1
|
Chiariello MG, Zarmiento-Garcia R, Marrink SJ. Martini 3 Coarse-Grained Model for the Cofactors Involved in Photosynthesis. Int J Mol Sci 2024; 25:7947. [PMID: 39063190 PMCID: PMC11277265 DOI: 10.3390/ijms25147947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
As a critical step in advancing the simulation of photosynthetic complexes, we present the Martini 3 coarse-grained (CG) models of key cofactors associated with light harvesting (LHCII) proteins and the photosystem II (PSII) core complex. Our work focuses on the parametrization of beta-carotene, plastoquinone/quinol, violaxanthin, lutein, neoxanthin, chlorophyll A, chlorophyll B, and heme. We derived the CG parameters to match the all-atom reference simulations, while structural and thermodynamic properties of the cofactors were compared to experimental values when available. To further assess the reliability of the parameterization, we tested the behavior of these cofactors within their physiological environments, specifically in a lipid bilayer and bound to photosynthetic complexes. The results demonstrate that our CG models maintain the essential features required for realistic simulations. This work lays the groundwork for detailed simulations of the PSII-LHCII super-complex, providing a robust parameter set for future studies.
Collapse
Affiliation(s)
| | | | - Siewert-Jan Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; (M.G.C.); (R.Z.-G.)
| |
Collapse
|
2
|
Mu Y, Wang Z, Song L, Ma K, Chen Y, Li P, Yan Z. Modulating lipid bilayer permeability and structure: Impact of hydrophobic chain length, C-3 hydroxyl group, and double bond in sphingosine. J Colloid Interface Sci 2024; 674:513-526. [PMID: 38943912 DOI: 10.1016/j.jcis.2024.06.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Sphingosine, an amphiphilic molecule, plays a pivotal role as the core structure of sphingolipids, essential constituents of cell membranes. Its unique capability to enhance the permeability of lipid membranes profoundly influences crucial life processes. The molecular structure of sphingosine dictates its mode of entry into lipid bilayers and governs its interactions with lipids, thereby determining membrane permeability. However, the incomplete elucidation of the relationship between the molecular structure of sphingosine and the permeability of lipid membranes persists due to challenges associated with synthesizing sphingosine molecules. A series of sphingosine-derived molecules, featuring diverse hydrophobic chain lengths and distinct headgroup structure, were meticulously designed and successfully synthesized. These molecules were employed to investigate the permeability of large unilamellar vesicles, functioning as model lipid bilayers. With a decrease in the hydrophobic chain length of sphingosine from C15 to C11, the transient leakage ratio of vesicle contents escalated from ∼ 13 % to ∼ 28 %. Although the presence of double bond did not exert a pronounced influence on transient leakage, it significantly affected the continuous leakage ratio. Conversely, modifying the chirality of the C-3 hydroxyl group gives the opposite result. Notably, methylation at the C-3 hydroxyl significantly elevates transient leakage while suppressing the continuous leakage ratio. Additionally, sphingosines that significantly affect vesicle permeability tend to have a more pronounced impact on cell viability. Throughout this leakage process, the charge state of sphingosine-derived molecule aggregates in the solution emerged as a pivotal factor influencing vesicle permeability. Fluorescence lifetime experiments further revealed discernible variations in the effect of sphingosine molecular structure on the mobility of hydrophobic regions within lipid bilayers. These observed distinctions emphasize the impact of molecular structure on intermolecular interactions, extending to the microscopic architecture of membranes, and underscore the significance of subtle alterations in molecular structure and their associated aggregation behaviors in governing membrane permeability.
Collapse
Affiliation(s)
- Yonghang Mu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Zi Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China.
| | - Linhua Song
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Kun Ma
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Yao Chen
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Peixun Li
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Zifeng Yan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China.
| |
Collapse
|
3
|
Hu W, Seah V, Huang V, Kim JE. Effect of Antioxidant Supplementation on Macular Pigment Optical Density and Visual Functions: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2024; 15:100216. [PMID: 38582248 PMCID: PMC11052915 DOI: 10.1016/j.advnut.2024.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024] Open
Abstract
Antioxidants are bioactive molecules that function to scavenge free radicals and balance oxidative stress. Although all antioxidants can act as reactive oxygen species scavengers, their efficacy on eye health may vary. Moreover, the comparative effectiveness and potential additive effect between groups of antioxidants, hitherto, have not been systematically studied. A systematic review and network meta-analysis were conducted to investigate the comparative or additive effect of dietary antioxidant supplements on eye health. Four databases (PubMed, Embase, CINAHL, and Cochrane) were searched, and relevant randomized controlled trials were identified. Out of 60 articles selected for systematic review, 38 were included in the network meta-analysis, categorized into 8 distinct antioxidant-supplemented groups and placebo. All groups significantly increased macular pigment optical density and contrast sensitivity at low spatial frequency, whereas only the antioxidant mixture + lutein (L) + fatty acid combination exhibited significant improvements in visual acuity (hazard ratio = -0.15; 95% confidence interval: -0.28, -0.02) and L + zeaxanthin combination for photostress recovery time (hazard ratio = -5.75; 95% confidence interval: -8.80, -1.70). Especially, the L + zeaxanthin + fatty acid combination was ranked best for macular pigment optical density (surface under the cumulative ranking: 99.3%) and second best for contrast sensitivity at low spatial frequency (67.7%). However, these findings should be interpreted with caution due to low quality of evidence, primarily influenced by indirectness and potential publication bias. Overall, antioxidant supplementation was estimated to improve eye health parameters, whereas different combinations of antioxidants may also have varying effects on improving visual health from multiple perspectives. This study was registered at PROSPERO as CRD42022369250.
Collapse
Affiliation(s)
- Weili Hu
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Vernice Seah
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Vanessa Huang
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Jung Eun Kim
- Department of Food Science and Technology, National University of Singapore, Singapore.
| |
Collapse
|
4
|
Nsairat H, Ibrahim AA, Jaber AM, Abdelghany S, Atwan R, Shalan N, Abdelnabi H, Odeh F, El-Tanani M, Alshaer W. Liposome bilayer stability: emphasis on cholesterol and its alternatives. J Liposome Res 2024; 34:178-202. [PMID: 37378553 DOI: 10.1080/08982104.2023.2226216] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Liposomes are spherical lipidic nanocarriers composed of natural or synthetic phospholipids with a hydrophobic bilayer and aqueous core, which are arranged into a polar head and a long hydrophobic tail, forming an amphipathic nano/micro-particle. Despite numerous liposomal applications, their use encounters many challenges related to the physicochemical properties strongly affected by their constituents, colloidal stability, and interactions with the biological environment. This review aims to provide a perspective and a clear idea about the main factors that regulate the liposomes' colloidal and bilayer stability, emphasising the roles of cholesterol and its possible alternatives. Moreover, this review will analyse strategies that offer possible approaches to provide more stable in vitro and in vivo liposomes with enhanced drug release and encapsulation efficiencies.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Randa Atwan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Naeem Shalan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Hiba Abdelnabi
- Faculty of Pharmacy, The University of Jordan, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
5
|
Zhang M, Li Z, Luo M, Baryshnikov GV, Valiev RR, Weng T, Shen S, Liu Q, Sun H, Xu X, Sun Z, Ågren H, Zhu L. Highly Efficient Room-Temperature Light-Induced Synthesis of Polymer Dots: A Programming Control Paradigm of Polymer Nanostructurization from Single-Component Precursor. J Am Chem Soc 2023. [PMID: 37907829 DOI: 10.1021/jacs.3c07412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Polymer dots (PDs) have raised considerable research interest due to their advantages of designable nanostructures, high biocompatibility, versatile photoluminescent properties, and recyclability as nanophase. However, there remains a lack of in situ, real-time, and noncontact methods for synthesizing PDs. Here we report a rational strategy to synthesize PDs through a well-designed single-component precursor (an asymmetrical donor-acceptor-donor' molecular structure) by photoirradiation at ambient temperature. In contrast to thermal processes that normally lack atomic economy, our method is mild and successive, based on an aggregation-promoted sulfonimidization triggered by photoinduced delocalized intrinsic radical cations for polymerization, followed by photooxidation for termination with structural shaping to form PDs. This synthetic approach excludes any external additives, rendering a conversion rate of the precursor exceeding 99%. The prepared PDs, as a single entity, can realize the integration of nanocore luminescence and precursor-transferred luminescence, showing 41.5% of the total absolute luminescence quantum efficiency, which is higher than most reported PD cases. Based on these photoluminescent properties, together with the superior biocompatibility, a unique membrane microenvironmental biodetection could be exemplified. This strategy with programming control of the single precursor can serve as a significant step toward polymer nanomanufacturing with remote control, high-efficiency, precision, and real-time operability.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhongyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Mengkai Luo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Glib V Baryshnikov
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60174 Norrköping, Sweden
| | - Rashid R Valiev
- Department of Chemistry, Faculty of Science, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Taoyu Weng
- Institute of Molecular Plus, Department of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hao Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaoyan Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Mitchison-Field LM, Belin BJ. Bacterial lipid biophysics and membrane organization. Curr Opin Microbiol 2023; 74:102315. [PMID: 37058914 PMCID: PMC10523990 DOI: 10.1016/j.mib.2023.102315] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
The formation of lateral microdomains is emerging as a central organizing principle in bacterial membranes. These microdomains are targets of antibiotic development and have the potential to enhance natural product synthesis, but the rules governing their assembly are unclear. Previous studies have suggested that microdomain formation is promoted by lipid phase separation, particularly by cardiolipin (CL) and isoprenoid lipids, and there is strong evidence that CL biosynthesis is required for recruitment of membrane proteins to cell poles and division sites. New work demonstrates that additional bacterial lipids may mediate membrane protein localization and function, opening the field for mechanistic evaluation of lipid-driven membrane organization in vivo.
Collapse
Affiliation(s)
- Lorna My Mitchison-Field
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Brittany J Belin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
7
|
Caritá AC, Resende de Azevedo J, Chevalier Y, Arquier D, Vinícius Buri M, Riske KA, Ricci Leonardi Ideas G, Bolzinger MA. ELASTIC CATIONIC LIPOSOMES FOR VITAMIN C DELIVERY: DEVELOPMENT, CHARACTERIZATION AND SKIN ABSORPTION STUDY. Int J Pharm 2023; 638:122897. [PMID: 37003313 DOI: 10.1016/j.ijpharm.2023.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/10/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023]
Abstract
The influence of hydrophilic surfactants acting on the membrane elasticity of liposomes on the skin absorption of vitamin C is investigated. The purpose of encapsulation inside cationic liposomes is to improve the skin delivery of vitamin C. The properties of elastic liposomes (ELs) are compared to that of conventional liposomes (CLs). ELs are formed by the addition of the "edge activator" Polysorbate 80 to the CLs composed of soybean lecithin, cationic lipid DOTAP (1,2-dioleoyl-3-trimethylammoniopropane chloride), and cholesterol. The liposomes are characterized by dynamic light scattering and electron microscopy. No toxicity is detected in human keratinocyte cells. Evidences of Polysorbate 80 incorporation into liposome bilayers and of the higher flexibility of ELs are given by isothermal titration calorimetry and pore edge tension measurements in giant unilamellar vesicles. The presence of a positive charge in the liposomal membrane increases the encapsulation efficacy by approximately 30% for both CLs and ELs. Skin absorption of vitamin C from CLs, ELs and a control aqueous solution measured in Franz cells shows a high delivery of vitamin C into each skin layer and the acceptor fluid from both liposome types. These results suggest that another mechanism drives skin diffusion, involving interactions between cationic lipids and vitamin C depending on the skin pH.
Collapse
|
8
|
Liposomes for encapsulation of liposoluble vitamins (A, D, E and K): Comparation of loading ability, storage stability and bilayer dynamics. Food Res Int 2023; 163:112264. [PMID: 36596175 DOI: 10.1016/j.foodres.2022.112264] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
To understand the encapsulation difference and stability mechanism of nanoliposomes (NLPs) loaded with different kinds and loads of liposoluble vitamins (LSV, including VA, VD, VE, and VK), the physicochemical stability during three-months storage and bilayer membrane properties of LSV-NLPs were evaluated. The results suggested that VD and VE were not suitable for high-load (≥30 wt%) encapsulation, but the stability of other LSV-NLPs was excellent during storage. Their particle size was less than 100 nm, the polydispersity index was less than 0.3, and the retention rate of VE and VK remained above 85 %. LSV encapsulation inhibited malondialdehyde production, decreased liposome surface roughness, and improved nanoliposome rigidity. The order of occupying capacity of LSV to the hydrophobic zone of the bilayer was VK>VD>VE>VA, and the stability of LSV located in the hydrophobic region was better. Except for high-load VD and VE, the other LSV encapsulation increased the microviscosity of the lipid-water interface and hydrophobic zone by 0.5 ∼ 7.1 times and 0.5 ∼ 20 times, respectively. The accumulation of acyl chain was enhanced by 0.2 ∼ 4 times, and the interchain longitudinal and intra-chain transverse order degree was increased by 10.89 %∼144.35 % and 3.26 %∼115.52 %, respectively. High microviscosity and tight chain stacking limited bilayer fluidity and thus improve LSV-NLPs stability. This work will contribute to the application of nanoliposomes as liposoluble vitamin carriers in the food industry.
Collapse
|
9
|
Sahin I, Ceylan Ç, Bayraktar O. Ruscogenin interacts with DPPC and DPPG model membranes and increases the membrane fluidity: FTIR and DSC studies. Arch Biochem Biophys 2023; 733:109481. [PMID: 36522815 DOI: 10.1016/j.abb.2022.109481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Ruscogenin, a kind of steroid saponin, has been shown to have significant anti-oxidant, anti-inflammatory, and anti-thrombotic characteristics. Furthermore, it has the potential to be employed as a medicinal medication to treat a variety of acute and chronic disorders. The interaction of a drug molecule with cell membranes can help to elucidate its system-wide protective and therapeutic effects, and it's also important for its pharmacological activity. The molecular mechanism by which ruscogenin affects membrane architecture is still a mystery. Ruscogenin's interaction with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) and anionic dipalmitoyl phosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) was studied utilizing two non-invasive approaches, including: Fourier Transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry. Ruscogenin caused considerable alterations in the phase transition profile, order, dynamics and hydration state of head groups and glycerol backbone of DPPC and DPPG MLVs at all concentrations. The DSC results indicated that the presence of ruscogenin decreased the main phase transition temperature (Tm) and enthalpy (ΔH) values of both membranes and increased half height width of the main transition (ΔT1/2). The FTIR results demonstrated that all concentrations (1, 3, 6, 9, 15, 24 and 30 mol percent) of ruscogenin disordered the DPPC MLVs both in the gel and liquid crystalline phases while it increased the order of DPPG MLVs in the liquid crystalline phase. Moreover, ruscogenin caused an increase in the dynamics of DPPC and DPPG MLVs in both phases. Additionally, it enhanced the hydration of the head groups of lipids and the surrounding water molecules implying ruscogenin to interact strongly with both zwitterionic and charged model membranes.
Collapse
Affiliation(s)
- Ipek Sahin
- Department of Physics, Faculty of Science, Ege University, 35100, Bornova, İzmir, Turkey.
| | - Çağatay Ceylan
- Department of Food Engineering, Faculty of Engineering, İzmir Institute of Technology, Urla, İzmir, Turkey
| | - Oguz Bayraktar
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Bornova, İzmir, Turkey
| |
Collapse
|
10
|
Sodium Thiosulphate-Loaded Liposomes Control Hydrogen Sulphide Release and Retain Its Biological Properties in Hypoxia-like Environment. Antioxidants (Basel) 2022; 11:antiox11112092. [DOI: 10.3390/antiox11112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia, or insufficient oxygen availability is a common feature in the development of a myriad of cardiovascular-related conditions including ischemic disease. Hydrogen sulphide (H2S) donors, such as sodium thiosulphate (STS), are known for their cardioprotective properties. However, H2S due to its gaseous nature, is released and cleared rapidly, limiting its potential translation to clinical settings. For the first time, we developed and characterised liposome formulations encapsulating STS and explored their potential for modulating STS uptake, H2S release and the ability to retain pro-angiogenic and biological signals in a hypoxia-like environment mirroring oxygen insufficiency in vitro. Liposomes were prepared by varying lipid ratios and characterised for size, polydispersity and charge. STS liposomal encapsulation was confirmed by HPLC-UV detection and STS uptake and H2S release was assessed in vitro. To mimic hypoxia, cobalt chloride (CoCl2) was administered in conjunction with formulated and non-formulated STS, to explore pro-angiogenic and metabolic signals. Optimised liposomal formulation observed a liposome diameter of 146.42 ± 7.34 nm, a polydispersity of 0.22 ± 0.19, and charge of 3.02 ± 1.44 mV, resulting in 25% STS encapsulation. Maximum STS uptake (76.96 ± 3.08%) from liposome encapsulated STS was determined at 24 h. Co-exposure with CoCl2 and liposome encapsulated STS resulted in increased vascular endothelial growth factor mRNA as well as protein expression, enhanced wound closure and increased capillary-like formation. Finally, liposomal STS reversed metabolic switch induced by hypoxia by enhancing mitochondrial bioenergetics. These novel findings provide evidence of a feasible controlled-delivery system for STS, thus H2S, using liposome-based nanoparticles. Likewise, data suggests that in scenarios of hypoxia, liposomal STS is a good therapeutic candidate to sustain pro-angiogenic signals and retain metabolic functions that might be impaired by limited oxygen and nutrient availability.
Collapse
|
11
|
Semenov AN, Gvozdev DA, Zlenko DV, Protasova EA, Khashimova AR, Parshina EY, Baizhumanov AA, Lotosh NY, Kim EE, Kononevich YN, Pakhomov AA, Selishcheva AA, Sluchanko NN, Shirshin EA, Maksimov EG. Modulation of Membrane Microviscosity by Protein-Mediated Carotenoid Delivery as Revealed by Time-Resolved Fluorescence Anisotropy. MEMBRANES 2022; 12:905. [PMID: 36295665 PMCID: PMC9609150 DOI: 10.3390/membranes12100905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Carotenoids are potent antioxidants with a wide range of biomedical applications. However, their delivery into human cells is challenging and relatively inefficient. While the use of natural water-soluble carotenoproteins capable to reversibly bind carotenoids and transfer them into membranes is promising, the quantitative estimation of the delivery remains unclear. In the present work, we studied echinenone (ECN) delivery by cyanobacterial carotenoprotein AnaCTDH (C-terminal domain homolog of the Orange Carotenoid Protein from Anabaena), into liposome membranes labelled with BODIPY fluorescent probe. We observed that addition of AnaCTDH-ECN to liposomes led to the significant changes in the fast-kinetic component of the fluorescence decay curve, pointing on the dipole-dipole interactions between the probe and ECN within the membrane. It may serve as an indirect evidence of ECN delivery into membrane. To study the delivery in detail, we carried out molecular dynamics modeling of the localization of ECN within the lipid bilayer and calculate its orientation factor. Next, we exploited FRET to assess concentration of ECN delivered by AnaCTDH. Finally, we used time-resolved fluorescence anisotropy to assess changes in microviscosity of liposomal membranes. Incorporation of liposomes with β-carotene increased membrane microviscosity while the effect of astaxanthin and its mono- and diester forms was less pronounced. At temperatures below 30 °C addition of AnaCTDH-ECN increased membrane microviscosity in a concentration-dependent manner, supporting the protein-mediated carotenoid delivery mechanism. Combining all data, we propose FRET-based analysis and assessment of membrane microviscosity as potent approaches to characterize the efficiency of carotenoids delivery into membranes.
Collapse
Affiliation(s)
- Alexey N. Semenov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Danil A. Gvozdev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Dmitry V. Zlenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Elena A. Protasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Anastasia R. Khashimova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Evgenia Yu. Parshina
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Adil A. Baizhumanov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Natalia Yu. Lotosh
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., Moscow 123182, Russia
| | - Eleonora E. Kim
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Yuriy N. Kononevich
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A. Pakhomov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alla A. Selishcheva
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., Moscow 123182, Russia
| | - Nikolai N. Sluchanko
- Federal Research Center of Biotechnology, Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| | - Evgeny A. Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory St., Moscow 119991, Russia
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, Moscow 119991, Russia
- Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Str., Troitsk, Moscow 108840, Russia
| | - Eugene G. Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory St., Moscow 119991, Russia
| |
Collapse
|
12
|
Jalali-Jivan M, Rostamabadi H, Assadpour E, Tomas M, Capanoglu E, Alizadeh-Sani M, Kharazmi MS, Jafari SM. Recent progresses in the delivery of β-carotene: From nano/microencapsulation to bioaccessibility. Adv Colloid Interface Sci 2022; 307:102750. [PMID: 35987014 DOI: 10.1016/j.cis.2022.102750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022]
Abstract
Beta-carotene (BC) as an efficient pro-vitamin is effective in improving vision, immune system and cognitive function as well as preventing coronary diseases and cancer. However, besides its poor chemical stability, the high lipophilic nature of BC reduces its dispersibility and consequently bioavailability which limits its application into food, pharmaceutical and nutraceuticals. Different carriers with vesicular or particulate structures have been studied and utilized for promoting BC solubility, dispersibility, and protection against diverse operational or environmental stresses and also controlling BC release and subsequent bioaccessibility. The current study, therefore reviews different micro/nanocarriers reported on BC encapsulation with special focusing on its bioavailability. Liposomal structures have been successfully used for enhancing BC stability and bioavailability. Besides, emulsion-based carriers including Pickering emulsions, nanoemulsions and microemulsions have been widely evaluated for BC encapsulation and protection. In addition, lipid-based nanoparticles and nanostructural carriers have also been applied successfully for this context. Moreover, gel structures including emulgels, hydrogels and oleogels are studied in some researches. Most of these delivery systems led to higher hydro-solubility and dispersibility of BC which consequently increased its bioavailability; thereupon could promote its application into food, cosmetic and nutraceutical products. However, for remarkable incorporation of BC and other bioactive compounds into edible products, the safety and toxicological aspects of these delivery system especially those designed in nano scale should be addressed in the further researches.
Collapse
Affiliation(s)
- Mehdi Jalali-Jivan
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Elham Assadpour
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain
| | - Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303, Halkali, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Mahmood Alizadeh-Sani
- Division of Food Safety and Hygiene, Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
13
|
Khuntia A, Kumar R, Premjit Y, Mitra J. Release behavior of vitamin C nanoliposomes from starch–vitamin C active packaging films. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Anjali Khuntia
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Rahul Kumar
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Yashaswini Premjit
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Jayeeta Mitra
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| |
Collapse
|
14
|
Khan I, Needham R, Yousaf S, Houacine C, Islam Y, Bnyan R, Sadozai SK, Elrayess MA, Elhissi A. Impact of phospholipids, surfactants and cholesterol selection on the performance of transfersomes vesicles using medical nebulizers for pulmonary drug delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102822] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Raeisi Estabragh MA, Pardakhty A, Ahmadzadeh S, Dabiri S, Malekpour Afshar R, Farajli Abbasi M. Successful Application of Alpha Lipoic Acid Niosomal Formulation in Cerebral Ischemic Reperfusion Injury in Rat Model. Adv Pharm Bull 2021; 12:541-549. [PMID: 35935040 PMCID: PMC9348526 DOI: 10.34172/apb.2022.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/31/2021] [Accepted: 09/11/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: Free radicals such as hydroxyl and peroxide are contributing factors to neuronal destruction in cerebral ischemia. Alpha-lipoic acid (ALA) is one of the potent known antioxidants. Preparation of ALA niosomes allows IV injection and can increase bioavailability and penetration into the central nervous system (CNS).
Methods: Film hydration method was used to prepare different niosomes composed of Span®, Tween®, and cholesterol at different molar ratio. ALA and niosome-forming compounds were dissolved in chloroform, before removing the organic solvent by rotary evaporator. Animals were randomly divided into four groups: Sham, control group, intravenous (IV) injection of empty niosomes plus intraperitoneal (IP) injection of ALA solution, and finally, IV injection of ALA niosomes. Rats were subjected to deep anesthesia before inducing cerebral ischemia, then, their internal common carotid arteries were clamped for 15 min and reperfusion was done for 30 min. Niosomal ALA was injected intravenously just before declamping.
Results: Mean volume diameter of the prepared niosomes was between 4.36 ± 0.82 and 19.95 ± 1.21 μm in different formulations. Encapsulation efficiency percent (EE%) of ALA in the selected formulation, Span60/Tween60/cholesterol (35:35:30 molar ratio), was 94.5 ± 0.2, and 59.27 ± 5.61% of ALA was released after 4h. In the niosomal group, the rate of reduction in complications of cerebral ischemia such as histopathologic changes and acute damage (from score 3 to 1) in CNS was higher than other groups.
Conclusion: The obtained results show that niosomes can be used as effective drug delivery systems for ALA in cerebral ischemia.
Collapse
Affiliation(s)
- Mohammad Amin Raeisi Estabragh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeid Ahmadzadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Malekpour Afshar
- Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Farajli Abbasi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front Bioeng Biotechnol 2021; 9:705886. [PMID: 34568298 PMCID: PMC8459376 DOI: 10.3389/fbioe.2021.705886] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Liposomes are essentially a subtype of nanoparticles comprising a hydrophobic tail and a hydrophilic head constituting a phospholipid membrane. The spherical or multilayered spherical structures of liposomes are highly rich in lipid contents with numerous criteria for their classification, including structural features, structural parameters, and size, synthesis methods, preparation, and drug loading. Despite various liposomal applications, such as drug, vaccine/gene delivery, biosensors fabrication, diagnosis, and food products applications, their use encounters many limitations due to physico-chemical instability as their stability is vigorously affected by the constituting ingredients wherein cholesterol performs a vital role in the stability of the liposomal membrane. It has well established that cholesterol exerts its impact by controlling fluidity, permeability, membrane strength, elasticity and stiffness, transition temperature (Tm), drug retention, phospholipid packing, and plasma stability. Although the undetermined optimum amount of cholesterol for preparing a stable and controlled release vehicle has been the downside, but researchers are still focused on cholesterol as a promising material for the stability of liposomes necessitating explanation for the stability promotion of liposomes. Herein, the prior art pertaining to the liposomal appliances, especially for drug delivery in cancer therapy, and their stability emphasizing the roles of cholesterol.
Collapse
Affiliation(s)
- Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
- Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia
- Master’s Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology, and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| |
Collapse
|
17
|
Rizk S, Henke P, Santana-Molina C, Martens G, Gnädig M, Nguyen NA, Devos DP, Neumann-Schaal M, Saenz JP. Functional diversity of isoprenoid lipids in Methylobacterium extorquens PA1. Mol Microbiol 2021; 116:1064-1078. [PMID: 34387371 DOI: 10.1111/mmi.14794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
Hopanoids and carotenoids are two of the major isoprenoid-derived lipid classes in prokaryotes that have been proposed to have similar membrane ordering properties as sterols. Methylobacterium extorquens contains hopanoids and carotenoids in their outer membrane, making them an ideal system to investigate the role of isoprenoid lipids in surface membrane function and cellular fitness. By genetically knocking out hpnE, and crtB we disrupted the production of squalene, and phytoene in Methylobacterium extorquens PA1, which are the presumed precursors for hopanoids and carotenoids, respectively. Deletion of hpnE revealed that carotenoid biosynthesis utilizes squalene as a precursor resulting in pigmentation with a C30 backbone, rather than the previously predicted canonical C40 phytoene-derived pathway. Phylogenetic analysis suggested that M. extorquens may have acquired the C30 pathway through lateral gene transfer from Planctomycetes. Surprisingly, disruption of carotenoid synthesis did not generate any major growth or membrane biophysical phenotypes, but slightly increased sensitivity to oxidative stress. We further demonstrated that hopanoids but not carotenoids are essential for growth at higher temperatures, membrane permeability and tolerance of low divalent cation concentrations. These observations show that hopanoids and carotenoids serve diverse roles in the outer membrane of M. extorquens PA1.
Collapse
Affiliation(s)
- Sandra Rizk
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | - Petra Henke
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Carlos Santana-Molina
- Centro Andaluz de Biologıa del Desarrollo (CABD)-CSIC, Junta de Andalucıa, Universidad Pablo de Olavide, Seville, Spain
| | - Gesa Martens
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Marén Gnädig
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | | | - Damien P Devos
- Centro Andaluz de Biologıa del Desarrollo (CABD)-CSIC, Junta de Andalucıa, Universidad Pablo de Olavide, Seville, Spain
| | - Meina Neumann-Schaal
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - James P Saenz
- Technische Universität Dresden, B CUBE, Dresden, Germany
| |
Collapse
|
18
|
Rios D, Boteon AP, Di Leone CCL, Castelluccio TT, Mendonça FL, Ionta FQ, Buzalaf MAR, Carvalho TS. Vitamin E: A potential preventive approach against dental erosion-an in vitro short-term erosive study. J Dent 2021; 113:103781. [PMID: 34400251 DOI: 10.1016/j.jdent.2021.103781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/27/2021] [Accepted: 08/07/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES This study evaluated the in vitro effect of different components of palm oil on enamel in a short-term erosive challenge. METHODS The acquired enamel pellicle (AEP) was previously formed in situ for 2 h. Subsequently, the bovine enamel blocks were treated in vitro according to following solutions: G1-palm oil; G2-85% tocotrienol solution; G3-oily vitamin E; G4-oily vitamin A; G5-deionized water (negative control); G6-stannous-containing solution (Elmex® Erosion Protection Dental Rinse) (positive control). After application of the treatment solutions (500 µl, 30 s), the blocks were immersed in 0.5% citric acid (pH 2.4) during 30 s (initial erosion). The response variable was the percentage of surface hardness loss. Data were analyzed by one-way ANOVA and Fisher's Test (p < 0.05). RESULTS The positive control (G6), palm oil (G1) and oily vitamin E (G3) groups presented the lowest percentage of surface hardness loss, and were statistically different from the negative group (G5) (p < 0.05), and no differences were found between these three groups. The 85% tocotrienol solution (G2) and oily vitamin A groups (G4) were not different to the negative control group. CONCLUSIONS Stannous-containing positive control (Elmex® Erosion Protection), palm oil and oily Vitamin E were able to protect enamel against the erosive challenge performed in this in vitro study. In addition, vitamin E is probably the key ingredient of palm oil responsible for preventing enamel erosion. CLINICAL SIGNIFICANCE Vitamin E presented similar preventive effect to a commercial mouthwash stannous-containing solution (Elmex® Erosion Protection) against initial erosion and, it can be considered as a promising natural alternative for the formulations of solutions aiming to prevent erosive tooth wear.
Collapse
Affiliation(s)
- Daniela Rios
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Ana Paula Boteon
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Camilla Cristina Lira Di Leone
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Tainara Tonon Castelluccio
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Fernanda Lyrio Mendonça
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | | | | - Thiago Saads Carvalho
- Department of Preventive, Restorative and Pediatric Dentistry, University of Berne, Berne, Switzerland
| |
Collapse
|
19
|
Widomska J, Gruszecki WI, Subczynski WK. Factors Differentiating the Antioxidant Activity of Macular Xanthophylls in the Human Eye Retina. Antioxidants (Basel) 2021; 10:601. [PMID: 33919673 PMCID: PMC8070478 DOI: 10.3390/antiox10040601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Macular xanthophylls, which are absorbed from the human diet, accumulate in high concentrations in the human retina, where they efficiently protect against oxidative stress that may lead to retinal damage. In addition, macular xanthophylls are uniquely spatially distributed in the retina. The zeaxanthin concentration (including the lutein metabolite meso-zeaxanthin) is ~9-fold greater than lutein concentration in the central fovea. These numbers do not correlate at all with the dietary intake of xanthophylls, for which there is a dietary zeaxanthin-to-lutein molar ratio of 1:12 to 1:5. The unique spatial distributions of macular xanthophylls-lutein, zeaxanthin, and meso-zeaxanthin-in the retina, which developed during evolution, maximize the protection of the retina provided by these xanthophylls. We will correlate the differences in the spatial distributions of macular xanthophylls with their different antioxidant activities in the retina. Can the major protective function of macular xanthophylls in the retina, namely antioxidant actions, explain their evolutionarily determined, unique spatial distributions? In this review, we will address this question.
Collapse
Affiliation(s)
- Justyna Widomska
- Department of Biophysics, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Wieslaw I. Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| | - Witold K. Subczynski
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| |
Collapse
|
20
|
Yablonskii S, Bodnarchuk V, Geivandov A, Romero-Hasler P, Soto-Bustamante E, Morales J. Dember photovoltaic effect as method for structural characterization of phospholipidic membranes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Sánchez-López E, Paús A, Pérez-Pomeda I, Calpena A, Haro I, Gómara MJ. Lipid Vesicles Loaded with an HIV-1 Fusion Inhibitor Peptide as a Potential Microbicide. Pharmaceutics 2020; 12:E502. [PMID: 32486415 PMCID: PMC7355883 DOI: 10.3390/pharmaceutics12060502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/21/2023] Open
Abstract
The effective use of fusion inhibitor peptides against cervical and colorectal infections requires the development of sustained release formulations. In this work we comparatively study two different formulations based on polymeric nanoparticles and lipid vesicles to propose a suitable delivery nanosystem for releasing an HIV-1 fusion inhibitor peptide in vaginal mucosa. Polymeric nanoparticles of poly-d,l-lactic-co-glycolic acid (PLGA) and lipid large unilamellar vesicles loaded with the inhibitor peptide were prepared. Both formulations showed average sizes and polydispersity index values corresponding to monodisperse systems appropriate for vaginal permeation. High entrapment efficiency of the inhibitor peptide was achieved in lipid vesicles, which was probably due to the peptide's hydrophobic nature. In addition, both nanocarriers remained stable after two weeks stored at 4 °C. While PLGA nanoparticles (NPs) did not show any delay in peptide release, lipid vesicles demonstrated favorably prolonged release of the peptide. Lipid vesicles were shown to improve the retention of the peptide on ex vivo vaginal tissue in a concentration sufficient to exert its pharmacological effect. Thus, the small size of lipid vesicles, their lipid-based composition as well as their ability to enhance peptide penetration on vaginal tissue led us to consider this formulation as a better nanosystem than polymeric nanoparticles for the sustained delivery of the HIV-1 fusion inhibitor peptide in vaginal tissues.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
| | - Anna Paús
- Unit of Synthesis and Biomedical Applications of Peptides, Department of Biological Chemistry, IQAC−CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (A.P.); (I.P.-P.); (I.H.); (M.J.G.)
| | - Ignacio Pérez-Pomeda
- Unit of Synthesis and Biomedical Applications of Peptides, Department of Biological Chemistry, IQAC−CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (A.P.); (I.P.-P.); (I.H.); (M.J.G.)
| | - Ana Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Isabel Haro
- Unit of Synthesis and Biomedical Applications of Peptides, Department of Biological Chemistry, IQAC−CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (A.P.); (I.P.-P.); (I.H.); (M.J.G.)
| | - María José Gómara
- Unit of Synthesis and Biomedical Applications of Peptides, Department of Biological Chemistry, IQAC−CSIC, Jordi Girona 18, 08034 Barcelona, Spain; (A.P.); (I.P.-P.); (I.H.); (M.J.G.)
| |
Collapse
|
22
|
Seel W, Baust D, Sons D, Albers M, Etzbach L, Fuss J, Lipski A. Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus. Sci Rep 2020; 10:330. [PMID: 31941915 PMCID: PMC6962212 DOI: 10.1038/s41598-019-57006-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/19/2019] [Indexed: 01/10/2023] Open
Abstract
Carotenoids are associated with several important biological functions as antenna pigments in photosynthesis or protectives against oxidative stress. Occasionally they were also discussed as part of the cold adaptation mechanism of bacteria. For two Staphylococcus xylosus strains we demonstrated an increased content of staphyloxanthin and other carotenoids after growth at 10 °C but no detectable carotenoids after grow at 30 °C. By in vivo measurements of generalized polarization and anisotropy with two different probes Laurdan and TMA-DPH we detected a strong increase in membrane order with a simultaneous increase in membrane fluidity at low temperatures accompanied by a broadening of the phase transition. Increased carotenoid concentration was also correlated with an increased resistance of the cells against freeze-thaw stress. In addition, the fatty acid profile showed a moderate adaptation to low temperature by increasing the portion of anteiso-branched fatty acids. The suppression of carotenoid synthesis abolished the effects observed and thus confirmed the causative function of the carotenoids in the modulation of membrane parameters. A differential transcriptome analysis demonstrated the upregulation of genes involved in carotenoid syntheses under low temperature growth conditions. The presented data suggests that upregulated synthesis of carotenoids is a constitutive component in the cold adaptation strategy of Staphylococcus xylosus and combined with modifications of the fatty acid profile constitute the adaptation to grow under low temperature conditions.
Collapse
Affiliation(s)
- Waldemar Seel
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institute of Nutritional and Food Science, Food Microbiology and Hygiene, 53115, Bonn, Germany
| | - Denise Baust
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institute of Nutritional and Food Science, Food Microbiology and Hygiene, 53115, Bonn, Germany
| | - Dominik Sons
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institute of Nutritional and Food Science, Food Microbiology and Hygiene, 53115, Bonn, Germany
| | - Maren Albers
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institute of Nutritional and Food Science, Food Microbiology and Hygiene, 53115, Bonn, Germany
| | - Lara Etzbach
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institute of Nutritional and Food Science, Molecular Food Technology, 53115, Bonn, Germany
| | - Janina Fuss
- Max Planck-Genome-Centre Cologne, 50829, Cologne, Germany
- Institute of Clinical Molecular Biology, Kiel University (CAU)/University Hospital Schleswig Holstein, 24105, Kiel, Germany
| | - André Lipski
- Rheinische Friedrich-Wilhelms-Universität Bonn, Institute of Nutritional and Food Science, Food Microbiology and Hygiene, 53115, Bonn, Germany.
| |
Collapse
|
23
|
Elkholy NS, Shafaa MW, Mohammed HS. Biophysical characterization of lutein or beta carotene-loaded cationic liposomes. RSC Adv 2020; 10:32409-32422. [PMID: 35685615 PMCID: PMC9127840 DOI: 10.1039/d0ra05683a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
The interactions between carotenoids and membrane constituents are vital for understanding the mechanism of their dynamic action. Lutein and beta-carotene were loaded separately into the bilayer of dipalmitoylphosphatidylcholine (DPPC) mixed at a molar ratio with l-α-phosphatidylethanolamine derived from sheep brain (cephalin) and stearylamine (SA) to form cationic liposomes. The molecular interaction between lutein or beta-carotene with cationic liposomes was studied using transmission electron microscopy (TEM), dynamic light scattering (DLS), differential scanning calorimetry (DSC), and Fourier transform infrared (FTIR) spectroscopy. Encapsulation efficiency (EE %) and in vitro drug release were determined. The DLS measurements confirmed the mono-dispersity of all samples. TEM results revealed that liposomal samples were oval-shaped and there was a change in their morphology and size upon encapsulation of lutein or beta-carotene. Beta-carotene was observed to adhere to the boundary surface within the liposomal assembly with external morphological alterations. EE% of lutein and beta-carotene exceeded 98.8 ± 0.3% and 87 ± 4%, respectively. Lutein doped with cationic liposomes shows better in vitro release stability (about 30%) than beta-carotene (about 45%) between the 3rd and the 6th hour manifested by lower leakage rate percentage of lutein which would lead to higher lutein retention. The incorporated lutein resulted in broadening and shifting of the major endothermic peak of the co-liposomes, while the incorporation of beta-carotene did not induce a noticeable shift. An FTIR study was employed to reveal structure alterations in the vesicles after the encapsulation of lutein or beta-carotene into liposomes. Encapsulation of lutein or beta-carotene into liposomes induced a change in the frequency of the symmetric and asymmetric CH2 stretching bands in the acyl chain that may influence the order of the membrane. The interactions between carotenoids and membrane constituents are vital for understanding the mechanism of their dynamic action.![]()
Collapse
Affiliation(s)
- Nourhan S. Elkholy
- Medical Biophysics Division
- Physics Department
- Faculty of Science
- Helwan University
- Cairo
| | - Medhat W. Shafaa
- Medical Biophysics Division
- Physics Department
- Faculty of Science
- Helwan University
- Cairo
| | | |
Collapse
|
24
|
Wei X, Chen N, Tang B, Luo X, You W, Ke C. Untargeted metabolomic analysis of the carotenoid-based orange coloration in Haliotis gigantea using GC-TOF-MS. Sci Rep 2019; 9:14545. [PMID: 31601972 PMCID: PMC6787195 DOI: 10.1038/s41598-019-51117-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Seafood coloration is typically considered an indicator of quality and nutritional value by consumers. One such seafood is the Xishi abalone (Haliotis gigantea), which displays muscle color polymorphism wherein a small subset of individuals display orange coloration of muscles due to carotenoid enrichment. However, the metabolic basis for carotenoid accumulation has not been thoroughly investigated in marine mollusks. Here, GC-TOF-MS-based untargeted metabolite profiling was used to identify key pathways and metabolites involved in differential carotenoid accumulation in abalones with variable carotenoid contents. Cholesterol was the most statistically significant metabolite that differentiated abalones with orange muscles against those with common white muscles. This observation is likely due to the competitive interactions between cholesterol and carotenoids during cellular absorption. In addition, the accumulation of carotenoids was also related to fatty acid contents. Overall, this study indicates that metabolomics can reflect physiological changes in organisms and provides a useful framework for exploring the mechanisms underlying carotenoid accumulation in abalone types.
Collapse
Affiliation(s)
- Xiaohui Wei
- State Key Laboratory of Marine Environmental Science, Xiamen, 361002, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361002, China
- College of the Environment & Ecology, Xiamen University, Xiamen, 361002, China
| | - Nan Chen
- State Key Laboratory of Marine Environmental Science, Xiamen, 361002, China
- College of the Environment & Ecology, Xiamen University, Xiamen, 361002, China
| | - Bin Tang
- State Key Laboratory of Marine Environmental Science, Xiamen, 361002, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361002, China
- College of the Environment & Ecology, Xiamen University, Xiamen, 361002, China
| | - Xuan Luo
- College of the Environment & Ecology, Xiamen University, Xiamen, 361002, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, 361002, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen, 361002, China.
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361002, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, 361002, China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen, 361002, China.
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361002, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, 361002, China.
| |
Collapse
|
25
|
Kumar SV, Taylor G, Hasim S, Collier CP, Farmer AT, Campagna SR, Bible AN, Doktycz MJ, Morrell-Falvey J. Loss of carotenoids from membranes of Pantoea sp. YR343 results in altered lipid composition and changes in membrane biophysical properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1338-1345. [PMID: 31095944 DOI: 10.1016/j.bbamem.2019.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 10/26/2022]
Abstract
Bacterial membranes are complex mixtures of lipids and proteins, the combination of which confers biophysical properties that allows cells to respond to environmental conditions. Carotenoids are sterol analogs that are important for regulating membrane dynamics. The membrane of Pantoea sp. YR343 is characterized by the presence of the carotenoid zeaxanthin, and a carotenoid-deficient mutant, ΔcrtB, displays defects in root colonization, reduced secretion of indole-3-acetic acid, and defects in biofilm formation. Here we demonstrate that the loss of carotenoids results in changes to the membrane lipid composition in Pantoea sp. YR343, including increased amounts of unsaturated fatty acids in the ΔcrtB mutant membranes. These mutant cells displayed less fluid membranes in comparison to wild type cells as measured by fluorescence anisotropy of whole cells. Studies with artificial systems, however, have shown that carotenoids impart membrane rigidifying properties. Thus, we examined membrane fluidity using spheroplasts and vesicles composed of lipids extracted from either wild type or mutant cells. Interestingly, with the removal of the cell wall and membrane proteins, ΔcrtB vesicles were more fluid than vesicles made from lipids extracted from wild type cells. In addition, carotenoids appeared to stabilize membrane fluidity during rapidly changing temperatures. Taken together, these results suggest that Pantoea sp. YR343 compensates for the loss of carotenoids by changing lipid composition, which together with membrane proteins, results in reduced membrane fluidity. These changes may influence the abundance or function of membrane proteins that are responsible for the physiological changes observed in the ΔcrtB mutant cells.
Collapse
Affiliation(s)
- Sushmitha Vijaya Kumar
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Graham Taylor
- UT-ORNL Joint Institute for Biological Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Sahar Hasim
- Department of Biology, Columbus State University, Columbus, GA, USA
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Abigail T Farmer
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Amber N Bible
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Mitchel J Doktycz
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jennifer Morrell-Falvey
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA; Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
26
|
Hamed A, Osman R, Al-Jamal KT, Holayel SM, Geneidi AS. Enhanced antitubercular activity, alveolar deposition and macrophages uptake of mannosylated stable nanoliposomes. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Hudiyanti D, Aminah S, Hikmahwati Y, Siahaan P. Cholesterol implications on coconut liposomes encapsulation of beta-carotene and vitamin C. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/509/1/012037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Assadpour E, Mahdi Jafari S. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit Rev Food Sci Nutr 2018; 59:3129-3151. [PMID: 29883187 DOI: 10.1080/10408398.2018.1484687] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Today, there is an ever-growing interest on natural food ingredients both by consumers and producers in the food industry. In fact, people are looking for those products in the market which are free from artificial and synthetic additives and can promote their health. These food bioactive ingredients should be formulated in such a way that protects them against harsh process and environmental conditions and safely could be delivered to the target organs and cells. Nanoencapsulation is a perfect strategy for this situation and there have been many studies in recent years for nanoencapsulation of food components and nutraceuticals by different technologies. In this review paper, our main goal is firstly to have an overview of nanoencapsulation techniques applicable to food ingredients in a systematic classification, i.e., lipid-based nanocarriers, nature-inspired nanocarriers, special-equipment-based nanocarriers, biopolymer nanocarriers, and other miscellaneous nanocarriers. Then, application of these cutting-edge nanocarriers for different nutraceuticals including phenolic compounds and antioxidants, natural food colorants, antimicrobial agents and essential oils, vitamins, minerals, flavors, fish oils and essential fatty acids will be discussed along with presenting some examples in each field.
Collapse
Affiliation(s)
- Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
29
|
Emam SE, Ando H, Abu Lila AS, Shimizu T, Ukawa M, Okuhira K, Ishima Y, Mahdy MA, Ghazy FES, Ishida T. A Novel Strategy to Increase the Yield of Exosomes (Extracellular Vesicles) for an Expansion of Basic Research. Biol Pharm Bull 2018; 41:733-742. [PMID: 29709910 DOI: 10.1248/bpb.b17-00919] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Exosomes are tiny extracellular vesicles that are usually harvested in small quantities. Such small yield has been an obstacle for the expansion of the basic research regarding exosome analysis and applications in drug delivery. To increase exosome yield, we attempted to stimulate tumor cells via the addition of liposomes in vitro. Neutral, cationic-bare or PEGylated liposomes were incubated with four different tumor cell lines. The stimulatory effect of liposomal formulations on exosome secretion and cellular uptake propensity of the collected exosome by mother cells or different cells was evaluated. Both neutral and cationic-bare liposomes enhanced exosome secretion in a dose-dependent manner. Fluid cationic liposomes provided the strongest stimulation. Surprisingly, the PEGylation of bare liposomes diminished exosome secretion. Exosomes harvested in the presence of fluid cationic liposomes showed increased cellular uptake, but solid cationic liposomes did not. Our findings indicate that the physicochemical properties of liposomes determine whether they will act as a stimulant or as a depressant on exosome secretion from tumor cells. Liposomal stimulation may be a useful strategy to increase exosome yield, although further preparation to increase the purity of exosomes may be needed. In addition, fine-tuning of the biological properties of induced exosomes could be achieved via controlling the physicochemical properties of the stimulant liposomes.
Collapse
Affiliation(s)
- Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Amr Selim Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University.,Department of Pharmaceutics, College of Pharmacy, Hail University
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Masami Ukawa
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Keiichiro Okuhira
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Mahmoud A Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University
| | - Fakhr-Eldin S Ghazy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
30
|
Jovanović AA, Balanč BD, Ota A, Ahlin Grabnar P, Djordjević VB, Šavikin KP, Bugarski BM, Nedović VA, Poklar Ulrih N. Comparative Effects of Cholesterol and β-Sitosterol on the Liposome Membrane Characteristics. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800039] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Aleksandra A. Jovanović
- Faculty of Technology and Metallurgy; Department of Chemical Engineering; University of Belgrade; Karnegijeva 4 11000 Belgrade Serbia
| | - Bojana D. Balanč
- Faculty of Technology and Metallurgy; Department of Chemical Engineering; University of Belgrade; Karnegijeva 4 11000 Belgrade Serbia
| | - Ajda Ota
- Biotechnical Faculty; Department of Food Science and Technology; University of Ljubljana; Jamnikarjeva 101 1000 Ljubljana Slovenia
| | - Pegi Ahlin Grabnar
- Faculty of Pharmacy; Department of Pharmaceutical Technology; University of Ljubljana; Aškerčeva cesta 7 1000 Ljubljana Slovenia
| | - Verica B. Djordjević
- Faculty of Technology and Metallurgy; Department of Chemical Engineering; University of Belgrade; Karnegijeva 4 11000 Belgrade Serbia
| | - Katarina P. Šavikin
- Institute for Medicinal Plant Research “Dr Josif Pančić”; Tadeuša Košćuška 1 11000 Belgrade Serbia
| | - Branko M. Bugarski
- Faculty of Technology and Metallurgy; Department of Chemical Engineering; University of Belgrade; Karnegijeva 4 11000 Belgrade Serbia
| | - Viktor A. Nedović
- Faculty of Agriculture; Department of Food Technology and Biochemistry; University of Belgrade; Nemanjina 6 11080 Belgrade Serbia
| | - Nataša Poklar Ulrih
- Biotechnical Faculty; Department of Food Science and Technology; University of Ljubljana; Jamnikarjeva 101 1000 Ljubljana Slovenia
| |
Collapse
|
31
|
Bnyan R, Khan I, Ehtezazi T, Saleem I, Gordon S, O'Neill F, Roberts M. Surfactant Effects on Lipid-Based Vesicles Properties. J Pharm Sci 2018; 107:1237-1246. [DOI: 10.1016/j.xphs.2018.01.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 11/26/2022]
|
32
|
Dopierała K, Skrzypiec M. Morphology, compressibility and viscoelasticity of the mixed lipid monolayers in the presence of β-carotene. Chem Phys Lipids 2018; 213:88-95. [PMID: 29626417 DOI: 10.1016/j.chemphyslip.2018.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/15/2018] [Accepted: 04/03/2018] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to investigate the interfacial behaviour of model biomembranes in the presence of β-carotene (βC). The Langmuir monolayer technique was used to form the mixed lipid film at the air/water interface. Using the surface pressure-area isotherms, the surface potential-area curves and the Brewster angle microscopy the nature of interactions between carotenoid and lipid components of the monolayers was investigated. The results were obtained for complex models of the lipid bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol (CHOL). It was found that β-carotene affected the membrane stability, fluidity and rigidity, however this influence varied with the DPPC/CHOL ratio. The membrane permeability which is significant for biological functions was found to be affected by the presence of β-carotene in the membrane. The morphology of mixed films visualized by Brewster angle microscopy was similar for DPPC/CHOL and DPPC/CHOL/βC films indicating incorporation of carotenoid into the film. In contrary to previous reports for individual lipids, we did not observed the aggregation of βC in the mixed lipid monolayer. Moreover, from dilatational rheology experiment we concluded about the significant role of β-carotene in modulation of the elastic behaviour of the membrane, especially in physiologically significant surface pressure, i.e. at π = 30 mN/m.
Collapse
Affiliation(s)
- Katarzyna Dopierała
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, -60-695 Poznań, Poland.
| | - Marta Skrzypiec
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, -60-695 Poznań, Poland
| |
Collapse
|
33
|
Rezelj S, Kozorog M, Švigelj T, Ulrih NP, Žnidaršič N, Podobnik M, Anderluh G. Cholesterol Enriched Archaeosomes as a Molecular System for Studying Interactions of Cholesterol-Dependent Cytolysins with Membranes. J Membr Biol 2018; 251:491-505. [DOI: 10.1007/s00232-018-0018-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/05/2018] [Indexed: 12/31/2022]
|
34
|
Influence of cholesterol inclusion on the doxorubicin release characteristics of lysolipid-based thermosensitive liposomes. Int J Pharm 2017; 548:778-782. [PMID: 29126907 DOI: 10.1016/j.ijpharm.2017.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 11/22/2022]
Abstract
Fast hyperthermia (i.e. 39-42 °C) triggered doxorubicin release from lysolipid-containing thermosensitive liposomes (LTSL) in the tumor vasculature has been demonstrated to result in considerable enhancement of bioavailable drug levels in heated tumor tissue in preclinical tumor models. However, there is also significant leakage of doxorubicin already at 37 °C in the bloodstream, making these LTSL less efficient and increasing the risk for systemic toxicity. In conventional liposomes, cholesterol is incorporated in the bilayer to increase the stability of the liposomes. Here, we investigate the effect of cholesterol inclusion on the doxorubicin release characteristics of LTSL at 37 °C and hyperthermic temperatures. For this purpose, three LTSL formulations with 0, 5 and 10 mol% cholesterol were prepared. Inclusion of cholesterol reduced the undesired doxorubicin leakage at 37 °C in Hepes-buffered saline (HBS) as well as in fetal bovine serum (FBS). The incorporation of cholesterol in the LTSL bilayers did not influence the hyperthermia-triggered release property of the LTSL. These results were supported by DSC measurements. Therefore, in conclusion, our data indicate that cholesterol inclusion in LTSL offers a simple solution to the problem of significant leakage of doxorubicin from LTSL already at 37 °C in the bloodstream.
Collapse
|
35
|
Duda M, Kawula K, Pawlak A, Sarna T, Wisniewska-Becker A. EPR Studies on the Properties of Model Photoreceptor Membranes Made of Natural and Synthetic Lipids. Cell Biochem Biophys 2017; 75:433-442. [PMID: 28413858 PMCID: PMC5691102 DOI: 10.1007/s12013-017-0795-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/06/2017] [Indexed: 11/19/2022]
Abstract
The membranes of retina photoreceptors have unique lipid composition. They contain a high concentration of polyunsaturated docosahexaenoic acid, with six double bonds, and are enriched in phosphatidylethanolamines. Based on their phospholipid composition and cholesterol content, membranes of photoreceptors can be divided into three types: plasma membrane, young disks membranes, and old disks membranes. High amount of docosahexaenoic acid, abundant illumination, and high respiratory demands make these membranes sensitive to oxidative stress and lipid peroxidation. Human retinas are not easily available for research, therefore most research is done on bovine retinas. However, to follow, in a controlled manner, the changes in membrane properties caused by different factors it seems advisable to apply carefully prepared models of photoreceptor membranes. Using synthetic lipids we prepared liposome models of three types of photoreceptor membranes, and by means of electron paramagnetic resonance spectroscopy and spin labeling technique we compared polarity and fluidity of those model membranes with the properties of membranes consisting of natural lipids extracted from photoreceptor outer segments of bovine retinas. Additionally, we studied the effect of oxidation on the membrane properties in the presence and in the absence of zeaxanthin, which is an antioxidant naturally present in the human retina. The results show that there are significant differences in polarity and fluidity between all investigated membranes, which reflect differences in their lipid composition. The properties of the membranes made of natural photoreceptor outer segment lipids are most similar to the ones of the models of old disks membranes. Oxidation did not change the membrane properties significantly; however, a slight ordering effect was observed in liposomes made of natural photoreceptor outer segment lipids and in the model of old disks membranes. Zeaxanthin affected polarity and fluidity mostly in the model of old disks membranes. The results show that by careful selection and appropriate proportions of lipid mixtures, it is possible to obtain synthetic membranes of the properties similar to the natural ones.
Collapse
Affiliation(s)
- Mariusz Duda
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Kawula
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH-University of Science and Technology, Kraków, Poland
| | - Anna Pawlak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Tadeusz Sarna
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Wisniewska-Becker
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
36
|
McAndrew RP, Sathitsuksanoh N, Mbughuni MM, Heins RA, Pereira JH, George A, Sale KL, Fox BG, Simmons BA, Adams PD. Structure and mechanism of NOV1, a resveratrol-cleaving dioxygenase. Proc Natl Acad Sci U S A 2016; 113:14324-14329. [PMID: 27911781 PMCID: PMC5167157 DOI: 10.1073/pnas.1608917113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stilbenes are diphenyl ethene compounds produced naturally in a wide variety of plant species and some bacteria. Stilbenes are also derived from lignin during kraft pulping. Stilbene cleavage oxygenases (SCOs) cleave the central double bond of stilbenes, forming two phenolic aldehydes. Here, we report the structure of an SCO. The X-ray structure of NOV1 from Novosphingobium aromaticivorans was determined in complex with its substrate resveratrol (1.89 Å), its product vanillin (1.75 Å), and without any bound ligand (1.61 Å). The enzyme is a seven-bladed β-propeller with an iron cofactor coordinated by four histidines. In all three structures, dioxygen is observed bound to the iron in a side-on fashion. These structures, along with EPR analysis, allow us to propose a mechanism in which a ferric-superoxide reacts with substrate activated by deprotonation of a phenol group at position 4 of the substrate, which allows movement of electron density toward the central double bond and thus facilitates reaction with the ferric superoxide electrophile. Correspondingly, NOV1 cleaves a wide range of other stilbene-like compounds with a 4'-OH group, offering potential in processing some solubilized fragments of lignin into monomer aromatic compounds.
Collapse
Affiliation(s)
- Ryan P McAndrew
- Joint BioEnergy Institute, Emeryville, CA 94608;
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Noppadon Sathitsuksanoh
- Joint BioEnergy Institute, Emeryville, CA 94608
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40292
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292
| | - Michael M Mbughuni
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706
| | - Richard A Heins
- Joint BioEnergy Institute, Emeryville, CA 94608
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94551
| | - Jose H Pereira
- Joint BioEnergy Institute, Emeryville, CA 94608
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Anthe George
- Joint BioEnergy Institute, Emeryville, CA 94608
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94551
| | - Kenneth L Sale
- Joint BioEnergy Institute, Emeryville, CA 94608
- Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, CA 94551
| | - Brian G Fox
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI 53706
- Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI 53706
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA 94608
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Paul D Adams
- Joint BioEnergy Institute, Emeryville, CA 94608;
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, CA 94720
| |
Collapse
|
37
|
Harbi I, Aljaeid B, El-Say KM, Zidan AS. Glycosylated Sertraline-Loaded Liposomes for Brain Targeting: QbD Study of Formulation Variabilities and Brain Transport. AAPS PharmSciTech 2016; 17:1404-1420. [PMID: 26786680 DOI: 10.1208/s12249-016-0481-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/09/2016] [Indexed: 11/30/2022] Open
Abstract
Effectiveness of CNS-acting drugs depends on the localization, targeting, and capacity to be transported through the blood-brain barrier (BBB) which can be achieved by designing brain-targeting delivery vectors. Hence, the objective of this study was to screen the formulation and process variables affecting the performance of sertraline (Ser-HCl)-loaded pegylated and glycosylated liposomes. The prepared vectors were characterized for Ser-HCl entrapment, size, surface charge, release behavior, and in vitro transport through the BBB. Furthermore, the compatibility among liposomal components was assessed using SEM, FTIR, and DSC analysis. Through a thorough screening study, enhancement of Ser-HCl entrapment, nanosized liposomes with low skewness, maximized stability, and controlled drug leakage were attained. The solid-state characterization revealed remarkable interaction between Ser-HCl and the charging agent to determine drug entrapment and leakage. Moreover, results of liposomal transport through mouse brain endothelialpolyoma cells demonstrated greater capacity of the proposed glycosylated liposomes to target the cerebellar due to its higher density of GLUT1 and higher glucose utilization. This transport capacity was confirmed by the inhibiting action of both cytochalasin B and phenobarbital. Using C6 glioma cells model, flow cytometry, time-lapse live cell imaging, and in vivo NIR fluorescence imaging demonstrated that optimized glycosylated liposomes can be transported through the BBB by classical endocytosis, as well as by specific transcytosis. In conclusion, the current study proposed a thorough screening of important formulation and process variabilities affecting brain-targeting liposomes for further scale-up processes.
Collapse
|
38
|
Jeong H, Samdani KJ, Yoo DH, Lee DW, Kim NH, Yoo IS, Lee JH. Resveratrol cross-linked chitosan loaded with phospholipid for controlled release and antioxidant activity. Int J Biol Macromol 2016; 93:757-766. [DOI: 10.1016/j.ijbiomac.2016.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 12/16/2022]
|
39
|
Desmet E, Van Gele M, Lambert J. Topically applied lipid- and surfactant-based nanoparticles in the treatment of skin disorders. Expert Opin Drug Deliv 2016; 14:109-122. [PMID: 27348356 DOI: 10.1080/17425247.2016.1206073] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION In the treatment of dermatological disorders, topical drug administration is a mainstay. However, nanoparticle-based carrier systems could improve and expand the current therapeutic range via localized delivery of active ingredients. Areas covered: This review gives a detailed description of lipid- and surfactant-based drug delivery systems which have been explored for topical drug administration. To guide researchers in their choice of delivery system, an informative decision tree is included. Moreover, this review provides a complete overview of the topical or transdermal drug products, currently on the market or under clinical investigation, delivered via the discussed carriers, in the treatment of skin disorders. Expert opinion: Conventional liposomes are still popular in the domain of topical or transdermal drug delivery and dominate the market landscape. However, several other carriers, such as exosomes and niosomes, are being explored which offer distinct advantages over liposomes and should therefore not be disregarded when selecting a proper drug delivery system.
Collapse
Affiliation(s)
- Eline Desmet
- a Department of Dermatology , Ghent University Hospital , Ghent , Belgium
| | - Mireille Van Gele
- a Department of Dermatology , Ghent University Hospital , Ghent , Belgium
| | - Jo Lambert
- a Department of Dermatology , Ghent University Hospital , Ghent , Belgium
| |
Collapse
|
40
|
Juárez-Osornio C, Gracia-Fadrique J. Structures similar to lipid emulsions and liposomes. Dipalmitoylphosphatidylcholine, cholesterol, Tween 20–Span 20 or Tween 80–Span 80 in aqueous media. J Liposome Res 2016; 27:139-150. [DOI: 10.1080/08982104.2016.1174944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Carlos Juárez-Osornio
- Facultad De Química, Departamento De Fisicoquímica, Universidad Nacional Autónoma De México (UNAM), México D.F., México
| | - Jesús Gracia-Fadrique
- Facultad De Química, Departamento De Fisicoquímica, Universidad Nacional Autónoma De México (UNAM), México D.F., México
| |
Collapse
|
41
|
Desmet E, Bracke S, Forier K, Taevernier L, Stuart MCA, De Spiegeleer B, Raemdonck K, Van Gele M, Lambert J. An elastic liposomal formulation for RNAi-based topical treatment of skin disorders: Proof-of-concept in the treatment of psoriasis. Int J Pharm 2016; 500:268-74. [PMID: 26806466 DOI: 10.1016/j.ijpharm.2016.01.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 10/22/2022]
Abstract
RNA interference (RNAi) is a rapidly emerging approach for targeted gene silencing to alleviate disease pathology. However, lack of efficient carriers for targeted delivery delays the clinical translation of RNAi. An interesting target for local RNAi therapeutics is the skin as it allows direct access to target cells. Still, applications are limited due to the effective skin barrier which hinders penetration. Herein, a description is given of a liposomal carrier, called 'DDC642', capable of delivering RNAi molecules to the epidermis of impaired and intact human skin, without targeting the dermis or circulatory system. In a psoriasis tissue model, down-regulation of the psoriasis marker human beta-defensin 2 by DDC642-delivered siRNA was confirmed, providing proof-of-concept. These liposomes thus hold great potential as topical delivery system for RNAi therapeutics in the treatment of numerous skin diseases.
Collapse
Affiliation(s)
- Eline Desmet
- Department of Dermatology, Ghent University, Ghent, Belgium.
| | - Stefanie Bracke
- Department of Dermatology, Ghent University, Ghent, Belgium.
| | - Katrien Forier
- Department of Pharmaceutics, Ghent University, Ghent, Belgium; Center for Nano and Biophotonics, Ghent University, Ghent, Belgium.
| | - Lien Taevernier
- Department of Pharmaceutical Analysis, Ghent University, Ghent, Belgium.
| | - Marc C A Stuart
- Electron microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| | - Bart De Spiegeleer
- Department of Pharmaceutical Analysis, Ghent University, Ghent, Belgium.
| | - Koen Raemdonck
- Department of Pharmaceutics, Ghent University, Ghent, Belgium.
| | | | - Jo Lambert
- Department of Dermatology, Ghent University, Ghent, Belgium.
| |
Collapse
|
42
|
Widomska J, Zareba M, Subczynski WK. Can Xanthophyll-Membrane Interactions Explain Their Selective Presence in the Retina and Brain? Foods 2016; 5. [PMID: 27030822 PMCID: PMC4809277 DOI: 10.3390/foods5010007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Epidemiological studies demonstrate that a high dietary intake of carotenoids may offer protection against age-related macular degeneration, cancer and cardiovascular and neurodegenerative diseases. Humans cannot synthesize carotenoids and depend on their dietary intake. Major carotenoids that have been found in human plasma can be divided into two groups, carotenes (nonpolar molecules, such as β-carotene, α-carotene or lycopene) and xanthophylls (polar carotenoids that include an oxygen atom in their structure, such as lutein, zeaxanthin and β-cryptoxanthin). Only two dietary carotenoids, namely lutein and zeaxanthin (macular xanthophylls), are selectively accumulated in the human retina. A third carotenoid, meso-zeaxanthin, is formed directly in the human retina from lutein. Additionally, xanthophylls account for about 70% of total carotenoids in all brain regions. Some specific properties of these polar carotenoids must explain why they, among other available carotenoids, were selected during evolution to protect the retina and brain. It is also likely that the selective uptake and deposition of macular xanthophylls in the retina and brain are enhanced by specific xanthophyll-binding proteins. We hypothesize that the high membrane solubility and preferential transmembrane orientation of macular xanthophylls distinguish them from other dietary carotenoids, enhance their chemical and physical stability in retina and brain membranes and maximize their protective action in these organs. Most importantly, xanthophylls are selectively concentrated in the most vulnerable regions of lipid bilayer membranes enriched in polyunsaturated lipids. This localization is ideal if macular xanthophylls are to act as lipid-soluble antioxidants, which is the most accepted mechanism through which lutein and zeaxanthin protect neural tissue against degenerative diseases.
Collapse
Affiliation(s)
- Justyna Widomska
- Department of Biophysics, Medical University of Lublin, 20-090 Lublin, Poland
- Correspondence: ; Tel.: +48-81-479-7169
| | - Mariusz Zareba
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | | |
Collapse
|
43
|
Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain. PLoS One 2015; 10:e0136904. [PMID: 26317757 PMCID: PMC4552625 DOI: 10.1371/journal.pone.0136904] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/09/2015] [Indexed: 11/19/2022] Open
Abstract
Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region—specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.
Collapse
|
44
|
Ercole F, Whittaker MR, Quinn JF, Davis TP. Cholesterol Modified Self-Assemblies and Their Application to Nanomedicine. Biomacromolecules 2015; 16:1886-914. [DOI: 10.1021/acs.biomac.5b00550] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Francesca Ercole
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Michael R. Whittaker
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas P. Davis
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Department
of Chemistry, University of Warwick, Coventry, ULCV4 7AL, United Kingdom
| |
Collapse
|
45
|
Zhu D, Bungart BL, Yang X, Zhumadilov Z, Lee JCM, Askarova S. Role of membrane biophysics in Alzheimer's-related cell pathways. Front Neurosci 2015; 9:186. [PMID: 26074758 PMCID: PMC4444756 DOI: 10.3389/fnins.2015.00186] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/11/2015] [Indexed: 01/04/2023] Open
Abstract
Cellular membrane alterations are commonly observed in many diseases, including Alzheimer's disease (AD). Membrane biophysical properties, such as membrane molecular order, membrane fluidity, organization of lipid rafts, and adhesion between membrane and cytoskeleton, play an important role in various cellular activities and functions. While membrane biophysics impacts a broad range of cellular pathways, this review addresses the role of membrane biophysics in amyloid-β peptide aggregation, Aβ-induced oxidative pathways, amyloid precursor protein processing, and cerebral endothelial functions in AD. Understanding the mechanism(s) underlying the effects of cell membrane properties on cellular processes should shed light on the development of new preventive and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Donghui Zhu
- Department of Chemical, Biological and Bioengineering, North Carolina A&T State UniversityGreensboro, NC, USA
| | - Brittani L. Bungart
- Indiana University School of Medicine Medical Scientist Training Program, Indiana University School of MedicineIndianapolis, IN, USA
| | - Xiaoguang Yang
- Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of GothenburgGothenburg, Sweden
- The Hope Center for Neurological Disorders and Department of Neurology, Washington University School of MedicineSt. Louis, MO, USA
| | - Zhaxybay Zhumadilov
- Department of Bioengineering and Regenerative Medicine, Center for Life Sciences, Nazarbayev UniversityAstana, Kazakhstan
| | - James C-M. Lee
- Department of Bioengineering, University of Illinois at ChicagoChicago, IL, USA
| | - Sholpan Askarova
- Department of Bioengineering and Regenerative Medicine, Center for Life Sciences, Nazarbayev UniversityAstana, Kazakhstan
| |
Collapse
|
46
|
Margină D, Ilie M, Grădinaru D, Androutsopoulos VP, Kouretas D, Tsatsakis AM. Natural products-friends or foes? Toxicol Lett 2015; 236:154-67. [PMID: 25980574 DOI: 10.1016/j.toxlet.2015.05.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/03/2015] [Accepted: 05/11/2015] [Indexed: 01/28/2023]
Abstract
A trend in the general population has been observed in recent years regarding the orientation toward preventive measures in health; in this context the increased interest from the users and researchers concerning the active effect of food supplements on the health state and on longevity, is noticeable. All over the world, the consumption of natural foods and of vegetal supplements has increased spectacularly over the last 5-10 years. The decreased prevalence of cardio-vascular diseases associated with Mediterranean diet, as well as the French paradox convinced researchers to scientifically document the beneficial outcomes pointed out by traditional use of plants, and to try to develop supplements that would have the same positive effects as these noticed for diet components. The intense research dedicated to this topic revealed the fact that food supplements are linked to some problematic aspects, such as toxicological side effects when associated with classical synthetic drugs. The food supplement-drug interactions are submitted to complex issues regarding pharmacokinetic interactions leading to changes in absorption, distribution, metabolism and excretion processes with direct impact on effect and toxicological potential. The present review based on recent literature aims at discussing the food-drug interactions with direct impact on efficacy and toxicity of drugs.
Collapse
Affiliation(s)
- Denisa Margină
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania
| | - Mihaela Ilie
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania.
| | - Daniela Grădinaru
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, 6 Traian Vuia St., 020956 Bucharest, Romania
| | - Vasilis P Androutsopoulos
- University of Crete, Faculty of Medicine, Department of Forensic Sciences & Toxicology, Heraklion, Greece
| | - Demetrios Kouretas
- University of Thessaly, Department of Biochemistry and Biotechnology, Larisa, Greece
| | - Aristidis M Tsatsakis
- University of Crete, Faculty of Medicine, Department of Forensic Sciences & Toxicology, Heraklion, Greece
| |
Collapse
|
47
|
Carvalho JMP, Toniazzo T, Cavalcanti LP, Moraes ICF, Oliveira CLP, Pinho SC. Physico-chemical stability and structural characterization of thickened multilamellar beta-carotene-loaded liposome dispersions produced using a proliposome method. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3594-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Kutuzov NP, Brazhe AR, Maksimov GV, Dracheva OE, Lyaskovskiy VL, Bulygin FV, Rubin AB. Orientational ordering of carotenoids in myelin membranes resolved by polarized Raman microspectroscopy. Biophys J 2015; 107:891-900. [PMID: 25140424 DOI: 10.1016/j.bpj.2014.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/07/2014] [Accepted: 07/01/2014] [Indexed: 10/24/2022] Open
Abstract
We study orientational ordering of membrane compounds in the myelinated nerve fiber by means of polarized Raman microspectroscopy. The theory of orientational distribution functions was adapted to live-cell measurements. The obtained orientational distribution functions of carotenoids and lipid acyl chain clearly indicated a predominantly radial-like orientation in membranes of the myelin. Two-dimensional Raman images, made under optimal polarization of incident laser beam, corroborated the proposed carotenoid orientation within the bilayer. Experimental data suggested the tilted orientation of both carotenoid polyenic and lipid acyl chains. The values of maximum tilt angles were similar, with possible implication of carotenoid-induced ordering effect on lipid acyl chains, and hence change of myelin membrane properties. This study stages carotenoids of the nerve as possible mediators of excitation and leverages underlying activity-dependent membrane reordering.
Collapse
Affiliation(s)
- Nikolay P Kutuzov
- Biophysics Department, Biological Faculty, Moscow State University, Moscow, Russia.
| | - Alexey R Brazhe
- Biophysics Department, Biological Faculty, Moscow State University, Moscow, Russia
| | - Georgy V Maksimov
- Biophysics Department, Biological Faculty, Moscow State University, Moscow, Russia
| | - Olga E Dracheva
- All-Russian Research Institute for Optical and Physical Measurements, Moscow, Russia
| | | | - Fedor V Bulygin
- All-Russian Research Institute for Optical and Physical Measurements, Moscow, Russia
| | - Andrey B Rubin
- Biophysics Department, Biological Faculty, Moscow State University, Moscow, Russia
| |
Collapse
|
49
|
Mastrogiacomo D, Lenucci MS, Bonfrate V, Di Carolo M, Piro G, Valli L, Rescio L, Milano F, Comparelli R, De Leo V, Giotta L. Lipid/detergent mixed micelles as a tool for transferring antioxidant power from hydrophobic natural extracts into bio-deliverable liposome carriers: the case of lycopene rich oleoresins. RSC Adv 2015. [DOI: 10.1039/c4ra12254b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lipid/detergent mixed micelles promote and modulate the incorporation of carotenoids from natural oleoresins into bio-deliverable liposome carriers.
Collapse
Affiliation(s)
- Disma Mastrogiacomo
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali
- Università del Salento
- I-73100 Lecce
- Italy
| | | | - Valentina Bonfrate
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali
- Università del Salento
- I-73100 Lecce
- Italy
| | - Marialuisa Di Carolo
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali
- Università del Salento
- I-73100 Lecce
- Italy
| | - Gabriella Piro
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali
- Università del Salento
- I-73100 Lecce
- Italy
| | - Ludovico Valli
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali
- Università del Salento
- I-73100 Lecce
- Italy
| | | | - Francesco Milano
- CNR – Istituto per i Processi Chimico-Fisici
- Sezione di Bari
- I–70126 Bari
- Italy
| | - Roberto Comparelli
- CNR – Istituto per i Processi Chimico-Fisici
- Sezione di Bari
- I–70126 Bari
- Italy
| | - Vincenzo De Leo
- CNR – Istituto per i Processi Chimico-Fisici
- Sezione di Bari
- I–70126 Bari
- Italy
- Dipartimento di Chimica
| | - Livia Giotta
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali
- Università del Salento
- I-73100 Lecce
- Italy
| |
Collapse
|
50
|
Hu J, Li H, Yang Y, Wang S, Tang P, Li C, Tian G, Yuan Q. Metabolic regulation of α-linolenic acid on β-carotene synthesis in Blakeslea trispora revealed by a GC-MS-based metabolomic approach. RSC Adv 2015. [DOI: 10.1039/c5ra08748a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ALA promoted β-carotene production in two ways: increasing the dissolved oxygen and decreasing the consumption of acetyl-CoA.
Collapse
Affiliation(s)
- Jing Hu
- State Key Laboratory of Chemical Resource Engineering
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Hao Li
- State Key Laboratory of Chemical Resource Engineering
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yumeng Yang
- State Key Laboratory of Chemical Resource Engineering
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shizeng Wang
- State Key Laboratory of Chemical Resource Engineering
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Pingwah Tang
- State Key Laboratory of Chemical Resource Engineering
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Chunfang Li
- Beijing Industrial Technician College
- Beijing 100023
- China
| | - Guifang Tian
- State Key Laboratory of Chemical Resource Engineering
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|