1
|
Lockridge O, Schopfer LM. Review: Organophosphorus toxicants, in addition to inhibiting acetylcholinesterase activity, make covalent adducts on multiple proteins and promote protein crosslinking into high molecular weight aggregates. Chem Biol Interact 2023; 376:110460. [PMID: 36963650 PMCID: PMC10100150 DOI: 10.1016/j.cbi.2023.110460] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
The acute effects of exposure to organophosphorus toxicants are explained by inhibition of acetylcholinesterase activity. However, the mechanisms that explain long term illness associated with organophosphorus exposure are still under investigation. We find that organophosphorus nerve agents and organophosphorus pesticides make covalent adducts not only on the serine from acetylcholinesterase, but also on tyrosine, lysine, glutamate, serine and threonine from a variety of proteins. Almost any protein can be modified by a high dose of organophosphorus toxicant. A low dose of 10 μM chlorpyrifos oxon added to the serum-free culture medium of human neuroblastoma SH-SY5Y cells resulted in tyrosine adducts on 48 proteins immunopurified from the cell lysate. We identified the adducted proteins by mass spectrometry after immunopurifying modified proteins with a rabbit anti-diethoxyphospho-tyrosine monoclonal antibody which biased this study for tyrosine adducts. In cultured cells, the primary organophosphate targets are abundant proteins. Organophosphate-modified proteins may disrupt physiological processes. In separate experiments we identified organophosphate adducts on lysine. Organophosphylation activates the lysine for protein crosslinking. The activated lysine reacts with glutamic acid or aspartic acid protein side chains to form an isopeptide bond between proteins, resulting in high molecular weight crosslinked proteins. Crosslinked proteins form insoluble aggregates that may lead to neurogenerative disease.
Collapse
Affiliation(s)
- Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
2
|
Sibomana I, Rohan JG, Mattie DR. 21-Day dermal exposure to aircraft engine oils: effects on esterase activities in brain and liver tissues, blood, plasma, and clinical chemistry parameters for Sprague Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:357-388. [PMID: 33380269 DOI: 10.1080/15287394.2020.1867680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This dermal study tested the potential toxicity of grade 3 (G3) and 4 (G4) organophosphate-containing aircraft engine oils in both new (G3-N, G4-N) and used states (G3-U, G4-U) to alter esterase activities in blood, brain and liver tissues, clinical chemistry parameters, and electrophysiology of hippocampal neurons. A 300 µl volume of undiluted oil was applied in Hill Top Chamber Systems®, then attached to fur-free test sites on backs of male and female Sprague Dawley rats for 6 hr/day, 5 days/week for 21 days. Recovery rats received similar treatments and kept for 14 days post-exposure to screen for reversibility, persistence, or delayed occurrence of toxicity. In brain, both versions of G3 and G4 significantly decreased (32-41%) female acetylcholinesterase (AChE) activity while in males only G3-N and G4-N reduced (33%) AChE activity. Oils did not markedly affect AChE in liver, regardless of gender. In whole blood, G3-U decreased female AChE (29%) which persisted during recovery (32%). G4-N significantly lowered (29%) butyrylcholinesterase (BChE) in male plasma, but this effect was resolved during recovery. For clinical chemistry indices, only globulin levels in female plasma significantly increased following G3-N or G4-N exposure. Preliminary electrophysiology data suggested that effects of both versions of G3 and G4 on hippocampal function may be gender dependent. Aircraft maintenance workers may be at risk if precautions are not taken to minimize long-term aircraft oil exposure.
Collapse
Affiliation(s)
- Isaie Sibomana
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright-Patterson Air Force Base, OH, USA
- Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH, USA
| | - Joyce G Rohan
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton (NAMRU-D), Wright-Patterson Air Force Base, OH, USA
| | - David R Mattie
- Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH, USA
| |
Collapse
|
3
|
Singh N, Golime R, Acharya J, Palit M. Quantitative Proteomic Changes after Organophosphorous Nerve Agent Exposure in the Rat Hippocampus. ACS Chem Neurosci 2020; 11:2638-2648. [PMID: 32702963 DOI: 10.1021/acschemneuro.0c00311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The widespread use of organophosphorous (OP) compounds and recent misuse of nerve agents on civilians requires an urgent need to decode their complex biological response to develop effective drugs. Proteomic profiling of biological target tissues helps in identification of molecular toxicity mechanisms. Quantitative proteomics profiling of the rat hippocampus was studied in this study. Liquid chromatography mass spectrometry (LC-MS) analysis of tandem mass tag (TMT)-labeled lysates identified 6356 proteins. A total of 69, 61, and 77 proteins were upregulated, and 66, 35, and 70 proteins were downregulated at 30 min, 1 day, and 7 days after soman exposure. This is the first report on the soman-induced proteomic changes to the best of our knowledge. Bioinformatics analysis revealed soman-induced broad-range proteomic changes in key pathways related to glutamate, acetylcholine, GABA, 5-hydroxytryptamine, and adrenergic receptors, G-protein signaling, chemokine and cytokine-mediated inflammation, cytoskeleton, neurodegeneration (Parkinson's and Alzheimer's), Wnt signaling, synaptic vesicle trafficking, MAP kinases, proteosome degradation, metabolism, and cell death. Selected protein changes were verified by immunoblotting, and neuropathological findings indicated significant brain damage. Results demonstrate that persistent proteomic changes in the brain can cause multiple neurological effects through cholinergic and non-cholinergic pathways, and these mechanistic insights are useful in the development of novel drugs.
Collapse
Affiliation(s)
- Naveen Singh
- Biochemistry-Vertox Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, M.P. 474002, India
| | - RamaRao Golime
- Biochemistry-Vertox Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, M.P. 474002, India
| | | | - Meehir Palit
- Biochemistry-Vertox Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, M.P. 474002, India
| |
Collapse
|
4
|
Esterases hydrolyze phenyl valerate activity as targets of organophosphorus compounds. Chem Biol Interact 2016; 259:358-367. [DOI: 10.1016/j.cbi.2016.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/30/2016] [Accepted: 04/12/2016] [Indexed: 12/24/2022]
|
5
|
Fu P, Sun W, Zhang Z. Molecular cloning, expression and characterization of acylpeptide hydrolase in the silkworm, Bombyx mori. Gene 2016; 580:8-16. [PMID: 26778207 DOI: 10.1016/j.gene.2015.12.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/13/2015] [Accepted: 12/30/2015] [Indexed: 11/17/2022]
Abstract
Acylpeptide hydrolase (APH) can catalyze the release of the N-terminal amino acid from acetylated peptides. There were many documented examples of this enzyme in various prokaryotic and eukaryotic organisms. However, knowledge about APH in insects still remains unknown. In this study, we cloned and sequenced a putative silkworm Bombyx mori APH (BmAPH) gene. The BmAPH gene encodes a protein of 710 amino acids with a predicted molecular mass of 78.5kDa. The putative BmAPH and mammal APHs share about 36% amino acid sequence identity, yet key catalytic residues are conserved (Ser566, Asp654, and His686). Expression and purification of the recombinant BmAPH in Escherichia coli showed that it has acylpeptide hydrolase activity toward the traditional substrate, Ac-Ala-pNA. Furthermore, organophosphorus (OP) insecticides, chlorpyrifos, phoxim, and malathion, significantly inhibited the activity of the APH both in vitro and in vivo. In addition, BmAPH was expressed in all tested tissues and developmental stages of the silkworm. Finally, immunohistochemistry analysis showed that BmAPH protein was localized in the basement membranes. These results suggested that BmAPH may be involved in enhancing silkworm tolerance to the OP insecticides. In a word, our results provide evidence for understanding of the biological function of APH in insects.
Collapse
Affiliation(s)
- Ping Fu
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Wei Sun
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
Mansour SAK, Gamet-Payrastre L. Ameliorative effect of vitamin E to mouse dams and their pups following exposure of mothers to chlorpyrifos during gestation and lactation periods. Toxicol Ind Health 2014; 32:1179-96. [PMID: 25234640 DOI: 10.1177/0748233714548207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pesticides are omnipresent in environment, water, fruits, and vegetables and are considered as risk factors for human health. Consumers are mainly exposed to pesticides through diet, and the main question to be answered concerns the impact of such exposure on health. In this study, we developed a mouse model to mimic consumer exposure. During gestation and lactation periods, the experimental mouse dams (M) received one of the following treatments: (a) diet-free of pesticides; (b) diet enriched with chlorpyrifos (CPF; 44.0 μg kg(-1)); c) diet + oral vitamin E (vit. E; α-tocopherol; 200 mg/kg/mouse); and (d) diet enriched with CPF (44.0 μg/kg + oral vit. E (200 mg/kg/mouse). At weaning, pups (P) and dams were killed, and organs as well as blood samples were collected. Compared with control results, CPF induced alteration of measured parameters (e.g. organ weight, alkaline phosphatase, urea, malondialdehyde, superoxide dismutase, and cholinesterase) either in mouse dams or in their offspring. Also, CPF induced histological impairment in kidney, liver, and ovary. Administration of vit. E in conjunction with CPF clearly alleviated deviation of these parameters than those of control ones. In conclusion, a dietary exposure of mice during gestation and lactation to low dose of CPF led to significant changes in the mother but also in the weaned animals that have not been directly exposed to this pesticide. These biological and histological modifications could be reversed by an oral supplementation of vit. E.
Collapse
Affiliation(s)
- Sameeh Abdel-Kader Mansour
- Environmental Toxicology Research Unit (ETRU), Pesticide Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
7
|
Efficacy of antidotes (midazolam, atropine and HI-6) on nerve agent induced molecular and neuropathological changes. BMC Neurosci 2014; 15:47. [PMID: 24708580 PMCID: PMC3984638 DOI: 10.1186/1471-2202-15-47] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/24/2014] [Indexed: 11/10/2022] Open
Abstract
Background Recent alleged attacks with nerve agent sarin on civilians in Syria indicate their potential threat to both civilian and military population. Acute nerve agent exposure can cause rapid death or leads to multiple and long term neurological effects. The biochemical changes that occur following nerve agent exposure needs to be elucidated to understand the mechanisms behind their long term neurological effects and to design better therapeutic drugs to block their multiple neurotoxic effects. In the present study, we intend to study the efficacy of antidotes comprising of HI-6 (1-[[[4-(aminocarbonyl)-pyridinio]-methoxy]-methyl]-2-[(hydroxyimino) methyl] pyridinium dichloride), atropine and midazolam on soman induced neurodegeneration and the expression of c-Fos, Calpain, and Bax levels in discrete rat brain areas. Results Therapeutic regime consisting of HI-6 (50 mg/kg, i.m), atropine (10 mg/kg, i.m) and midazolam (5 mg/kg, i.m) protected animals against soman (2 × LD50, s.c) lethality completely at 2 h and 80% at 24 h. HI-6 treatment reactivated soman inhibited plasma and RBC cholinesterase up to 40%. Fluoro-Jade B (FJ-B) staining of neurodegenerative neurons showed that soman induced significant necrotic neuronal cell death, which was reduced by this antidotal treatment. Soman increased the expression of neuronal proteins including c-Fos, Bax and Calpain levels in the hippocampus, cerebral cortex and cerebellum regions of the brain. This therapeutic regime also reduced the soman induced Bax, Calpain expression levels to near control levels in the different brain regions studied, except a mild induction of c-Fos expression in the hippocampus. Conclusion Rats that received antidotal treatment after soman exposure were protected from mortality and showed reduction in the soman induced expression of c-Fos, Bax and Calpain and necrosis. Results highlight the need for timely administration of better antidotes than standard therapy in order to prevent the molecular and biochemical changes and subsequent long term neurological effects induced by nerve agents.
Collapse
|
8
|
Mangas I, Vilanova E, Benabent M, Estévez J. Separating esterase targets of organophosphorus compounds in the brain by preparative chromatography. Toxicol Lett 2014; 225:167-76. [DOI: 10.1016/j.toxlet.2013.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/03/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
|
9
|
Prins JM, Chao CK, Jacobson SM, Thompson CM, George KM. Oxidative stress resulting from exposure of a human salivary gland cells to paraoxon: an in vitro model for organophosphate oral exposure. Toxicol In Vitro 2014; 28:715-21. [PMID: 24486155 DOI: 10.1016/j.tiv.2014.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 11/19/2022]
Abstract
Organophosphate (OP) compounds are used as insecticides, acaricides, and chemical agents and share a common neurotoxic mechanism of action. The biochemical alterations leading to many of the deleterious effects have been studied in neuronal cell lines, however, non-neuronal toxic effects of OPs are far less well characterized in vitro, and specifically in cell lines representing oral routes of exposure. To address this void, the human salivary gland (HSG) cell line, representing likely interactions in the oral cavity, was exposed to the representative OP paraoxon (PX; O,O-diethyl-p-nitrophenoxy phosphate) over a range of concentrations (0.01-100 μM) and analyzed for cytotoxicity. PX induced cytotoxicity in HSG cells at most of the exposure concentrations as revealed by MTT assay, however, the release of LDH only occurred at the highest concentration of PX tested (100 μM) at 48 h. Slight increases in cellular ATP levels were measured in PX-exposed (10 μM) HSG cells at 24 h. Exposing HSG cells to 10 μM PX also led to an increase in DNA fragmentation prior to loss of cellular membrane integrity implicating reactive oxygen species (ROS) as a trigger of toxicity. The ROS genes gss, gstm2, gstt2 and sod2 were upregulated, and the presence of superoxide following 10 μM PX exposure was determined via dihydroethidium fluorescence studies further implicating PX-induced oxidative stress in HSG cells.
Collapse
Affiliation(s)
- John M Prins
- Department of Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States
| | - Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States
| | - Saskia M Jacobson
- Department of Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States.
| | - Kathleen M George
- Department of Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
10
|
|
11
|
Protein adducts as biomarkers of exposure to organophosphorus compounds. Toxicology 2012; 307:46-54. [PMID: 23261756 DOI: 10.1016/j.tox.2012.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/11/2023]
Abstract
Exposure to organophosphorus (OP) compounds can lead to serious neurological damage or death. Following bioactivation by the liver cytochromes P450, the OP metabolites produced are potent inhibitors of serine active-site enzymes including esterases, proteases and lipases. OPs may form adducts on other cellular proteins. Blood cholinesterases (ChEs) have long served as biomarkers of OP exposure in humans. However, the enzymatic assays used for biomonitoring OP exposures have several drawbacks. A more useful approach will focus on multiple biomarkers and avoid problems with the enzymatic activity assays. OP inhibitory effects result from a covalent bond with the active-site serine of the target enzymes. The serine OP adducts become irreversible following a process referred to as aging where one alkyl group dissociates over variable lengths of time depending on the OP adduct. The OP-adducted enzyme then remains in circulation until it is degraded, allowing for a longer window of detection compared with direct analysis of OPs or their metabolites. Mass spectrometry (MS) provides a very sensitive method for identification of post-translational protein modifications. MS analyses of the percentage adduction of the active-site serine of biomarker proteins such as ChEs will eliminate the need for basal activity levels of the individual and will provide for a more accurate determination of OP exposure. MS analysis of biomarker proteins also provides information about the OP that has caused inhibition. Other useful biomarker proteins include other serine hydrolases, albumin, tubulin and transferrin.
Collapse
|
12
|
RamaRao G, Bhattacharya B, Kumar S, Waghmare C. Gene expression and phosphoprotein profile of certain key neuronal signaling proteins following soman intoxication. Toxicology 2011; 290:195-202. [DOI: 10.1016/j.tox.2011.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 11/29/2022]
|
13
|
Mitra A, Chatterjee C, Mandal FB. Synthetic Chemical Pesticides and Their Effects on Birds. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/rjet.2011.81.96] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
The Use of Differentiating N2a and C6 Cell Lines for Studies of Organophosphate Toxicity. NEUROMETHODS 2011. [DOI: 10.1007/978-1-61779-077-5_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Prins JM, George KM, Thompson CM. Paraoxon-induced protein expression changes to SH-SY5Y cells. Chem Res Toxicol 2010; 23:1656-62. [PMID: 20931991 DOI: 10.1021/tx100192f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
SH-SY5Y neuroblastoma cells were examined to determine changes in protein expression following exposure to the organophosphate paraoxon (O,O-diethyl-p-nitrophenoxy phosphate). Exposure of SH-SY5Y cells to paraoxon (20 μM) for 48 h showed no significant change in cell viability as established using an MTT assay. Protein expression changes from the paraoxon-treated SH-SY5Y cells were determined using a comparative, subproteome approach by fractionation into cytosolic, membrane, nuclear, and cytoskeletal fractions. The fractionated proteins were separated by 2D-PAGE, identified by MALDI-TOF mass spectrometry, and expression changes determined by densitometry. Over 400 proteins were separated from the four fractions, and 16 proteins were identified with altered expression ≥1.3-fold including heat shock protein 90 (-1.3-fold), heterogeneous nuclear ribonucleoprotein C (+2.8-fold), and H(+) transporting ATP synthase beta chain (-3.1-fold). Western blot analysis conducted on total protein isolates confirmed the expression changes in these three proteins.
Collapse
Affiliation(s)
- John M Prins
- The Center for Structural and Functional Neuroscience, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, Montana 59812, USA
| | | | | |
Collapse
|
16
|
Hofmann JN, Keifer MC, Checkoway H, De Roos AJ, Farin FM, Fenske RA, Richter RJ, van Belle G, Furlong CE. Biomarkers of sensitivity and exposure in Washington state pesticide handlers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 660:19-27. [PMID: 20221867 PMCID: PMC3041670 DOI: 10.1007/978-1-60761-350-3_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Organophosphate (OP) and N-methyl-carbamate (CB) insecticides are widely used in agriculture in the US and abroad. These compounds - which inhibit acetylcholinestersase (AChE) enzyme activity - continue to be responsible for a high proportion of pesticide poisonings among US agricultural workers. It is possible that some individuals may be especially susceptible to health effects related to OP/CB exposure. The paraoxonase (PON1) enzyme metabolizes the highly toxic oxon forms of some OPs, and an individual's PON1 status may be an important determinant of his or her sensitivity to these chemicals. This chapter discusses methods used to characterize the PON1 status of individuals and reviews previous epidemiologic studies that have evaluated PON1-related sensitivity to OPs in relation to various health endpoints. It also describes an ongoing longitudinal study among OP-exposed agricultural pesticide handlers who are participating in a recently implemented cholinesterase monitoring program in Washington State. This study will evaluate handlers' PON1 status as a hypothesized determinant of butyrylcholinesterase (BuChE) inhibition. Such studies will be useful to determine how regulatory risk assessments might account for differences in PON1-related OP sensitivity when characterizing inter-individual variability in risk related to OP exposure. Recent work assessing newer and more sensitive biomarkers of OP exposure is also discussed briefly in this chapter.
Collapse
Affiliation(s)
- Jonathan N Hofmann
- Division of Cancer Epidemilogy and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Analytical approaches to investigate protein-pesticide adducts. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 878:1312-9. [PMID: 19879817 DOI: 10.1016/j.jchromb.2009.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/15/2009] [Accepted: 10/14/2009] [Indexed: 11/24/2022]
Abstract
Organophosphorus pesticides primarily elicit toxicity via their common covalent adduction of acetylcholinesterase (AChE), but pesticide binding to additional sensitive secondary targets may also compromise health. We have utilised tritiated-diisopropylfluorophosphate ((3)H-DFP) binding to quantify the levels of active immune and brain tissue serine hydrolases, and visualise them using autoradiography after protein separation by one-dimensional and two-dimensional techniques. Preincubation of protein extracts with pesticide in vitro or dosing of rats with pesticide in vivo was followed by (3)H-DFP radiolabelling. Pesticide targets were identified by a reduction in (3)H-DFP radiolabelling relative to controls, and characterised by their tissue presence, molecular weight, and isoelectric point. Conventional column chromatography was employed to enrich pesticide targets to enable their further characterisation, and/or identification by mass spectrometry. The major in vivo pesticide targets characterised were 66 kDa, serum albumin, and 60 kDa, likely carboxylesterase 1, both of which displayed differential pesticide binding character under conditions producing approximately 30% tissue AChE inhibition. The characterisation and identification of sensitive pesticide secondary targets will enable an evaluation of their potential contribution to the ill health that may arise from chronic low-dose pesticide exposures. Additionally, secondary targets may provide useful biomonitors and/or bioscavengers of pesticide exposures.
Collapse
|
18
|
Proteomic analysis of differentiating neuroblastoma cells treated with sub-lethal neurite inhibitory concentrations of diazinon: Identification of novel biomarkers of effect. Toxicol Appl Pharmacol 2009; 240:159-65. [DOI: 10.1016/j.taap.2009.07.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 11/18/2022]
|
19
|
Pachiappan A, Thwin MM, Weng Keong L, Lee FK, Manikandan J, Sivakumar V, Gopalakrishnakone P. ETS2 Regulating Neurodegenerative Signaling Pathway of Human Neuronal (SH-SY5Y) Cells Exposed to Single and Repeated Low-Dose Sarin (GB). Chem Res Toxicol 2009; 22:990-6. [DOI: 10.1021/tx8003467] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arjunan Pachiappan
- Departments of Anatomy and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, DSO National Laboratories, Singapore 118230, and Porter Neuroscience Research Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Maung Maung Thwin
- Departments of Anatomy and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, DSO National Laboratories, Singapore 118230, and Porter Neuroscience Research Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Loke Weng Keong
- Departments of Anatomy and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, DSO National Laboratories, Singapore 118230, and Porter Neuroscience Research Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Fook Kay Lee
- Departments of Anatomy and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, DSO National Laboratories, Singapore 118230, and Porter Neuroscience Research Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Jayapal Manikandan
- Departments of Anatomy and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, DSO National Laboratories, Singapore 118230, and Porter Neuroscience Research Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Viswanathan Sivakumar
- Departments of Anatomy and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, DSO National Laboratories, Singapore 118230, and Porter Neuroscience Research Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Ponnampalam Gopalakrishnakone
- Departments of Anatomy and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, DSO National Laboratories, Singapore 118230, and Porter Neuroscience Research Center, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
20
|
Carter WG, Tarhoni M, Rathbone AJ, Ray DE. Differential protein adduction by seven organophosphorus pesticides in both brain and thymus. Hum Exp Toxicol 2007; 26:347-53. [PMID: 17615116 DOI: 10.1177/0960327107074617] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is a need for mechanistic understanding of the lasting ill health reported in several studies of workers exposed to organophosphorus (OP) pesticide. Although the acute toxicity is largely explicable by acetylcholinesterase inhibition and the lasting effects of frank poisoning by direct excitotoxicity or indirect consequences of the cholinergic syndrome, effects at lower levels of exposure would not be predicted from these mechanisms. Similarly, reversible interactions with nicotinic and muscarinic receptors in adults would not predict continuing ill health. Many OP pesticides produce protein adduction, and the lasting nature of this makes it a candidate mechanism for the production of continuing ill health. We found significant adduction of partially characterized protein targets in both rat brain and thymus by azamethiphos, chlorfenvinphos, chlorpyrifos-oxon, diazinon-oxon, dichlorvos and malaoxon, in vitro and pirimiphos-methyl in vivo. The diversity in the adduction pattern seen across these agents at low dose levels means that any longer term effects of adduction would be specific to specific organophosphates, rather than generic. This presents a challenge to epidemiology, as most exposures are to different agents over time. However, some adducted proteins are also expressed in blood, notably albumin, and so may provide exposure measures to increase the power of future epidemiological studies.
Collapse
Affiliation(s)
- Wayne G Carter
- Medical Research Council Applied Neuroscience Group, School of Biomedical Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom
| | | | | | | |
Collapse
|
21
|
Flaskos J, Harris W, Sachana M, Muñoz D, Tack J, Hargreaves AJ. The effects of diazinon and cypermethrin on the differentiation of neuronal and glial cell lines. Toxicol Appl Pharmacol 2007; 219:172-80. [PMID: 17239417 DOI: 10.1016/j.taap.2006.10.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 10/22/2006] [Accepted: 10/23/2006] [Indexed: 11/16/2022]
Abstract
Diazinon and cypermethrin are pesticides extensively used in sheep dipping. Diazinon is a known anti-cholinesterase, but there is limited information regarding its molecular mechanism of action. This paper describes the effects of diazinon and cypermethrin at a morphological and molecular level on differentiating mouse N2a neuroblastoma and rat C6 glioma cell lines. Concentrations up to 10 microM of both compounds and their mixture had no effect on the viability of either cell line, as determined by methyl blue tetrazolium reduction and total protein assays. Microscopic analysis revealed that 1 microM and 10 microM diazinon but not cypermethrin inhibited the outgrowth of axon-like processes in N2a cells after a 24-h exposure but neither compound affected process outgrowth by differentiating C6 cells at these concentrations. Under these conditions, 10 microM diazinon inhibited AChE slightly compared to the control after a 4-h exposure but not after 24 h. Western blotting analysis showed that morphological changes were associated with reduced cross-reactivity with antibodies that recognize the neurofilament heavy chain (NFH), microtubule associated protein MAP 1B and HSP-70 compared to control cell extracts, whereas reactivity with anti-alpha-tubulin antibodies was unchanged. Aggregation of NFH was observed in cell bodies of diazinon-treated N2a cells, as determined by indirect immunofluorescence staining. These data demonstrate that diazinon specifically targets neurite outgrowth in neuronal cells and that this effect is associated with disruption of axonal cytoskeleton proteins, whereas cypermethrin has no effect on the same parameters.
Collapse
Affiliation(s)
- J Flaskos
- Laboratory of Biochemistry and Toxicology, Faculty of Veterinary Medicine, Aristotelian University, 54124 Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
22
|
Read DJ, Langford L, Barbour HR, Forshaw PJ, Glynn P. Phospholipase B activity and organophosphorus compound toxicity in cultured neural cells. Toxicol Appl Pharmacol 2006; 219:190-5. [PMID: 16963094 DOI: 10.1016/j.taap.2006.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/28/2006] [Accepted: 08/04/2006] [Indexed: 11/22/2022]
Abstract
Organophosphorus compounds (OP) such as phenyl saligenin phosphate (PSP) and mipafox (MPX) which cause delayed neuropathy, inhibit neuropathy target esterase (NTE), while OPs such as paraoxon (PXN) react more readily with acetylcholinesterase. In yeast and mammalian cell lines, NTE has been shown to have phospholipase B (PLB) activity which deacylates intracellular phosphatidylcholine to glycerophosphocholine (GroPCho) and can be detected by metabolic labeling with [(14)C]choline. Here we investigated PLB activity in primary cultures of mouse neural cells. In cortical and cerebellar granule neurons and astrocytes, [(14)C]GroPCho labeling was inhibited by PSP and MPX: phenyl dipentylphosphinate (PDPP), a non-neuropathic NTE inhibitor, was more potent, while PXN, was substantially less so. In all three cell types, conversion of [(14)C]phosphatidylcholine to [(14)C]GroPCho over 24 h was relatively small (2.3-14%). Consequently, even with >80% inhibition of [(14)C]GroPCho production, increased [(14)C]phosphatidylcholine was not detected. At concentrations of 1-10 microM, only PSP was cytotoxic to cortical and cerebellar granule neurons after 24-h exposure. Moreover, dramatic changes in glial cell morphology were induced by PSP, but not PDPP or MPX, with rapid (2-3 h) rounding up of astrocytes and of Schwann cells in cultures of dissociated mouse dorsal root ganglia. We conclude that PLB activity is present in a variety of cultured mouse neural cell types but that acute loss of this activity is not cytotoxic. Conversely, the rapid toxic effects of PSP in vitro suggest that a serine hydrolase distinct from NTE is required continuously by neurons and glia.
Collapse
Affiliation(s)
- David J Read
- MRC Toxicology Unit, University of Leicester, LE1 9HN, UK
| | | | | | | | | |
Collapse
|
23
|
Lieben CKJ, Blokland A, Sik A, Sung E, van Nieuwenhuizen P, Schreiber R. The selective 5-HT6 receptor antagonist Ro4368554 restores memory performance in cholinergic and serotonergic models of memory deficiency in the rat. Neuropsychopharmacology 2005; 30:2169-79. [PMID: 15957009 DOI: 10.1038/sj.npp.1300777] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antagonists at serotonin type 6 (5-HT(6)) receptors show activity in models of learning and memory. Although the underlying mechanism(s) are not well understood, these effects may involve an increase in acetylcholine (ACh) levels. The present study sought to characterize the cognitive-enhancing effects of the 5-HT(6) antagonist Ro4368554 (3-benzenesulfonyl-7-(4-methyl-piperazin-1-yl)1H-indole) in a rat object recognition task employing a cholinergic (scopolamine pretreatment) and a serotonergic- (tryptophan (TRP) depletion) deficient model, and compared its pattern of action with that of the acetylcholinesterase inhibitor metrifonate. Initial testing in a time-dependent forgetting task employing a 24-h delay between training and testing showed that metrifonate improved object recognition (at 10 and 30 mg/kg, p.o.), whereas Ro4368554 was inactive. Both, Ro4368554 (3 and 10 mg/kg, intraperitoneally (i.p.)) and metrifonate (10 mg/kg, p.o., respectively) reversed memory deficits induced by scopolamine and TRP depletion (10 mg/kg, i.p., and 3 mg/kg, p.o., respectively). In conclusion, although Ro4368554 did not improve a time-related retention deficit, it reversed a cholinergic and a serotonergic memory deficit, suggesting that both mechanisms may be involved in the facilitation of object memory by Ro4368554 and, possibly, other 5-HT(6) receptor antagonists.
Collapse
Affiliation(s)
- Cindy K J Lieben
- Department of Psychiatry and Neuropsychology, Division of Neuroscience, University of Maastricht, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Quistad GB, Klintenberg R, Casida JE. Blood acylpeptide hydrolase activity is a sensitive marker for exposure to some organophosphate toxicants. Toxicol Sci 2005; 86:291-9. [PMID: 15888665 DOI: 10.1093/toxsci/kfi195] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acylpeptide hydrolase (APH) unblocks N-acetyl peptides. It is a major serine hydrolase in rat blood, brain, and liver detected by derivatization with (3)H-diisopropyl fluorophosphate (DFP) or a biotinylated fluorophosphonate. Although APH does not appear to be a primary target of acute poisoning by organophosphorus (OP) compounds, the inhibitor specificity of this secondary target is largely unknown. This study fills the gap and emphasizes blood APH as a potential marker of OP exposure. The most potent in vitro inhibitors for human erythrocyte and mouse brain APH are DFP (IC(50) 11-17 nM), chlorpyrifos oxon (IC(50) 21-71 nM), dichlorvos (IC(50) 230-560 nM), naled (IC(50) 370-870 nM), and their analogs with modified alkyl substituents. (3)H-diisopropyl fluorophosphate is a potent inhibitor of mouse blood and brain APH in vivo (ED(50) 0.09-0.2 mg/kg and 0.02-0.03 mg/l for ip and vapor exposure, respectively). Mouse blood and brain APH and blood butyrylcholinesterase (BChE) are of similar sensitivity to DFP in vitro and in vivo (ip and vapor exposure), but APH inhibition is much more persistent in vivo (still >80% inhibition after 4 days). The inhibitory potency of OP pesticides in vivo in mice varies from APH selective (dichlorvos, naled, and trichlorfon), to APH and BChE selective (profenofos and tribufos), to ChE selective or nonselective (many commercial insecticides). Sarin administered ip at a lethal dose to guinea pigs inhibits blood acetylcholinesterase and BChE completely but erythrocyte APH only partially. Blood APH activity is therefore a sensitive marker for exposure to some but not all OP pesticides and chemical warfare agents.
Collapse
Affiliation(s)
- Gary B Quistad
- Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720-3112, USA
| | | | | |
Collapse
|
25
|
Murray A, Rathbone AJ, Ray DE. Novel protein targets for organophosphorus pesticides in rat brain. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 19:451-454. [PMID: 21783511 DOI: 10.1016/j.etap.2004.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We report preliminary results from a proteomic search for rat brain protein targets adducted by organophosphorous pesticides. Azamethaphos, chlorfenvinphos, diazinon, malathion and chlorpyrifos oxons (in rat brain homogenates) or pirimiphos-methyl (after systemic treatment) were tested at levels producing no more than 30% inhibition of brain acetylcholinesterase. Loss of reactivity with tritiated diisopropylflurophosphate was taken as proof of adduction by the test organophosphate. In addition to acetylcholinesterase other, previously unrecognised, adducted proteins were detected in total brain protein extracts at 30, 32, 41, 71 and 83kDa. Azamethiphos adducted all but the 30 and 32kDa bands, but chlorpyrifos only acetylcholinesterase.
Collapse
Affiliation(s)
- Andrea Murray
- MRC Applied Neuroscience Group, School of Biomedical Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | | | | |
Collapse
|
26
|
Bouger PC, Spowart-Manning L, Ferrara A, Schmidt BH, van der Staay FJ. Effects of acute and repeated administration of a cholinesterase inhibitor on timing behaviour. Eur Neuropsychopharmacol 2004; 14:285-94. [PMID: 15163438 DOI: 10.1016/j.euroneuro.2003.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Accepted: 08/26/2003] [Indexed: 10/26/2022]
Abstract
It has been hypothesised that a leftward shift in the response distribution obtained in the peak interval (PI) procedure is a characteristic of cognitive enhancement in which mental processes are speeded. Metrifonate, a cholinesterase inhibitor with reported cognitive enhancing properties in many animal models of learning and memory, was tested in the PI procedure. Acute administration of 3 and 60 mg/kg but not 1 and 30 mg/kg in fully trained rats shifted the response distribution to the right, whereas subchronic administration of 10, 30 or 50 mg/kg during task acquisition had no effect on timing behaviour. On the basis of the present data, it can be concluded that the effects of a cognition enhancer in the PI procedure cannot be predicted from the scalar expectancy theory (SET). Furthermore, SET does not appear to be an appropriate tool for analysing the acquisition of timing behaviour.
Collapse
Affiliation(s)
- Pascale C Bouger
- CNS Research, Bayer AG, Aprather Weg 18a, D-42096 Wuppertal, Germany
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Buratti FM, Volpe MT, Meneguz A, Vittozzi L, Testai E. CYP-specific bioactivation of four organophosphorothioate pesticides by human liver microsomes. Toxicol Appl Pharmacol 2003; 186:143-54. [PMID: 12620367 DOI: 10.1016/s0041-008x(02)00027-3] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bioactivation of azinphos-methyl (AZIN), chlorpyrifos (CPF), diazinon (DIA), and parathion (PAR), four widely used organophosphorothioate (OPT) pesticides has been investigated in human liver microsomes (HLM). In addition, the role of human cytochrome P450 (CYPs) in OPT desulfuration at pesticide levels representative of human exposure have been defined by means of correlation and immunoinhibition studies. CYP-mediated oxon formation from the four OPTs is efficiently catalyzed by HLM, although showing a high variability (>40-fold) among samples. Two distinct phases were involved in the desulfuration of AZIN, DIA, and PAR, characterized by different affinity constants (K(mapp1) = 0.13-9 microM and K(mapp2) = 5- 269 microM). Within the range of CPF concentrations tested, only the high-affinity component was evidenced (K(mapp1) = 0.27-0.94 microM). Oxon formation in phenotyped individual HLM showed a significant correlation with CYP1A2-, 3A4-, and 2B6-related activities, at different levels depending on the OPT concentration. Anti-human CYP1A2, 2B6, and 3A4 antibodies significantly inhibited oxon formation, showing the same OPT concentration dependence. Our data indicated that CYP1A2 is mainly involved in OPT desulfuration at low pesticide concentrations, while the role of CYP3A4 is more significant to the low-affinity component of OPT bioactivation. The contribution of CYP2B6 to total hepatic oxon formation was relevant in a wide range of pesticide concentrations, being a very efficient catalyst of both the high- and low-affinity phase. These results suggest CYP1A2 and 2B6 as possible metabolic biomarkers of susceptibility to OPT toxic effect at the actual human exposure levels.
Collapse
Affiliation(s)
- Franca M Buratti
- Comparative Toxicology and Ecotoxicology Laboratory, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy
| | | | | | | | | |
Collapse
|
29
|
Richards PG, Johnson MK, Ray DE. Identification of acylpeptide hydrolase as a sensitive site for reaction with organophosphorus compounds and a potential target for cognitive enhancing drugs. Mol Pharmacol 2000; 58:577-83. [PMID: 10953051 DOI: 10.1124/mol.58.3.577] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We describe here the purification and identification of a previously unrecognized target for organophosphorus compounds. The target, acylpeptide hydrolase, was isolated as a tritiated-diisopropylfluorophosphate-reactive protein from porcine brain and purified to homogeneity using a combination of ion-exchange and gel-filtration chromatography. Biochemical characterization and internal sequence analysis confirmed identity. Acylpeptide hydrolase was found to be potently inhibited by the organophosphorus compounds chlorpyrifosmethyl oxon, dichlorvos, and diisopropylfluorophosphate (20-min IC(50) values of 18.3 +/- 2.0, 118.7 +/- 9.7, and 22.5 +/- 1.2 nM, respectively). The in vitro sensitivity of acylpeptide hydrolase toward these compounds is between six and ten times greater than that of acetylcholinesterase (AChE), making it a target of pharmacological and toxicological significance. We show that, in vivo, acylpeptide hydrolase is significantly more sensitive than AChE to inhibition by dichlorvos and that the inhibition is more prolonged after a single dose of inhibitor. Furthermore, using dichlorvos as a progressive inhibitor, it was possible to show that acylpeptide hydrolase is the only enzyme in the brain capable of hydrolyzing the substrate N-acetyl-alanyl-p-nitroanilide. A concentration of 154 +/- 27 pmol of acylpeptide hydrolase/gram of fresh rat brain was also deduced by specific labeling with tritiated-diisopropylfluorophosphate. We also suggest that, by comparison of structure-activity relationships, acylpeptide hydrolase may be the target for the cognitive-enhancing effects of certain organophosphorus compounds. Acylpeptide hydrolase cleaves N(alpha)-acylated amino acids from small peptides and may be involved in regulation of neuropeptide turnover, which provides a new and plausible mechanism for its proposed cognitive enhancement effect.
Collapse
Affiliation(s)
- P G Richards
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom.
| | | | | |
Collapse
|
30
|
Abstract
Neuropathy target esterase (NTE) is an integral membrane protein in vertebrate neurons. Recent evidence suggests that NTE plays an important role in neural development, possibly via involvement in a signalling pathway between neurons and glial cells. NTE is a member of a novel protein family, represented in organisms from bacteria to man. NTE comprises an N-terminal regulatory domain (with some sequence similarity to cyclic nucleotide-binding proteins) and a C-terminal catalytic domain: the latter has three predicted transmembrane segments and requires membrane-association for activity. In vitro, NTE potently catalyses hydrolysis of phenyl valerate: however, its physiological substrate is likely to be a metabolite of a much longer chain carboxylic acid, possibly associated with cell membranes. NTE was discovered originally as the primary target for those organophosphorus esters (OPs) which cause a delayed neuropathy with degeneration of long axons in peripheral nerves and spinal cord. Paradoxically, NTE's catalytic activity appears redundant in adult vertebrates. Neuropathic OPs react covalently with NTE in a rapid two-step process which not only inhibits catalytic activity but also leaves a negatively-charged OP group attached to the active site serine. The latter event is proposed to induce a toxic gain of function in NTE. OP-modified NTE somehow engenders a "chemical transection of the axon". In turn, this leads to calcium entry, elevation of axonal calpain activity and Wallerian-type degeneration. The net damage to peripheral nerve axons is a balance between ongoing degenerative and repair processes: the latter involve serine hydrolases which can be inhibited by the same OPs used to modify NTE.
Collapse
Affiliation(s)
- P Glynn
- MRC Toxicology Unit, University of Leicester, UK.
| |
Collapse
|