serum and multiple tissues. Hierarchical Bayesian population analysis using Markov chain Monte Carlo was conducted to characterize uncertainty and inter-strain variability in perc metabolism. RESULTS The updated model fit the data as well or better than the previously published "harmonized" PBPK model. Tissue dosimetry for both oxidative and conjugative metabolites was successfully predicted across the three strains of mice, with estimated residuals errors of 2-fold for majority of data. Inter-strain variability across three strains was evident for oxidative metabolism; GSH conjugation data were only available for one strain. CONCLUSIONS This updated PBPK model fills a critical data gap in quantitative risk assessment by predicting the internal dosimetry of perc and its oxidative and GSH conjugation metabolites and lays the groundwork for future studies to better characterize toxicokinetic variability.
Collapse
Affiliation(s)
- Chimeddulam Dalaijamts
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Joseph A Cichocki
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
Luo YS, Cichocki JA, McDonald TJ, Rusyn I. Simultaneous detection of the tetrachloroethylene metabolites S-(1,2,2-trichlorovinyl) glutathione, S-(1,2,2-trichlorovinyl)-L-cysteine, and N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine in multiple mouse tissues via ultra-high performance liquid chromatography electrospray ionization tandem mass spectrometry. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:513-524. [PMID: 28696834 PMCID: PMC5749336 DOI: 10.1080/15287394.2017.1330585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Tetrachloroethylene (perchloroethylene; PERC) is a high-production volume chemical and ubiquitous environmental contaminant that is hazardous to human health. Toxicity attributed to PERC is mediated through oxidative and glutathione (GSH) conjugation metabolites. The conjugation of PERC by glutathione-s-transferase to generate S-(1,2,2-trichlorovinyl) glutathione (TCVG), which is subsequently metabolized to form S-(1,2,2-trichlorovinyl)-L-cysteine (TCVC) is of special importance to human health. Specifically, TCVC may be metabolized to N-acetyl-S-(1,2,2-trichlorovinyl)-L-cysteine (NAcTCVC) which is excreted through urine, or to electrophilic metabolites that are nephrotoxic and mutagenic. Little is known regarding toxicokinetics of TCVG, TCVC, and NAcTCVC as analytical methods for simultaneous determination of these metabolites in tissues have not yet been reported. Hence, an ultra-high-performance liquid chromatography electrospray ionization tandem mass spectrometry-based method was developed for analysis of TCVG, TCVC, and NAcTCVC in liver, kidneys, serum, and urine. The method is rapid, sensitive, robust, and selective for detection all three analytes in every tissue examined, with limits of detection (LOD) ranging from 1.8 to 68.2 femtomoles on column, depending on the analyte and tissue matrix. This method was applied to quantify levels of TCVG, TCVC, and NAcTCVC in tissues from mice treated with PERC (10 to 1000 mg/kg, orally) with limits of quantitation (LOQ) of 1-2.5 pmol/g in liver, 1-10 pmol/g in kidney, 1-2.5 pmol/ml in serum, and 2.5-5 pmol/ml in urine. This method is useful for further characterization of the GSH conjugative pathway of PERC in vivo and improved understanding of PERC toxicity.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Joseph A. Cichocki
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Thomas J. McDonald
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
6
|
Development and evaluation of a harmonized physiologically based pharmacokinetic (PBPK) model for perchloroethylene toxicokinetics in mice, rats, and humans. Toxicol Appl Pharmacol 2011; 253:203-34. [PMID: 21466818 DOI: 10.1016/j.taap.2011.03.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/09/2011] [Accepted: 03/27/2011] [Indexed: 02/06/2023]
Abstract
This article reports on the development of a "harmonized" PBPK model for the toxicokinetics of perchloroethylene (tetrachloroethylene or perc) in mice, rats, and humans that includes both oxidation and glutathione (GSH) conjugation of perc, the internal kinetics of the oxidative metabolite trichloroacetic acid (TCA), and the urinary excretion kinetics of the GSH conjugation metabolites N-Acetylated trichlorovinyl cysteine and dichloroacetic acid. The model utilizes a wider range of in vitro and in vivo data than any previous analysis alone, with in vitro data used for initial, or "baseline," parameter estimates, and in vivo datasets separated into those used for "calibration" and those used for "evaluation." Parameter calibration utilizes a limited Bayesian analysis involving flat priors and making inferences only using posterior modes obtained via Markov chain Monte Carlo (MCMC). As expected, the major route of elimination of absorbed perc is predicted to be exhalation as parent compound, with metabolism accounting for less than 20% of intake except in the case of mice exposed orally, in which metabolism is predicted to be slightly over 50% at lower exposures. In all three species, the concentration of perc in blood, the extent of perc oxidation, and the amount of TCA production is well-estimated, with residual uncertainties of ~2-fold. However, the resulting range of estimates for the amount of GSH conjugation is quite wide in humans (~3000-fold) and mice (~60-fold). While even high-end estimates of GSH conjugation in mice are lower than estimates of oxidation, in humans the estimated rates range from much lower to much higher than rates for perc oxidation. It is unclear to what extent this range reflects uncertainty, variability, or a combination. Importantly, by separating total perc metabolism into separate oxidative and conjugative pathways, an approach also recommended in a recent National Research Council review, this analysis reconciles the disparity between those previously published PBPK models that concluded low perc metabolism in humans and those that predicted high perc metabolism in humans. In essence, both conclusions are consistent with the data if augmented with some additional qualifications: in humans, oxidative metabolism is low, while GSH conjugation metabolism may be high or low, with uncertainty and/or interindividual variability spanning three orders of magnitude. More direct data on the internal kinetics of perc GSH conjugation, such as trichlorovinyl glutathione or tricholorvinyl cysteine in blood and/or tissues, would be needed to better characterize the uncertainty and variability in GSH conjugation in humans.
Collapse
|
7
|
Clewell HJ, Gentry PR, Kester JE, Andersen ME. Evaluation of Physiologically Based Pharmacokinetic Models in Risk Assessment: An Example with Perchloroethylene. Crit Rev Toxicol 2008; 35:413-33. [PMID: 16097137 DOI: 10.1080/10408440590931994] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
One of the more problematic aspects of the application of physiologically based pharmacokinetic (PBPK) models in risk assessment is the question of whether the model has been adequately validated to provide confidence in the dose metrics calculated with it. A number of PBPK models have been developed for perchloroethylene (PCE), differing primarily in the parameters estimated for metabolism. All of the models provide reasonably accurate simulations of selected kinetic data for PCE in mice and humans and could thus be considered to be "validated" to some extent. However, quantitative estimates of PCE cancer risk are critically dependent on the prediction of the rate of metabolism at low environmental exposures. Recent data on the urinary excretion of trichloroacetic acid (TCA), the major metabolite of PCE, for human subjects exposed to lower concentrations than those used in previous studies, make it possible to compare the high- to low-dose extrapolation capability of the various published human models. The model of Gearhart et al., which is the only model to include a description of TCA kinetics, provided the closest predictions of the urinary excretion observed in these low-concentration exposures. Other models overestimated metabolite excretion in this study by 5- to 15-fold. A systematic discrepancy between model predictions and experimental data for the time course of the urinary excretion of TCA suggested a contribution from TCA formed by metabolism of PCE in the kidney and excreted directly into the urine. A modification of the model of Gearhart et al. to include metabolism of PCE to TCA in the kidney at 10% of the capacity of the liver, with direct excretion of the TCA formed in the kidney into the urine, markedly improved agreement with the experimental time-course data, without altering predictions of liver metabolism. This case study with PCE demonstrates the danger of relying on parent chemical kinetic data to validate a model that will be used for the prediction of metabolism.
Collapse
|
8
|
Jolivette LJ, Anders MW. Structure-activity relationship for the biotransformation of haloalkenes by rat liver microsomal glutathione transferase 1. Chem Res Toxicol 2002; 15:1036-41. [PMID: 12184787 DOI: 10.1021/tx0255222] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many haloalkenes are nephrotoxic in rodents, and experimental evidence supports a glutathione-dependent bioactivation pathway that leads to nephrotoxicity or nephrocarcinogenicity, or both. The reaction of glutathione with haloalkenes is catalyzed by cytosolic glutathione transferases (cGST) and microsomal glutathione transferase 1 (MGST1). The aim of this study was to develop a computational approach to predict the competency of cGST and MGST1 to catalyze the reaction of glutathione with a range of haloalkenes. The hypothesis tested was that the semiempirically computed energy of the lowest unoccupied molecular orbital (E(LUMO)) of a haloalkene may be used to predict the competency of cGST and MGST1 to catalyze its reaction with glutathione. The MGST1- and cGST-catalyzed reaction of glutathione with nine haloalkenes with E(LUMO) values ranging from -1.14 to 0.38 eV was determined experimentally. The data indicated that the E(LUMO) values for haloalkenes were inversely related to the specific activity of the MGST1-catalyzed reaction but not the cGST-catalyzed reaction. These data also demonstrated that MGST1 catalyzed the reaction of glutathione with haloalkenes with E(LUMO) values equal to or more negative than -0.73 eV and that cGST catalyzed the reaction of glutathione with haloalkenes with E(LUMO) values more negative than -0.06 eV.
Collapse
Affiliation(s)
- Larry J Jolivette
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA
| | | |
Collapse
|
9
|
Abstract
Glutathione conjugation has been identified as an important detoxication reaction. However, several glutathione-dependent bioactivation reactions have been identified. Current knowledge on the mechanisms and the possible biological importance of these reactions is discussed in this article. Vicinal dihaloalkanes are transformed by glutathione S-transferase-catalyzed reactions to mutagenic and nephrotoxic S-(2-haloethyl) glutathione S-conjugates. Electrophilic episulphonium ions are the ultimate reactive intermediates formed and interact with nucleic acids. Several polychlorinated alkenes are bioactivated in a complex, glutathione-dependent pathway. The first step is hepatic glutathione S-conjugate formation followed by cleavage to the corresponding cysteine S-conjugates, and, after translocation to the kidney, metabolism by renal cystein conjugate beta-lyase. Beta-Lyase-dependent metabolism of halovinyl cysteine S-conjugates yields electrophilic thioketenes, whose covalent binding to cellular macromolecules is likely to be responsible for the observed nephrotoxicity of the parent compounds. Finally, hepatic glutathione conjugate formation with hydroquinones and aminophenols yields conjugates that are directed to gamma-glutamyltransferase-rich tissues, such as the kidney, where they cause alkylation or redox cycling reactions, or both, that cause organ-selective damage.
Collapse
Affiliation(s)
- W Dekant
- Department of Toxicology, University of Würzburg, Versbacher Street 9, 97078 Würzburg, Germany.
| |
Collapse
|