1
|
Szalad H, Uscategui-Linares A, García-Muelas R, Galushchinskiy A, Savateev O, Antonietti M, Albero J, García H. Natural Sunlight-Driven Photocatalytic Overall Water Splitting with 5.5% Quantum Yield Promoted by Porphyrin-Sensitized Zn Poly(heptazine imide). ACS APPLIED MATERIALS & INTERFACES 2024; 16:67597-67608. [PMID: 39612264 DOI: 10.1021/acsami.4c12548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Meso-tetrakis(4-carboxyphenyl)porphyrin (H4TCPP) has been loaded on a partially exchanged Zn2+ poly(heptazine imide) (PHI), changing the light harvesting properties of the system, without altering the PHI structure. At the optimal loading (20 wt %), the photosensitized (Zn/K)-PHI is able to produce 1.06 mmolH2/g and 0.46 mmolO2/g after 12 h of reaction irradiation of Milli-Q water under visible light by a 100 mW/cm2 white LED. The apparent quantum yield for the overall water splitting reaction was 5.5% at 400 nm and 2% at 700 nm. Outdoor water splitting irradiation with natural sunlight shows the feasibility of the process. The photocatalytic performance of TCPP20%@(Zn/K)-PHI is considerably higher than that of analyzed reference samples such as graphitic carbon nitride, poly(triazine imide), and potassium PHI with H4TCPP photosensitization. These relative photocatalytic activities point out the relevance of the PHI structure and the presence of Zn2+. It is proposed that Zn2+ simultaneously binds PHI and H4TCPP. Transient absorption spectroscopy supports the occurrence of photoinduced electron transfer in which electrons are located at the H4TCPP and holes at the PHI moiety. Transient photocurrent measurements show a higher charge separation efficiency on TCPP20%@-(Zn/K)-PHI compared to (Zn/K)-PHI, and measurement of the frontier orbitals indicates an adequate energy alignment of the HOMO/LUMO levels of TCPP4- with respect to (Zn/K)-PHI. The results show the possibility of developing efficient noble metal-free photocatalytic systems based on PHI dye sensitization.
Collapse
Affiliation(s)
- Horaţiu Szalad
- Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Avda. de los Naranjos s/n, Valencia 46022, Spain
- Max Planck Institute of Colloids and Interfaces (MPIKG), Research Campus Golm, Potsdam D-14424, Germany
- University of Potsdam, Potsdam D-14424, Germany
| | - Andrés Uscategui-Linares
- Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Avda. de los Naranjos s/n, Valencia 46022, Spain
| | - Rodrigo García-Muelas
- Iberian Centre for Research in Energy Storage (CIIAE), Polytechnic School of Caceres, Office CIIAE-C6, Av. Universidad s/n, Cáceres 10003, Spain
| | - Alexey Galushchinskiy
- Max Planck Institute of Colloids and Interfaces (MPIKG), Research Campus Golm, Potsdam D-14424, Germany
- University of Potsdam, Potsdam D-14424, Germany
| | - Oleksandr Savateev
- Max Planck Institute of Colloids and Interfaces (MPIKG), Research Campus Golm, Potsdam D-14424, Germany
- University of Potsdam, Potsdam D-14424, Germany
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Kowloon 999077, Hong Kong
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces (MPIKG), Research Campus Golm, Potsdam D-14424, Germany
- University of Potsdam, Potsdam D-14424, Germany
| | - Josep Albero
- Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Avda. de los Naranjos s/n, Valencia 46022, Spain
| | - Hermenegildo García
- Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Avda. de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
2
|
Cui S, Guo X, Wang S, Wei Z, Huang D, Zhang X, Zhu TC, Huang Z. Singlet Oxygen in Photodynamic Therapy. Pharmaceuticals (Basel) 2024; 17:1274. [PMID: 39458915 PMCID: PMC11510636 DOI: 10.3390/ph17101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 10/28/2024] Open
Abstract
Photodynamic therapy (PDT) is a therapeutic modality that depends on the interaction of light, photosensitizers, and oxygen. The photon absorption and energy transfer process can lead to the Type II photochemical reaction of the photosensitizer and the production of singlet oxygen (1O2), which strongly oxidizes and reacts with biomolecules, ultimately causing oxidative damage to the target cells. Therefore, 1O2 is regarded as the key photocytotoxic species accountable for the initial photodynamic reactions for Type II photosensitizers. This article will provide a comprehensive review of 1O2 properties, 1O2 production, and 1O2 detection in the PDT process. The available 1O2 data of regulatory-approved photosensitizing drugs will also be discussed.
Collapse
Affiliation(s)
- Shengdong Cui
- MOE Key Laboratory of Medical Optoelectronics Science and Technology, Key Laboratory of Photonics Technology of Fujian Province, School of Optoelectronics and Information Engineering, Fujian Normal University, Fuzhou 350117, China (S.W.)
| | - Xingran Guo
- MOE Key Laboratory of Medical Optoelectronics Science and Technology, Key Laboratory of Photonics Technology of Fujian Province, School of Optoelectronics and Information Engineering, Fujian Normal University, Fuzhou 350117, China (S.W.)
| | - Sen Wang
- MOE Key Laboratory of Medical Optoelectronics Science and Technology, Key Laboratory of Photonics Technology of Fujian Province, School of Optoelectronics and Information Engineering, Fujian Normal University, Fuzhou 350117, China (S.W.)
| | - Zhe Wei
- MOE Key Laboratory of Medical Optoelectronics Science and Technology, Key Laboratory of Photonics Technology of Fujian Province, School of Optoelectronics and Information Engineering, Fujian Normal University, Fuzhou 350117, China (S.W.)
| | - Deliang Huang
- MOE Key Laboratory of Medical Optoelectronics Science and Technology, Key Laboratory of Photonics Technology of Fujian Province, School of Optoelectronics and Information Engineering, Fujian Normal University, Fuzhou 350117, China (S.W.)
| | - Xianzeng Zhang
- MOE Key Laboratory of Medical Optoelectronics Science and Technology, Key Laboratory of Photonics Technology of Fujian Province, School of Optoelectronics and Information Engineering, Fujian Normal University, Fuzhou 350117, China (S.W.)
| | - Timothy C. Zhu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zheng Huang
- MOE Key Laboratory of Medical Optoelectronics Science and Technology, Key Laboratory of Photonics Technology of Fujian Province, School of Optoelectronics and Information Engineering, Fujian Normal University, Fuzhou 350117, China (S.W.)
| |
Collapse
|
3
|
Uscategui-Linares A, Szalad H, Albero J, García H. Photocatalytic activity of a 2D copper porphyrin metal-organic framework for visible light overall water splitting. NANOSCALE ADVANCES 2024:d4na00594e. [PMID: 39372441 PMCID: PMC11446286 DOI: 10.1039/d4na00594e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024]
Abstract
A 2D copper tetrakis(4-carboxyphenyl)porphyrin metal-organic framework has been prepared and used as a photocatalyst for overall water splitting, measuring under visible light irradiation (λ > 450 nm) under one sun power conditions a H2 production rate of 120 μmolH2 gcatalyst -1 h-1 that is among the highest ever reported. While the 2D Cu porphyrin MOF undergoes substantial degradation in 3 h upon UV irradiation (320-380 nm) in the presence of air, it appears to be photostable under the conditions of the overall water splitting and visible light exposure, exhibiting similar temporal profiles for H2 and O2 evolution. Photocurrent experiments and band energy measurements indicate that the photocatalytic efficiency derives from an efficient charge separation in the visible region (apparent electron charge extraction efficiency at 540 nm of 0.1%) and adequate alignment of the redox potential of the conduction (-0.59 V vs. NHE) and valence (+1.48 V vs. NHE) bands for water splitting.
Collapse
Affiliation(s)
- Andrés Uscategui-Linares
- Instituto Universitario de Tecnología Química (CSIC/UPV), Universitat Politécnica de València Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Horatiu Szalad
- Instituto Universitario de Tecnología Química (CSIC/UPV), Universitat Politécnica de València Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Josep Albero
- Instituto Universitario de Tecnología Química (CSIC/UPV), Universitat Politécnica de València Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Hermenegildo García
- Instituto Universitario de Tecnología Química (CSIC/UPV), Universitat Politécnica de València Avda. de los Naranjos s/n 46022 Valencia Spain
| |
Collapse
|
4
|
Dean WS, Soucy TL, Rivera-Cruz KE, Filien LL, Terry BD, McCrory CCL. Mitigating Cobalt Phthalocyanine Aggregation in Electrocatalyst Films through Codeposition with an Axially Coordinating Polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402293. [PMID: 38923726 DOI: 10.1002/smll.202402293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Cobalt phthalocyanine (CoPc) is a promising molecular catalyst for aqueous electroreduction of CO2, but its catalytic activity is limited by aggregation at high loadings. Codeposition of CoPc onto electrode surfaces with the coordinating polymer poly(4-vinylpyridine) (P4VP) mitigates aggregation in addition to providing other catalytic enhancements. Transmission and diffuse reflectance UV-vis measurements demonstrate that a combination of axial coordination and π-stacking effects from pyridyl moieties in P4VP serve to disperse cobalt phthalocyanine in deposition solutions and help prevent reaggregation in deposited films. Polymers lacking axial coordination, such as Nafion, are significantly less effective at cobalt phthalocyanine dispersion in both the deposition solution and in the deposited films. SEM images corroborate these findings through particle counts and morphological analysis. Electrochemical measurements show that CoPc codeposited with P4VPonto carbon electrode surfaces reduces CO2 with higher activity and selectivity compared to the catalyst codeposited with Nafion.
Collapse
Affiliation(s)
- William S Dean
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Taylor L Soucy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Kevin E Rivera-Cruz
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Leila L Filien
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Bradley D Terry
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Charles C L McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
5
|
Pal AK, Datta A. First-principles design of heavy-atom-free singlet oxygen photosensitizers for photodynamic therapy. J Chem Phys 2024; 160:164720. [PMID: 38682739 DOI: 10.1063/5.0196557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
In photodynamic therapy (PDT) treatment, heavy-atom-free photosensitizers (PSs) are a great source of singlet oxygen photosensitizer. Reactive oxygen species (ROS) are produced by an energy transfer from the lowest energy triplet excited state to the molecular oxygen of cancer cells. To clarify the photophysical characteristics in the excited states of a few experimentally identified thionated (>C=S) molecules and their oxygenated congeners (>C=O), a quantum chemical study is conducted. This study illustrates the properties of the excited states in oxygen congeners that render them unsuitable for PDT treatment. Concurrently, a hierarchy is presented based on the utility of the lowest-energy triplet excitons of thionated compounds. Their non-radiative decay rates are calculated for reverse-ISC and inter-system crossover (ISC) processes. In addition, the vibronic importance of C=O and C=S bonds is clarified by the computation of the Huang-Rhys factor, effective vibrational mode, and reorganization energy inside the Marcus-Levich-Jörtner system. ROS generation in thionated PSs exceeds their oxygen congeners as kf ≪ kISC, where radiative decay rate is designated as kf. As a result, the current work offers a calculated strategy for analyzing the effectiveness of thionated photosensitizers in PDT.
Collapse
Affiliation(s)
- Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, West Bengal, India
| |
Collapse
|
6
|
Ben Brahim N, Touaiti S, Sellés J, Lambry JC, Negrerie M. The control of nitric oxide dynamics and interaction with substituted zinc-phthalocyanines. Dalton Trans 2024; 53:772-780. [PMID: 38086651 DOI: 10.1039/d3dt03356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Phthalocyanines are artificial macrocycles that can harbour a central metal atom with four symmetric coordinations. Similar to metal-porphyrins, metal-phthalocyanines (M-PCs) may bind small molecules, especially diatomic gases such as NO and O2. Furthermore, various chemical chains can be grafted at the periphery of the M-PC macrocycle, which can change its properties, including the interaction with diatomic gases. In this study, we synthesized Zn-PCs with two different substituents and investigated their effects on the interaction and dynamics of nitric oxide (NO). Time-resolved absorption spectroscopy from picosecond to millisecond revealed that NO dynamics dramatically depends on the nature of the groups grafted to the Zn-PC macrocycle. These experimental results were rationalized by DFT calculations, which demonstrate that electrostatic interactions between NO and the quinoleinoxy substituent modify the potential energy surface and decrease the energy barrier for NO recombination, thus controlling its affinity.
Collapse
Affiliation(s)
- Nassim Ben Brahim
- Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences de Monastir, Bd. de l'Environnement, 5019 Monastir, Tunisia
| | - Sarra Touaiti
- Laboratoire de Chimie Organique et Analytique, Institut Supérieur de l'Education et de la Formation Continue, 2000 Bardo, Tunisia
| | - Julien Sellés
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Micro-Algues, UMR 7141 CNRS-Sorbonne Université, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jean-Christophe Lambry
- Laboratoire d'Optique et Biosciences, INSERM U-1182, CNRS UMR-7645, Ecole Polytechnique, Palaiseau, France.
| | - Michel Negrerie
- Laboratoire d'Optique et Biosciences, INSERM U-1182, CNRS UMR-7645, Ecole Polytechnique, Palaiseau, France.
| |
Collapse
|
7
|
Santos AD, Pinho E, Reis P, Martins RC, Gmurek M, Nogueira A, Castro-Silva S, Castro LM, Quinta-Ferreira RM. Heterogeneous photosensitization for water reuse in cellars: evaluation of silica, spongin, and chitosan as carrier material. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-31178-0. [PMID: 38135794 DOI: 10.1007/s11356-023-31178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023]
Abstract
Photosensitization, a powerful oxidation reaction, offers significant potential for wastewater treatment in the context of industrial process water reuse. This environmentally friendly process can be crucial in reducing water consumption and industrial pollution. The ultimate goal is to complete process water reuse, creating a closed-loop system that preserves the inherent value of water resources. The photosensitized oxidation reaction hinges on three essential components: the photosensitizer, visible light, and oxygen. In this study, we assess the performance of three distinct materials-silica, chitosan, and spongin-as carrier materials for incorporating the phthalocyanine photosensitizer (ZnPcS4) in the heterogenous photosensitization process. Among the three materials under study, chitosan emerged as the standout performer in reactor hydrodynamic performance. In the photooxidation process, the photosensitizer ZnPcS4 exhibited notable efficacy, resulting in a significant reduction of approximately 20 to 30% in the remaining COD concentration of the cellar wastewater. Chitosan demonstrated exceptional hydrodynamic characteristics and displayed a favorable response to pH adjustments within the range of 8 to 10, outperforming the other two carrier materials. To further enhance the efficiency of continuous operation, exploring methods for mitigating photosensitizer bleaching within the reaction medium and investigating the impact of different pH values on the process optimization would be prudent.
Collapse
Affiliation(s)
- Andreia D Santos
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Silvio Lima, 3030-790, Coimbra, Portugal.
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
| | - Eduardo Pinho
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Silvio Lima, 3030-790, Coimbra, Portugal
| | - Patrícia Reis
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Silvio Lima, 3030-790, Coimbra, Portugal
| | - Rui C Martins
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Silvio Lima, 3030-790, Coimbra, Portugal
| | - Marta Gmurek
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924, Lodz, Poland
| | - Anabela Nogueira
- , Lda, Rua de Fundões, 151, 3700-121, São João da Madeira, Portugal
| | | | - Luís M Castro
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Silvio Lima, 3030-790, Coimbra, Portugal
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
| | - Rosa M Quinta-Ferreira
- CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Rua Silvio Lima, 3030-790, Coimbra, Portugal
| |
Collapse
|
8
|
Magadla A, Mpeta LS, Britton J, Nyokong T. Photodynamic antimicrobial chemotherapy activities of phthalocyanine-antibiotic conjugates against bacterial biofilms and interactions with extracellular polymeric substances. Photodiagnosis Photodyn Ther 2023; 44:103878. [PMID: 37918559 DOI: 10.1016/j.pdpdt.2023.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
This study sheds light on how to rationally design efficient photodynamic antimicrobial chemotherapy (PACT) agents by covalently linking phthalocyanines (Pcs) as photosensitizers with an antibiotic: Ciprofloxacin (CIP). Pcs used are zinc (II) 3-(4-((3,17,23-tris(4-(Benzo(d)thiazol-2-yl] thiol) phthalocyanine-9-yl) oxy) phenyl) propanoic acid (1) and zinc (II) 3-(4-(3,17,23-tris(3-(4-(triphenylphosphine) butyl) benzo[d]thiazol-3-ium bromide phthalocyanine-9-yl) oxy) phenyl) propanoic acid (2). High singlet oxygen quantum yields are observed in the presence of CIP. Square wave voltammetry was used to analyse the Pc-CIP uptake by bacteria biofilms of Streptococcus pneumoniae (S. pneumonia) and Escherichia coli (E. coli). Electrochemical impedance spectroscopy and scanning electron spectroscopy were used to study the stability of the biofilms in the presence Pc-CIP complexes and when exposed to light. Raman and time of flight-secondary ion mass spectrometry (TOF-SIMS) are used to identify the breakdown of cellular components of the biofilm and penetration of the Pc-CIP into the biofilms, respectively.
Collapse
Affiliation(s)
- Aviwe Magadla
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Lekhetho S Mpeta
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Jonathan Britton
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
9
|
Fang H, Wilhelm MJ, Kuhn DL, Zander Z, Dai HL, Petersson GA. The low-lying electronic states and ultrafast relaxation dynamics of the monomers and J-aggregates of meso-tetrakis (4-sulfonatophenyl)-porphyrins. J Chem Phys 2023; 159:154302. [PMID: 37846956 DOI: 10.1063/5.0174368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
The electronic and vibrational spectra of the meso-tetrakis(4-sulfonatophenyl)-porphyrins (TSPP) have been studied computationally using the PFD-3B functional with time-dependent density functional theory for the excited states. The calculated UV-vis absorption and emission spectra in aqueous solution are in excellent agreement with the experimental measurements of both H2TSPP-4 (monomer) at high pH and H4TSPP-2 (forming J-aggregate) at low pH. Moreover, our calculations reveal an infrared absorption at 1900 cm-1 in the singlet and triplet excited states that is absent in the ground state, which is chosen as a probe for transient IR absorption spectroscopy to investigate the vibrational dynamics of the excited state. Specifically, the S2 to S1 excited state internal conversion process time, the S1 state vibrational relaxation time, and the lifetime of the S1 excited electronic state are all quantitatively deduced.
Collapse
Affiliation(s)
- Hui Fang
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Michael J Wilhelm
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Danielle L Kuhn
- U.S. Army DEVCOM Chemical Biological Center, Research and Operations, Aberdeen Proving Ground, Aberdeen, Maryland 21010, USA
| | - Zachary Zander
- U.S. Army DEVCOM Chemical Biological Center, Research and Operations, Aberdeen Proving Ground, Aberdeen, Maryland 21010, USA
| | - Hai-Lung Dai
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - George A Petersson
- Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
10
|
Banerjee T, Dan K, Pal AK, Bej R, Datta A, Ghosh S. Redox-Triggered Activation of Heavy-Atom-Free Photosensitizer and Implications in Targeted Photodynamic Therapy. ACS Macro Lett 2023:928-934. [PMID: 37378476 DOI: 10.1021/acsmacrolett.3c00249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
A strategy for a redox-activatable heavy-atom-free photosensitizer (PS) based on thiolated naphthalimide has been demonstrated. The PS exhibits excellent reactive oxygen species (ROS) generation in the monomeric state. However, when encapsulated in a disulfide containing bioreducible amphiphilic triblock copolymer aggregate (polymersome), the PS exhibits aggregation in the confined hydrophobic environment, which results in a smaller exciton exchange rate between the singlet and triplet excited states (TDDFT studies), and consequently, the ROS generation ability of the PS was almost fully diminished. Such a PS (in the dormant state)-loaded redox-responsive polymersome showed excellent cellular uptake and intracellular release of the PS in its active form, which enabled cell killing upon light irradiation due to ROS generation. In a control experiment involving aggregates of a similar block copolymer, but lacking the bioreducible disulfide linkage, no intracellular reactivation of the PS was noticed, highlighting the importance of stimuli-responsive polymer assemblies in the area of targeted photodynamic therapy.
Collapse
Affiliation(s)
- Tanushri Banerjee
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India-700032
| | - Krishna Dan
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India-700032
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India-700032
| | - Raju Bej
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India-700032
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India-700032
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, India-700032
| |
Collapse
|
11
|
Magadla A, Openda YI, Mpeta L, Nyokong T. Evaluation of the antibacterial activity of gallic acid anchored phthalocyanine-doped silica nanoparticles towards Escherichia coli and Staphylococcus aureus biofilms and planktonic cells. Photodiagnosis Photodyn Ther 2023; 42:103520. [PMID: 36931365 DOI: 10.1016/j.pdpdt.2023.103520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
In this work, we have described the synthesis of phthalocyanine complexes Zn(II) tetrakis 4-(5-formylpyridin-2-yl)oxy) phthalocyanine (2), Zn(II) tetrakis-1-butyl-4-(2-(6- (tetra-phenoxy)pyridin-3-yl) vinyl)pyridin-1-ium phthalocyanine (3) and Zn(II) tetrakis 1-butyl-5-(2-(1-butylpyridin-1-ium-4-yl)vinyl)-2-(tetra-phenoxy)pyridin-1-ium phthalocyanine (4). The effect of a varying number of charges when the Pc complexes are alone or grafted in gallic acid (GA) tagged silica nanoparticles on photodynamic antimicrobial chemotherapy (PACT) is investigated toward Staphylococcus aureus (S.aureus) and Escherichia coli (E.coli) in both planktonic and biofilm forms. Complex 4, bearing a total of 8 cationic charges, displayed the highest activity with log CFU values of 8.60 and 6.42 against E.coli and S.aureus biofilms, respectively. The surface stability of E.coli and S.aureus biofilms in the presence of 4 and its conjugate was analysed using cyclic voltammetry. Scanning electron microscopy (SEM) and Raman spectra are also used to study the conformational and biochemical changes within biofilm upon subjecting them to PACT.
Collapse
Affiliation(s)
- Aviwe Magadla
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Yolande Ikala Openda
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Lekhetho Mpeta
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
12
|
Farahmand S, Ayazi-Nasrabadi R, Ali Zolfigol M. Amino-Cobalt(II)phthalocyanine supported on silica chloride as an efficient and reusable heterogeneous photocatalyst for oxidation of alcohols. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Mgidlana S, Openda YI, Nyokong T. Asymmetrical zinc phthalocyanine conjugated to various nanomaterials for applications in phototransformation of organic pollutants and photoinactivation of bacteria. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Sindelo A, Nene L, Nyokong T. Photodynamic antimicrobial chemotherapy with asymmetrical cationic or neutral metallophthalocyanines conjugated to amino-functionalized zinc oxide nanoparticles (spherical or pyramidal) against planktonic and biofilm microbial cultures. Photodiagnosis Photodyn Ther 2022; 40:103160. [PMID: 36244683 DOI: 10.1016/j.pdpdt.2022.103160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
The synthesis and characterization of neutral zinc and indium substituted mercaptobenzothiazole substituted phthalocyanines (Pcs) and their respective cationic derivatives are presented. The phthalocyanines were further covalently linked to two differently shaped amino-functionalized ZnO nanoparticles (ZnONPs): namely nanospheres (NH2-ZnONSp), and nanopyramids (NH2-ZnONPy), to form corresponding nanoconjugates. The photophysicochemical properties of each nanocomposite were determined, and the Pc-ZnONPs produced high singlet oxygen quantum yields. The photodynamic antimicrobial chemotherapy activity was determined using planktonic and biofilm cells of Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Candida albicans (C. albicans). The conjugates of the cationic Pc derivatives with ZnONPy produced the highest log reduction values (∼ 8 and above) with the complete elimination of all planktonic cells at 0.45 kJ/cm2 for S. aureus and at 0.9 kJ/cm2 for E. coli, and C. albicans. For biofilms log reduction values >3 for both S. aureus and E. coli were obtained. The conjugates of the cationic Pc derivatives with NH2-ZnONPy showed great potential in eradicating mixed microbial biofilms.
Collapse
Affiliation(s)
- Azole Sindelo
- Institute of Nanotechnology Innovation, Rhodes University, PO Box 94, Makhanda 6140, South Africa
| | - Lindokuhle Nene
- Institute of Nanotechnology Innovation, Rhodes University, PO Box 94, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute of Nanotechnology Innovation, Rhodes University, PO Box 94, Makhanda 6140, South Africa.
| |
Collapse
|
15
|
Mgidlana S, Sen P, Nyokong T. Dual action of asymmetrical zinc(II) phthalocyanines conjugated to silver tungstate nanoparticles towards photodegradation of tetracycline and inactivation of Staphylococcus aureus bacteria. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
|
17
|
Lee YL, Chou YT, Su BK, Wu CC, Wang CH, Chang KH, Ho JAA, Chou PT. Comprehensive Thione-Derived Perylene Diimides and Their Bio-Conjugation for Simultaneous Imaging, Tracking, and Targeted Photodynamic Therapy. J Am Chem Soc 2022; 144:17249-17260. [PMID: 36069676 DOI: 10.1021/jacs.2c07967] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, the chromophore 3,4,9,10-perylenetetracarboxylic diimide (PDI) is anchored with phenyl substituents at the imide N site, followed by thionation, yielding a series of thione products 1S-PDI-D, 2S-cis-PDI-D, 2S-trans-PDI-D, 3S-PDI-D, and 4S-PDI-D, respectively, with n = 1, 2, 3, and 4 thione. The photophysical properties are dependent on the number of anchored thiones, where the observed prominent lower-lying absorption is assigned to the S0 → S2(ππ*) transition and is red-shifted upon increasing the number of thiones; the lowest-lying excited state is ascribed to a transition-forbidden S1(nπ*) configuration. All nS-PDIs are non-emissive in solution but reveal an excellent two-photon absorption cross-section of >800 GM. Supported by the femtosecond transient absorption study, the S1(nπ*) → T1(ππ*) intersystem crossing (ISC) rate is > 1012 s-1, resulting in ∼100% triplet population. The lowest-lying T1(ππ*) energy is calculated to be in the order of 1S-PDI-D > 2S-cis-PDI-D ∼ 2S-trans-PDI-D > 3S-PDI-D > 4S-PDI-D, where the T1 energy of 1S-PDI-D (1.10 eV) is higher than that (0.97 eV) of the 1O2 1Δg state. 1S-PDI-D is further modified by either conjugation with peptide FC131 on the two terminal sides, forming 1S-FC131, or linkage with peptide FC131 and cyanine5 dye on each terminal, yielding Cy5-1S-FC131. In vitro experiments show power of 1S-FC131 and Cy5-1S-FC131 in recognizing A549 cells out of other three lung normal cells and effective photodynamic therapy. In vivo, both molecular composites demonstrate outstanding antitumor ability in A549 xenografted tumor mice, where Cy5-1S-FC131 shows superiority of simultaneous fluorescence tracking and targeted photodynamic therapy.
Collapse
Affiliation(s)
- Yao-Lin Lee
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Yi-Te Chou
- Department of Biochemical Science and Technology/Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Bo-Kang Su
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Chi-Chi Wu
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Chih-Hsing Wang
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Kai-Hsin Chang
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Ja-An Annie Ho
- Department of Biochemical Science and Technology/Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, 10617 Taipei, Taiwan
| |
Collapse
|
18
|
Matlou GG, Abrahamse H. Nanoscale metal–organic frameworks as photosensitizers and nanocarriers in photodynamic therapy. Front Chem 2022; 10:971747. [PMID: 36092660 PMCID: PMC9458963 DOI: 10.3389/fchem.2022.971747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a new therapeutic system for cancer treatment that is less invasive and offers greater selectivity than chemotherapy, surgery, and radiation therapy. PDT employs irradiation light of known wavelength to excite a photosensitizer (PS) agent that undergoes photochemical reactions to release cytotoxic reactive oxygen species (ROS) that could trigger apoptosis or necrosis-induced cell death in tumor tissue. Nanoscale metal–organic frameworks (NMOFs) have unique structural advantages such as high porosity, large surface area, and tunable compositions that have attracted attention toward their use as photosensitizers or nanocarriers in PDT. They can be tailored for specific drug loading, targeting and release, hypoxia resistance, and with photoactive properties for efficient response to optical stimuli that enhance the efficacy of PDT. In this review, an overview of the basic chemistry of NMOFs, their design and use as photosensitizers in PDT, and as nanocarriers in synergistic therapies is presented. The review also discusses the morphology and size of NMOFs and their ability to improve photosensitizing properties and localize within a targeted tissue for effective and selective cancer cell death over healthy cells. Furthermore, targeting strategies that improve the overall PDT efficacy through stimulus-activated release and sub-cellular internalization are outlined with relevance to in vitro and in vivo studies from recent years.
Collapse
|
19
|
Mgidlana S, Sen P, Nyokong T. Photodegradation of tetracycline by asymmetrical zinc(II)phthalocyanines conjugated to cobalt tungstate nanoparticles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Magadla A, Openda YI, Nyokong T. The implications of Ortho-, Meta- and Para- Directors on the In-Vitro Photodynamic Antimicrobial Chemotherapy Activity of Cationic Pyridyl-dihydrothiazole Phthalocyanines. Photodiagnosis Photodyn Ther 2022; 39:103029. [PMID: 35872353 DOI: 10.1016/j.pdpdt.2022.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/03/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
Abstract
Cationic Zn phthalocyanine complexes derived by alkylation reaction of tetra-(pyridinyloxy) phthalocyanines at the ortho, meta, and para positions to form Zn (II) Tetrakis 3-(4-(2-pyridin-1-ium-1-yl) butyl)-2-mercapto-4,5-dihydrothiazol-3-ium phthalocyanine (2), Zn (II) Tetrakis 3-(4-(3-pyridin-1-ium-1-yl) butyl)-2-mercapto-4,5-dihydrothiazol-3-ium phthalocyanine (4) and Zn (II) Tetrakis 3-(4-(4-pyridin-1-ium-1-yl) butyl)-2-mercapto-4,5-dihydrothiazol-3-ium phthalocyanine (6). The photophysicochemical behaviours of the Pc complexes are assessed. The meta and para-substituted complexes demonstrate high singlet oxygen quantum yields. The cationic Pcs demonstrate good planktonic antibacterial activity towards Staphylococcus aureus and Escherichia coli with the highest log reduction values of 9.29 and 8.55, respectively. The cationic complexes also demonstrate a significant decrease in the viability of in vitro biofilms after photo-antimicrobial chemotherapy at 100 µM for both Staphylococcus aureus and Escherichia coli biofilms.
Collapse
Affiliation(s)
- Aviwe Magadla
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Grahamstown 6140, South Africa
| | - Yolande Ikala Openda
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Grahamstown 6140, South Africa
| | - Tebello Nyokong
- Department of Chemistry, Institute for Nanotechnology Innovation, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
21
|
Bhattacharya S, Graf A, Gomes AKM, Chaudhri N, Chekulaev D, Brückner C, Cardozo TM, Chauvet AAP. Tailoring the Intersystem Crossing and Triplet Dynamics of Free-Base Octaalkyl-β-oxo-Substituted Porphyrins: Competing Effects of Spin-Vibronic and NH Tautomerism Relaxation Channels. J Phys Chem A 2022; 126:2522-2531. [PMID: 35348324 PMCID: PMC9059185 DOI: 10.1021/acs.jpca.2c01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Indexed: 11/30/2022]
Abstract
We demonstrate that β-oxo-substitution provides effective fine-tuning of both steady-state and transient electronic properties of octaalkyl-β-mono-oxochlorin and all isomers of the β,β'-dioxo-substituted chromophores. The addition of a carbonyl group increases the Qy oscillator strength and red-shifts the absorption spectra. Each oxo-substitution results in a 2-fold increase in the singlet to triplet state intersystem crossing (ISC) rates, resulting in a 4-fold ISC rate increase for the dioxo-substituted chromophores. The effects of oxo-substitution on the ISC rate are thus additive. The progressive increase in the ISC rates correlates directly with the spin-vibronic channels provided by the C═O out-of-plane distortion modes, as evidenced by density functional theory (DFT) modeling. The triplet states, however, were not evenly affected by β-oxo-substitution, and reduction in the triplet lifetime seems to be influenced instead by the presence of NH tautomers in the dioxoisobacteriochlorins.
Collapse
Affiliation(s)
- Sayantan Bhattacharya
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Arthur Graf
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, United Kingdom
| | | | - Nivedita Chaudhri
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Dimitri Chekulaev
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Christian Brückner
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Thiago M. Cardozo
- Instituto
de Química (IQ), Federal University
of Rio de Janeiro, Rio de
Janeiro 21941-909, Brazil
| | - Adrien A. P. Chauvet
- Department
of Chemistry, The University of Sheffield, Sheffield S3 7HF, United Kingdom
| |
Collapse
|
22
|
Kechiche A, Fradi T, Noureddine O, Guergueb M, Loiseau F, Guerineau V, Issoui N, Lemeune A, Nasri H. Synthesis, characterization and catalytic studies of chromium(III) porphyrin complex with axial cyanate ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Liu L, Zhang XF. The excited state behavior of Group IA alkaline-metal phthalocyanines revealed by photoluminescence and singlet oxygen formation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120297. [PMID: 34455382 DOI: 10.1016/j.saa.2021.120297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Group IA alkaline-metal phthalocyanine (Pc) complexes (Li2Pc, Na2Pc, K2Pc, Rb2Pc, Cs2Pc) have been synthesized and purified to study their excited state behavior. Their UV-Vis electronic absorption spectra, fluorescence emission and excitation spectra, fluorescence quantum yields and lifetimes, as well as singlet oxygen formation quantum yields have been measured in DMF. These photophysical properties are compared with that of H2Pc. The fluorescence and singlet oxygen formation properties reveal that alkaline metal Pcs show weak heavy atom effect. The results also reveal that alkaline-metal Pcs (Na2Pc, K2Pc, Rb2Pc, and Cs2Pc) show very different excited singlet state (S1) behavior from that of Li2PC and H2Pc. While S1 decay of Li2PC is mainly via intersystem crossing and fluorescence, the S1 decay of M2Pc (M = Na, K, Rb, Cs) is mainly metal ion dissociation: M2Pc(S1) → 2 M+ + [Pc]2-(S1), in addition to the intersystem crossing.
Collapse
Affiliation(s)
- Limin Liu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Xian-Fu Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province 518055, China.
| |
Collapse
|
24
|
Sato R, Amao Y. No competitive inhibition of bicarbonate or carbonate for formate dehydrogenase from Candida boidinii -catalyzed CO 2 reduction. NEW J CHEM 2022. [DOI: 10.1039/d2nj00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formate dehydrogenase from Candida boidinii (CbFDH) reversibly catalyzes the formate to CO2 with the redox coupling NAD+/NADH. While many studies on CbFDH-catalyzed formate oxidation in the presence of NAD+ are...
Collapse
|
25
|
Catalytic systems mimicking the [FeFe]-hydrogenase active site for visible-light-driven hydrogen production. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214172] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Guergueb M, Nasri S, Brahmi J, Al-Ghamdi YO, Loiseau F, Molton F, Roisnel T, Guerineau V, Nasri H. Spectroscopic characterization, X-ray molecular structures and cyclic voltammetry study of two (piperazine) cobalt(II) meso-arylporphyin complexes. Application as a catalyst for the degradation of 4-nitrophenol. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Zhao Y, Jiang WJ, Zhang J, Lovell EC, Amal R, Han Z, Lu X. Anchoring Sites Engineering in Single-Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102801. [PMID: 34477254 DOI: 10.1002/adma.202102801] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Indexed: 05/23/2023]
Abstract
Single-atom catalysts (SACs) have been at the frontier of research field in catalysis owing to the maximized atomic utilization, unique structures and properties. The atomically dispersed and catalytically active metal atoms are necessarily anchored by surrounding atoms. As such, the structure and composition of anchoring sites significantly influence the catalytic performance of SACs even with the same metal element. Significant progress has been made to understand structure-activity relationships at an atomic level, but in-depth understanding in precisely designing highly efficient SACs for the targeted reactions is still required. In this review, various anchoring sites in SACs are summarized and classified into five different types (doped heteroatoms, defect sites, surface atoms, metal sites, and cavity sites). Then, their impacts on catalytic performance are elucidated for electrochemical reactions based on their distance from the metal center (first coordination shell and beyond). Further, SACs anchored on two typical types of hosts, carbon- and metal-based materials, are highlighted, and the effects of anchoring points on achieving the desirable atomic structure, catalytic performance, and reaction pathways are elaborated. At last, insights and outlook to the SAC field based on current achievements and challenges are presented.
Collapse
Affiliation(s)
- Yufei Zhao
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wen-Jie Jiang
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jinqiang Zhang
- Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Emma C Lovell
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rose Amal
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zhaojun Han
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Mechanical and Manufacturing Engineering, The University of New South Wales Sydney, Sydney, NSW, 2052, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, Sydney, NSW, 2070, Australia
| | - Xunyu Lu
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
28
|
Fei J, Han Z, Deng Y, Wang T, Zhao J, Wang C, Zhao X. Enhanced photocatalytic performance of iron phthalocyanine/TiO2 heterostructure at joint fibrous interfaces. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Mgidlana S, Nyokong T. Asymmetrical zinc(II) phthalocyanines cobalt tungstate nanomaterial conjugates for photodegradation of methylene blue. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Rapid electron transfer via dynamic coordinative interaction boosts quantum efficiency for photocatalytic CO 2 reduction. Nat Commun 2021; 12:4276. [PMID: 34257312 PMCID: PMC8277789 DOI: 10.1038/s41467-021-24647-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/28/2021] [Indexed: 11/12/2022] Open
Abstract
The fulfillment of a high quantum efficiency for photocatalytic CO2 reduction presents a key challenge, which can be overcome by developing strategies for dynamic attachment between photosensitizer and catalyst. In this context, we exploit the use of coordinate bond to connect a pyridine-appended iridium photosensitizer and molecular catalysts for CO2 reduction, which is systematically demonstrated by 1H nuclear magnetic resonance titration, theoretical calculations, and spectroscopic measurements. The mechanistic investigations reveal that the coordinative interaction between the photosensitizer and an unmodified cobalt phthalocyanine significantly accelerates the electron transfer and thus realizes a remarkable quantum efficiency of 10.2% ± 0.5% at 450 nm for photocatalytic CO2-to-CO conversion with a turn-over number of 391 ± 7 and nearly complete selectivity, over 4 times higher than a comparative system with no additional interaction (2.4%±0.2%). Moreover, the decoration of electron-donating amino groups on cobalt phthalocyanine can optimize the quantum efficiency up to 27.9% ± 0.8% at 425 nm, which is more attributable to the enhanced coordinative interaction rather than the intrinsic activity. The control experiments demonstrate that the dynamic feature of coordinative interaction is important to prevent the coordination occupancy of labile sites, also enabling the wide applicability on diverse non-noble-metal catalysts. Positioning photosensitizer and catalyst complexes in photocatalytic systems is a promising method to direct desired electron transfers. Here, authors employ a dynamic coordinative interaction between molecular components to improve CO2 photoreduction to CO with a high quantum efficiency of 27.9%.
Collapse
|
31
|
First-principles study of hybrid nanostructures formed by deposited phthalocyanine/porphyrin metal complexes on phosphorene. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Magadla A, Babu B, Sen P, Nyokong T. The photophysicochemical properties and photodynamic therapy activity of Schiff base substituted phthalocyanines doped into silica nanoparticles and conjugated to folic acid. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
The antibacterial and antifungal properties of neutral, octacationic and hexadecacationic Zn phthalocyanines when conjugated to silver nanoparticles. Photodiagnosis Photodyn Ther 2021; 35:102361. [PMID: 34052420 DOI: 10.1016/j.pdpdt.2021.102361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/27/2022]
Abstract
The syntheses and characterization of novel octacationic and hexadecacationic Pcs is reported. With the aim of enhancing singlet oxygen generation efficiencies and hence antimicrobial activities, these Pcs (including their neutral counterpart) are conjugated to Ag nanoparticles (AgNPs). The obtained results show that the conjugate composed of the neutral Pc has a higher loading of Pcs as well as a greater singlet oxygen quantum yield enhancement (in the presence of AgNPs) in DMSO. The antimicrobial efficiencies of the Pcs and their conjugates were evaluated and compared on S. aureus, E. coli and C. albicans. The cationic Pcs possess better activity than the neutral Pc against all the microorganisms with the hexadecacationic Pc being the best. This work therefore demonstrates that increase in the number of cationic charges on the reported Pcs results in enhanced antimicrobial activities, which is maintained even when conjugated to Ag nanoparticles. The high activity and lack of selectivity of the cationic Pcs when conjugated to Ag NPs against different microorganisms make them good candidates for real life antimicrobial treatments.
Collapse
|
34
|
Janaagal A, Pandey V, Sabharwal S, Gupta I. meso-Carbazole substituted palladium porphyrins: Efficient catalysts for visible light induced oxidation of aldehydes. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The A3B and A2B2 type porphyrins having [Formula: see text]-butylcarbazole and [Formula: see text]-cyanophenyl groups are synthesized and characterized. Their palladium complexes have also been prepared and utilized as catalysts for the photo-oxidation reactions of aromatic aldehydes in good yields. Pd(II)porphyrins displayed decent phosphorescence at [Formula: see text]670 nm and were able to generate singlet oxygen upon light irradiation. The calculated singlet oxygen quantum yields for Pd(II)porphyrins were between 57% and 73%. The photo-catalytic application of Pd(II)porphyrins for aerobic oxidation of aromatic aldehydes is demonstrated.
Collapse
Affiliation(s)
- Anu Janaagal
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat-382355, India
| | - Vijayalakshmi Pandey
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat-382355, India
| | - Sudhir Sabharwal
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat-382355, India
| | - Iti Gupta
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat-382355, India
| |
Collapse
|
35
|
Nasri S, Hajji M, Guergueb M, Dhifaoui S, Marvaud V, Loiseau F, Molton F, Roisnel T, Guerfel T, Nasri H. Spectroscopic, Electrochemical, Magnetic and Structural Characterization of an Hexamethylenetetramine Co(II) Porphyrin Complex – Application in the Catalytic Degradation of Vat Yellow 1 dye. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Self-assembly of a symmetrical dimethoxyphenyl substituted Zn(II) phthalocyanine into nanoparticles with enhanced NIR absorbance for singlet oxygen generation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Taniguchi M, Lindsey JS, Bocian DF, Holten D. Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2020.100401] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Önal E, Tüncel Ö, Albakour M, Çelik GG, Gürek AG, Özçelik S. Synthesizing and evaluating the photodynamic efficacy of asymmetric heteroleptic A 7B type novel lanthanide bis-phthalocyanine complexes. RSC Adv 2021; 11:6188-6200. [PMID: 35423167 PMCID: PMC8694812 DOI: 10.1039/d1ra00197c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/20/2021] [Indexed: 11/22/2022] Open
Abstract
In this study heteroleptic A7B type novel Lu(iii) and Eu(iii) lanthanide phthalocyanines (LnPc(Pox)[Pc′(AB3SH)]) with high extinction coefficients have been synthesized as candidate photosensitizers with reaction yields higher than 33%. The singlet oxygen quantum yields of LuPc(Pox)[Pc′(AB3SH)] and EuPc(Pox)[Pc′(AB3SH)], respectively, were measured 17% and 1.4% by the direct method in THF. The singlet oxygen quantum yield of LuPc(Pox)[Pc′(AB3SH)] in THF is the highest among lutetium(iii) bis-phthalocyanine complexes to date. The photodynamic efficacy of the heteroleptic lanthanide phthalocyanines was evaluated by measuring cell viabilities of A549 and BEAS-2B lung cells, selected to representing in vitro models for testing cancer and normal cells against potential drugs. The cell viabilities demonstrated concentration dependent behavior and were varied by the type of phthalocyanines complexes. Irradiation of the cells for 30 minutes with LED array at 660 nm producing flux of 0.036 J cm−2 s−1 increased cell death for LuPcPox-OAc, LuPc(Pox)[Pc′(AB3SH)] and ZnPc. The IC50 concentrations of LuPc(Pox)[Pc′(AB3SH)] and ZnPc were determined to be below 10 nM for both cell lines, agreeing very well with the singlet oxygen quantum yield measurements. These findings suggest that LuPc(Pox)[Pc′(AB3SH)] and particularly LuPcPox-OAc are promising drug candidates enabling lowered dose and shorter irradiation time for photodynamic therapy. Novel bis-lanthanide Lu(iii) and Eu(iii) phthalocyanine complexes have been designed/synthesized and tested their photodynamic efficacy for A549 and BEAS-2B cells in vitro conditions as candidate photosensitizers in PDT.![]()
Collapse
Affiliation(s)
- Emel Önal
- Department of Chemistry, Gebze Technical University Gebze 41400 Kocaeli Turkey .,Faculty of Engineering, Doğuş University Ümraniye 34775 Istanbul Turkey
| | - Özge Tüncel
- Department of Chemistry, Izmir Institute of Technology Urla 35430 Izmir Turkey
| | - Mohamad Albakour
- Department of Chemistry, Gebze Technical University Gebze 41400 Kocaeli Turkey
| | | | - Ayşe Gül Gürek
- Department of Chemistry, Gebze Technical University Gebze 41400 Kocaeli Turkey
| | - Serdar Özçelik
- Department of Chemistry, Izmir Institute of Technology Urla 35430 Izmir Turkey
| |
Collapse
|
39
|
Singh K, S. V, Adhikari D. Visible light photoredox by a ( ph,ArNacNac) 2Zn photocatalyst: photophysical properties and mechanistic understanding. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01466d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A zinc photocatalyst has been developed that shows a ligand-centered, long-lived excited state. Under blue light irradiation, it catalyses ATRA type reactions with styrenes.
Collapse
Affiliation(s)
- Kirti Singh
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- India
| | - Vidhyalakshmi S.
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- India
| | - Debashis Adhikari
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Mohali
- India
| |
Collapse
|
40
|
Minami Y, Amao Y. Cationic poly- l-amino acid-enhanced selective hydrogen production based on formate decomposition with platinum nanoparticles dispersed by polyvinylpyrrolidone. NEW J CHEM 2021. [DOI: 10.1039/d1nj01181b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using platinum nanoparticles dispersed by polyvinylpyrrolidone (PVP) and cationic poly-l-amino acid, poly(l-lysine) (PLL) (Pt-PVP/PLL), highly selective H2 production based on formate decomposition was achieved about 1.8 times compared to Pt-PVP in a low pH region (pH = 1.8).
Collapse
Affiliation(s)
- Yusuke Minami
- Graduate School of Science
- Osaka City University
- Osaka 558-8585
- Japan
| | - Yutaka Amao
- Graduate School of Science
- Osaka City University
- Osaka 558-8585
- Japan
- Research Centre for Artificial Photosynthesis (ReCAP)
| |
Collapse
|
41
|
Mgidlana S, Nyokong T. Photocatalytic desulfurization of dibenzothiophene using asymmetrical zinc(II) phthalocyanines conjugated to silver-magnetic nanoparticles. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Miyaji A, Amao Y. Visible-light driven reduction of CO2 to formate by a water-soluble zinc porphyrin and formate dehydrogenase system with electron-mediated amino and carbamoyl group-modified viologen. NEW J CHEM 2021. [DOI: 10.1039/d1nj00889g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Visible-light-driven CO2 reduction to formate with a system consisting of water-soluble zinc porphyrin, formate dehydrogenase from Candida boidinii and 1-amino-1′-carbamoyl-4,4′-bipyridinium salt as an electron mediator in the presence of triethanolamine was developed.
Collapse
Affiliation(s)
- Akimitsu Miyaji
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Yokohama 226-8502
- Japan
| | - Yutaka Amao
- Graduate School of Science
- Osaka City University
- Osaka 558-8585
- Japan
- Research Centre of Artificial Photosynthesis (ReCAP)
| |
Collapse
|
43
|
Santos KLM, Barros RM, da Silva Lima DP, Nunes AMA, Sato MR, Faccio R, de Lima Damasceno BPG, Oshiro-Junior JA. Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: A mini-review. Photodiagnosis Photodyn Ther 2020; 32:102032. [DOI: 10.1016/j.pdpdt.2020.102032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022]
|
44
|
The photodynamic antimicrobial chemotherapy of Stapphylococcus aureus using an asymmetrical zinc phthalocyanine conjugated to silver and iron oxide based nanoparticles. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Openda YI, Nyokong T. Detonation nanodiamonds-phthalocyanine photosensitizers with enhanced photophysicochemical properties and effective photoantibacterial activity. Photodiagnosis Photodyn Ther 2020; 32:102072. [PMID: 33130028 DOI: 10.1016/j.pdpdt.2020.102072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023]
Abstract
The nanophotosensitizers based on acetophenoxy tetrasubstituted metallophthalocyanines (MPc) and detonation nanodiamonds (DNDs) were successfully formed and their photophysicochemical properties were determined. The zinc(II)Pc and indium(III)Pc complexes along with their nanoconjugates were found to have high singlet oxygen quantum yields (0.72 - 0.84) associated with the heavy central metal effect. The ability of the functional groups present on the DNDs to bind to the bacteria cell and the improved solubility of the nanoconjugates due to DNDs resulted in effective photodynamic antimicrobial therapy (PACT) activity against S. aureus planktonic cells, with the highest log reduction of 9.72 ± 0.02 for the conjugate of InPc conjugate with DNDs after 30 min irradiation. PACT studies were investigated at a dose of 10 μg/mL for each sample. The results suggest that the readily synthesized nanoconjugates can be used as appropriate PACT agents.
Collapse
Affiliation(s)
- Yolande Ikala Openda
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa.
| |
Collapse
|
46
|
Openda YI, Matshitse R, Nyokong T. A search for enhanced photodynamic activity against Staphylococcus aureus planktonic cells and biofilms: the evaluation of phthalocyanine-detonation nanodiamond-Ag nanoconjugates. Photochem Photobiol Sci 2020; 19:1442-1454. [PMID: 33000851 DOI: 10.1039/d0pp00075b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present work reports on the synthesis and characterization of novel zinc (2) and indium (3) 2-amino-4-bromophenoxy substituted phthalocyanines (Pcs) along with the self-assembled nanoconjugates formed viaπ-π stacking interaction onto detonation nanodiamonds (DNDs) to form 2@DNDs and 3@DNDs. 2@DNDs and 3@DNDs were covalently linked to chitosan-silver mediated nanoparticles (CSAg) to form 2@DNDs-CSAg and 3@DNDs-CSAg nanoconjugates. High singlet oxygen quantum yields in DMSO of 0.69 and 0.72 for Pcs alone and 0.90 and 0.92 for 2@DNDs-CSAg and 3@DNDs-CSAg, respectively, were obtained. The photodynamic antimicrobial chemotherapy (PACT) activity of both phthalocyanines and nanoconjugates was tested against planktonic cells and biofilms of S. aureus. 2@DNDs-CSAg and 3@DNDs-CSAg caused effective killing with a log reduction of 9.74. In addition, PACT studies on single-species S. aureus biofilms were carried out with log reduction values of 5.12 and 5.27 at 200 μg mL-1 for 2@DNDs-CSAg and 3@DNDs-CSAg, respectively.
Collapse
Affiliation(s)
- Yolande Ikala Openda
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa.
| | | | | |
Collapse
|
47
|
Nonlinear optical response and electrocatalytic activity of cobalt phthalocyanine clicked zinc oxide nanoparticles. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Sebastian A, Remello SN, Kuttassery F, Mathew S, Ohsaki Y, Tachibana H, Inoue H. Protolytic behavior of water-soluble zinc(II) porphyrin and the electrocatalytic two-electron water oxidation to form hydrogen peroxide. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Goto Y, Hino S, Sugikawa K, Kawasaki R, Ikeda A. Water Solubilization of Phthalocyanine Derivatives via Interactions of Long Alkyl Chains and Cyclodextrins: Potential Complexes for Photodynamic Therapy. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuya Goto
- Department of Applied Chemistry Graduate School of Engineering Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima Hiroshima 739–8527 Japan
| | - Shodai Hino
- Department of Applied Chemistry Graduate School of Engineering Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima Hiroshima 739–8527 Japan
| | - Kouta Sugikawa
- Department of Applied Chemistry Graduate School of Engineering Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima Hiroshima 739–8527 Japan
| | - Riku Kawasaki
- Department of Applied Chemistry Graduate School of Engineering Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima Hiroshima 739–8527 Japan
| | - Atsushi Ikeda
- Department of Applied Chemistry Graduate School of Engineering Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima Hiroshima 739–8527 Japan
| |
Collapse
|
50
|
Tang J, Wang L, Loredo A, Cole C, Xiao H. Single-atom replacement as a general approach towards visible-light/near-infrared heavy-atom-free photosensitizers for photodynamic therapy. Chem Sci 2020; 11:6701-6708. [PMID: 32953031 PMCID: PMC7473402 DOI: 10.1039/d0sc02286a] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/30/2020] [Indexed: 12/31/2022] Open
Abstract
Photodynamic therapy has become an emerging strategy for the treatment of cancer. This technology relies on the development of photosensitizers (PSs) that convert molecular oxygen to cytotoxic reactive oxygen species upon exposure to light. In this study, we have developed a facile and general strategy for obtaining visible light/near-infrared-absorbing PSs by performing a simple sulfur-for-oxygen replacement within existing fluorophores. Thionation of carbonyl groups within existing fluorophore cores leads to an improvement of the singlet oxygen quantum yield and molar absorption coefficient at longer wavelengths (deep to 600-800 nm). Additionally, these thio-based PSs lack dark cytotoxicity but exhibit significant phototoxicity against monolayer cancer cells and 3D multicellular tumor spheroids with IC50 in the micromolar range. To achieve tumor-specific delivery, we have conjugated these thio-based PSs to an antibody and demonstrated their tumor-specific therapeutic activity.
Collapse
Affiliation(s)
- Juan Tang
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Lushun Wang
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Axel Loredo
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Carson Cole
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
| | - Han Xiao
- Department of Chemistry , Rice University , 6100 Main Street , Houston , Texas 77005 , USA .
- Department of Biosciences , Rice University , 6100 Main Street , Houston , Texas 77005 , USA
- Department of Bioengineering , Rice University , 6100 Main Street , Houston , Texas 77005 , USA
| |
Collapse
|