1
|
Nunes JM, Kell DB, Pretorius E. Cardiovascular and haematological pathology in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A role for viruses. Blood Rev 2023; 60:101075. [PMID: 36963989 PMCID: PMC10027292 DOI: 10.1016/j.blre.2023.101075] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
ME/CFS is a debilitating chronic condition that often develops after viral or bacterial infection. Insight from the study of Long COVID/Post Acute Sequelae of COVID-19 (PASC), the post-viral syndrome associated with SARS-CoV-2 infection, might prove to be useful for understanding pathophysiological mechanisms of ME/CFS. Disease presentation is similar between the two conditions, and a subset of Long COVID patients meet the diagnostic criteria for ME/CFS. Since Long COVID is characterized by significant vascular pathology - including endothelial dysfunction, coagulopathy, and vascular dysregulation - the question of whether or not the same biological abnormalities are of significance in ME/CFS arises. Cardiac abnormalities have for a while now been documented in ME/CFS cohorts, with recent studies demonstrating major deficits in cerebral blood flow, and hence vascular dysregulation. A growing body of research is demonstrating that ME/CFS is accompanied by platelet hyperactivation, anomalous clotting, a procoagulant phenotype, and endothelial dysfunction. Endothelial damage and dysregulated clotting can impair substance exchange between blood and tissues, and result in hypoperfusion, which may contribute to the manifestation of certain ME/CFS symptoms. Here we review the ME/CFS literature to summarize cardiovascular and haematological findings documented in patients with the condition, and, in this context, briefly discuss the potential role of previously-implicated pathogens. Overall, cardiac and haematological abnormalities are present within ME/CFS cohorts. While atherosclerotic heart disease is not significantly associated with ME/CFS, suboptimal cardiovascular function defined by reduced cardiac output, impaired cerebral blood flow, and vascular dysregulation are, and these abnormalities do not appear to be influenced by deconditioning. Rather, these cardiac abnormalities may result from dysfunction in the (autonomic) nervous system. Plenty of recently published studies are demonstrating significant platelet hyperactivity and endothelial dysfunction in ME/CFS, as well as anomalous clotting processes. It is of particular importance to determine to what extent these cardiovascular and haematological abnormalities contribute to symptom severity, and if these two systems can be targeted for therapeutic purposes. Viral reservoirs of herpesviruses exist in ME/CFS, and most likely contribute to cardiovascular and haematological dysfunction directly or indirectly. This review highlights the potential of studying cardiac functioning, the vasculature, and coagulation system in ME/CFS.
Collapse
Affiliation(s)
- Jean M Nunes
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | - Douglas B Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK; The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK.
| |
Collapse
|
2
|
A Spectral Computed Tomography Contrast Study: Demonstration of the Avian Cardiovascular Anatomy and Function. Vet Clin North Am Exot Anim Pract 2022; 25:435-451. [PMID: 35422261 DOI: 10.1016/j.cvex.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As part of the cardiovascular examination, all birds underwent clinical and echocardiographic examinations. Radiographs and blood samples were taken. Each bird was premedicated with midazolam and medetomidin and anesthetized with inhalation anesthesia using isoflurane. We performed computed tomographic angiography (CTA) after intravenous injection of 1 to 2 mL contrast agent per kg followed by a 1 mL saline solution flush. We were been able to identify the arteries that previous studies revealed to be most likely affected by atherosclerotic lesions: the aorta, both pulmonary arteries, and both brachiocephalic trunks. CTA was safe and is of potential diagnostic value in birds.
Collapse
|
3
|
Narasimhan B, Lorente-Ros M, Aguilar-Gallardo JS, Lizardo CP, Narasimhan H, Morton C, Donahue KR, Aronow WS. Anticoagulation in COVID-19: a review of current literature and guidelines. Hosp Pract (1995) 2021; 49:307-324. [PMID: 34807786 DOI: 10.1080/21548331.2021.2007648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 infections are associated with greater risk of both arterial and venous thromboembolic events.Pathophysiology and Clinical implications: This has been attributed to a florid proinflammatory state resulting in microvascular dysfunction, activation of platelets and procoagulant systems as well as possible direct endothelial injury. The associated morbidity and mortality of these events has prompted much speculation and varied anticoagulation and fibrinolytic strategies based on multiple criteria including disease severity and biomarkers. No clear definitive benefit has been established with these approaches, which have frequently led to greater bleeding complications without significant mortality benefit.Overview: In this review, we outline the burden of these thromboembolic events in coronavirus disease-2019 (COVID-19) as well as the hypothesized contributory biological mechanisms. Finally, we provide a brief overview of the major clinical studies on the topic, and end with a summary of major societal guideline recommendations on anticoagulation in COVID-19.
Collapse
Affiliation(s)
- Bharat Narasimhan
- Debakey Cardiovascular Center, Houston Methodist Hospital-Texas Medical Center, Houston, TX, USA
| | - Marta Lorente-Ros
- Department of Medicine, Mount Sinai Morningside-West, the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose S Aguilar-Gallardo
- Department of Medicine, Mount Sinai Morningside-West, the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Perez Lizardo
- Department of Medicine, Mount Sinai Morningside-West, the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Celia Morton
- Department of Pharmacy, Houston Methodist Hospital-Texas Medical Center, Houston, TX, USA
| | - Kevin R Donahue
- Department of Pharmacy, Houston Methodist Hospital-Texas Medical Center, Houston, TX, USA
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| |
Collapse
|
4
|
Bahouth MN, Venkatesan A. Acute Viral Illnesses and Ischemic Stroke: Pathophysiological Considerations in the Era of the COVID-19 Pandemic. Stroke 2021; 52:1885-1894. [PMID: 33794653 PMCID: PMC8078120 DOI: 10.1161/strokeaha.120.030630] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 or coronavirus disease 2019 (COVID-19) pandemic has raised concerns about the correlation with this viral illness and increased risk of stroke. Although it is too early in the pandemic to know the strength of the association between COVID-19 and stroke, it is an opportune time to review the relationship between acute viral illnesses and stroke. Here, we summarize pathophysiological principles and available literature to guide understanding of how viruses may contribute to ischemic stroke. After a review of inflammatory mechanisms, we summarize relevant pathophysiological principles of vasculopathy, hypercoagulability, and hemodynamic instability. We will end by discussing mechanisms by which several well-known viruses may cause stroke in an effort to inform our understanding of the relationship between COVID-19 and stroke.
Collapse
Affiliation(s)
- Mona N. Bahouth
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
5
|
Pryzdial ELG, Sutherland MR, Lin BH, Horwitz M. Antiviral anticoagulation. Res Pract Thromb Haemost 2020; 4:774-788. [PMID: 32685886 PMCID: PMC7354393 DOI: 10.1002/rth2.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel envelope virus that causes coronavirus disease 2019 (COVID-19). Hallmarks of COVID-19 are a puzzling form of thrombophilia that has elevated D-dimer but only modest effects on other parameters of coagulopathy. This is combined with severe inflammation, often leading to acute respiratory distress and possible lethality. Coagulopathy and inflammation are interconnected by the transmembrane receptor, tissue factor (TF), which initiates blood clotting as a cofactor for factor VIIa (FVIIa)-mediated factor Xa (FXa) generation. TF also functions from within the nascent TF/FVIIa/FXa complex to trigger profound changes via protease-activated receptors (PARs) in many cell types, including SARS-CoV-2-trophic cells. Therefore, aberrant expression of TF may be the underlying basis of COVID-19 symptoms. Evidence suggests a correlation between infection with many virus types and development of clotting-related symptoms, ranging from heart disease to bleeding, depending on the virus. Since numerous cell types express TF and can act as sites for virus replication, a model envelope virus, herpes simplex virus type 1 (HSV1), has been used to investigate the uptake of TF into the envelope. Indeed, HSV1 and other viruses harbor surface TF antigen, which retains clotting and PAR signaling function. Strikingly, envelope TF is essential for HSV1 infection in mice, and the FXa-directed oral anticoagulant apixaban had remarkable antiviral efficacy. SARS-CoV-2 replicates in TF-bearing epithelial and endothelial cells and may stimulate and integrate host cell TF, like HSV1 and other known coagulopathic viruses. Combined with this possibility, the features of COVID-19 suggest that it is a TFopathy, and the TF/FVIIa/FXa complex is a feasible therapeutic target.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Michael R. Sutherland
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Bryan H. Lin
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Marc Horwitz
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
6
|
Blüm P, Pircher J, Merkle M, Czermak T, Ribeiro A, Mannell H, Krötz F, Hennrich A, Spannagl M, Köppel S, Gaitzsch E, Wörnle M. Arterial thrombosis in the context of HCV-associated vascular disease can be prevented by protein C. Cell Mol Immunol 2017; 14:986-996. [PMID: 27086952 PMCID: PMC5719134 DOI: 10.1038/cmi.2016.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) infection is a major problem worldwide. HCV is not limited to liver disease but is frequently complicated by immune-mediated extrahepatic manifestations such as glomerulonephritis or vasculitis. A fatal complication of HCV-associated vascular disease is thrombosis. Polyriboinosinic:polyribocytidylic acid (poly (I:C)), a synthetic analog of viral RNA, induces a Toll-like receptor 3 (TLR3)-dependent arteriolar thrombosis without significant thrombus formation in venules in vivo. These procoagulant effects are caused by increased endothelial synthesis of tissue factor and PAI-1 without platelet activation. In addition to human umbilical endothelial cells (HUVEC), human mesangial cells (HMC) produce procoagulatory factors, cytokines and adhesion molecules after stimulation with poly (I:C) or HCV-containing cryoprecipitates from a patient with a HCV infection as well. Activated protein C (APC) is able to prevent the induction of procoagulatory factors in HUVEC and HMC in vitro and blocks the effects of poly (I:C) and HCV-RNA on the expression of cytokines and adhesion molecules in HMC but not in HUVEC. In vivo, protein C inhibits poly (I:C)-induced arteriolar thrombosis. Thus, endothelial cells are de facto able to actively participate in immune-mediated vascular thrombosis caused by viral infections. Finally, we provide evidence for the ability of protein C to inhibit TLR3-mediated arteriolar thrombosis caused by HCV infection.
Collapse
Affiliation(s)
- Philipp Blüm
- Medizinische Klinik und Poliklinik IV, Innenstadt, Klinikum der Universität München, 80336 München, Germany
- Walter Brendel Centre of Experimental Medicine and Munich Heart Alliance, Ludwig Maximilians University München, 80336 München, Germany
| | - Joachim Pircher
- Walter Brendel Centre of Experimental Medicine and Munich Heart Alliance, Ludwig Maximilians University München, 80336 München, Germany
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, 80336 München, Germany
| | - Monika Merkle
- Medizinische Klinik und Poliklinik IV, Innenstadt, Klinikum der Universität München, 80336 München, Germany
| | - Thomas Czermak
- Medizinische Klinik und Poliklinik IV, Innenstadt, Klinikum der Universität München, 80336 München, Germany
- Walter Brendel Centre of Experimental Medicine and Munich Heart Alliance, Ludwig Maximilians University München, 80336 München, Germany
| | - Andrea Ribeiro
- Medizinische Klinik und Poliklinik IV, Innenstadt, Klinikum der Universität München, 80336 München, Germany
| | - Hanna Mannell
- Walter Brendel Centre of Experimental Medicine and Munich Heart Alliance, Ludwig Maximilians University München, 80336 München, Germany
| | - Florian Krötz
- Walter Brendel Centre of Experimental Medicine and Munich Heart Alliance, Ludwig Maximilians University München, 80336 München, Germany
| | - Alexander Hennrich
- Walter Brendel Centre of Experimental Medicine and Munich Heart Alliance, Ludwig Maximilians University München, 80336 München, Germany
| | - Michael Spannagl
- Abteilung für Transfusionsmedizin, Zelltherapeutika und Hämostaseologie, Klinikum der Universität München, 80336 München, Germany
| | - Simone Köppel
- Medizinische Klinik und Poliklinik IV, Innenstadt, Klinikum der Universität München, 80336 München, Germany
| | - Erik Gaitzsch
- Medizinische Klinik und Poliklinik IV, Innenstadt, Klinikum der Universität München, 80336 München, Germany
- Walter Brendel Centre of Experimental Medicine and Munich Heart Alliance, Ludwig Maximilians University München, 80336 München, Germany
| | - Markus Wörnle
- Medizinische Klinik und Poliklinik IV, Innenstadt, Klinikum der Universität München, 80336 München, Germany
| |
Collapse
|
7
|
Zhang X, Tang Q, Xu L. Herpes simplex virus 2 infects human endothelial ECV304 cells and induces cell apoptosis synergistically with ox-LDL. J Toxicol Sci 2015; 39:909-17. [PMID: 25421969 DOI: 10.2131/jts.39.909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Virus infection has been shown to accelerate atherosclerosis. Serological studies indicate a link between the Herpes simplex virus (HSV) infection and atherosclerosis, which is initiated and progression of which is promoted by such factors as oxidized low-density lipoprotein (ox-LDL)-induced endothelial dysfunction. In order to recognize the direct role of HSV-2 in endothelial dysfunction, the present study investigated the infection of HSV-2 in endothelial ECV304 cells and the induction of cell apoptosis in the presence of ox-LDL. We firstly examined the HSV-2 infection by immunohistochemical assay for viral gB protein, quantitative PCR for viral ICP4 mRNA, or via virus growth determination. Then we investigated the regulation of HSV-2 infection on the cell viability and apoptosis, in the absence or presence of ox-LDL. In addition, we analyzed the apoptosis-associated molecules in the HSV-2-infected ECV304 cells. The results demonstrated that HSV-2 infected endothelial ECV304 cells and replicated efficiently, and the virus infection significantly reduced the cell viability and significantly induced cell apoptosis; particularly, cell viability reduction and cell apoptosis induction were aggravated by the ox-LDL presence. Moreover, the western blot assay confirmed the apoptosis induction; there was a significantly high level of released cytochrome c, activated caspase 3 and lyzed Poly (ADP-ribose) polymerase (PARP) by the activated caspase 3 in the HSV-2-infected ECV304 cells, particularly the cells subject to ox-LDL. Thus, we confirmed that HSV-2 infected endothelial ECV304 cells, induced cell apoptosis, which was aggravated by ox-LDL.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Health wards, The Affiliated Hospital of Inner Mongolia Medical University
| | | | | |
Collapse
|
8
|
Goeijenbier M, van Wissen M, van de Weg C, Jong E, Gerdes VEA, Meijers JCM, Brandjes DPM, van Gorp ECM. Review: Viral infections and mechanisms of thrombosis and bleeding. J Med Virol 2013; 84:1680-96. [PMID: 22930518 PMCID: PMC7166625 DOI: 10.1002/jmv.23354] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viral infections are associated with coagulation disorders. All aspects of the coagulation cascade, primary hemostasis, coagulation, and fibrinolysis, can be affected. As a consequence, thrombosis and disseminated intravascular coagulation, hemorrhage, or both, may occur. Investigation of coagulation disorders as a consequence of different viral infections have not been performed uniformly. Common pathways are therefore not fully elucidated. In many severe viral infections there is no treatment other than supportive measures. A better understanding of the pathophysiology behind the association of viral infections and coagulation disorders is crucial for developing therapeutic strategies. This is of special importance in case of severe complications, such as those seen in hemorrhagic viral infections, the incidence of which is increasing worldwide. To date, only a few promising targets have been discovered, meaning the implementation in a clinical context is still hampered. This review discusses non‐hemorrhagic and hemorrhagic viruses for which sufficient data on the association with hemostasis and related clinical features is available. This will enable clinicians to interpret research data and place them into a perspective. J. Med. Virol. 84:1680–1696, 2012. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M Goeijenbier
- Department of Virology, Erasmus Medical Centre, University of Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Catoggio C, Alvarez-Uría A, Fernandez PL, Cervera R, Espinosa G. Catastrophic antiphospholipid syndrome triggered by fulminant disseminated herpes simplex infection in a patient with systemic lupus erythematosus. Lupus 2012; 21:1359-61. [DOI: 10.1177/0961203312458841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Infections are considered one of the most common causes of morbidity and mortality in patients with systemic lupus erythematosus (SLE), and occasionally can trigger a catastrophic antiphospholipid syndrome (APS). We describe a 22-year-old SLE patient with lupus nephritis under immunosuppressant therapy and asymptomatic carrier of antiphospholipid antibodies, who was admitted with tonsillitis and acute hepatitis, developing multiorgan failure in a few hours. Postmortem examination revealed hepatic necrosis, tonsillitis, pharyngitis and uterine cervicitis caused by herpes simplex virus (HSV) together with microthrombosis in lungs and glomerular arterioles, suggesting the diagnosis of fulminant HSV disseminated infection and catastrophic APS.
Collapse
Affiliation(s)
- C Catoggio
- Department of Autoimmune Diseases, Hospital Clínic, Barcelona, Spain
| | - A Alvarez-Uría
- Department of Autoimmune Diseases, Hospital Clínic, Barcelona, Spain
| | - PL Fernandez
- Department of Pathology, Hospital Clínic, Barcelona, Spain
| | - R Cervera
- Department of Autoimmune Diseases, Hospital Clínic, Barcelona, Spain
| | - G Espinosa
- Department of Autoimmune Diseases, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
10
|
Gershom ES, Vanden Hoek AL, Meixner SC, Sutherland MR, Pryzdial ELG. Herpesviruses enhance fibrin clot lysis. Thromb Haemost 2012; 107:760-8. [PMID: 22318336 DOI: 10.1160/th11-08-0601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/04/2012] [Indexed: 01/01/2023]
Abstract
The incorporation of virus- and host-derived procoagulant factors initiates clotting directly on the surface of herpesviruses, which is an explanation for their correlation to vascular disease. The virus exploits the resulting thrombin to enhance infection by modulating the host cell through protease activated receptor (PAR) 1 signalling. Prior reports demonstrated that at least one herpesvirus expresses surface annexin A2 (A2), a cofactor for tissue plasminogen activator (tPA)-dependent activation of plasminogen to plasmin. Since plasmin is both a fibrinolytic protease and PAR agonist, we investigated whether herpesviruses enhance fibrinolysis and the effect of plasmin on cell infection. Herpes simplex virus types 1 (HSV1) and 2, and cytomegalovirus (CMV) purified from various cell lines each accelerated the proteolytic activation of plasminogen to plasmin by tPA. Ligand blots identified A2 as one of several plasminogen binding partners associated with the virus when compared to an A2-deficient virus. This was confirmed with inhibitory A2-antibodies. However, A2 was not required for virus-enhanced plasmin generation. HSV1, HSV2 and CMV accelerated tPA-dependent fibrin clot lysis by up to 2.8-fold. Modest plasmin generation and fibrinolysis was detected independent of exogenous tPA, which was inhibited by plasminogen activator inhibitor type-1 and ε-aminocaproic acid; however, the molecular basis remains speculative. Up to a ~6-fold enhancement of infection was provided by plasmin-mediated cell infection. Inhibitory antibodies revealed that plasmin increased HSV1 infection through a mechanism involving PAR2. Thus, virus-enhanced fibrinolysis may help explain the paradox of the highly procoagulant in vitro herpesvirus surface eliciting only relatively weak independent vascular disease risk.
Collapse
Affiliation(s)
- E S Gershom
- Department of Pathology and Laboratory Medicine, Centre for Blood Research, University of British Columbia; Canadian Blood Services, Research and Development Department,Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
11
|
Gershom ES, Sutherland MR, Lollar P, Pryzdial ELG. Involvement of the contact phase and intrinsic pathway in herpes simplex virus-initiated plasma coagulation. J Thromb Haemost 2010; 8:1037-43. [PMID: 20128864 DOI: 10.1111/j.1538-7836.2010.03789.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SUMMARY BACKGROUND A hemostatic response to vascular injury is initiated by the extrinsic pathway of coagulation and amplified by the intrinsic pathway. We previously reported that purified herpes simplex virus type-1 (HSV1) has constitutive extrinsic pathway tissue factor (TF) and anionic phospholipid on its surface derived from the host cell, and can consequently bypass strict cellular control of coagulation. OBJECTIVE The current work addresses the hypothesis that HSV1-induced plasma coagulation also involves intrinsic pathway, factor VIII (FVIII), and upstream contact activation pathway, factor XII (FXII). RESULTS HSV1-initiated clotting was accelerated when purified FVIII was added to FVIII-deficient plasma and in normal plasma attenuated by an inhibitory anti-FVIII antibody (Ab). High HSV1 concentrations predictably reduced the effect of FVIII due to the availability of excess viral TF. To further define TF-independent clotting mechanisms initiated by HSV1, the extrinsic pathway was disabled using factor VII-deficient plasma. The intrinsic pathway is triggered by activation of FXII associated with surface-bound kallikrein, which subsequently activates factor XI. Here we found that an inhibitor of activated FXII, corn trypsin inhibitor, and anti-FXII, anti-kallikrein and anti-FXI Abs inhibited HSV1-initiated clotting. HSV1-enhanced activation of purified FXII was confirmed by Western blot, but required prekallikrein. CONCLUSION The current work shows that HSV1 can trigger and amplify coagulation through the contact phase and intrinsic pathway, and suggests an additional mechanism that may contribute to vascular pathology.
Collapse
Affiliation(s)
- E S Gershom
- Department of Pathology and Laboratory Medicine, Centre for Blood Research, University of British Columbia, British Columbia, Canada
| | | | | | | |
Collapse
|
12
|
Livingston J, Sutherland M, Friedman H, Pryzdial E. Herpes simplex virus type 1-encoded glycoprotein C contributes to direct coagulation factor X-virus binding. Biochem J 2006; 393:529-35. [PMID: 16212554 PMCID: PMC1360703 DOI: 10.1042/bj20051313] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The HSV1 (herpes simplex virus type 1) surface has been shown recently to initiate blood coagulation by FVIIa (activated Factor VII)-dependent proteolytic activation of FX (Factor X). At least two types of direct FX-HSV1 interactions were suggested by observing that host cell-encoded tissue factor and virus-encoded gC (glycoprotein C) independently enhance FVIIa function on the virus. Using differential sedimentation to separate bound from free 125I-ligand, we report in the present study that, in the presence of Ca2+, FX binds directly to purified wild-type HSV1 with an apparent dissociation constant (K(d)) of 1.5+/-0.4 muM and 206+/-24 sites per virus at saturation. The number of FX-binding sites on gC-deficient virus was reduced to 43+/-5, and the remaining binding had a lower K(d) (0.7+/-0.2 microM), demonstrating an involvement of gC. Engineering gC back into the deficient strain or addition of a truncated soluble recombinant form of gC (sgC), increased the K(d) and the number of binding sites. Consistent with a gC/FX stoichiometry of approximately 1:1, 121+/-6 125I-sgC molecules were found to bind per wild-type HSV1. In the absence of Ca2+, the number of FX-binding sites on the wild-type virus was similar to the gC-deficient strain in the presence of Ca2+. Furthermore, in the absence of Ca2+, direct sgC binding to HSV1 was insignificant, although sgC was observed to inhibit the FX-virus association, suggesting a Ca2+-independent solution-phase FX-sgC interaction. Cumulatively, these data demonstrate that gC constitutes one type of direct FX-HSV1 interaction, possibly providing a molecular basis for clinical correlations between recurrent infection and vascular pathology.
Collapse
Affiliation(s)
- Joel R. Livingston
- *Canadian Blood Services, Research and Development Department, University of British Columbia/Centre for Blood Research, Department of Pathology and Laboratory Medicine, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3
| | - Michael R. Sutherland
- *Canadian Blood Services, Research and Development Department, University of British Columbia/Centre for Blood Research, Department of Pathology and Laboratory Medicine, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3
| | - Harvey M. Friedman
- †Infectious Diseases Division, Department of Medicine, School of Medicine, University of Pennsylvania, 502 Johnson Pavilion, Philadelphia, PA 19104-6073, U.S.A
| | - Edward L. G. Pryzdial
- *Canadian Blood Services, Research and Development Department, University of British Columbia/Centre for Blood Research, Department of Pathology and Laboratory Medicine, 2350 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3
- To whom correspondence should be addressed (email )
| |
Collapse
|
13
|
Abstract
UNLABELLED Thromboembolism in pregnancy is a major contributor to pregnancy morbidity and mortality with potentially serious adverse effects for both mother and fetus. The purposes of this article are to explore the impact of heritable and acquired thrombophilias on pregnancy and to determine the appropriateness of screening for thrombophilias in pregnancy. In determining the appropriateness of screening, attention was given to the changes that occur in the coagulation and fibrinolytic systems during normal pregnancy. The impact of different heritable and acquired thrombophilias on maternal venous thromboembolism, fetal loss, and its impact on certain obstetric conditions are then explored. Guidelines and conclusions are made as to the appropriateness of screening. TARGET AUDIENCE Obstetricians & Gynecologists, Family Physicians. LEARNING OBJECTIVES After completion of this article, the reader should be able to list the various thrombophilias associate with pregnancy, to describe the impact of thrombophilias on pregnancy, and to outline the appropriate screening guidelines for thrombophilias during pregnancy.
Collapse
Affiliation(s)
- Dorothy-Jo Jordaan
- Department of Obstetrics and Gynecology, University of the Free State, South Africa.
| | | | | |
Collapse
|
14
|
Rahbar A, Söderberg-Nauclér C. Human cytomegalovirus infection of endothelial cells triggers platelet adhesion and aggregation. J Virol 2005; 79:2211-20. [PMID: 15681423 PMCID: PMC546536 DOI: 10.1128/jvi.79.4.2211-2220.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen that has been implicated in the pathogenesis of vascular diseases. HCMV infection of endothelial cells may lead to vascular damage in vitro, and acute-phase HCMV infection has been associated with thrombosis. We hypothesized that viral infection of endothelial cells activates coagulation cascades and contributes to thrombus formation and acute vascular catastrophes in patients with atherosclerotic disease. To assess the effects of HCMV on thrombogenesis, we examined the adhesion and aggregation of blood platelets to uninfected and HCMV-infected endothelial cells. At 7 days after infection, platelet adherence and aggregation were greater in infected than in uninfected cultures (2,000 platelets/100 cells and 225 +/- 15 [mean +/- standard error of the mean] aggregates/five microscopic fields versus 100 platelets/100 cells and no aggregates). von Willebrand factor (vWF), ICAM-1, and VCAM-1 but not collagen IV, E-selectin, P-selectin, CD13, and CD31 were expressed at higher levels on infected cells than on uninfected cells. Platelet aggregation was inhibited by blocking of platelet GPIb (with blocking antibodies) or GPIIb/IIIa (with ReoPro) or by blocking of vWF (with polyclonal antibodies to vWF). Furthermore, blocking of vWF, platelet GPIb, and ICAM-1 but not of the endothelial cell marker CD13, alpha(5)beta(3)-integrin, or HCMV glycoprotein B reduced platelet adherence to infected cells by 75% +/- 5%, 74% +/- 5%, or 18% +/- 5%, respectively. The increased thrombogenicity was dependent on active virus replication and could be inhibited by foscarnet and ganciclovir; these results suggest that a late viral gene may be mediating this phenomenon, which may contribute to vascular catastrophes in patients with atherosclerotic disease.
Collapse
Affiliation(s)
- Afsar Rahbar
- Department of Medicine, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | | |
Collapse
|
15
|
Mangge H, Hubmann H, Pilz S, Schauenstein K, Renner W, März W. Beyond cholesterol--inflammatory cytokines, the key mediators in atherosclerosis. Clin Chem Lab Med 2005; 42:467-74. [PMID: 15202781 DOI: 10.1515/cclm.2004.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The development of atherosclerotic lesions encompasses a cascade of cellular and molecular responses that can at best be characterized as an inflammatory process, and exhibits striking similarities to autoimmune diseases, such as rheumatoid arthritis. Chemokines, cytokines and their receptors are critically involved in initiation and perpetuation of atherosclerosis, and they play important roles at all levels in the pathogenesis of this disease. In the present article, the currently available information on cytokines and chemokines as key mediators in atherosclerosis is reviewed. Furthermore, based on recent experiences of our own with very early stages of atherosclerosis, possible new ways to make use of these parameters toward improved early detection, prevention and treatment of this disease are indicated.
Collapse
Affiliation(s)
- Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Graz, Austria.
| | | | | | | | | | | |
Collapse
|
16
|
Origgi FC, Romero CH, Bloom DC, Klein PA, Gaskin JM, Tucker SJ, Jacobson ER. Experimental transmission of a herpesvirus in Greek tortoises (Testudo graeca). Vet Pathol 2004; 41:50-61. [PMID: 14715968 DOI: 10.1354/vp.41-1-50] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An experimental transmission study aimed at fulfilling Koch's postulates for a herpesvirus-associated stomatitis-rhinitis in Mediterranean tortoises is presented. Clinical, pathologic, serologic, and molecular studies were performed linking tortoise herpesvirus with the pathogenesis of stomatitis-rhinitis. Four adult Greek tortoises received either intranasally or intramuscularly two tortoise herpesvirus isolates by primary experimental infection and secondary challenge 11 months later. After the primary experimental infection and the secondary challenge, clinical signs of illness developed, which included conjunctivitis, diphtheritic oral plaques, and oral discharge. At 4 weeks after the secondary challenge, all tortoises were humanely euthanatized and evaluated. Although neutralizing antibodies developed after the primary experimental infection, they apparently did not prevent the later development of recurrent clinical signs. Polymerase chain reaction (PCR) and reverse transcription-PCR analyses allowed sensitive characterization of the systemic distribution of the herpesvirus DNA sequences and their presence in the cranial nerves and brains of the infected tortoises. Despite the failure to recover the herpesviruses used in the transmission study, the findings support the premise that tortoise herpes-virus is a primary pathogen of Greek tortoises.
Collapse
Affiliation(s)
- F C Origgi
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
BACKGROUND Inflammatory processes have fundamental roles in stroke in both the etiology of ischemic cerebrovascular disease and the pathophysiology of cerebral ischemia. We summarize clinical data on infection and inflammation as risk or trigger factors for human stroke and investigate current evidence for the hypothesis of a functional interrelation between traditional risk factors, genetic predisposition, and infection/inflammation in stroke pathogenesis. SUMMARY OF REVIEW Several traditional vascular risk factors are associated with proinflammatory alterations, including leukocyte activation, and predispose cerebral vasculature to thrombogenesis on inflammatory stimulation. Furthermore, accumulation of inflammatory cells, mainly monocytes/macrophages, within the vascular wall starts early during atherogenesis. During later disease stages, their activation can lead to plaque rupture and thrombus formation, increasing stroke risk. Inflammatory markers (eg, leukocytes, fibrinogen, C-reactive protein) are independent predictors of ischemic stroke. Chronic infections (eg, infection with Chlamydia pneumoniae or Helicobacter pylori) were found to increase the risk of stroke; however, study results are at variance, residual confounding is not excluded, and causality is not established at present. In case-control studies, acute infection within the preceding week was a trigger factor for ischemic stroke. Acute and exacerbating chronic infection may act by activating coagulation and chronic infections and may contribute to atherogenesis. Genetic predisposition of the inflammatory host response may be an important codeterminant for atherogenesis and stroke risk. CONCLUSIONS Inflammation contributes to stroke risk via various interrelated mechanisms. Infectious diseases, traditional risk factors, and genetic susceptibility may cooperate in stimulating inflammatory pathways. Final proof of a causal role of infectious/inflammatory mechanisms in stroke pathogenesis is still lacking and will require interventional studies.
Collapse
Affiliation(s)
- Perttu J Lindsberg
- Department of Neurology, Helsinki University Central Hospital and Biomedicum Helsinki, Helsinki, Finland.
| | | |
Collapse
|
18
|
Labarca JA, Gaete PA, Gutiérrez M, Pérez CM. Thrombosis, vasculitis, and cytomegalovirus infection. Clin Infect Dis 2002; 34:1658-9. [PMID: 12032908 DOI: 10.1086/340715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Dueñas C, Grande C, Martín A, Ceballos I, Sevil M, Fernández A. [Mesenteric thrombosis associated with cytomegalovirus infection in an immunocompetent patient]. Enferm Infecc Microbiol Clin 2002; 20:96-7. [PMID: 11886685 DOI: 10.1016/s0213-005x(02)72754-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Rotola A, Di Luca D, Cassai E, Ricotta D, Giulio A, Turano A, Caruso A, Muneretto C. Human herpesvirus 6 infects and replicates in aortic endothelium. J Clin Microbiol 2000; 38:3135-6. [PMID: 11001665 PMCID: PMC87214 DOI: 10.1128/jcm.38.8.3135-3136.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|