1
|
Mirjanic-Azaric B, Stankovic S, Nezic L, Radic Savic Z, Malcic- Zanic D, Skrbic R, Kotur-Stevuljevic J, Bogavac-Stanojevic N. Analysis of redox status and HDL subclasses in patients with lymphoma and the associations with FDG-PET/CT findings. Front Oncol 2023; 13:1221414. [PMID: 37965473 PMCID: PMC10642952 DOI: 10.3389/fonc.2023.1221414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Newer research points to alterations in the plasma redox status and the HDL subclass distributions in cancer. We aimed to assess the redox status and the HDL subclass distributions, lipids, and inflammatory markers in lymphoma patients in order to determine whether they were correlated with changes in FDG-PET/CT scans. At the beginning of this study, redox status, HDL subclasses, lipids, and inflammation biomarkers were determined in 58 patients with lymphoma (Hodgkin lymphoma, n=11 and non-Hodgkin lymphoma, n=47), and these same measurements were reassessed during their ensuing treatment (in 25 patients). Initially, the total oxidation status (TOS), the prooxidant-antioxidant balance (PAB), the OS index (OSI), the total protein sulfhydryl groups (SH-groups), and the advanced oxidation protein products (AOPP) were significantly higher in lymphoma patients as compared to healthy subjects, but the total antioxidant status (TAS) was significantly reduced. The PAB had a strong correlation with the CRP and interleukin-6 (rho=0.726, p<0.001; rho=0.386, p=0.003). The correlations between these parameters and the maximum standardized uptake values (SUVmax) were: PAB, rho=0.335 and p=0.010; SH-groups, rho=0.265 and p=0.044; CRP, rho=0.391 and p=0.002; HDL3b, rho=0.283 and p=0.031; HDL2b, rho= -0.294 and p=0.025; and HDL size, rho= -0.295 and p=0.024. The reductions in SUVmax between two follow-up points were associated with increases in the OSI, TOS, and SH-groups, as well as a reduction in the PAB and TAS. In conclusion, the redox parameters in patients with lymphoma were consistent with FDG-PET/CT findings. Targeting the redox status parameters and the HDL subclasses could be potential strategies in the molecular fight against lymphoma.
Collapse
Affiliation(s)
- Bosa Mirjanic-Azaric
- Department of Medical Biochemistry, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
- Institute of Laboratory Diagnostic, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Sinisa Stankovic
- Institute of Nuclear Medicine, University Clinical Centre of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
- Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Lana Nezic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Zana Radic Savic
- Department of Medical Biochemistry, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Dragana Malcic- Zanic
- Department of Pediatrics, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ranko Skrbic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
- Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina
| | - Jelena Kotur-Stevuljevic
- Department of Medical Biochemistry, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | | |
Collapse
|
2
|
Fadaei R, Davies SS. Oxidative modification of HDL by lipid aldehydes impacts HDL function. Arch Biochem Biophys 2022; 730:109397. [PMID: 36116503 PMCID: PMC9670862 DOI: 10.1016/j.abb.2022.109397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022]
Abstract
Reduced levels of high-density lipoprotein (HDL) cholesterol correlate with increased risk for atherosclerotic cardiovascular diseases and HDL performs functions including reverse cholesterol transport, inhibition of lipid peroxidation, and suppression of inflammation, that would appear critical for cardioprotection. However, several large clinical trials utilizing pharmacologic interventions that elevated HDL cholesterol levels failed to provide cardioprotection to at-risk individuals. The reasons for these unexpected results have only recently begun to be elucidated. HDL cholesterol levels and HDL function can be significantly discordant, so that elevating HDL cholesterol levels may not necessarily lead to increased functional capacity, particularly under conditions that cause HDL to become oxidatively modified, resulting in HDL dysfunction. Here we review evidence that oxidative modifications of HDL, including by reactive lipid aldehydes generated by lipid peroxidation, reduce HDL functionality and that dicarbonyl scavengers that protect HDL against lipid aldehyde modification are beneficial in pre-clinical models of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
ABD MUID SUHAILA, AWANG JALIL REMEE, HARUN NOORHANISA, MOHD NAWAWI HAPIZAH, RUTH FROEMMING GABRIELEANISAH. HDL AND ITS SUBPOPULATION (HDL2 AND HDL3) PROMOTE CHOLESTEROL TRANSPORTERS EXPRESSION AND ATTENUATES INFLAMMATION IN 3T3-L1 MATURE ADIPOCYTES INDUCED BY TUMOR NECROSIS FACTOR ALPHA. MALAYSIAN APPLIED BIOLOGY 2022; 51:153-167. [DOI: 10.55230/mabjournal.v51i4.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Obesity activates inflammation causing dysfunction of adipocytes. Increasing high-density lipoprotein (HDL) levels in obesity may be beneficial in overcoming this effect. However, not much data is available on the effects of HDL and its subpopulations in inflamed adipocytes. The objective of this study was to investigate the effects of total HDL (tHDL) and the comparison between its subpopulations (HDL2 & HDL3) on protein and gene expression of cholesterol transporters, inflammation, and adipokines in TNF-α stimulated 3T3-L1 mature adipocytes. TNFα alone had lower adiponectin and higher protein and gene expression of IL-6 and NF-ĸβ (p65) compared to unstimulated adipocytes and these effects were attenuated by HDLs especially HDL3 (in most of the biomarkers). HDL and its subpopulation had higher cholesterol transporters expression in 3T3-L1 mature adipocytes induced by TNF-α compared to unstimulated cells. Increment of cholesterol transporters expression by HDL leads to reduce secretion of inflammatory markers [IL-6 & NF-kB (p65)] and visfatin and increases adiponectin secretion in the inflamed mature adipocytes. HDL exhibits beyond its reverse cholesterol transporter property by exhibiting anti-inflammatory effects thru the deactivation of NF-ĸβ (p65). This may contribute to reducing the progression of obesity-related complications.
Collapse
|
4
|
Kinetics of lipid radical formation in lipoproteins from β-thalassemia: Implication of cholesteryl esters and α-tocopherol. Biomed Pharmacother 2022; 154:113624. [DOI: 10.1016/j.biopha.2022.113624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
|
5
|
Abrahams C, Woudberg NJ, Lecour S. Anthracycline-induced cardiotoxicity: targeting high-density lipoproteins to limit the damage? Lipids Health Dis 2022; 21:85. [PMID: 36050733 PMCID: PMC9434835 DOI: 10.1186/s12944-022-01694-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic frequently used against a wide range of cancers, including breast cancer. Although the drug is effective as a treatment against cancer, many patients develop heart failure (HF) months to years following their last treatment with DOX. The challenge in preventing DOX-induced cardiotoxicity is that symptoms present after damage has already occurred in the myocardium. Therefore, early biomarkers to assess DOX-induced cardiotoxicity are urgently needed. A better understanding of the mechanisms involved in the toxicity is important as this may facilitate the development of novel early biomarkers or therapeutic approaches. In this review, we discuss the role of high-density lipoprotein (HDL) particles and its components as possible key players in the early development of DOX-induced cardiotoxicity. HDL particles exist in different subclasses which vary in composition and biological functionality. Multiple cardiovascular risk factors are associated with a change in HDL subclasses, resulting in modifications of their composition and physiological functions. There is growing evidence in the literature suggesting that cancer affects HDL subclasses and that healthy HDL particles enriched with sphingosine-1-phosphate (S1P) and apolipoprotein A1 (ApoA1) protect against DOX-induced cardiotoxicity. Here, we therefore discuss associations and relationships between HDL, DOX and cancer and discuss whether assessing HDL subclass/composition/function may be considered as a possible early biomarker to detect DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Carmelita Abrahams
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa
| | - Nicholas J Woudberg
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa.
| |
Collapse
|
6
|
Corona G, Di Gregorio E, Vignoli A, Muraro E, Steffan A, Miolo G. 1H-NMR Plasma Lipoproteins Profile Analysis Reveals Lipid Metabolism Alterations in HER2-Positive Breast Cancer Patients. Cancers (Basel) 2021; 13:5845. [PMID: 34830999 PMCID: PMC8616511 DOI: 10.3390/cancers13225845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 01/06/2023] Open
Abstract
The lipid tumour demand may shape the host metabolism adapting the circulating lipids composition to its growth and progression needs. This study aims to exploit the straightforward 1H-NMR lipoproteins analysis to investigate the alterations of the circulating lipoproteins' fractions in HER2-positive breast cancer and their modulations induced by treatments. The baseline 1H-NMR plasma lipoproteins profiles were measured in 43 HER2-positive breast cancer patients and compared with those of 28 healthy women. In a subset of 32 patients, longitudinal measurements were also performed along neoadjuvant chemotherapy, after surgery, adjuvant treatment, and during the two-year follow-up. Differences between groups were assessed by multivariate PLS-DA and by univariate analyses. The diagnostic power of lipoproteins subfractions was assessed by ROC curve, while lipoproteins time changes along interventions were investigated by ANOVA analysis. The PLS-DA model distinguished HER2-positive breast cancer patients from the control group with a sensitivity of 96.4% and specificity of 90.7%, mainly due to the differential levels of VLDLs subfractions that were significantly higher in the patients' group. Neoadjuvant chemotherapy-induced a significant drop in the HDLs after the first three months of treatment and a specific decrease in the HDL-3 and HDL-4 subfractions were found significantly associated with the pathological complete response achievement. These results indicate that HER2-positive breast cancer is characterized by a significant host lipid mobilization that could be useful for diagnostic purposes. Moreover, the lipoproteins profiles alterations induced by the therapeutic interventions could predict the clinical outcome supporting the application of 1H-NMR lipoproteins profiles analysis for longitudinal monitoring of HER2-positive breast cancer in large clinical studies.
Collapse
Affiliation(s)
- Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
| | - Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
- Department of Molecular Science and Nano Systems, Ca’ Foscari University of Venice, Via Torino 155, Venezia Mestre, 30172 Venice, Italy
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM), Department of Chemistry “Ugo Schiff”, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy;
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine, 50019 Sesto Fiorentino, Italy
| | - Elena Muraro
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy; (E.D.G.); (E.M.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, IRCCS Centro di Riferimento Oncologico di Aviano (CRO), 33081 Aviano, Italy;
| |
Collapse
|
7
|
Otrante A, Trigui A, Walha R, Berrougui H, Fulop T, Khalil A. Extra Virgin Olive Oil Prevents the Age-Related Shifts of the Distribution of HDL Subclasses and Improves Their Functionality. Nutrients 2021; 13:2235. [PMID: 34209930 PMCID: PMC8308442 DOI: 10.3390/nu13072235] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022] Open
Abstract
High-density lipoproteins (HDL) maintain cholesterol homeostasis through the role they play in regulating reverse cholesterol transport (RCT), a process by which excess cholesterol is transported back to the liver for elimination. However, RCT can be altered in the presence of cardiovascular risk factors, such as aging, which contributes to the increase in the incidence of cardiovascular diseases (CVD). The present study was aimed at investigating the effect of extra virgin olive oil (EVOO) intake on the cholesterol efflux capacity (CEC) of HDL, and to elucidate on the mechanisms by which EVOO intake improves the anti-atherogenic activity of HDL. A total of 84 healthy women and men were enrolled and were distributed, according to age, into two groups: 27 young (31.81 ± 6.79 years) and 57 elderly (70.72 ± 5.6 years) subjects. The subjects in both groups were given 25 mL/d of extra virgin olive oil (EVOO) for 12 weeks. CEC was measured using J774 macrophages radiolabeled with tritiated cholesterol ((3H) cholesterol). HDL subclass distributions were analyzed using the Quantimetrix Lipoprint® system. The HDL from the elderly subjects exhibited a lower level of CEC, at 11.12% (p < 0.0001), than the HDL from the young subjects. The CEC of the elderly subjects returned to normal levels following 12 weeks of EVOO intake. An analysis of the distribution of HDL subclasses showed that HDL from the elderly subjects were composed of lower levels of large HDL (L-HDL) (p < 0.03) and higher levels of small HDL (S-HDL) (p < 0.002) compared to HDL from the young subjects. A multiple linear regression analysis revealed a positive correlation between CEC and L-HDL levels (r = 0.35 and p < 0.001) as well as an inverse correlation between CEC and S-HDL levels (r = -0.27 and p < 0.01). This correlation remained significant even when several variables, including age, sex, and BMI as well as low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and glucose levels (β = 0.28, p < 0.002, and β = 0.24, p = 0.01) were accounted for. Consuming EVOO for 12 weeks modulated the age-related difference in the distribution of HDL subclasses by reducing the level of S-HDL and increasing the level of intermediate-HDL/large-HDL (I-HDL/L-HDL) in the elderly subjects. The age-related alteration of the CEC of HDL was due, in part, to an alteration in the distribution of HDL subclasses. A diet enriched in EVOO improved the functionality of HDL through an increase in I-HDL/L-HDL and a decrease in S-HDL.
Collapse
Affiliation(s)
- Alyann Otrante
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
| | - Amal Trigui
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
| | - Roua Walha
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
| | - Hicham Berrougui
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Tamas Fulop
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
| | - Abdelouahed Khalil
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (A.O.); (A.T.); (R.W.); (H.B.); (T.F.)
| |
Collapse
|
8
|
Zhang Y, Li J, Liu C, Yu H, Chen C, Bi C, Fang C, Ma H, Li A, Dong Q, Liu L, Wang B, Huang X, Cheng X, Zalloua P, Xu X, Huo Y, Li G. High-Density Lipoprotein Cholesterol and the Risk of First Ischemic Stroke in a Chinese Hypertensive Population. Clin Interv Aging 2021; 16:801-810. [PMID: 34017170 PMCID: PMC8132192 DOI: 10.2147/cia.s295252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/24/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Elevated high-density lipoprotein cholesterol (HDL-C) levels have displayed protection against cardiovascular disease. However, the association between specific lipoprotein classes and first ischemic stroke (IS) has not been well defined, particularly in higher-risk hypertensive populations. Our study evaluated the associations of HDL-C with first IS in a Chinese hypertensive population. METHODS The study population was obtained from a community-based cohort study of hypertension in Lianyungang and Rongcheng, China. A nested case-control design was used that included 2463 identified first IS cases and 2463 controls matched by age ± 1 year, sex, and region. RESULTS After adjusting for potential confounders, HDL-C was inversely associated with first IS (adjusted odds ratio [aOR]: 0.91; 95% confidence interval [CI]: 0.85-0.98). HDL-C levels of at least 65.4 mg/dL displayed a significant protective effect for first IS (aOR: 0.82; 95% CI: 0.69-0.98). Conversely, adverse effects of first IS were observed for low-density lipoprotein cholesterol (LDL-C) levels ≥138.1 mg/dL (aOR: 1.20; 95% CI: 1.02-1.42) and triglyceride (TG) levels ≥140.8 mg/dL (aOR: 1.27; 95% CI: 1.09-1.49). The risk associations of LDL-C and TG with first IS were attenuated in the presence of high HDL-C (≥53.0 mg/dL); an increased risk of first IS was only found in the presence of low HDL-C (<53.0 mg/dL) when LDL-C (aOR: 1.66; 95% CI: 1.19-2.31) and TG (aOR: 1.47; 95% CI: 1.17-1.84) were combined with HDL-C for analysis. CONCLUSION In this community-based Chinese hypertensive population, higher HDL-C was a significant protective factor of first IS. These data add to the evidence describing the relationship between lipids and IS and suggest that HDL-C maybe is a marker of IS risk in Chinses hypertensive population.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Neurology, East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jingyi Li
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Chengzhang Liu
- Shenzhen Evergreen Medical Institute, Guangzhou, People’s Republic of China
| | - Hongxiang Yu
- Department of Neurology, East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Chen Chen
- Department of Neurology, East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Chonglei Bi
- People’s Hospital of Rongcheng, Rongcheng, Shandong, People’s Republic of China
| | - Chongqian Fang
- People’s Hospital of Rongcheng, Rongcheng, Shandong, People’s Republic of China
| | - Hai Ma
- Health and Family Planning Commission, Rongcheng, Shandong, People’s Republic of China
| | - Aimin Li
- Department of Neurosurgery, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, People’s Republic of China
| | - Qing Dong
- Lianyungang Health Committee, Lianyungang, Jiangsu, People’s Republic of China
| | - Lishun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Binyan Wang
- Shenzhen Evergreen Medical Institute, Guangzhou, People’s Republic of China
| | - Xiao Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Pierre Zalloua
- School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Xiping Xu
- Division of Nephrology, Nanfang Hospital, Southern Medical University; National Clinical Research Center for Kidney Disease; State Key Laboratory of Organ Failure Research; Guangdong Provincial Institute of Nephrology, Guangzhou, People’s Republic of China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, People’s Republic of China
| | - Gang Li
- Department of Neurology, East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
9
|
Xepapadaki E, Zvintzou E, Kalogeropoulou C, Filou S, Kypreos KE. Τhe Antioxidant Function of HDL in Atherosclerosis. Angiology 2019; 71:112-121. [PMID: 31185723 DOI: 10.1177/0003319719854609] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Atherosclerosis is a multistep process that progresses over a long period of time and displays a broad range of severity. In its final form, it manifests as a lesion of the intimal layer of the arterial wall. There is strong evidence supporting that oxidative stress contributes to coronary heart disease morbidity and mortality and antioxidant high-density lipoprotein (HDL) could have a beneficial role in the prevention and prognosis of the disease. Indeed, certain subspecies of HDL may act as natural antioxidants preventing oxidation of lipids on low-density lipoprotein (LDL) and biological membranes. The antioxidant function may be attributed to inhibition of synthesis or neutralization of free radicals and reactive oxygen species by HDL lipids and associated enzymes or transfer of oxidation prone lipids from LDL and biological membranes to HDL for catabolism. A limited number of clinical trials suggest that the increased antioxidant potential of HDL correlates with decreased risk for atherosclerosis. Some nutritional interventions to increase HDL antioxidant activity have been proposed with limited success so far. The limitations in measuring and understanding HDL antioxidant function in vivo are also discussed.
Collapse
Affiliation(s)
- Eva Xepapadaki
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | - Evangelia Zvintzou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | | | - Serafoula Filou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| | - Kyriakos E Kypreos
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, TK, Greece
| |
Collapse
|
10
|
Antioxidative activity of high-density lipoprotein (HDL): Mechanistic insights into potential clinical benefit. BBA CLINICAL 2017; 8:66-77. [PMID: 28936395 PMCID: PMC5597817 DOI: 10.1016/j.bbacli.2017.07.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/29/2022]
Abstract
Uptake of low-density lipoprotein (LDL) particles by macrophages represents a key step in the development of atherosclerotic plaques, leading to the foam cell formation. Chemical modification of LDL is however necessary to induce this process. Proatherogenic LDL modifications include aggregation, enzymatic digestion and oxidation. LDL oxidation by one-electron (free radicals) and two-electron oxidants dramatically increases LDL affinity to macrophage scavenger receptors, leading to rapid LDL uptake and fatty streak formation. Circulating high-density lipoprotein (HDL) particles, primarily small, dense, protein-rich HDL3, provide potent protection of LDL from oxidative damage by free radicals, resulting in the inhibition of the generation of pro-inflammatory oxidized lipids. HDL-mediated inactivation of lipid hydroperoxides involves their initial transfer from LDL to HDL and subsequent reduction to inactive hydroxides by redox-active Met residues of apolipoprotein A-I. Several HDL-associated enzymes are present at elevated concentrations in HDL3 relative to large, light HDL2 and can be involved in the inactivation of short-chain oxidized phospholipids. Therefore, HDL represents a multimolecular complex capable of acquiring and inactivating proatherogenic lipids. Antioxidative function of HDL can be impaired in several metabolic and inflammatory diseases. Structural and compositional anomalies in the HDL proteome and lipidome underlie such functional deficiency. Concomitant normalization of the metabolism, circulating levels, composition and biological activities of HDL particles, primarily those of small, dense HDL3, can constitute future therapeutic target.
Collapse
|
11
|
Kim K, Bloom MS, Browne RW, Bell EM, Yucel RM, Fujimoto VY. Associations between follicular fluid high density lipoprotein particle components and embryo quality among in vitro fertilization patients. J Assist Reprod Genet 2016; 34:1-10. [PMID: 27900613 DOI: 10.1007/s10815-016-0826-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/02/2016] [Indexed: 10/20/2022] Open
Abstract
PURPOSE Follicular redox balance is likely to be important for embryo quality during in vitro fertilization (IVF), and the anti-oxidative high desity lipoprotein (HDL) particle is the sole lipoprotein measured in follicular fluid (FF). Therefore, we investigated FF HDL particle components as predictors of embryo quality during IVF. METHODS Two research follicles collected from each participant were individually tracked, and 103 women having at least one developed embryo were included in the analysis. Concentrations of 15 non-cholesterol HDL particle components and 26 HDL-cholesterol (HDL-C) particle size subfractions were determined. Embryo quality was assessed for embryo cell number, embryo fragmentation, and embryo symmetry. Multivariable Poisson regression with a sandwich variance estimator was used to evaluate associations between HDL particle components and embryo quality, adjusted for covariates. RESULTS Higher γ-tocopherol concentration was associated with less embryo fragmentation (relative risk [RR] = 4.43; 95 % confidence interval [CI] 1.78, 11.06), and higher apolipoprotein A-1 concentration was associated with full embryo symmetry (RR = 3.92; 95 % CI 1.56, 9.90). Higher concentrations of HDL-C subfractions in the large and medium particle size ranges were associated with poorer embryo quality. CONCLUSIONS FF HDL lipophilic micronutrients and protein components, as well as HDL-C particle size, may be important predictors of embryo quality during IVF.
Collapse
Affiliation(s)
- K Kim
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | - M S Bloom
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA. .,Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA. .,School of Public Health Rm. #149, One University Place, Rensselaer, NY, 12144, USA.
| | - R W Browne
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - E M Bell
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA.,Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA
| | - R M Yucel
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA
| | - V Y Fujimoto
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
12
|
Karlsson H, Kontush A, James RW. Functionality of HDL: antioxidation and detoxifying effects. Handb Exp Pharmacol 2015; 224:207-228. [PMID: 25522989 DOI: 10.1007/978-3-319-09665-0_5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-density lipoproteins (HDL) are complexes of multiple talents, some of which have only recently been recognised but all of which are under active investigation. Clinical interest initially arose from their amply demonstrated role in atherosclerotic disease with their consequent designation as a major cardiovascular disease (CVD) risk factor. However, interest is no longer confined to vascular tissues, with the reports of impacts of the lipoprotein on pancreatic, renal and nervous tissues, amongst other possible targets. The ever-widening scope of HDL talents also encompasses environmental hazards, including infectious agents and environmental toxins. In almost all cases, HDL would appear to have a beneficial impact on health. It raises the intriguing question of whether these various talents emanate from a basic ancestral function to protect the cell.The following chapter will illustrate and review our current understanding of some of the functions attributed to HDL. The first section will look at the antioxidative functions of HDL and possible mechanisms that are involved. The second section will focus specifically on paraoxonase-1 (PON1), which appears to bridge the divide between the two HDL functions discussed herein. This will lead into the final section dealing with HDL as a detoxifying agent protecting against exposure to environmental pathogens and other toxins.
Collapse
Affiliation(s)
- Helen Karlsson
- Occupational and Environmental Medicine, Heart Medical Centre, County Council of Ostergotland, Linkoping University, SE-58185, Linkoping, Sweden,
| | | | | |
Collapse
|
13
|
Braesch-Andersen S, Beckman L, Paulie S, Kumagai-Braesch M. ApoD mediates binding of HDL to LDL and to growing T24 carcinoma. PLoS One 2014; 9:e115180. [PMID: 25513803 PMCID: PMC4267786 DOI: 10.1371/journal.pone.0115180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/19/2014] [Indexed: 11/28/2022] Open
Abstract
Apolipoprotein (Apo) D is an important protein produced in many parts of the body. It is necessary for the development and repair of the brain and protection from oxidative stress. The purpose of this study was to investigate the extent to which apoD interacts with lipoproteins in human plasma. By using detergent-free ELISA, we show that immobilized monoclonal antibodies against apoD very efficiently bind to low density lipoprotein (LDL) from plasma; this binding is as equally efficient as binding to an anti-apoB monoclonal antibody. Adding detergent to the plasma inhibited the binding, suggesting that the binding is dependent on the presence of intact lipoprotein particles. Reversing the system by using immobilized anti-apoB revealed that the affinity of apoD for LDL is rather low, suggesting that multiple bindings are needed for a durable connection. Biosensor experiments using purified lipoproteins also showed that purified apoD and high density lipoprotein 3 (HDL3), a lipoprotein fraction rich in apoD, were both able to bind LDL very efficiently, indicating that the HDL3-LDL interaction may be a physiological consequence of the affinity of apoD for LDL. Furthermore, we found that apoD increases the binding of HDL to actively growing T24 bladder carcinoma cells but not to quiescent, contact-inhibited, confluent T24 cells. This result is especially intriguing given that the T24 supernatant only contained detectable levels of apoD after growth inhibition, raising the possibility that alternating the expression of apoD and a putative apoD-receptor could give direction to the flow of lipids. In the current paper, we conclude that apoD mediates binding of HDL to LDL and to growing T24 carcinomas, thereby highlighting the importance of apoD in lipid metabolism.
Collapse
Affiliation(s)
| | - Lena Beckman
- Mabtech, Nacka Strand, Sweden
- Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | |
Collapse
|
14
|
Bhavnani BR, Stanczyk FZ. Pharmacology of conjugated equine estrogens: efficacy, safety and mechanism of action. J Steroid Biochem Mol Biol 2014; 142:16-29. [PMID: 24176763 DOI: 10.1016/j.jsbmb.2013.10.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/10/2013] [Accepted: 10/17/2013] [Indexed: 12/12/2022]
Abstract
Oral conjugated equine estrogens (CEE) are the most used estrogen formulation for postmenopausal hormone therapy either alone or in combination with a progestin. CEE is most commonly used for the management of early menopausal symptoms such as hot flashes, vaginitis, insomnia, and mood disturbances. Additionally, if used at the start of the menopausal phase (age 50-59 years), CEE prevents osteoporosis and may in some women reduce the risk of cardiovascular disease (CVD) and Alzheimer's disease (AD). There appears to be a common mechanism through which estrogens can protect against CVD and AD. CEE is a natural formulation of an extract prepared from pregnant mares' urine. The product monogram lists the presence of only 10 estrogens consisting of the classical estrogens, estrone and 17β-estradiol, and a group of unique ring B unsaturated estrogens such as equilin and equilenin. The ring B unsaturated estrogens are formed by an alternate steroidogenic pathway in which cholesterol is not an obligatory intermediate. Both the route of administration and structure of these estrogens play a role in the overall pharmacology of CEE. In contrast to 17β-estradiol, ring B unsaturated estrogens express their biological effects mainly mediated by the estrogen receptor β and not the estrogen receptor α. All estrogen components of CEE are antioxidants, and some ring B unsaturated estrogens have several fold greater antioxidant activity than estrone and 17β-estradiol. The cardioprotective and neuroprotective effects of CEE appear to be, to some extent, due to its ability to prevent the formation of oxidized LDL and HDL, and by inhibiting or modulating some of the key proteases involved in programmed cell death (apoptosis) induced by the excess neurotransmitter glutamate and other neurotoxins. Selective combinations of ring B unsaturated estrogens have the potential of being developed as novel therapeutic agents for the prevention of cardiovascular disease and Alzheimer's disease in both aging women and men. This article is part of a Special Issue entitled 'Menopause'.
Collapse
Affiliation(s)
- Bhagu R Bhavnani
- Department of Obstetrics and Gynecology, University of Toronto and The Keenan Research Center of Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8.
| | - Frank Z Stanczyk
- Department of Obstetrics and Gynecology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, United States; Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, United States
| |
Collapse
|
15
|
Valente AJ, Irimpen AM, Siebenlist U, Chandrasekar B. OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators. Free Radic Biol Med 2014; 70:117-28. [PMID: 24561578 PMCID: PMC4006317 DOI: 10.1016/j.freeradbiomed.2014.02.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 02/02/2023]
Abstract
Oxidized low-density lipoprotein (oxLDL) induces endothelial cell death through the activation of NF-κB and AP-1 pathways. TRAF3IP2 is a redox-sensitive cytoplasmic adapter protein and an upstream regulator of IKK/NF-κB and JNK/AP-1. Here we show that oxLDL-induced death in human primary coronary artery endothelial cells (ECs) was markedly attenuated by the knockdown of TRAF3IP2 or the lectin-like oxLDL receptor 1 (LOX-1). Further, oxLDL induced Nox2/superoxide-dependent TRAF3IP2 expression, IKK/p65 and JNK/c-Jun activation, and LOX-1 upregulation, suggesting a reinforcing mechanism. Similarly, the lysolipids present in oxLDL (16:0-LPC and 18:0-LPC) and minimally modified LDL also upregulated TRAF3IP2 expression. Notably, whereas native HDL3 reversed oxLDL-induced TRAF3IP2 expression and cell death, 15-lipoxygenase-modified HDL3 potentiated its proapoptotic effects. The activators of the AMPK/Akt pathway, adiponectin, AICAR, and metformin, attenuated superoxide generation, TRAF3IP2 expression, and oxLDL/TRAF3IP2-mediated EC death. Further, both HDL3 and adiponectin reversed oxLDL/TRAF3IP2-dependent monocyte adhesion to endothelial cells in vitro. Importantly, TRAF3IP2 gene deletion and the AMPK activators reversed oxLDL-induced impaired vasorelaxation ex vivo. These results indicate that oxLDL-induced endothelial cell death and dysfunction are mediated via TRAF3IP2 and that native HDL3 and the AMPK activators inhibit this response. Targeting TRAF3IP2 could potentially inhibit progression of atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Anthony J Valente
- Medicine, University of Texas Health Science Center and South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Anand M Irimpen
- Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA; Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ulrich Siebenlist
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bysani Chandrasekar
- Research Service, Southeast Louisiana Veterans Health Care System, New Orleans, LA 70161, USA; Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
16
|
Kilic H, Atalar E, Lay I, Yazihan N, Buyukcam F, Saygisunar U, Aksoy M, Gunduz H, Akdemir R. High-density lipoprotein subfractions and influence of endothelial lipase in a healthy Turkish population: a study in a land of low high-density lipoprotein cholesterol. Scand J Clin Lab Invest 2014; 74:278-84. [PMID: 24479875 DOI: 10.3109/00365513.2013.879992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Low concentration of high-density lipoprotein (HDL) is prevalent in Turkey. Endothelial lipase (EL) regulates lipoprotein metabolism. Small, lipid-poor HDL particles represent more-efficient cholesterol acceptors than their large, lipid-rich counterparts. The aim of this study was to investigate HDL subfractions and the effect of EL on HDL concentrations in healthy Turkish population. METHODS 102 healthy subjects were included in the study (mean age 33.6 ± 10.3 years, 42 female). HDL subfractions were assayed by single precipitation method and EL concentrations were measured by competitive enzyme immunoassay. RESULTS Mean HDL concentrations were 1.45 ± 0.37 mmol/L in women, 1.10 ± 0.30 mmol/L in men. Small HDL subfraction levels did not differ statistically between < 1 mmol/L and ≥ 1.6 mmol/L total HDL groups. Small HDL was not correlated with EL, low density lipoprotein cholesterol (LDL), triglyceride (TG) and age but positively correlated with total cholesterol and HDL (r = 0.2, p = 0.017; r = 0.2, p = 0.028, respectively). Large HDL was not correlated with age, EL and total cholesterol, and negatively correlated with HDL, LDL, TG (r = - 0.7, p < 0.001; r = - 0.2, p = 0.045; r = - 0.3, p < 0.001, respectively). If subjects were divided into two groups as HDL< 1 mmol/L and HDL > 1.6 mmol/L, mean EL concentrations were 475.83 ± 521.77 nmol/L and 529.71 ± 276.92 nmol/L, respectively (p = 0.086). CONCLUSION There were no differences between small HDL concentrations in the HDL low and high groups. Our data did not support EL to be the reason for low HDL in a healthy Turkish population. Our results in a healthy population may serve as a reference for clinical studies on HDL subfractions.
Collapse
Affiliation(s)
- Harun Kilic
- Department of Cardiology, Faculty of Medicine, Sakarya University , Sakarya
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Emami Razavi A, Pourfarzam M, Ani M, Naderi GA. The associations between high-density lipoprotein mean particle size and its fatty acid composition. Biomark Med 2013; 7:235-45. [PMID: 23547819 DOI: 10.2217/bmm.12.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM High-density lipoprotein (HDL) particles are heterogeneous in their composition, structure and size and may differ in conferring protection against coronary artery disease. The aim of this study is to investigate the associations between HDL size and its fatty acid composition. PATIENTS & METHODS HDL mean particle size from 140 healthy men was detected by dynamic light scattering methodology and fatty acid composition of HDL was determined by gas chromatography. RESULTS HDL with smaller size had a higher proportion of saturated fatty acids and lower proportion of unsaturated fatty acids. HDL mean size indicated a negative correlation with palmitic acid (r = -0.17; p < 0.05) and a positive correlation with palmitoleic acid (r = 0.17; p < 0.05), oleic acid (r = 0.23; p < 0.01), arachidonic acid (r = 0.17; p < 0.05) and dihomogamalinoleic acid (r = -0.18; p < 0.05). CONCLUSION Saturated fatty acids of HDL are inversely assocaited and unsaturated fatty acids are directly associated with HDL mean size.
Collapse
Affiliation(s)
- Amirnader Emami Razavi
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy & Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | |
Collapse
|
18
|
Chei CL, Yamagishi K, Kitamura A, Kiyama M, Imano H, Ohira T, Cui R, Tanigawa T, Sankai T, Ishikawa Y, Sato S, Hitsumoto S, Iso H. High-density lipoprotein subclasses and risk of stroke and its subtypes in Japanese population: the Circulatory Risk in Communities Study. Stroke 2013; 44:327-33. [PMID: 23321451 DOI: 10.1161/strokeaha.112.674812] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE High-density lipoprotein (HDL) cholesterol is an established protective factor for ischemic stroke. However, the contribution of HDL subclasses to stroke risk and its subtypes is uncertain. METHODS A prospective nested case-control study of 40- to 85-year-old Japanese was undertaken using frozen serum samples collected from 5280 men and 7524 women. They participated in cardiovascular risk surveys from 1985 to 1999 (1 community) and 1989 to 1998 (2 communities) under Circulatory Risk in Communities Study. HDL cholesterol subclasses were classified by high-performance liquid chromatography into 3 subgroups: S-HDL (very small or small HDL), M-HDL (medium HDL), and L-HDL (large or very large HDL) cholesterol. One control subject per case was matched by sex, age, community, serum storage year, and fasting status. RESULTS In 2005, we identified 241 strokes (155 ischemic and 86 hemorrhagic). S-HDL and M-HDL cholesterol levels were inversely associated with total stroke risk, ischemic stroke, specifically lacunar infarction, and hemorrhagic stroke. After adjustment for cardiovascular risk factors, these associations remained statistically significant. Multivariable conditional odds ratios (95% confidence interval) for 1 SD (0.12 mmol/L) increment of S-HDL cholesterol levels were 0.34 (0.23-0.52) for total stroke, 0.38 (0.23-0.63) for ischemic stroke, 0.33 (0.18-0.61) for lacunar infarction, 0.30 (0.14-0.65) for hemorrhagic stroke, and 0.30 (0.12-0.77) for intraparenchymal hemorrhage. The respective multivariable odds ratios for 1SD (0.10 mmol/L) increment of M-HDL cholesterol levels were 0.56 (0.41-0.75), 0.63 (0.45-0.88), 0.59 (0.40-0.87), 0.41 (0.21-0.80), and 0.38 (0.16-0.90). No associations were found between L-HDL cholesterol levels and risk of total stroke and its subtypes. CONCLUSIONS Small- to medium-sized HDL, not large HDL, cholesterol levels were inversely associated with total stroke risk.
Collapse
Affiliation(s)
- Choy-Lye Chei
- Department of Public Health Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
High-density lipoprotein (HDL) particle subpopulations in heterozygous cholesteryl ester transfer protein (CETP) deficiency: maintenance of antioxidative activity. PLoS One 2012. [PMID: 23189141 PMCID: PMC3506611 DOI: 10.1371/journal.pone.0049336] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) deficiency causes elevated high-density lipoprotein-cholesterol (HDL-C) levels; its impact on HDL functionality however remains elusive. We compared functional and compositional properties of HDL derived from 9 Caucasian heterozygous CETP mutation carriers (splice-site mutation in intron 7 resulting in premature truncation) with those of 9 age- and sex-matched normolipidemic family controls. As expected, HDL-C levels were increased 1.5-fold, and CETP mass and activity were decreased by −31% and −38% respectively, in carriers versus non-carriers. HDL particles from carriers were enriched in CE (up to +19%, p<0.05) and depleted of triglycerides (TG; up to −54%, p<0.01), resulting in a reduced TG/CE ratio (up to 2.5-fold, p<0.01). In parallel, the apoA-I content was increased in HDL from carriers (up to +22%, p<0.05). Both the total HDL fraction and small, dense HDL3 particles from CETP-deficient subjects displayed normal antioxidative activity by attenuating low-density lipoprotein oxidation with similar efficacy on a particle mass basis as compared to control HDL3. Consistent with these data, circulating levels of systemic biomarkers of oxidative stress (8-isoprostanes) were similar between the two groups. These findings support the contention that HDL functionality is maintained in heterozygous CETP deficiency despite modifications in lipid and protein composition.
Collapse
|
20
|
Abstract
Niacin, or water-soluble vitamin B(3), when given at pharmacologic doses, is a powerful lipid-altering agent. This drug, which lowers the levels of atherogenic, apolipoprotein-B-containing lipoproteins, is one of few medications that can raise the levels of atheroprotective HDL cholesterol. Niacin also has beneficial effects on other cardiovascular risk factors, including lipoprotein(a), C-reactive protein, platelet-activating factor acetylhydrolase, plasminogen activator inhibitor 1 and fibrinogen. Many clinical trials have confirmed the lipid effects of niacin treatment; however, its effects on cardiovascular outcomes have been called into question owing to the AIM-HIGH trial, which showed no benefit of niacin therapy on cardiovascular endpoints. Furthermore, use of niacin has historically been limited by tolerability issues. In addition to flushing, worsened hyperglycaemia among patients with diabetes mellitus has also been a concern with niacin therapy. This article reviews the utility of niacin including its mechanism of action, clinical trial data regarding cardiovascular outcomes, adverse effect profile and strategies to address these effects and improve compliance.
Collapse
Affiliation(s)
- Julia C Creider
- Robarts Research Institute and Schulich School of Medicine and Dentistry, University of the Western Ontario, 100 Perth Drive, N6A 5K8 London, Ontario, Canada
| | | | | |
Collapse
|
21
|
Application of Polydimethylsiloxane/Glass Microchips for Fast Electrophoretic Separation of Serum High-density Lipoprotein Subclasses. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.1016/s1872-2040(11)60531-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Abstract
Niacin is defined collectively as nicotinamide and nicotinic acid, both of which fulfill the vitamin functions of niacin carried out by the bioactive forms NAD(P). In the last few decades numerous new enzymes that consume NAD(P) as substrates have been identified. The functions of these enzymes are emerging as exciting paradigm shifts, even though they are in early stages of discovery. The recent identification of the nicotinic acid receptor has allowed distinction of the drug-like roles of nicotinic acid from its vitamin functions, specifically in modulating blood lipid levels and undesirable side effects such as skin vasodilation and the more rare hepatic toxicities. This information has led to a new strategy for drug delivery for niacin, which, if successful, could have a major impact on human health through decreasing risk for cardiovascular disease. Understanding the many other effects of niacin has much broader potential for disease intervention and treatment in numerous diseases including cancer.
Collapse
Affiliation(s)
- Elaine L Jacobson
- Division of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy and Arizona Cancer Center, University of Arizona, Tucson, AZ, USA,
| | | | | | | |
Collapse
|
23
|
Park KH, Cho KH. A zebrafish model for the rapid evaluation of pro-oxidative and inflammatory death by lipopolysaccharide, oxidized low-density lipoproteins, and glycated high-density lipoproteins. FISH & SHELLFISH IMMUNOLOGY 2011; 31:904-910. [PMID: 21906681 DOI: 10.1016/j.fsi.2011.08.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 06/04/2011] [Accepted: 08/11/2011] [Indexed: 05/31/2023]
Abstract
Oxidation and inflammation are leading causes of nearly all chronic metabolic disorders, and play major roles in cardiovascular disease, cancer, and chronic age-dependent disease. High-density lipoprotein (HDL) and apolipoprotein (apo) A-I have strong antioxidant and anti-inflammatory properties in the plasma. Fructose-induced non-enzymatic glycation of apoA-I can lead to the production of dysfunctional apoA-I and HDL. To compare the physiologic effects of dysfunctional apoA-I and HDL, reconstituted HDL containing native apoA-I (nA-I) or glycated apoA-I (gA-I) was injected into zebrafish embryos in the presence of inflammatory molecules. Co-injection of reconstituted HDL containing VLDL and LDL gA-I (gA-I-rHDL) and lipopolysaccaride (LPS) resulted in acute embryo deaths, while rHDL containing nA-I (nA-I-rHDL) and LPS resulted in significantly enhanced survival. Co-injection of oxidized LDL (oxLDL) and nA-I-rHDL improved embryo survival, while co-injection of oxLDL and gA-I-rHDL aggravated inflammatory deaths. Furthermore, co-injection of oxLDL and HDL(2) (5 ng of protein) or HDL(3) (15 ng of protein) from the young group (22 ± 2 years old) showed significantly increased embryo survival compared with the same co-injection of HDL from the elderly group (71 ± 4 years old). In conclusion, our assay system provides a rapid and economic method to screen antioxidant and anti-inflammatory agents using zebrafish embryos.
Collapse
Affiliation(s)
- Ki-Hoon Park
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | | |
Collapse
|
24
|
Jang W, Shim J, Lee DY, Dutta P, Kim JR, Cho KH. Rapid detection of dysfunctional high-density lipoproteins using isoelectric focusing-based microfluidic device to diagnose senescence-related disease. Electrophoresis 2011; 32:3415-23. [DOI: 10.1002/elps.201100361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Park KH, Cho KH. High-density lipoprotein (HDL) from elderly and reconstituted HDL containing glycated apolipoproteins A-I share proatherosclerotic and prosenescent properties with increased cholesterol influx. J Gerontol A Biol Sci Med Sci 2011; 66:511-20. [PMID: 21415260 DOI: 10.1093/gerona/glr016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High-density lipoprotein (HDL) is a strong antioxidant, anti-inflammatory, and antisenescence molecule. However, in the current study, HDL from the elderly group (E-HDL) exhibited increased glycation with apolipoprotein (apo) A-I multimerization and decreased phospholipid content. Similarly, glycated apoA-I (gA-I) by fructosylation has a covalently multimerized band without a crosslinker and impaired phospholipid-binding ability. Treatment of human dermal fibroblasts and macrophages with E-HDL and gA-I caused more severe cellular senescence and foam cell formation, respectively; however, treatment with HDL from a young group (Y-HDL) and native apoA-I (nA-I) suppressed senescence and atherosclerosis. E-HDL(3) and reconstituted HDL (rHDL) containing gA-I showed enhanced cholesterol influx into macrophages compared with Y-HDL(3) and nA-I-rHDL. In conclusion, E-HDL and gA-I-rHDL share similar physiologic properties in macrophages and human dermal fibroblasts. E-HDL and gA-I-rHDL exacerbated cellular senescence and atherosclerosis with increased cellular cholesterol influx.
Collapse
Affiliation(s)
- Ki-Hoon Park
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | | |
Collapse
|
26
|
Xing Y, Cohen A, Rothblat G, Sankaranarayanan S, Weibel G, Royer L, Francone OL, Rainey WE. Aldosterone production in human adrenocortical cells is stimulated by high-density lipoprotein 2 (HDL2) through increased expression of aldosterone synthase (CYP11B2). Endocrinology 2011; 152:751-63. [PMID: 21239432 PMCID: PMC3040046 DOI: 10.1210/en.2010-1049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adrenal aldosterone production is regulated by physiological agonists at the level of early and late rate-limiting steps. Numerous studies have focused on the role of lipoproteins including high-density lipoprotein (HDL) as cholesterol providers in this process; however, recent research suggests that HDL can also act as a signaling molecule. Herein, we used the human H295R adrenocortical cell model to study the effects of HDL on adrenal aldosterone production and CYP11B2 expression. HDL, especially HDL2, stimulated aldosterone synthesis by increasing expression of CYP11B2. HDL treatment increased CYP11B2 mRNA in both a concentration- and time-dependent manner, with a maximal 19-fold increase (24 h, 250 μg/ml of HDL). Effects of HDL on CYP11B2 were not additive with natural agonists including angiotensin II or K(+). HDL effects were likely mediated by a calcium signaling cascade, because a calcium channel blocker and a calmodulin kinase inhibitor abolished the CYP11B2-stimulating effects. Of the two subfractions of HDL, HDL2 was more potent than HDL3 in stimulating aldosterone and CYP11B2. Further studies are needed to identify the active components of HDL, which regulate aldosterone production.
Collapse
MESH Headings
- Adrenal Cortex/cytology
- Adrenal Cortex/metabolism
- Aldosterone/metabolism
- Calcium/metabolism
- Calcium Signaling/physiology
- Cell Line
- Cholesterol, HDL/pharmacology
- Cytochrome P-450 CYP11B2/genetics
- Cytochrome P-450 CYP11B2/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Humans
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/metabolism
Collapse
Affiliation(s)
- Yewei Xing
- Department of Physiology, Medical College of Georgia, 1120 15th Street, CA-3094, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Shuhei N, Söderlund S, Jauhiainen M, Taskinen MR. Effect of HDL composition and particle size on the resistance of HDL to the oxidation. Lipids Health Dis 2010; 9:104. [PMID: 20863394 PMCID: PMC2954910 DOI: 10.1186/1476-511x-9-104] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/23/2010] [Indexed: 02/02/2023] Open
Abstract
Objectives To study the resistance of HDL particles to direct oxidation in respect to the distribution of HDL particles. Design and Methods We studied HDL composition, subclass distribution, and the kinetics of CuSO4-induced oxidation of total HDL and HDL3 in vitro in 36 low-HDL-C subjects and in 41 control subjects with normal HDL-C. Results The resistance of HDL3 to oxidation, as assessed from the propagation rate was significantly higher than that of total HDL. The propagation rate and diene formation during HDL oxidation in vitro was attenuated in HDL derived from low-HDL-C subjects. Propagation rate and maximal diene formation during total HDL oxidation correlated significantly with HDL mean particle size. The propagation rate of total HDL oxidation in vitro displayed a significant positive association with HDL2 particle mass and HDL mean particle size by multiple regression analyses. Conclusions These observations highlight that the distribution of HDL subpopulations has important implications for the potential of HDL as an anti-oxidant source.
Collapse
|
28
|
Yang T, Chen C, Zhang B, Huang H, Wu G, Wen J, Liu J. Induction of Krüppel-like factor 4 by high-density lipoproteins promotes the expression of scavenger receptor class B type I. FEBS J 2010; 277:3780-8. [DOI: 10.1111/j.1742-4658.2010.07779.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Sakuma N, Saeki T, Ito T, Hibino T, Suzuki S, Kunimatsu M, Yamamoto K, Kitada S. HDL2 can inhibit further oxidative modification of partially oxidized LDL. J Atheroscler Thromb 2009; 17:229-34. [PMID: 19942787 DOI: 10.5551/jat.1495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM To investigate whether HDL(2) can inhibit further oxidative modification of partially oxidized LDL (ox-LDL) by interrupting the chain oxidation reaction after lipid hydroperoxides (LOOH) formation. METHODS Following incubation of LDL 400 microg protein/mL phosphate-buffered saline with Cu(2+) for 1.75 h (defined as 0 min), incubation was continued after adding HDL(2) 200 microg protein/mL or HDL(2) 800 microg protein/mL to give both ox-LDL+HDL(2) 200 microg protein/mL or ox-LDL+HDL(2) 800 microg protein/mL. As a control, ox-LDL 200 microg protein/mL and native LDL were prepared. Each sample was subjected to agarose gel electrophoresis and the LOOH in each sample was measured. RESULTS When the electrophoretic mobility of native LDL was designated 1, the relative electrophoretic mobility (REM) of ox-LDL increased significantly over time. The REMs of ox-LDL+HDL(2) 800 microg protein/mL from 10 min to 9 h were significantly lower than the REM of ox-LDL at the respective times (p<0.01). LOOH of ox-LDL+HDL(2) 800 microg protein/mL at 1, 3, 6 and 9 h was significantly higher than LOOH in ox-LDL at the respective times (p<0.01). The results of ox-LDL+HDL(2) 200 microg protein/mL were almost the same but to a lesser extent than the results of ox-LDL+HDL(2) 800 microg protein/mL. CONCLUSION The present findings suggest that HDL(2) can inhibit further oxidative modification of partially oxidized LDL by interrupting the chain oxidation reaction after LOOH formation in a concentration-dependent manner.
Collapse
Affiliation(s)
- Nagahiko Sakuma
- Department of Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ferretti G, Bacchetti T, Masciangelo S, Bertoli E. High-density lipoproteins: the guardian angel of the cell membrane. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2009. [DOI: 10.1007/s12349-009-0032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Rye KA, Bursill CA, Lambert G, Tabet F, Barter PJ. The metabolism and anti-atherogenic properties of HDL. J Lipid Res 2008; 50 Suppl:S195-200. [PMID: 19033213 DOI: 10.1194/jlr.r800034-jlr200] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Population studies have shown that plasma HDL levels correlate inversely with cardiovascular disease risk. In recent years there has been intense interest in developing strategies for exploiting these cardioprotective properties by increasing HDL levels. While this approach has considerable merit, it is important to recognize that HDL are structurally and functionally diverse and consist of numerous, highly dynamic subpopulations of particles that do not all inhibit atherosclerosis to the same extent. For this reason it is essential to assess HDL subpopulation distribution and functionality when considering therapeutic interventions that raise HDL levels. This review documents what is known about the relationship between the metabolism and function of HDL subpopulations and how this affects their cardioprotective properties.
Collapse
Affiliation(s)
- Kerry-Anne Rye
- Lipid Research Group, The Heart Research Institute, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
32
|
Abstract
The dramatic failure of clinical trials evaluating the cholesterol ester transfer protein inhibitor torcetrapib has led to considerable doubt about the value of raising high-density lipoprotein cholesterol (HDL-C) as a treatment for cardiovascular disease. These results have underscored the intricacy of HDL metabolism, with functional quality perhaps being a more important consideration than the circulating quantity of HDL. As a result, HDL-based therapeutics that maintain or enhance HDL functionality warrant closer investigation. In this article, we review the complexity of HDL metabolism, discuss clinical-trial data for HDL-raising agents, including possible reasons for the failure of torcetrapib, and consider the potential for future HDL-based therapies.
Collapse
|
33
|
Kontush A, Chapman MJ. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev 2006; 58:342-74. [PMID: 16968945 DOI: 10.1124/pr.58.3.1] [Citation(s) in RCA: 533] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High-density lipoproteins (HDL) possess key atheroprotective biological properties, including cellular cholesterol efflux capacity, and anti-oxidative and anti-inflammatory activities. Plasma HDL particles are highly heterogeneous in physicochemical properties, metabolism, and biological activity. Within the circulating HDL particle population, small, dense HDL particles display elevated cellular cholesterol efflux capacity, afford potent protection of atherogenic low-density lipoprotein against oxidative stress and attenuate inflammation. The antiatherogenic properties of HDL can, however be compromised in metabolic diseases associated with accelerated atherosclerosis. Indeed, metabolic syndrome and type 2 diabetes are characterized not only by elevated cardiovascular risk and by low HDL-cholesterol (HDL-C) levels but also by defective HDL function. Functional HDL deficiency is intimately associated with alterations in intravascular HDL metabolism and structure. Indeed, formation of HDL particles with attenuated antiatherogenic activity is mechanistically related to core lipid enrichment in triglycerides and cholesteryl ester depletion, altered apolipoprotein A-I (apoA-I) conformation, replacement of apoA-I by serum amyloid A, and covalent modification of HDL protein components by oxidation and glycation. Deficient HDL function and subnormal HDL-C levels may act synergistically to accelerate atherosclerosis in metabolic disease. Therapeutic normalization of attenuated antiatherogenic HDL function in terms of both particle number and quality of HDL particles is the target of innovative pharmacological approaches to HDL raising, including inhibition of cholesteryl ester transfer protein, enhanced lipidation of apoA-I with nicotinic acid and infusion of reconstituted HDL or apoA-I mimetics. A preferential increase in circulating concentrations of HDL particles possessing normalized antiatherogenic activity is therefore a promising therapeutic strategy for the treatment of common metabolic diseases featuring dyslipidemia, inflammation, and premature atherosclerosis.
Collapse
Affiliation(s)
- Anatol Kontush
- Dyslipoproteinemia and Atherosclerosis Research Unit, National Institute for Health and Medical Research, Hôpital de la Pitié, 83 boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| | | |
Collapse
|
34
|
Das S, Das N, Srivastava LM. Role of ascorbic acid on in vitro oxidation of low-density lipoprotein derived from hypercholesterolemic patients. Clin Chim Acta 2006; 372:202-5. [PMID: 16701604 DOI: 10.1016/j.cca.2006.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 03/13/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND The susceptibility of low-density lipoprotein (LDL) to oxidation is thought to be a crucial factor responsible for atherogenesis. There is substantial evidence for a role of dietary antioxidants in the prevention of atherogenesis and the protective effect of antioxidant nutrients may be mediated through inhibition of the oxidative modification of LDL. METHODS We performed in vitro oxidation of LDL derived from normal and hypercholesterolemic individuals in absence and presence of different doses of ascorbic acid. RESULTS The serum lipid peroxidation level was significantly increased in hypercholesterolemic patients and their LDL has shown a greater propensity towards in vitro oxidation. Hypercholesterolemic LDL required a higher amount of ascorbic acid to reduce its oxidation level as compared to LDL isolated from normocholesterolemic individuals. CONCLUSION This observation may be of importance in designing future studies of antioxidant supplementation in patients with hypercholesterolemia which is one of the major risk factors for atherosclerosis.
Collapse
Affiliation(s)
- Sabari Das
- Department of Biochemistry, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi 110060, India.
| | | | | |
Collapse
|
35
|
Thomàs-Moyà E, Gianotti M, Lladó I, Proenza AM. Effects of caloric restriction and gender on rat serum paraoxonase 1 activity. J Nutr Biochem 2006; 17:197-203. [PMID: 16214326 DOI: 10.1016/j.jnutbio.2005.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 07/13/2005] [Accepted: 07/20/2005] [Indexed: 11/22/2022]
Abstract
Paraoxonase 1 (PON1) associates to specific high-density lipoproteins (HDLs)--those containing apolipoprotein A-I (apoA-I) and apolipoprotein J (apoJ)--and is largely responsible for their antiatherogenic properties. Caloric restriction (CR) has been shown to reduce major atherosclerotic risk factors. The aims of this work were to study PON1 activity response to CR (40% over 14 weeks) and to elucidate whether there are adaptive differences related to gender. Serum and liver paraoxonase and arylesterase activities, serum triglyceride, total and HDL cholesterol concentrations, serum PON1, apoA-I and apoJ contents and liver PON1 mRNA levels were measured. No effects of CR or gender were observed in triglyceride, total cholesterol concentration and PON1 mRNA levels. HDL cholesterol was higher in female rats than in male rats and increased with CR only in the latter animals. Serum PON1 activities tended to be higher in female rats and dropped with CR, with females showing the biggest decrease. Serum PON1 content was higher in female rats and decreased in both genders with CR, whereas apoA-I and apoJ contents, which were higher in female rats too, decreased only in the former animals, accounting for the high PON1 activity decrease observed in these animals. In conclusion, the short-term CR-associated reduction of serum PON1 activity and PON1, apoA-I and apoJ levels points toward a reduced stability of HDL-PON1 complexes and/or HDL particle levels responsible for PON1 transport and function in the blood. Moreover, the variations in PON1 activity and apolipoprotein levels show gender-related differences that are indicative of a different adaptive strategy of male and female rats when faced with a period of food restriction.
Collapse
Affiliation(s)
- Elena Thomàs-Moyà
- Grup de Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ed. Guillem Colom., Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
36
|
Desai MY, Rodriguez A, Wasserman BA, Gerstenblith G, Agarwal S, Kennedy M, Bluemke DA, Lima JAC. Association of Cholesterol Subfractions and Carotid Lipid Core Measured by MRI. Arterioscler Thromb Vasc Biol 2005; 25:e110-1. [PMID: 15923536 DOI: 10.1161/01.atv.0000166599.78182.6c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Nobécourt E, Jacqueminet S, Hansel B, Chantepie S, Grimaldi A, Chapman MJ, Kontush A. Defective antioxidative activity of small dense HDL3 particles in type 2 diabetes: relationship to elevated oxidative stress and hyperglycaemia. Diabetologia 2005; 48:529-38. [PMID: 15729582 DOI: 10.1007/s00125-004-1655-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 10/11/2004] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS Elevated oxidative stress, hyperglycaemia, and dyslipidaemia involving low levels of HDL particles are key proatherogenic factors in type 2 diabetes mellitus. We examined the relationship of oxidative stress, and the degree of glycaemia and triglyceridaemia, to antioxidative function of HDL particle subspecies in type 2 diabetes. SUBJECTS AND METHODS Five HDL subfractions (2b, 2a, 3a, 3b, 3c) were isolated by density gradient ultracentrifugation from well-controlled type 2 diabetic subjects (n=20) and normolipidaemic, non-diabetic controls (n=10). Specific antioxidative activity (capacity to protect LDL from oxidation on a unit particle mass or on a particle number basis), chemical composition and enzymatic activities were measured in each subfraction. Systemic oxidative stress was assessed as plasma levels of 8-isoprostanes. RESULTS Specific antioxidative activity of small dense HDL3b and 3c particles in diabetic patients was significantly diminished (up to -47%, on a particle mass or particle number basis) as compared with controls. Plasma 8-isoprostanes were markedly elevated (2.9-fold) in diabetic patients, were negatively correlated with both specific antioxidative activity of HDL3 subfractions and plasma HDL cholesterol (HDL-C) levels, and were positively correlated with glycaemia and triglyceridaemia. Paraoxonase 1 activity was consistently lower in diabetic HDL subfractions and was positively correlated with HDL3 antioxidative activity. The altered chemical composition of diabetic HDL3 subfractions (core cholesteryl ester depletion, triglyceride enrichment) was equally correlated with diminished antioxidative activity. CONCLUSIONS/INTERPRETATION Antioxidative activity of small dense HDL is deficient in type 2 diabetes, is intimately linked to oxidative stress, glycaemia and hypertriglyceridaemia and primarily reflects abnormal intrinsic physicochemical properties of HDL particles.
Collapse
Affiliation(s)
- E Nobécourt
- Dyslipoproteinemia and Atherosclerosis Research, Unit 551, National Institute for Health and Medical Research (INSERM), Pavillon Benjamin Delessert, Hôpital de la Pitié, 83 boulevard de l' Hôpital, 75651, Paris Cedex 13, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Hansel B, Giral P, Nobecourt E, Chantepie S, Bruckert E, Chapman MJ, Kontush A. Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. J Clin Endocrinol Metab 2004; 89:4963-71. [PMID: 15472192 DOI: 10.1210/jc.2004-0305] [Citation(s) in RCA: 305] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A metabolic syndrome (MetS) phenotype is characterized by insulin-resistance, atherogenic dyslipidemia, oxidative stress, and elevated cardiovascular risk and frequently involves subnormal levels of high-density lipoprotein (HDL) cholesterol. We evaluated the capacity of physicochemically distinct HDL subfractions from MetS subjects to protect low-density lipoprotein against oxidative stress.MetS subjects presented an insulin-resistant phenotype, with central obesity and elevation in systolic blood pressure and plasma triglyceride, LDL-cholesterol, apolipoprotein B, glucose, and insulin levels. Systemic oxidative stress, assessed as plasma 8-isoprostanes, was significantly higher (3.7-fold) in MetS subjects (n = 10) compared with nonobese normolipidemic controls (n = 11). In MetS, small, dense HDL3a, 3b, and 3c subfractions possessed significantly lower specific antioxidative activity (up to -23%, on a unit particle mass basis) than their counterparts in controls. In addition, HDL2a and 3a subfractions from MetS patients possessed lower total antioxidative activity (up to -41%, at equivalent plasma concentrations). The attenuated antioxidative activity of small, dense HDL subfractions correlated with systemic oxidative stress and insulin resistance and was associated with HDL particles exhibiting altered physicochemical properties (core triglyceride enrichment and cholesteryl ester depletion). We conclude that antioxidative activity of small, dense HDL subfractions of altered chemical composition is impaired in MetS and associated with elevated oxidative stress and insulin resistance. Induction of selective increase in the circulating concentrations of dense HDL subfractions may represent an innovative therapeutic approach for the attenuation of high cardiovascular risk in MetS.
Collapse
Affiliation(s)
- Boris Hansel
- Dyslipoproteinemia and Atherosclerosis Research Unit, National Institute for Health and Medical Research, Institut National de la Santé et de la Recherche Médicale, Hôpital de la Pitié, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Kontush A, de Faria EC, Chantepie S, Chapman MJ. Antioxidative Activity of HDL Particle Subspecies Is Impaired in Hyperalphalipoproteinemia: Relevance of Enzymatic and Physicochemical Properties. Arterioscler Thromb Vasc Biol 2004; 24:526-33. [PMID: 14739123 DOI: 10.1161/01.atv.0000118276.87061.00] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Hyperalphalipoproteinemia (HALP) is characterized by elevated plasma levels of high-density lipoprotein (HDL) particles with altered composition, metabolism, and function. The impact of such modification on antioxidative activities of HDL subfractions is indeterminate.
Methods and Results—
Gradient fractionation revealed that buoyant HDL2b and 2a and small dense HDL3b and 3c levels were elevated up to 2.0-fold in HALP subjects (n=9; mean plasma HDL cholesterol, 79 mg/dL) with low hepatic lipase activity. HDL2a, 3a, 3b, and 3c displayed lower specific antioxidative activity (sAA) during low-density lipoprotein (LDL) oxidation (−15% to −86%, on a unit particle mass basis) than their normolipidemic counterparts (n=13). LDL oxidation was delayed by control HDL3a, 3b, and 3c (up to −79%) but specifically by HDL3c (−54%) in HALP. Paraoxonase activity was deficient in all HALP HDL subfractions. Paraoxonase, PAF-AH, and LCAT activities together accounted for ≈50% of variation in sAA. Abnormal chemical composition of HDL3b and 3c (cholesterol-deficient, triglyceride-enriched) in HALP was associated with impaired sAA. Systemic oxidative stress (as plasma 8-isoprostanes) tended to be elevated (1.5-fold) in HALP and negatively correlated with sAA (as TBARS).
Conclusions—
Intrinsic antioxidative activity of HDL subspecies is impaired in HALP, reflecting altered enzymatic and physicochemical properties.
Collapse
Affiliation(s)
- Anatol Kontush
- Dyslipoproteinemia and Atherosclerosis Research Unit (U.551),National Institute for Health and Medical Research, Hôpital de la Pitié, Paris, France.
| | | | | | | |
Collapse
|
40
|
Sakuma N, Ikeuchi R, Hibino T, Yoshida T, Mukai S, Akita S, Yajima K, Miyabe H, Goto T, Takada N, Ohte N, Kunimatu M, Kimura G. Increased serum triglyceride clearance and elevated high-density lipoprotein 2 and 3 cholesterol during treatment of primary hypertriglyceridemia with bezafibrate. CURRENT THERAPEUTIC RESEARCH 2003; 64:697-706. [PMID: 24944417 PMCID: PMC4053057 DOI: 10.1016/j.curtheres.2003.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/22/2003] [Indexed: 11/20/2022]
Abstract
BACKGROUND Hypertriglyceridemia accompanied by low levels of high-density lipoprotein cholesterol (HDL-C) is a risk factor for coronary artery disease. High-density lipoprotein 2 (HDL2) and 3 (HDL3) are believed to suppress the progress of atherosclerosis through reverse cholesterol transport. As a result, peripheral tissues can be protected against excessive accumulation of cholesterol. Although bezafibrate is known to accelerate the increase of HDL-C, results are not standardized regarding increases of HDL3 and HDL2 subfractions. OBJECTIVE This study assessed the effects of bezafibrate on serum triglyceride (TG) fractional clearance rate (K2) and HDL2 and HDL3 cholesterol (HDL2-C and HDL3-C, respectively) levels in patients with primary hypertriglyceridemia (serum TG ≥150 mg/dL). METHODS Outpatients with primary hypertriglyceridemia were enrolled in this 8-week study conducted at the Third Department of Internal Medicine, Nagoya City University Hospital (Nagoya, Japan). Oral bezafibrate was administered at a dose of 400 mg/d (200-mg tablet BID, morning and evening) for 8 weeks. After 8 weeks, serum levels of total cholesterol (TC), TG, HDL-C, HDL2-C, and HDL3-C were measured. A fat emulsion tolerance test to assess K2 and measurements of plasma lipoprotein lipase (LPL) mass, LPL activity, and hepatic triglyceride lipase (HTGL) activity in postheparin plasma were performed before bezafibrate administration and after the course of treatment. RESULTS Sixteen patients (10 men, 6 women; mean [SD] age, 54 [12] years [range, 30-69 years]; mean [SD] body mass index, 23 [2] kg/m(2)) entered the study. The following findings were observed in male and female patients after 8 weeks of treatment. A statistically significant reduction was observed in mean serum TG level (P<0.01). Significant increases were seen in HDL-C, HDL2-C, and HDL3-C (all P<0.01), K2 (P<0.01), and in plasma LPL mass (P<0.01) and LPL activity (P<0.05). TC level and HTGL activity did not change significantly. No adverse effects related to the use of bezafibrate were documented. CONCLUSIONS In this study, bezafibrate treatment resulted in significant decreases in serum TG level and significant increases in HDL2-C and HDL3-C levels and plasma LPL mass and activity. We hypothesize that bezafibrate may increase HDL3-C by promoting TG-rich lipoprotein catabolism and may increase HDL2-C by promoting the conversion of HDL3 to HDL2.
Collapse
Affiliation(s)
- Nagahiko Sakuma
- Department of Internal Medicine and Pathophysiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | | | - Takeshi Hibino
- Department of Internal Medicine and Pathophysiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Takayuki Yoshida
- Department of Internal Medicine and Pathophysiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Seiji Mukai
- Department of Internal Medicine and Pathophysiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Sachie Akita
- Department of Internal Medicine and Pathophysiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuhiro Yajima
- Department of Internal Medicine and Pathophysiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromichi Miyabe
- Department of Internal Medicine and Pathophysiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshihiko Goto
- Department of Internal Medicine and Pathophysiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Norio Takada
- Department of Internal Medicine and Pathophysiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuyuki Ohte
- Department of Internal Medicine and Pathophysiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitoshi Kunimatu
- Department of Biochemistry, Nagoya Women's University, Nagoya, Japan
| | - Genjiro Kimura
- Department of Internal Medicine and Pathophysiology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
41
|
Paromov VM, Morton RE. Lipid transfer inhibitor protein defines the participation of high density lipoprotein subfractions in lipid transfer reactions mediated by cholesterol ester transfer protein (CETP). J Biol Chem 2003; 278:40859-66. [PMID: 12907677 DOI: 10.1074/jbc.m306580200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cholesterol ester transfer protein (CETP) moves triglyceride (TG) and cholesteryl ester (CE) between lipoproteins. CETP has no apparent preference for high (HDL) or low (LDL) density lipoprotein as lipid donor to very low density lipoprotein (VLDL), and the preference for HDL observed in plasma is due to suppression of LDL transfers by lipid transfer inhibitor protein (LTIP). Given the heterogeneity of HDL, and a demonstrated ability of HDL subfractions to bind LTIP, we examined whether LTIP might also control CETP-facilitated lipid flux among HDL subfractions. CETP-mediated CE transfers from [3H]CE VLDL to various lipoproteins, combined on an equal phospholipid basis, ranged 2-fold and followed the order: HDL3 > LDL > HDL2. LTIP inhibited VLDL to HDL2 transfer at one-half the rate of VLDL to LDL. In contrast, VLDL to HDL3 transfer was stimulated, resulting in a CETP preference for HDL3 that was 3-fold greater than that for LDL or HDL2. Long-term mass transfer experiments confirmed these findings and further established that the previously observed stimulation of CETP activity on HDL by LTIP is due solely to its stimulation of transfer activity on HDL3. TG enrichment of HDL2, which occurs during the HDL cycle, inhibited CETP activity by approximately 2-fold and LTIP activity was blocked almost completely. This suggests that LTIP keeps lipid transfer activity on HDL2 low and constant regardless of its TG enrichment status. Overall, these results show that LTIP tailors CETP-mediated remodeling of HDL3 and HDL2 particles in subclass-specific ways, strongly implicating LTIP as a regulator of HDL metabolism.
Collapse
Affiliation(s)
- Viktor M Paromov
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
42
|
Kontush A, Chantepie S, Chapman MJ. Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler Thromb Vasc Biol 2003; 23:1881-8. [PMID: 12920049 DOI: 10.1161/01.atv.0000091338.93223.e8] [Citation(s) in RCA: 317] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The relationship of the structural and functional heterogeneity of HDL particles to protection of LDL against oxidative stress is indeterminate. METHODS AND RESULTS HDL subfractions of defined physicochemical properties were isolated by density gradient ultracentrifugation from normolipidemic human serum (n=8), and their capacity to protect LDL from oxidation was evaluated. Under mild oxidative stress induced by AAPH or Cu(II), HDL subfractions (at equal cholesterol or protein concentration or equal particle number) significantly decreased LDL oxidation rate (-20% to -85%) in the propagation phase (234 nm), which was prolonged by up to 82% with decreased maximal diene formation. Antioxidative activity of HDL subfractions increased with increment in density, as follows: HDL2b<HDL2a<HDL3a<HDL3b<HDL3c (confirmed by thiobarbituric acid-reactive substance content and LDL electrophoretic mobility). Concordantly, antioxidative activity of small HDL prepared by FPLC was significantly higher (+56%) than that of large HDL. Antioxidative action of HDL subfractions was primarily associated with inactivation of LDL lipid hydroperoxides. The potent protective activity of small HDL could not be accounted for exclusively by enzymatic activities (PON1, platelet-activating factor acetylhydrolase, and lecithin-cholesterol acyltransferase). CONCLUSIONS Small, dense HDL exhibit potent antioxidant activity, which may arise from synergy in inactivation of oxidized LDL lipids by enzymatic and nonenzymatic mechanisms, in part reflecting distinct intrinsic physicochemical properties.
Collapse
Affiliation(s)
- Anatol Kontush
- Dyslipoproteinemia and Atherosclerosis Research Unit (U.551), National Institute for Health and Medical Research (INSERM), Hôpital de la Pitié, Paris, France.
| | | | | |
Collapse
|
43
|
Perrella J, Berco M, Cecutti A, Gerulath A, Bhavnani BR. Potential role of the interaction between equine estrogens, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) in the prevention of coronary heart and neurodegenerative diseases in postmenopausal women. Lipids Health Dis 2003; 2:4. [PMID: 12848896 PMCID: PMC194865 DOI: 10.1186/1476-511x-2-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Accepted: 06/20/2003] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND An inverse relationship between the level of high-density lipoprotein (HDL) and coronary heart disease (CHD) has been reported. In contrast, oxidized HDL (oHDL) has been shown to induce neuronal death and may play an important role in the pathogenesis of CHD. In the present study we have investigated a: the effect of various equine estrogens on HDL oxidation, b: the inhibition of LDL oxidation by HDL and c: the effect of these estrogens on LDL oxidation in the presence of HDL. RESULTS All 11 equine estrogens tested protected the HDL from oxidation in a concentration dependant manner. Equilenin, 17beta-dihydroequilenin, and 17alpha-dihydroequilenin (Delta6-8-estrogens) were found to be the most potent inhibitors of HDL oxidation. Some of the novel ring B unsaturated estrogens were 2.5 to 4 times more potent inhibitors of HDL oxidation than 17beta-estradiol. HDL was found to delay LDL oxidation. The protection of LDL oxidation by HDL is enhanced by the addition of estrogen, with equilenin being again more potent than 17beta-estradiol. CONCLUSIONS Equine estrogens can differentially inhibit the oxidation of HDL with the Delta6-8-estrogens being the most potent antioxidants. The ability of estrogens to enhance HDL's antioxidant activity is to our knowledge the first report of an interaction of estrogen with HDL that results in the delay or inhibition of LDL oxidation. This may be another mechanism by which estrogens may reduce the risk of CHD and neurodegenerative diseases in healthy and younger postmenopausal women.
Collapse
Affiliation(s)
- Joel Perrella
- Department of Obstetrics and Gynecology Institute of Medical Sciences, University of Toronto and St. Michael's Hospital, Toronto, Ontario, CANADA – M5B 1W8
| | - Mauricio Berco
- Department of Obstetrics and Gynecology Institute of Medical Sciences, University of Toronto and St. Michael's Hospital, Toronto, Ontario, CANADA – M5B 1W8
| | - Anthony Cecutti
- Department of Obstetrics and Gynecology Institute of Medical Sciences, University of Toronto and St. Michael's Hospital, Toronto, Ontario, CANADA – M5B 1W8
| | - Alan Gerulath
- Department of Obstetrics and Gynecology Institute of Medical Sciences, University of Toronto and St. Michael's Hospital, Toronto, Ontario, CANADA – M5B 1W8
| | - Bhagu R Bhavnani
- Department of Obstetrics and Gynecology Institute of Medical Sciences, University of Toronto and St. Michael's Hospital, Toronto, Ontario, CANADA – M5B 1W8
| |
Collapse
|
44
|
Tsimihodimos V, Kakafika A, Tambaki AP, Bairaktari E, Chapman MJ, Elisaf M, Tselepis AD. Fenofibrate induces HDL-associated PAF-AH but attenuates enzyme activity associated with apoB-containing lipoproteins. J Lipid Res 2003; 44:927-34. [PMID: 12611907 DOI: 10.1194/jlr.m200452-jlr200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human plasma platelet-activating factor acetylhydrolase (PAF-AH) is an enzyme associated mainly with the apolipoprotein B (apoB)-containing lipoproteins and primarily with LDL. A small proportion of enzymatic activity is also associated with HDL. Plasma paraoxonase 1 (PON1) is an esterase exclusively associated with HDL. The effect of fenofibrate on PAF-AH and PON1 activities in patients with dyslipidemias of Types IIA, IIB, and IV were studied. Fenofibrate reduced plasma PAF-AH activity in all patient groups. In Type IIA patients, this reduction was mainly due to a fall in enzyme activity associated with the dense LDL subspecies, whereas in Type IIB and Type IV patients, it was due to the decrease in PAF-AH activity associated with both the VLDL+IDL and dense LDL subspecies. Drug therapy in Type IIB and Type IV patients significantly increased the HDL-associated PAF-AH activity due to the increase in enzyme activity associated with the HDL-3c subfraction. Fenofibrate did not affect serum PON1 activities toward paraoxon and phenylacetate in either patient group. The fenofibrate-induced elevation of HDL-associated PAF-AH activity in dyslipidemic patients of Type IIB and Type IV, as well as the reduction in enzyme activity associated with atherogenic apoB-containing lipoproteins in all patient groups, may represent a new and important antiatherogenic effect of this potent lipid-modulating agent.
Collapse
|
45
|
Schiavon R, Battaglia P, De Fanti E, Fasolin A, Biasioli S, Targa L, Guidi G. HDL3-related decreased serum paraoxonase (PON) activity in uremic patients: comparison with the PON1 allele polymorphism. Clin Chim Acta 2002; 324:39-44. [PMID: 12204423 DOI: 10.1016/s0009-8981(02)00216-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Patients with chronic renal failure on maintenance haemodialysis (HD) are at high risk of atherothrombotic events; an enhanced oxidant stress might have a major role. The decrease of human paraoxonase (PON1), an anti-oxidant high-density lipoprotein (HDL)-linked enzyme, is a possible mechanism for developing cardiovascular disease. To ascertain the causes of low PON1 in such patients, we investigated the contribution of both PON1 gene polymorphism and individual pattern of HDL. METHODS On 74 HD patients (47 M and 27 F) and on 92 healthy individuals (HS, 48 M and 44 F), we studied PON1 activity, PON1 genotype (55 and 192 PON1 allelic polymorphisms) and the lipid profile, including the HDL subfractions. RESULTS We observed in HD patients the following significant differences: (1) decreased median PON1 activity (73.5 vs. 110 U/l); (2) decreased mean HDL concentration (1.05 +/- 0.18 vs. 1.55 +/- 0.41 mmol/l); (3) decreased mean HDL3 concentration (0.79 +/- 0.21 vs. 1.28 +/- 0.24 mmol/l). Total HDL retained about 70% of serum activity, almost completely carried (95%) by the HDL3. Finally, PON1 activity remained significantly low in HD vs. HS after matching for the allelic polymorphism. CONCLUSIONS The reduction of the HDL3, not the genetic PON1 polymorphism, seems the most important determinant of PON1 activity reduction in HD.
Collapse
Affiliation(s)
- Renzo Schiavon
- Laboratorio di Analisi, Ospedale di Legnago, 37045 Legnago, Italy.
| | | | | | | | | | | | | |
Collapse
|
46
|
Raveh O, Pinchuk I, Fainaru M, Lichtenberg D. Kinetics of lipid peroxidation in mixtures of HDL and LDL, mutual effects. Free Radic Biol Med 2001; 31:1486-97. [PMID: 11728821 DOI: 10.1016/s0891-5849(01)00730-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In view of the proposed central role of LDL oxidation in atherogenesis and the established role of HDL in reducing the risk of atherosclerosis, several studies were undertaken to investigate the possible effect of HDL on LDL peroxidation. Since these investigations yielded contradictory results, we have conducted systematic kinetic studies on the oxidation in mixtures of HDL and LDL induced by different concentrations of copper, 2, 2'-azo bis (2-amidinopropane) hydrochloride (AAPH) and myeloperoxidase (MPO). These studies revealed that oxidation of LDL induced either by AAPH or MPO is inhibited by HDL under all the studied conditions, whereas copper-induced oxidation of LDL is inhibited by HDL at low copper/lipoprotein ratio but accelerated by HDL at high copper/lipoprotein ratio. The antioxidative effects of HDL are only partially due to HDL-associated enzymes, as indicated by the finding that reconstituted HDL, containing no such enzymes, inhibits peroxidation induced by low copper concentration. Reduction of the binding of copper to LDL by competitive binding to the HDL also contributes to the antioxidative effect of HDL. The acceleration of copper-induced oxidation of LDL by HDL may be attributed to the hydroperoxides formed in the "more oxidizable" HDL, which migrate to the "less oxidizable" LDL and enhance the oxidation of the LDL lipids induced by bound copper. This hypothesis is supported by the results of experiments in which native LDL was added to oxidizing lipoprotein at different time points. When the native LDL was added prior to decomposition of the hydroperoxides in the oxidizing lipoprotein, the lag preceding oxidation of the LDL was much shorter than the lag observed when the native LDL was added at latter stages, after the level of hydroperoxides became reduced due to their copper-catalyzed decomposition. The observed dependence of the interrelationship between the oxidation of HDL and LDL on the oxidative stress should be considered in future investigations regarding the oxidation of lipoprotein mixtures.
Collapse
Affiliation(s)
- O Raveh
- Department of Physiology and Pharmacology, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
47
|
Francis GA. High density lipoprotein oxidation: in vitro susceptibility and potential in vivo consequences. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1483:217-35. [PMID: 10634938 DOI: 10.1016/s1388-1981(99)00181-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Elevated levels of plasma high density lipoprotein (HDL) are strongly predictive of protection against atherosclerotic vascular disease. HDL particles likely have several beneficial actions in vivo, including the initiation of reverse cholesterol transport. The apparent importance of oxidative modification of low density lipoprotein in atherogenesis raises the question of how oxidative modification of HDL might affect its cardioprotective actions. HDL is readily oxidized using numerous models of lipoprotein oxidation. In vitro evidence suggests oxidation might impair some protective actions, but actually enhance other mechanisms induced by HDL that prevent the accumulation of cholesterol in the artery wall. This article reviews the current literature concerning the relative oxidizability of HDL, the structural changes induced in HDL by oxidation in vitro, and the potential consequences of oxidative modification on the protective actions of HDL in vivo.
Collapse
Affiliation(s)
- G A Francis
- Lipid and Lipoprotein Research Group and Department of Medicine, University of Alberta, Edmonton, Alta., Canada.
| |
Collapse
|
48
|
Bonnefont-Rousselot D, Thérond P, Beaudeux JL, Peynet J, Legrand A, Delattre J. High density lipoproteins (HDL) and the oxidative hypothesis of atherosclerosis. Clin Chem Lab Med 1999; 37:939-48. [PMID: 10616747 DOI: 10.1515/cclm.1999.139] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The oxidative hypothesis of atherosclerosis classically implies a central role for low density lipoprotein (LDL) oxidation. However, new antiatherogenic properties have been recognized for high density lipoproteins (HDL), apart from their ability to reverse cholesterol transport. Indeed, native HDL could protect LDL from oxidation, thereby minimizing the deleterious consequences of this process. Several mechanisms have been suggested to explain this protective role. Two HDL-associated enzymes, paraoxonase and PAF-acetylhydrolase, detoxify oxidized phospholipids produced by lipid peroxidation. In addition, HDL could reduce hydroperoxides to their corresponding hydroxides. It has also been suggested that HDL could inhibit oxidized LDL-induced transduction signals. However, in vivo HDL oxidation in the subendothelial space would favor the atherosclerotic process. Indeed, atherogenic properties of these oxidized HDL partly result from some loss of their cholesterol effluxing capacity and from an inactivation of the lecithin-cholesterol acyltransferase, which is a HDL-associated enzyme involved in reverse cholesterol transport. Finally, oxidized HDL could induce cholesterol accumulation in macrophages. Further in-depth investigation is needed to assess these antagonistic effects and their consequences for the atherosclerotic process.
Collapse
Affiliation(s)
- D Bonnefont-Rousselot
- Laboratoire de Biochimie Métabolique et Clinique, Faculté de Pharmacie (Paris V), France
| | | | | | | | | | | |
Collapse
|
49
|
Subramanian VS, Goyal J, Miwa M, Sugatami J, Akiyama M, Liu M, Subbaiah PV. Role of lecithin-cholesterol acyltransferase in the metabolism of oxidized phospholipids in plasma: studies with platelet-activating factor-acetyl hydrolase-deficient plasma. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:95-109. [PMID: 10395969 DOI: 10.1016/s1388-1981(99)00072-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To determine the relative importance of platelet-activating factor-acetylhydrolase (PAF-AH) and lecithin-cholesterol acyltransferase (LCAT) in the hydrolysis of oxidized phosphatidylcholines (OXPCs) to lyso-phosphatidylcholine (lyso-PC), we studied the formation and metabolism of OXPCs in the plasma of normal and PAF-AH-deficient subjects. Whereas the loss of PC following oxidation was similar in the deficient and normal plasmas, the formation of lyso-PC was significantly lower, and the accumulation of OXPC was higher in the deficient plasma. Isolated LDL from the PAF-AH-deficient subjects was more susceptible to oxidation, and stimulated adhesion molecule synthesis in endothelial cells, more than the normal LDL. Oxidation of 16:0-[1-14C]-18:2 PC, equilibrated with plasma PC, resulted in the accumulation of labeled short- and long-chain OXPCs, in addition to the labeled aqueous products. The formation of the aqueous products decreased by 80%, and the accumulation of short-chain OXPC increased by 110% in the deficient plasma, compared to the normal plasma, showing that PAF-AH is predominantly involved in the hydrolysis of the truncated OXPCs. Labeled sn-2-acyl group from the long-chain OXPC was not only hydrolyzed to free fatty acid, but was preferentially transferred to diacylglycerol, in both the normal and deficient plasmas. In contrast, the acyl group from unoxidized PC was transferred only to cholesterol, showing that the specificity of LCAT is altered by OXPC. It is concluded that, while PAF-AH carries out the hydrolysis of mainly truncated OXPCs, LCAT hydrolyzes and transesterifies the long-chain OXPCs.
Collapse
Affiliation(s)
- V S Subramanian
- Departments of Medicine and Biochemistry, Rush Medical College, 1653 West Congress Parkway, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Huang JM, Huang ZX, Zhu W. Mechanism of high-density lipoprotein subfractions inhibiting copper-catalyzed oxidation of low-density lipoprotein. Clin Biochem 1998; 31:537-43. [PMID: 9812173 DOI: 10.1016/s0009-9120(98)00060-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To investigate the role of HDL subfractions, HDL2 and HDL3, on the oxidation of LDL catalyzed by 5 microM Cu2+ ion, and to illustrate the mechanism of the generation of conjugated diene and thiobarbituric acid reactive substances (TBARS) during LDL oxidation. METHODS LDL was incubated for 8 h with 5 microM Cu2+ ion in phosphate-buffered saline (PBS) alone, or in the presence of HDL2, HDL3, HSA, BSA, or transferrin. Meantime, LDL was incubated for 24 h with 10 microM Ni2+ ions in PBS. The amount of conjugated diene and TBARS in each sample of LDL were measured. RESULTS (a) HDL2 and HDL3 could inhibit the generation of conjugated diene, but could not inhibit the generation of TBARS; (b) the transferrin containing HDL3 shows the ability of inhibiting the generation of both conjugated diene and TBARS; (c) the transferrin presented in blood exhibits the inhibitory effect on the generation of conjugated diene and TBARS, however, when the transferrin is saturated with Fe3+ ion, it could not inhibit the generation of TBARS; (d) HSA and BSA could prevent the generation of conjugated diene and TBARS; (e) Ni2+ ion could induce the generation of conjugated diene, but the amount of TBARS was much smaller than that induced by Cu2+ ion. CONCLUSION HDL2 and HDL3 play important role in the copper-catalyzed oxidation of LDL; it is absolutely necessary to require chelation of Cu2+ ion for inhibiting generation of TBARS; whereas, inhibition of conjugated diene can be fulfilled either by chelating Cu2+ ion, or the free radicals scavenger.
Collapse
MESH Headings
- Apoproteins/metabolism
- Apoproteins/pharmacology
- Copper/metabolism
- Copper/pharmacology
- Humans
- Kinetics
- Lipoproteins, HDL/chemistry
- Lipoproteins, HDL/isolation & purification
- Lipoproteins, HDL/metabolism
- Lipoproteins, HDL/pharmacology
- Lipoproteins, HDL2
- Lipoproteins, HDL3
- Lipoproteins, LDL/chemistry
- Lipoproteins, LDL/drug effects
- Lipoproteins, LDL/metabolism
- Nickel/metabolism
- Nickel/pharmacology
- Oxidation-Reduction
- Serum Albumin/metabolism
- Serum Albumin/pharmacology
- Serum Albumin, Bovine/metabolism
- Serum Albumin, Bovine/pharmacology
- Thiobarbituric Acid Reactive Substances/analysis
- Thiobarbituric Acid Reactive Substances/metabolism
- Transferrin/metabolism
- Transferrin/pharmacology
Collapse
Affiliation(s)
- J M Huang
- Chemistry Department, Fudan University, Shanghai, P.R. China.
| | | | | |
Collapse
|