1
|
Shan R, Zhang Y, Shi Y, Wang X, Wang X, Ma G, Li Q. Activation of Cannabinoid Type 2 Receptor in Microglia Reduces Neuroinflammation through Inhibiting Aerobic Glycolysis to Relieve Hypertension. Biomolecules 2024; 14:333. [PMID: 38540753 PMCID: PMC10967819 DOI: 10.3390/biom14030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Studies have shown that the chronic use of cannabis is associated with a decrease in blood pressure. Our previous studies prove that activating the cannabinoid type 2 (CB2) receptor in the brain can effectively reduce blood pressure in spontaneously hypertensive rats; however, the exact mechanism has not been clarified. The objective of this study is to demonstrate that activation of microglial CB2 receptors can effectively reduce the levels of TNF-α, IL-1β, and IL-6 in the paraventricular nucleus (PVN) through inhibiting aerobic glycolysis, thereby relieving hypertension. METHODS AngiotensinII (AngII) was administered to BV2 cells and C57 mice to induce hypertension and the release of proinflammatory cytokines. The mRNA and protein expression of the CB2 receptor, TNF-α, IL-1β, IL-6, and the PFK and LDHa enzymes were detected using RT-qPCR and Western blotting. The Seahorse XF Energy Metabolism Analyzer was used to measure the oxidative phosphorylation and aerobic glycolysis metabolic pathways in BV2 cells. The long-term effects of injecting JWH133, a selective CB2 receptor agonist, intraperitoneally on blood pressure were ascertained. ELISA was used to measure norepinephrine and lactic acid levels while immunofluorescence labeling was used to locate the CB2 receptor and c-Fos. By injecting pAAV-F4/80-GFP-mir30shRNA (AAV2-r-CB2shRNA) into the lateral cerebral ventricle, the CB2 receptor in microglia was specifically knocked down. RESULTS Activation of CB2 receptors by the agonist JWH133 suppressed TNF-α, IL-1β, and IL-6 by inhibiting PFK and LDHa enzymes involved in glycolysis, as well as lactic acid accumulation, along with a reduction in glycoPER levels (marks of aerobic glycolysis) in AngII-treated BV2 cells. In AngII-treated mice, the administration of JWH133 specifically activated CB2 receptors on microglia, resulting in decreased expression levels of PFK, LDHa, TNF-α, IL-1β, and IL-6, subsequently leading to a decrease in c-Fos protein expression within PVN neurons as well as reduced norepinephrine levels in plasma, ultimately contributing to blood pressure reduction. CONCLUSION The results suggest that activation of the microglia CB2 receptor decreases the neuroinflammation to relieve hypertension; the underlying mechanism is related to inhibiting aerobic glycolysis of microglia.
Collapse
Affiliation(s)
- Ruohan Shan
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China; (R.S.); (Y.Z.); (Y.S.); (X.W.); (X.W.); (G.M.)
| | - Yuxiang Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China; (R.S.); (Y.Z.); (Y.S.); (X.W.); (X.W.); (G.M.)
| | - Yiping Shi
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China; (R.S.); (Y.Z.); (Y.S.); (X.W.); (X.W.); (G.M.)
| | - Xiaowen Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China; (R.S.); (Y.Z.); (Y.S.); (X.W.); (X.W.); (G.M.)
| | - Xueke Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China; (R.S.); (Y.Z.); (Y.S.); (X.W.); (X.W.); (G.M.)
| | - Guanying Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China; (R.S.); (Y.Z.); (Y.S.); (X.W.); (X.W.); (G.M.)
| | - Qian Li
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China; (R.S.); (Y.Z.); (Y.S.); (X.W.); (X.W.); (G.M.)
- Cardiovascular Research Platform, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
2
|
Mensah E, Tabrizchi R, Daneshtalab N. Pharmacognosy and Effects of Cannabinoids in the Vascular System. ACS Pharmacol Transl Sci 2022; 5:1034-1049. [PMID: 36407955 PMCID: PMC9667477 DOI: 10.1021/acsptsci.2c00141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/29/2022]
Abstract
Understanding the pharmacodynamics of cannabinoids is an essential subject due to the recent increasing global acceptance of cannabis and its derivation for recreational and therapeutic purposes. Elucidating the interaction between cannabinoids and the vascular system is critical to exploring cannabinoids as a prospective therapeutic agent for treating vascular-associated clinical conditions. This review aims to examine the effect of cannabinoids on the vascular system and further discuss the fundamental pharmacological properties and mechanisms of action of cannabinoids in the vascular system. Data from literature revealed a substantial interaction between endocannabinoids, phytocannabinoids, and synthetic cannabinoids within the vasculature of both humans and animal models. However, the mechanisms and the ensuing functional response is blood vessels and species-dependent. The current understanding of classical cannabinoid receptor subtypes and the recently discovered atypical cannabinoid receptors and the development of new synthetic analogs have further enhanced the pharmacological characterization of the vascular cannabinoid receptors. Compelling evidence also suggest that cannabinoids represent a formidable therapeutic candidate for vascular-associated conditions. Nonetheless, explanations of the mechanisms underlining these processes are complex and paradoxical based on the heterogeneity of receptors and signaling pathways. Further insight from studies that uncover the mechanisms underlining the therapeutic effect of cannabinoids in the treatment of vascular-associated conditions is required to determine whether the known benefits of cannabinoids thus currently outweigh the known/unknown risks.
Collapse
Affiliation(s)
- Eric Mensah
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Reza Tabrizchi
- Faculty
of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL A1C 5S7, Canada
| | - Noriko Daneshtalab
- School
of Pharmacy, Memorial University of Newfoundland
and Labrador, St. John’s, NL A1B 3V6, Canada
| |
Collapse
|
3
|
Chiocchetti R, Galiazzo G, Tagliavia C, Stanzani A, Giancola F, Menchetti M, Militerno G, Bernardini C, Forni M, Mandrioli L. Cellular Distribution of Canonical and Putative Cannabinoid Receptors in Canine Cervical Dorsal Root Ganglia. Front Vet Sci 2019; 6:313. [PMID: 31608295 PMCID: PMC6761858 DOI: 10.3389/fvets.2019.00313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022] Open
Abstract
Growing evidence indicates cannabinoid receptors as potential therapeutic targets for chronic pain. Consequently, there is an increasing interest in developing cannabinoid receptor agonists for treating human and veterinary pain. To better understand the actions of a drug, it is of paramount importance to know the cellular distribution of its specific receptor(s). The distribution of canonical and putative cannabinoid receptors in the peripheral and central nervous system of dogs is still in its infancy. In order to help fill this anatomical gap, the present ex vivo study has been designed to identify the cellular sites of cannabinoid and cannabinoid-related receptors in canine spinal ganglia. In particular, the cellular distribution of the cannabinoid receptors type 1 and 2 (CB1 and CB2) and putative cannabinoid receptors G protein-coupled receptor 55 (GPR55), nuclear peroxisome proliferator-activated receptor alpha (PPARα), and transient receptor potential vanilloid type 1 (TRPV1) have been immunohistochemically investigated in the C6–C8 cervical ganglia of dogs. About 50% of the neuronal population displayed weak to moderate CB1 receptor and TRPV1 immunoreactivity, while all of them were CB2-positive and nearly 40% also expressed GPR55 immunolabeling. Schwann cells, blood vessel smooth muscle cells, and pericyte-like cells all expressed CB2 receptor immunoreactivity, endothelial cell being also PPARα-positive. All the satellite glial cells (SGCs) displayed bright GPR55 receptor immunoreactivity. In half of the study dogs, SGCs were also PPARα-positive, and limited to older dogs displayed TRPV1 immunoreactivity. The present study may represent a morphological substrate to consider in order to develop therapeutic strategies against chronic pain.
Collapse
Affiliation(s)
- Roberto Chiocchetti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Agnese Stanzani
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Fiorella Giancola
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Marika Menchetti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Gianfranco Militerno
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Luciana Mandrioli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Signorello MG, Leoncini G. Anandamide Induces Platelet Nitric Oxide Synthase through AMP-Activated Protein Kinase. Lipids 2018; 53:851-861. [PMID: 30460698 DOI: 10.1002/lipd.12100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/04/2018] [Accepted: 10/08/2018] [Indexed: 12/30/2022]
Abstract
The objective of this study was to determine whether adenosine 5' monophosphate (AMP)-activated protein kinase (AMPK) is activated by anandamide (AEA) and is involved in endothelial nitric oxide synthase (eNOS) activation. We found that AEA stimulates and activates AMPKα through a Ca2+ -dependent/Calmodulin (CaM)-dependent pathway as the specific inhibitor of the Ca2+ /Calmodulin kinase kinase β (CaMKKβ) STO-609 abolishes the AMPK phosphorylation/activation. The same inhibiting effect is shown in platelets pretreated with LY294002, an inhibitor of phosphatidylinositol 3 kinase (PI3K), or with MK2206, an inhibitor of protein kinase B (AKT), suggesting that AMPK is downstream of the PI3K/AKT pathway. Moreover, the AEA-induced eNOS activation and the consequent nitric oxide (NO) and guanosine 3'-5' cyclic monophosphate (cGMP) increase are mediated by the CaMKKβ/AMPKα pathway as STO-609 significantly inhibits these parameters. In contrast, liver kinase B1 (LKB1) seems to be very poorly involved. One crucial effect of NO and cGMP elevation is the activation of protein kinase G that can phosphorylate the vasodilator-stimulated phosphoprotein (VASP). We have demonstrated that AEA stimulates VASP phosphorylation on both thr278 and ser239 that is strongly inhibited by STO-609, LY294002, and MK2206. Finally, AMPK phosphorylation/activation and VASP phosphorylation are significantly reduced by SR141716, the specific inhibitor of type 1 cannabinoid receptor (CB1). SR144528, an antagonist of type 2 cannabinoid receptor (CB2), has a less-potent effect, suggesting that the CB1 receptor is overall involved in the AEA effect. In conclusion, we show that the CaMKKβ/AMPKα pathway, downstream of the PI3K/AKT pathway, is activated by AEA in human platelets and leads to increase NO levels producing beneficial effects during ischemic conditions and contributing to extend platelet survival.
Collapse
Affiliation(s)
- Maria Grazia Signorello
- Department of Pharmacy, Biochemistry Lab, University of Genoa, Viale Benedetto XV 3, I-16132, Genoa, Italy
| | - Giuliana Leoncini
- Department of Pharmacy, Biochemistry Lab, University of Genoa, Viale Benedetto XV 3, I-16132, Genoa, Italy
| |
Collapse
|
5
|
Spectroscopic and molecular modeling probing of biophysical influence of β-casein nano-protein on adrenaline and arachidonoyl adrenaline. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-017-2103-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Assimakopoulou M, Pagoulatos D, Nterma P, Pharmakakis N. Immunolocalization of cannabinoid receptor type 1 and CB2 cannabinoid receptors, and transient receptor potential vanilloid channels in pterygium. Mol Med Rep 2017; 16:5285-5293. [PMID: 28849159 PMCID: PMC5647061 DOI: 10.3892/mmr.2017.7246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
Cannabinoids, as multi-target mediators, activate cannabinoid receptors and transient receptor potential vanilloid (TRPV) channels. There is evidence to support a functional interaction of cannabinoid receptors and TRPV channels when they are coexpressed. Human conjunctiva demonstrates widespread cannabinoid receptor type 1 (CB1), CB2 and TRPV channel localization. The aim of the present study was to investigate the expression profile for cannabinoid receptors (CB1 and CB2) and TRPV channels in pterygium, an ocular surface lesion originating from the conjunctiva. Semi-serial paraffin-embedded sections from primary and recurrent pterygium samples were immunohistochemically examined with the use of specific antibodies. All of the epithelial layers in 94, 78, 96, 73 and 80% of pterygia cases, exhibited CB1, CB2, TRPV1, TRPV2 and TRPV3 cytoplasmic immunoreactivity, respectively. The epithelium of all pterygia cases (100%) showed strong, mainly nuclear, TRPV4 immunolocalization. In the pterygium stroma, scattered cells demonstrated intense CB2 immunoreactivity, whereas vascular endothelial cells were immunopositive for the cannabinoid receptors and all TRPV channels. Quantitative analyses of the immunohistochemical findings in epithelial cells demonstrated a significantly higher expression level in conjunctiva compared with primary pterygia (P=0.04) for CB1, but not for CB2 (P>0.05). Additionally, CB1 and CB2 were significantly highly expressed in primary pterygia (P=0.01), compared with recurrent pterygia. Furthermore, CB1 expression levels were significantly correlated with CB2 expression levels in primary pterygia (P=0.005), but not in recurrent pterygia (P>0.05). No significant difference was detected for all TRPV channel expression levels between pterygium (primary or recurrent) and conjunctival tissues (P>0.05). A significant correlation between the TRPV1 and TRPV3 expression levels (P<0.001) was detected independently of pterygium recurrence. Finally, TRPV channel expression was identified to be significantly higher than the expression level of cannabinoid receptors in the pterygium samples (P<0.001). The differentiated expression of cannabinoid receptors in combination with the presence of TRPV channels, in primary and recurrent pterygia, imply a potential role of these cannabinoid targets in the underlying mechanisms of pterygium.
Collapse
Affiliation(s)
- Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| | - Dionysios Pagoulatos
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| | - Pinelopi Nterma
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| | - Nikolaos Pharmakakis
- Department of Ophthalmology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| |
Collapse
|
7
|
Melis M, Greco B, Tonini R. Interplay between synaptic endocannabinoid signaling and metaplasticity in neuronal circuit function and dysfunction. Eur J Neurosci 2014; 39:1189-201. [PMID: 24712998 DOI: 10.1111/ejn.12501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/23/2013] [Accepted: 01/07/2014] [Indexed: 11/29/2022]
Abstract
Synaptic neuromodulation acts across different functional domains to regulate cognitive processing and behavior. Recent challenges are related to elucidating the molecular and cellular mechanisms through which neuromodulatory pathways act on multiple time scales to signal state-dependent contingencies at the synaptic level or to stabilise synaptic connections during behavior. Here, we present a framework with the synaptic neuromodulators endocannabinoids (eCBs) as key players in dynamic synaptic changes. Modulation of various molecular components of the eCB pathway yields interconnected functional activation states of eCB signaling (prior, tonic, and persistent), which may contribute to metaplastic control of synaptic and behavioral functions in health and disease. The emerging picture supports aberrant metaplasticity as a contributor to cognitive dysfunction associated with several pathological states in which eCB signaling, or other neuromodulatory pathways, are deregulated.
Collapse
Affiliation(s)
- Miriam Melis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | | |
Collapse
|
8
|
Hillard CJ. Stress regulates endocannabinoid-CB1 receptor signaling. Semin Immunol 2014; 26:380-8. [PMID: 24882055 DOI: 10.1016/j.smim.2014.04.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 12/17/2022]
Abstract
The CB1 cannabinoid receptor is a G protein coupled receptor that is widely expressed throughout the brain. The endogenous ligands for the CB1 receptor (endocannabinoids) are N-arachidonylethanolamine and 2-arachidonoylglycerol; together the endocannabinoids and CB1R subserve activity dependent, retrograde inhibition of neurotransmitter release in the brain. Deficiency of CB1 receptor signaling is associated with anhedonia, anxiety, and persistence of negative memories. CB1 receptor-endocannabinoid signaling is activated by stress and functions to buffer or dampen the behavioral and endocrine effects of acute stress. Its role in regulation of neuronal responses is more complex. Chronic variable stress exposure reduces endocannabinoid-CB1 receptor signaling and it is hypothesized that the resultant deficiency in endocannabinoid signaling contributes to the negative consequences of chronic stress. On the other hand, repeated exposure to the same stress can sensitize CB1 receptor signaling, resulting in dampening of the stress response. Data are reviewed that support the hypothesis that CB1 receptor signaling is stress responsive and that maintaining robust endocannabinoid/CB1 receptor signaling provides resilience against the development of stress-related pathologies.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Neuroscience Research Center, Medical College of Wisconsin, United States; Department of Pharmacology and Toxicology, Medical College of Wisconsin, United States.
| |
Collapse
|
9
|
Liu MW, Su MX, Wang YH, Wei W, Qin LF, Liu X, Tian ML, Qian CY. Effect of melilotus extract on lung injury by upregulating the expression of cannabinoid CB2 receptors in septic rats. Altern Ther Health Med 2014; 14:94. [PMID: 24612782 PMCID: PMC3995869 DOI: 10.1186/1472-6882-14-94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 02/24/2014] [Indexed: 11/10/2022]
Abstract
Background M. Suaveolens Ledeb has long been used in China to treat inflammatory infectious diseases. Melilotus is extracted from Melilotus Suaveolens Ledeb and its therapeutic potential is associated with its anti-inflammatory activity. However, the precise mechanisms underlying its effects are unknown. This study was conducted to evaluate the protective effects of melilotus extract in a rat cecal ligation and puncture (CLP)-induced animal model of acute lung injury (ALI). Methods A sepsis model was induced by CLP-like lung inflammation. Two hours prior to CLP administration, the treatment group was administered melilotus extract via oral injection. RT-PCR and Western blotting were used to test the expression of cannabinoid receptor (CB)2, NF-κβ and IκB from single peripheral blood mononuclear cells and lung tissues respectively. Enzyme linked immune sorbent assay was used to detect serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, and IL-12. The numbers of neutrophils, lymphocytes, macrophages and total cells in the bronchoalveolar lavage (BAL) fluid were counted. For histologic analysis, hematoxylin and eosin (H&E) stains were evaluated. Results After inducing ALI by CLP for 24 hours, melilotus extract up-regulated peripheral blood mononuclear cell CB2 expression, blocked the activity of NF-κβ65, and the number of neutrophils, lymphocytes and total cells were significantly lower in the melilotus extract group than the control group. In addition, TNF-α and IL-6 levels were significantly decreased in the melilotus extract group. Histological results demonstrated the attenuation effect of melilotus extract on CLP-induced lung inflammation. CB2 was negatively correlated to NF-κβ mRNA and proteins, respectively (r = -0.377, P < 0.05; r = -0.441, P < 0.05). Conclusion The results of this study indicated melilotus extract significantly reduced CLP-induced lung inflammation by up-regulating CB2 expression. The remarkable protective effects of melilotus extract suggest its therapeutic potential in CLP induced-acute lung injury treatment.
Collapse
|
10
|
Deak AT, Groschner LN, Alam MR, Seles E, Bondarenko AI, Graier WF, Malli R. The endocannabinoid N-arachidonoyl glycine (NAGly) inhibits store-operated Ca2+ entry by preventing STIM1-Orai1 interaction. J Cell Sci 2012; 126:879-88. [PMID: 23239024 DOI: 10.1242/jcs.118075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endocannabiniod anandamide (AEA) and its derivate N-arachidonoyl glycine (NAGly) have a broad spectrum of physiological effects, which are induced by both binding to receptors and receptor-independent modulations of ion channels and transporters. The impact of AEA and NAGly on store-operated Ca(2+) entry (SOCE), a ubiquitous Ca(2+) entry pathway regulating many cellular functions, is unknown. Here we show that NAGly, but not AEA reversibly hinders SOCE in a time- and concentration-dependent manner. The inhibitory effect of NAGly on SOCE was found in the human endothelial cell line EA.hy926, the rat pancreatic β-cell line INS-1 832/13, and the rat basophilic leukemia cell line RBL-2H3. NAGly diminished SOCE independently from the mode of Ca(2+) depletion of the endoplasmic reticulum, whereas it had no effect on Ca(2+) entry through L-type voltage-gated Ca(2+) channels. Enhanced Ca(2+) entry was effectively hampered by NAGly in cells overexpressing the key molecular constituents of SOCE, stromal interacting molecule 1 (STIM1) and the pore-forming subunit of SOCE channels, Orai1. Fluorescence microscopy revealed that NAGly did not affect STIM1 oligomerization, STIM1 clustering, or the colocalization of STIM1 with Orai1, which were induced by Ca(2+) depletion of the endoplasmic reticulum. In contrast, independently from its slow depolarizing effect on mitochondria, NAGly instantly and strongly diminished the interaction of STIM1 with Orai1, indicating that NAGly inhibits SOCE primarily by uncoupling STIM1 from Orai1. In summary, our findings revealed the STIM1-Orai1-mediated SOCE machinery as a molecular target of NAGly, which might have many implications in cell physiology.
Collapse
Affiliation(s)
- Andras T Deak
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Stress activates the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS), resulting in cardiovascular responses. The endocannabinoid system (ECS), a ubiquitously expressed lipid signalling system, modulates both HPA and SNS activity. The purpose of this review is to explore the possible involvement/role of the ECS in the cardiovascular response to stress. The ECS has numerous cardiovascular effects including modulation of blood pressure, heart rate, the baroreflex, and direct vascular actions. It is also involved in a protective manner in response to stressors in cardiac preconditioning, and various stressors (for example, pain, orthostasis and social stress) increase plasma levels of endocannabinoids. Given the multitude of vascular effects of endocannabinoids, this is bound to have consequences. Beneficial effects of ECS upregulation could include cardioprotection, vasodilatation, CB(2)-mediated anti-inflammatory effects and activation of peroxisome proliferator-activated receptors. Negative effects of endocannabinoids could include mediation of the effects of glucocorticoids, CB(1)-mediated metabolic changes, and metabolism to vasoconstrictor products. It is also likely that there is a central role for the ECS in modulating cardiovascular activity via the HPA and SNS. However, much more work is required to fully integrate the role of the ECS in mediating many of the physiological responses to stress, including cardiovascular responses.
Collapse
Affiliation(s)
- Saoirse E O'Sullivan
- School of Graduate Entry Medicine and Health, University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
12
|
Signorello MG, Giacobbe E, Passalacqua M, Leoncini G. The anandamide effect on NO/cGMP pathway in human platelets. J Cell Biochem 2011; 112:924-32. [PMID: 21328466 DOI: 10.1002/jcb.23008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study the effect of the endocannabinoid anandamide on platelet nitric oxide (NO)/cGMP pathway was investigated. Data report that anandamide in a dose-and time-dependent manner increased NO and cGMP levels and stimulated endothelial nitric oxide synthase (eNOS) activity. These parameters were significantly reduced by LY294002, selective inhibitor of PI3K and by MK2206, specific inhibitor of AKT. Moreover anandamide stimulated both eNOSser1177 and AKTser473 phosphorylation. Finally the anandamide effect on NO and cGMP levels, eNOS and AKT phosphorylation/activation were inhibited by SR141716, specific cannabinoid receptor 1 antagonist, supporting the involvement of anandamide binding to this receptor. Overall data of this report indicate that low concentrations of anandamide, through PI3K/AKT pathway activation, stimulates eNOS activity and increases NO levels in human platelets. In such way anandamide contributes to extend platelet survival.
Collapse
|
13
|
Bojesen IN. Direct determination of unbound lipophilic ligands in aqueous solutions. Biol Proced Online 2010; 6:226-34. [PMID: 19565308 PMCID: PMC524038 DOI: 10.1251/bpo93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 08/30/2004] [Accepted: 09/26/2004] [Indexed: 11/23/2022] Open
Abstract
Due to their hydrophobic nature, lipophilic compounds are always bound to proteins when transported in the organism. The transfer of such compounds between their binding proteins and cells as well as intracellular trafficking is mediated by a very low water-phase concentration of monomers. The use of protein filled resealed red cell membranes (erythrocyte ghosts) as semipermeable bags enables us to determine directly such water-phase concentrations in a biological system where the lipophilic compound is in equilibrium with the compound bound to its binding protein. Equilibrium dissociation constants (K(d)'s) and number of binding sites are determined by regression analyses of data. We describe the method with the hydrophobic anion arachidonate and the neutral N-arachidonoylethanolamide as examples.
Collapse
Affiliation(s)
- Inge N Bojesen
- Department of Medical Biochemistry and Genetics, Lab. B., University of Copenhagen, The Panum Institute, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
14
|
Melis M, Pistis M. Endocannabinoid signaling in midbrain dopamine neurons: more than physiology? Curr Neuropharmacol 2010; 5:268-77. [PMID: 19305743 PMCID: PMC2644494 DOI: 10.2174/157015907782793612] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 03/30/2007] [Accepted: 04/03/2007] [Indexed: 11/22/2022] Open
Abstract
Different classes of neurons in the CNS utilize endogenous cannabinoids as retrograde messengers to shape afferent activity in a short- and long-lasting fashion. Transient suppression of excitation and inhibition as well as long-term depression or potentiation in many brain regions require endocannabinoids to be released by the postsynaptic neurons and activate presynaptic CB1 receptors. Memory consolidation and/or extinction and habit forming have been suggested as the potential behavioral consequences of endocannabinoid-mediated synaptic modulation. HOWEVER, ENDOCANNABINOIDS HAVE A DUAL ROLE: beyond a physiological modulation of synaptic functions, they have been demonstrated to participate in the mechanisms of neuronal protection under circumstances involving excessive excitatory drive, glutamate excitotoxicity, hypoxia-ischemia, which are key features of several neurodegenerative disorders. In this framework, the recent discovery that the endocannabinoid 2-arachidonoyl-glycerol is released by midbrain dopaminergic neurons, under both physiological synaptic activity to modulate afferent inputs and pathological conditions such as ischemia, is particularly interesting for the possible implication of these molecules in brain functions and dysfunctions. Since dopamine dysfunctions underlie diverse neuropsychiatric disorders including schizophrenia, psychoses, and drug addiction, the importance of better understanding the correlation between an unbalanced endocannabinoid signal and the dopamine system is even greater. Additionally, we will review the evidence of the involvement of the endocannabinoid system in the pathogenesis of Parkinson's disease, where neuroprotective actions of cannabinoid-acting compounds may prove beneficial.The modulation of the endocannabinoid system by pharmacological agents is a valuable target in protection of dopamine neurons against functional abnormalities as well as against their neurodegeneration.
Collapse
Affiliation(s)
- M Melis
- B.B. Brodie Department of Neuroscience and Center of Excellence for the Neurobiology of Addiction, University of Cagliari, Monserrato, 09042, Italy
| | | |
Collapse
|
15
|
Abstract
Endocannabinoids are part of a bioactive lipid signaling system, not only in the central nervous system but also in various peripheral organs. Accumulating evidence implicates dysregulation of the endocannabinoid system (ECS) in the pathogenesis of various cardiovascular diseases, including hypertension, atherosclerosis, myocardial infarction, hemorrhagic or septic shock, heart failure and cardiovascular complications of liver cirrhosis. Even though the benefit of chronic cannabinoid 1 (CB1) receptor blockade with the currently available compounds may not outweigh the risks in chronic conditions such as obesity, modulation of the ECS may hold great therapeutic promise in various cardiovascular conditions/disorders. In this review we will discuss recent advances in understanding the role of CB1 receptors and endocannabinoids in the regulation of cardiac function in cirrhotic cardiomyopathy and in doxorubicin-induced heart failure.
Collapse
Affiliation(s)
- Sándor Bátkai
- Phenotyping Core, Laboratory of Physiological Studies, NIAAA, National Institutes of Health, 5625 Fishers Lane, MSC-9413, Bethesda, MD 20892-9413, USA.
| | | |
Collapse
|
16
|
Kreitzer FR, Stella N. The therapeutic potential of novel cannabinoid receptors. Pharmacol Ther 2009; 122:83-96. [PMID: 19248809 DOI: 10.1016/j.pharmthera.2009.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 12/20/2022]
Abstract
Cannabinoids produce a plethora of biological effects, including the modulation of neuronal activity through the activation of CB(1) receptors and of immune responses through the activation of CB(2) receptors. The selective targeting of either of these two receptor subtypes has clear therapeutic value. Recent evidence indicates that some of the cannabinomimetic effects previously thought to be produced through CB(1) and/or CB(2) receptors, be they on neuronal activity, on the vasculature tone or immune responses, still persist despite the pharmacological blockade or genetic ablation of CB(1) and/or CB(2) receptors. This suggests that additional cannabinoid and cannabinoid-like receptors exist. Here we will review this evidence in the context of their therapeutic value and discuss their true belonging to the endocannabinoid signaling system.
Collapse
Affiliation(s)
- Faith R Kreitzer
- Department of Pharmacology, University of Washington, Seattle, WA 98115-7280, USA
| | | |
Collapse
|
17
|
Endothelial CB1-receptors limit infarct size through NO formation in rat isolated hearts. Life Sci 2007; 81:1373-80. [DOI: 10.1016/j.lfs.2007.08.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 08/16/2007] [Accepted: 08/31/2007] [Indexed: 11/18/2022]
|
18
|
McCollum L, Howlett AC, Mukhopadhyay S. Anandamide-mediated CB1/CB2 cannabinoid receptor--independent nitric oxide production in rabbit aortic endothelial cells. J Pharmacol Exp Ther 2007; 321:930-7. [PMID: 17379772 DOI: 10.1124/jpet.106.117549] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that the endocannabinoid anandamide and its metabolically stable analog (R)-methanandamide produce vasorelaxation in rabbit aortic ring preparations in an endothelium-dependent manner that could not be mimicked by other CB(1) cannabinoid receptor agonists (Am J Physiol 282: H2046-H2054, 2002). Here, we show that (R)-methanandamide and abnormal cannabidiol stimulated nitric oxide (NO) production in rabbit aortic endothelial cells (RAEC) in a dose-dependent manner but that other CB(1) and CB(2) receptor agonists, such as cis-3R-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4R-3(3-hydroxypropyl)-1R-cyclohexanol (CP55940) and (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl) pyrrolo-[1,2,3-d,e]-1,4-benzoxazin-6-yl]-1-naphthalenyl-methanone (WIN55212-2), failed to do so. CB(1) antagonists rimonabant [also known as SR141716; N-piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide] and 6-methoxy-2-(4-methoxyphenyl)benzo[b]-thien-3-yl][4-cyanophenyl]methanone (LY320135) and CB(2) antagonist N-[(1S)-endo-1,3,3,-trimethylbicyclo[2.2.1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) failed to block (R)-methanandamide-mediated NO production in RAEC. However, anandamide receptor antagonist (-)-4-(3-3,4-trans-p-menthadien-(1,8)-yl)-orcinol (O-1918) blocked (R)-methanandamide-mediated NO production in RAEC. Reverse transcriptase-polymerase chain reaction and Western blot analyses failed to detect the CB(1) receptor in RAEC, making this a good model to study non-CB(1) responses to anandamide. (R)-Methanandamide produced endothelial nitric-oxide synthase (eNOS) phosphorylation via the activation of phosphoinositide 3-kinase-Akt signaling. Inhibition of G(i) signaling with pertussis toxin, or phosphatidylinositol 3-kinase activity with 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), resulted in a decrease in (R)-methanandamide-induced Akt phosphorylation and NO production. Results from this study suggest that in RAEC, (R)-methanandamide acts on a novel non-CB(1) and non-CB(2) anandamide receptor and signals through G(i) and phosphatidylinositol 3-kinase, leading to Akt activation, eNOS phosphorylation, and NO production.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/pharmacology
- Benzofurans/pharmacology
- Benzoxazines/pharmacology
- Camphanes/pharmacology
- Cannabinoid Receptor Modulators/pharmacology
- Cells, Cultured
- Chromones/pharmacology
- Cyclohexanols/pharmacology
- Dose-Response Relationship, Drug
- Endocannabinoids
- Endothelial Cells/cytology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Enzyme Inhibitors/pharmacology
- GTP-Binding Protein alpha Subunits, Gi-Go/antagonists & inhibitors
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Nitric Oxide/metabolism
- Pertussis Toxin/pharmacology
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation/drug effects
- Piperidines/pharmacology
- Polyunsaturated Alkamides/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- Pyrazoles/pharmacology
- Rabbits
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/physiology
- Resorcinols/pharmacology
- Rimonabant
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
Affiliation(s)
- LaTronya McCollum
- Neuroscience of Drug Abuse Research Program, J. L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George St., Durham, NC 27707, USA
| | | | | |
Collapse
|
19
|
Starowicz K, Nigam S, Di Marzo V. Biochemistry and pharmacology of endovanilloids. Pharmacol Ther 2007; 114:13-33. [PMID: 17349697 DOI: 10.1016/j.pharmthera.2007.01.005] [Citation(s) in RCA: 275] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 01/24/2007] [Indexed: 11/28/2022]
Abstract
Endovanilloids are defined as endogenous ligands and activators of transient receptor potential (TRP) vanilloid type 1 (TRPV1) channels. The first endovanilloid to be identified was anandamide (AEA), previously discovered as an endogenous agonist of cannabinoid receptors. In fact, there are several similarities, in terms of opposing actions on the same intracellular signals, role in the same pathological conditions, and shared ligands and tissue distribution, between TRPV1 and cannabinoid CB(1) receptors. After AEA and some of its congeners (the unsaturated long chain N-acylethanolamines), at least 2 other families of endogenous lipids have been suggested to act as endovanilloids: (i) unsaturated long chain N-acyldopamines and (ii) some lipoxygenase (LOX) metabolites of arachidonic acid (AA). Here we discuss the mechanisms for the regulation of the levels of the proposed endovanilloids, as well as their TRPV1-mediated pharmacological actions in vitro and in vivo. Furthermore, we outline the possible pathological conditions in which endovanilloids, acting at sometimes aberrantly expressed TRPV1 receptors, might play a role.
Collapse
Affiliation(s)
- Katarzyna Starowicz
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, C.N.R., Pozzuoli, Naples, Italy
| | | | | |
Collapse
|
20
|
Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006; 58:389-462. [PMID: 16968947 PMCID: PMC2241751 DOI: 10.1124/pr.58.3.2] [Citation(s) in RCA: 1473] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson's and Huntington's disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB(1) receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB(1) receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB(2) receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The growing number of preclinical studies and clinical trials with compounds that modulate the endocannabinoid system will probably result in novel therapeutic approaches in a number of diseases for which current treatments do not fully address the patients' need. Here, we provide a comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiological Studies, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 2S-24, Bethesda, MD 20892-9413, USA
| | | | | |
Collapse
|
21
|
Alsasua del Valle A. Implication of cannabinoids in neurological diseases. Cell Mol Neurobiol 2006; 26:579-91. [PMID: 16699878 DOI: 10.1007/s10571-006-9070-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
1. Preparations from Cannabis sativa (marijuana) have been used for many centuries both medicinally and recreationally. 2. Recent advances in the knowledge of its pharmacological and chemical properties in the organism, mainly due to Delta(9)-tetrahydrocannabinol, and the physiological roles played by the endocannabinoids have opened up new strategies in the treatment of neurological and psychiatric diseases. 3. Potential therapeutic uses of cannabinoid receptor agonists include the management of spasticity and tremor in multiple sclerosis/spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, cancer, and vasodilation that accompanies advanced cirrhosis. CB(1) receptor antagonists have therapeutic potential in Parkinson's disease. 4. Dr. Julius Axelrod also contributed in studies on the neuroprotective actions of cannabinoids.
Collapse
Affiliation(s)
- Angela Alsasua del Valle
- Dpto. Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Avda. Complutense s/n, Madrid, 28040, Spain.
| |
Collapse
|
22
|
Kobayashi Y, Takeuchi A, Wang YG. Synthesis of Cannabidiols via Alkenylation of Cyclohexenyl Monoacetate. Org Lett 2006; 8:2699-702. [PMID: 16774235 DOI: 10.1021/ol060692h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[reaction: see text] Because of the lack of potency binding to the receptors responsible for psychoactivity, cannabidiol has received much attention as a lead compound to develop a nonpsychotropic drug. Herein, we establish a method to access not only cannabidiol but also its analogues. The key reaction is nickel-catalyzed allylation of 2-cyclohexene-1,4-diol monoacetate with a new reagent, (alkenyl)ZnCl/TMEDA, which gives a S(N)2-type product with 94% regioselectivity in good yield.
Collapse
Affiliation(s)
- Yuichi Kobayashi
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan.
| | | | | |
Collapse
|
23
|
Abstract
CB1 and CB2 cannabinoid receptors are the primary targets of endogenous cannabinoids (endocannabinoids). These G protein-coupled receptors play an important role in many processes, including metabolic regulation, craving, pain, anxiety, bone growth, and immune function. Cannabinoid receptors can be engaged directly by agonists or antagonists, or indirectly by manipulating endocannabinoid metabolism. In the past several years, it has become apparent from preclinical studies that therapies either directly or indirectly influencing cannabinoid receptors might be clinically useful. This review considers the components of the endocannabinoid system and discusses some of the most promising endocannabinoid-based therapies.
Collapse
Affiliation(s)
- Ken Mackie
- Department of Anesthesiology and Physiology, University of Washington School of Medicine, Seattle, WA 98195-6540, USA.
| |
Collapse
|
24
|
Wagner JA, Abesser M, Karcher J, Laser M, Kunos G. Coronary Vasodilator Effects of Endogenous Cannabinoids in Vasopressin-Preconstricted Unpaced Rat Isolated Hearts. J Cardiovasc Pharmacol 2005; 46:348-55. [PMID: 16116341 DOI: 10.1097/01.fjc.0000175437.87283.f2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The mechanisms by which cannabinoids alter coronary vascular tone and cardiac performance are controversial. We investigated the effects of various cannabinoids in spontaneously beating Langendorff-perfused rat hearts. Bolus injections of anandamide (0.1-1 micromol) caused no change in coronary flow (CF) or left ventricular systolic pressure (LVSP). In hearts preperfused with vasopressin to induce vasoconstrictor tone, anandamide or the selective CB1 receptor agonist ACEA (1-100 nmol) dose-dependently increased CF by up to 267% and LVSP by 20 mm Hg. The metabolically stable endocannabinoid derivatives, R-methanandamide and noladin ether, displayed similar effects. In contrast, Delta-THC (10-100 nmol), the major psychoactive ingredient of cannabis, strongly decreased CF and LVSP. The CB2 receptor agonist JWH-133 (10-100 nmol) elicited vasodilator and positive inotropic effects only at higher doses. The CB1 antagonists SR141716A and AM-251 as well as the potassium channel inhibitors tetraethylammonium and iberiotoxin blocked the anandamide-induced increases in CF and LVSP, whereas the CB2 antagonist SR144528 and the putative "CB3 antagonist" O-1918 did not have an inhibitory effect. Immunohistochemistry revealed the presence of cardiac CB1 but no CB2 receptors. Anandamide and 2-arachidonoylglycerol were detected in heart tissue. However, combined application of fatty acid amidohydrolase inhibitors and the transport inhibitor AM-404 to augment tissue levels of endocannabinoids was without effect on CF or LVSP. We conclude that in the rat isolated heart with reestablished vasoconstrictor tone, cannabinoids including anandamide elicit coronary vasodilation and a secondary increase in contractility via CB1 receptors and potassium channels.
Collapse
Affiliation(s)
- Jens A Wagner
- Department of Internal Medicine I, Center of Cardiovascular Medicine, University of Würzburg, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
25
|
Abstract
CB1 cannabinoid receptors mediate the psychoactive effects of Delta(9)THC and actions of the endogenous cannabinoids [Howlett, A.C., Barth, F., Bonner, T.I., Cabral, G., Casellas, P., Devane, W.A., Felder, C.C., Herkenham, M., Mackie, K., Martin, B.R., Mechoulam, R., Pertwee, R.G., 2002. International Union of Pharmacology: XXVII. Classification of cannabinoid receptors. Pharmacological Reviews 54 (2) 161-202.]. CB1 receptors belong to the G protein-coupled receptor (GPCR) superfamily. In recent years, it has become apparent that many GPCRs exist as multimers--either of like or unlike receptors [Kroeger, K.M., Pfleger, K.D., Eidne, K.A., 2003. G-protein coupled receptor oligomerization in neuroendocrine pathways. Frontiers of Neuroendocrinology 24 (4) 254-278; Milligan, G., 2004. G protein-coupled receptor dimerization: function and ligand pharmacology. Molecular Pharmacology 66 (1) 1-7.]. Importantly, GPCR multimerization plays a key role in enriching the signaling repertoire of these receptors. In this review, the evidence for CB1 multimerization will be presented, the implications for cannabinoid signaling discussed, and possible future directions for this research considered.
Collapse
Affiliation(s)
- Ken Mackie
- Department of Anesthesiology, Box 356540, University of Washington, Seattle, WA 98195-6540, USA.
| |
Collapse
|
26
|
Awumey EM, Howlett AC, Diz DI. Is there a role for anandamide in cardiovascular regulation? Insights from studies of endocannabinoid metabolism. Am J Physiol Heart Circ Physiol 2005; 289:H520-1. [PMID: 16014613 DOI: 10.1152/ajpheart.00433.2005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Ashton JC, Appleton I, Darlington CL, Smith PF. Immunohistochemical localization of cerebrovascular cannabinoid CB1 receptor protein. J Cardiovasc Pharmacol 2005; 44:517-9. [PMID: 15505486 DOI: 10.1097/00005344-200411000-00001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cannabinoids are powerful hypotensives and vasodilators. However, their mode of action is controversial. This study is the first to investigate the distribution of vascular CB1 receptor protein expression in situ. We used double-fluorescence and chromogenic immunohistochemistry to investigate patterns of CB1 protein expression in cerebrovascular tissue in rat brain sections. We found a layer of intense CB1 labeling immediately adjacent to the internal elastic lamina, consistent with myointimal and vascular smooth muscle cells, and diffuse labeling adventitial to this layer. We concluded that CB1 receptor are most intensely expressed in the vascular smooth muscle layer in cerebral arteries, and are likely to be chiefly responsible for the potent vasodilatory effect of cannabinoids.
Collapse
Affiliation(s)
- John C Ashton
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
28
|
Bogatcheva NV, Sergeeva MG, Dudek SM, Verin AD. Arachidonic acid cascade in endothelial pathobiology. Microvasc Res 2005; 69:107-27. [PMID: 15896353 DOI: 10.1016/j.mvr.2005.01.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/21/2005] [Accepted: 01/26/2005] [Indexed: 01/26/2023]
Abstract
Arachidonic acid (AA) and its metabolites (eicosanoids) represent powerful mediators, used by organisms to induce and suppress inflammation as a part of the innate response to disturbances. Several cell types participate in the synthesis and release of AA metabolites, while many cell types represent the targets for eicosanoid action. Endothelial cells (EC), forming a semi-permeable barrier between the interior space of blood vessels and underlying tissues, are of particular importance for the development of inflammation, since endothelium controls such diverse processes as vascular tone, homeostasis, adhesion of platelets and leukocytes to the vascular wall, and permeability of the vascular wall for cells and fluids. Proliferation and migration of endothelial cells contribute significantly to new vessel development (angiogenesis). This review discusses endothelial-specific synthesis and action of arachidonic acid derivatives with a particular focus on the mechanisms of signal transduction and associated intracellular protein targets.
Collapse
Affiliation(s)
- Natalia V Bogatcheva
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
29
|
Pacher P, Bátkai S, Kunos G. Blood pressure regulation by endocannabinoids and their receptors. Neuropharmacology 2005; 48:1130-8. [PMID: 15910888 PMCID: PMC2225528 DOI: 10.1016/j.neuropharm.2004.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 12/10/2004] [Indexed: 11/24/2022]
Abstract
Cannabinoids and their endogenous and synthetic analogs exert powerful hypotensive and cardiodepressor effects by complex mechanisms involving direct and indirect effects on myocardium and vasculature. On the one hand, endocannabinoids and cannabinoid receptors have been implicated in the hypotensive state associated with hemorrhagic, endotoxic and cardiogenic shock, and advanced liver cirrhosis. On the other hand, there is emerging evidence suggesting that the endocannabinergic system plays an important role in the cardiovascular regulation in hypertension. This review is aimed to discuss the in vivo hypotensive and cardiodepressant effects of cannabinoids mediated by cannabinoid and TRPV(1) receptors, and focuses on the novel therapeutical strategies offered by targeting the endocannabinoid system in the treatment of hypertension.
Collapse
Affiliation(s)
- Pál Pacher
- * Corresponding authors. Tel./fax: +1-301-443-2069. E-mail addresses: (P. Pacher), (G. Kunos)
| | | | - George Kunos
- * Corresponding authors. Tel./fax: +1-301-443-2069. E-mail addresses: (P. Pacher), (G. Kunos)
| |
Collapse
|
30
|
Abstract
Cannabinoids and their synthetic and endogenous analogs affect a broad range of physiological functions, including cardiovascular variables, the most important component of their effect being profound hypotension. The mechanisms of the cardiovascular effects of cannabinoids in vivo are complex and may involve modulation of autonomic outflow in both the central and peripheral nervous systems as well as direct effects on the myocardium and vasculature. Although several lines of evidence indicate that the cardiovascular depressive effects of cannabinoids are mediated by peripherally localized CB1 receptors, recent studies provide strong support for the existence of as-yet-undefined endothelial and cardiac receptor(s) that mediate certain endocannabinoid-induced cardiovascular effects. The endogenous cannabinoid system has been recently implicated in the mechanism of hypotension associated with hemorrhagic, endotoxic, and cardiogenic shock, and advanced liver cirrhosis. Furthermore, cannabinoids have been considered as novel antihypertensive agents. A protective role of endocannabinoids in myocardial ischemia has also been documented. In this chapter, we summarize current information on the cardiovascular effects of cannabinoids and highlight the importance of these effects in a variety of pathophysiological conditions.
Collapse
Affiliation(s)
- P Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9413, USA.
| | | | | |
Collapse
|
31
|
Rodríguez de Fonseca F, Del Arco I, Bermudez-Silva FJ, Bilbao A, Cippitelli A, Navarro M. THE ENDOCANNABINOID SYSTEM: PHYSIOLOGY AND PHARMACOLOGY. Alcohol Alcohol 2004; 40:2-14. [PMID: 15550444 DOI: 10.1093/alcalc/agh110] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The endogenous cannabinoid system is an ubiquitous lipid signalling system that appeared early in evolution and which has important regulatory functions throughout the body in all vertebrates. The main endocannabinoids (endogenous cannabis-like substances) are small molecules derived from arachidonic acid, anandamide (arachidonoylethanolamide) and 2-arachidonoylglycerol. They bind to a family of G-protein-coupled receptors, of which the cannabinoid CB(1) receptor is densely distributed in areas of the brain related to motor control, cognition, emotional responses, motivated behaviour and homeostasis. Outside the brain, the endocannabinoid system is one of the crucial modulators of the autonomic nervous system, the immune system and microcirculation. Endocannabinoids are released upon demand from lipid precursors in a receptor-dependent manner and serve as retrograde signalling messengers in GABAergic and glutamatergic synapses, as well as modulators of postsynaptic transmission, interacting with other neurotransmitters, including dopamine. Endocannabinoids are transported into cells by a specific uptake system and degraded by two well-characterized enzymes, the fatty acid amide hydrolase and the monoacylglycerol lipase. Recent pharmacological advances have led to the synthesis of cannabinoid receptor agonists and antagonists, anandamide uptake blockers and potent, selective inhibitors of endocannabinoid degradation. These new tools have enabled the study of the physiological roles played by the endocannabinoids and have opened up new strategies in the treatment of pain, obesity, neurological diseases including multiple sclerosis, emotional disturbances such as anxiety and other psychiatric disorders including drug addiction. Recent advances have specifically linked the endogenous cannabinoid system to alcoholism, and cannabinoid receptor antagonism now emerges as a promising therapeutic alternative for alcohol dependence and relapse.
Collapse
|
32
|
Cravatt BF, Saghatelian A, Hawkins EG, Clement AB, Bracey MH, Lichtman AH. Functional disassociation of the central and peripheral fatty acid amide signaling systems. Proc Natl Acad Sci U S A 2004; 101:10821-6. [PMID: 15247426 PMCID: PMC490018 DOI: 10.1073/pnas.0401292101] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fatty acid amides (FAAs) constitute a large class of endogenous signaling lipids that modulate several physiological processes, including pain, feeding, blood pressure, sleep, and inflammation. Although FAAs have been proposed to evoke their behavioral effects through both central and peripheral mechanisms, these distinct signaling pathways have remained experimentally challenging to separate. Here, we report a transgenic mouse model in which the central and peripheral FAA systems have been functionally uncoupled. Mice were generated that express the principle FAA-degrading enzyme FAA hydrolase (FAAH) specifically in the nervous system (FAAH-NS mice) by crossing FAAH(-/-) mice with transgenic mice that express FAAH under the neural specific enolase promoter. FAAH-NS mice were found to possess wild-type levels of FAAs in the brain and spinal cord, but significantly elevated concentrations of these lipid transmitters in peripheral tissues. This anatomically restricted biochemical phenotype correlated with a reversion of the reduced pain sensitivity of FAAH(-/-) mice, consistent with the FAA anandamide producing this effect by acting on cannabinoid receptors in the nervous system. Interestingly, however, FAAH-NS mice still exhibited an antiinflammatory phenotype similar in magnitude to FAAH(-/-) mice, indicating that this activity, which was not blocked by cannabinoid receptor antagonists, was mediated by peripherally elevated FAAs. These data suggest that the central and peripheral FAA signaling systems regulate discrete behavioral processes and may be targeted for distinct therapeutic gain.
Collapse
Affiliation(s)
- Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Pacher P, Bátkai S, Kunos G. Haemodynamic profile and responsiveness to anandamide of TRPV1 receptor knock-out mice. J Physiol 2004; 558:647-57. [PMID: 15121805 PMCID: PMC1664980 DOI: 10.1113/jphysiol.2004.064824] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The endocannabinoid anandamide and cannabinoid (CB) receptors have been implicated in the hypotension in various forms of shock and in advanced liver cirrhosis. Anandamide also activates vanilloid TRPV(1) receptors on sensory nerve terminals, triggering the release of calcitonin gene-related peptide which elicits vasorelaxation in isolated blood vessels in vitro. However, the contribution of TRPV(1) receptors to the in vivo hypotensive effect of anandamide is equivocal. We compared the cardiac performance of anaesthetized TRPV(1) knockout (TRPV(1)(-/-)) mice and their wild-type (TRPV(1)(+/+)) littermates and analysed in detail the haemodynamic effects of anandamide using the Millar pressure-volume conductance catheter system. Baseline cardiovascular parameters and systolic and diastolic function at different preloads were similar in TRPV(1)(-/-) and TRPV(1)(+/+) mice. The predominant hypotensive response to bolus intravenous injections of anandamide and the associated decrease in cardiac contractility and total peripheral resistance (TPR) were similar in TRPV(1)(+/+) and TRPV(1)(-/-) mice, as was the ability of the CB(1) receptor antagonist SR141716 to completely block these effects. In TRPV(1)(+/+) mice, this hypotensive response was preceded by a transient, profound drop in cardiac contractility and heart rate and an increase in TPR, followed by a brief pressor response, effects which were unaffected by SR141716 and were absent in TRPV(1)(-/-) mice. These results indicate that mice lacking TRPV(1) receptors have a normal cardiovascular profile and their predominant cardiovascular depressor response to anandamide is mediated through CB(1) receptors. The role of TRPV(1) receptors is limited to the transient activation of the Bezold-Jarisch reflex by very high initial plasma concentrations of anandamide.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
34
|
Abstract
The endocannabinoid anandamide is of lipid nature and may thus bind to albumin in the vascular system, as do fatty acids. The knowledge of the free water-phase concentration of anandamide is essential for the investigations of its transfer from the binding protein to cellular membranes, because a water-phase shuttle of monomers mediates such transfers. We have used our method based upon the use of albumin-filled red cell ghosts as a dispersed biological "reference binder" to measure the water-phase concentrations of anandamide. These concentrations were measured in buffer (pH 7.3) in equilibrium with anandamide bound to BSA inside resealed human red cell membranes at low molar ratios below one. Data were obtained at 0 degrees C, 10 degrees C, 23 degrees C, and 37 degrees C. The equilibrium dissociation constant (Kd) increases with temperature from 6.87 +/- 0.53 nM at 0 degrees C to 54.92 +/- 1.91 nM at 37 degrees C. Regression analyses of the data suggest that BSA has one high-affinity binding site for anandamide at all four temperatures. The free energy of anandamide binding (DeltaG0) is calculated to -43.05 kJ mol-1 with a large enthalpy (DeltaH0) contribution of -42.09 kJ mol-1. Anandamide has vasodilator activity, and the binding to albumin may mediate its transport in aqueous compartments.
Collapse
Affiliation(s)
- Inge N Bojesen
- Department of Medical Biochemistry and Genetics, Lab. B., University of Copenhagen, The Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|