1
|
Li C, Zhang Y, Zhang Z, Zhang Y, Song Y, Wang L, Yuan C, Hao G, Sun N, Li H, Zhang Z, He Y, Wang S. Discovery and biological evaluation of carborane-containing derivatives as TEAD auto palmitoylation inhibitors. Bioorg Med Chem Lett 2025; 121:130155. [PMID: 40010443 DOI: 10.1016/j.bmcl.2025.130155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Transcriptional enhanced associate domain (TEAD) proteins are key downstream effectors of the Hippo signaling pathway that play a crucial role in various cell processes including tissue development, regeneration, cell proliferation and cancer. TEADs contain a hydrophobic auto-palmitoylation pocket that can bind palmitic acid and stabilize TEADs from being degraded. Inhibitors targeting this palmitoylation pocket typically consist of hydrophobic pharmacophores. Carboranes is a cage-shaped molecule exhibiting superior hydrophobicity compared to adamantane or phenyl groups. Herein, we incorporated carborane into known TEAD inhibitors for better interaction with the hydrophobic palmitate pocket. Compounds 1f and 1l are identified as TEAD transcription inhibitors with strong anti-proliferation and anti-migration activities toward prostate cancer cell lines. They also significantly reduced TEAD-regulated downstream gene expressions.
Collapse
Affiliation(s)
- Chaofan Li
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yingshuang Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ziyin Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yirong Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yuxuan Song
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Linyuan Wang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Changxian Yuan
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Guanxiang Hao
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Nan Sun
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hongjing Li
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Zhiguang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Sinan Wang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
2
|
Noori Z, Solà M, Viñas C, Teixidor F, Poater J. Unraveling aromaticity: the dual worlds of pyrazole, pyrazoline, and 3D carborane. Beilstein J Org Chem 2025; 21:412-420. [PMID: 39996167 PMCID: PMC11849550 DOI: 10.3762/bjoc.21.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/15/2025] [Indexed: 02/26/2025] Open
Abstract
A new series of o-carborane-fused pyrazoles has been recently successfully synthesized. This fusion was expected to create a hybrid 3D/2D aromatic system, combining the 3D aromaticity of o-carborane with the 2D aromaticity of pyrazole. However, while the boron cage retains its aromatic character, the pyrazole's aromaticity is lost. As a result, rather than forming o-carborane-fused pyrazoles, the synthesis yielded o-carborane-fused pyrazolines, which are non-aromatic. The limited overlap between the π molecular orbitals (MOs) of the planar heterocycle and the n + 1 MOs of the carborane prevents significant electronic delocalization between the two fused components. This contrasts with the fusion of pyrazole and benzene to form indazole, where both rings maintain their 2D aromaticity. Our findings demonstrate that the peripheral σ-aromaticity of carborane and the π-aromaticity of the heterocycle are orthogonal, making a true 3D/2D aromatic system unachievable. The carborane is highly aromatic, generating highly negative NICS values (-25 to -30 ppm). We have observed that these high NICS values extend to fused rings, leading to incorrect estimations of aromaticity. Therefore, relying solely on NICS can be misleading, and other computational indicators, along with experimental or structural data, should be used to accurately assess aromaticity.
Collapse
Affiliation(s)
- Zahra Noori
- Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, Consejo Superior de Investigaciones Científicas, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
3
|
Crujeiras P, Vázquez-Carballo I, Sousa-Pedrares A. Application of the aza-Wittig reaction for the synthesis of carboranyl Schiff bases, benzothiazoles and benzoselenazolines. Dalton Trans 2025; 54:2819-2832. [PMID: 39812131 DOI: 10.1039/d4dt03378g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The aza-Wittig reaction was successfully applied to the synthesis of carboranyl-imines, which are difficult to obtain by classical methods. A variety of functionalized carboranyl Schiff bases was obtained proving the great scope of the methodology. All compounds were fully characterized, including the solid-state structures of six of them. The aza-Wittig reaction was modified to permit the synthesis in one step of carboranyl-benzothiazole and carboranyl-benzoselenazoline derivatives. The stability studies show that the carboranyl-imines and benzothiazole promote deboronation to the nido-derivatives, which is achieved by simple reaction with methanol or protic solvents. The structures of the nido-derivatives were also studied by X-ray diffraction. In contrast, the saturated derivatives, amine and benzoselenazoline, do not promote deboronation and are stable in protic solvents.
Collapse
Affiliation(s)
- Pablo Crujeiras
- Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Irene Vázquez-Carballo
- Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Antonio Sousa-Pedrares
- Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Xu HL, Zhu M, Sung HHY, Williams ID, Lin Z, Zhang C, Sun J. Organocatalytic Asymmetric Synthesis of o-Carboranyl Amines. J Am Chem Soc 2025; 147:3692-3701. [PMID: 39808207 DOI: 10.1021/jacs.4c16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Carboranyl amines are distinct from typical organic amines. Due to the electronic influence of the carborane cage, they have low nucleophilicity and are reluctant to alkylate. Moreover, asymmetric synthesis of chiral carboranes is still in its infancy. Herein we have achieved the first catalytic asymmetric N-alkylation of o-carboranyl amine, providing general access to diverse secondary o-carboranyl amines with high efficiency and enantioselectivity under mild conditions. For the first time, asymmetric organocatalysis was introduced to carborane chemistry. Key to the success is the use of in situ generated (naphtho-)quinone methides as the alkylating reagents and suitable chiral acid catalysts. This protocol is also applicable to the asymmetric S-alkylation of 1-SH-o-C2B10H11. Control experiments and kinetic studies provided important insights into the reaction mechanism, which likely involves rate-determining generation of the quinone methide followed by fast and enantio-determining nucleophilic addition.
Collapse
Affiliation(s)
- Hong-Lei Xu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Minghui Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Herman H Y Sung
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ian D Williams
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Zhenyang Lin
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chaoshen Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- The Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
D'Ambrosio K, Di Fiore A, Alterio V, Langella E, Monti SM, Supuran CT, De Simone G. Multiple Binding Modes of Inhibitors to Human Carbonic Anhydrases: An Update on the Design of Isoform-Specific Modulators of Activity. Chem Rev 2025; 125:150-222. [PMID: 39700306 DOI: 10.1021/acs.chemrev.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Human carbonic anhydrases (hCAs) are widespread zinc enzymes that catalyze the hydration of CO2 to bicarbonate and a proton. Currently, 15 isoforms have been identified, of which only 12 are catalytically active. Given their involvement in numerous physiological and pathological processes, hCAs are recognized therapeutic targets for the development of inhibitors with biomedical applications. However, despite massive development efforts, very few of the presently available hCA inhibitors show selectivity for a specific isoform. X-ray crystallography is a very useful tool for the rational drug design of enzyme inhibitors. In 2012 we published in Chemical Reviews a highly cited review on hCA family (Alterio, V. et al. Chem Rev. 2012, 112, 4421-4468), analyzing about 300 crystallographic structures of hCA/inhibitor complexes and describing the different CA inhibition mechanisms existing up to that date. However, in the period 2012-2023, almost 700 new hCA/inhibitor complex structures have been deposited in the PDB and a large number of new inhibitor classes have been discovered. Based on these considerations, the aim of this Review is to give a comprehensive update of the structural aspects of hCA/inhibitor interactions covering the period 2012-2023 and to recapitulate how this information can be used for the rational design of more selective versions of such inhibitors.
Collapse
Affiliation(s)
- Katia D'Ambrosio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Di Fiore
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Vincenzo Alterio
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging-CNR, via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
6
|
Ma W, Zhang J, Zong J, Ren H, Tu D, Xu Q, Zhong Tang B, Yan H. Luminescence Modulation in Boron-Cluster-Based Luminogens via Boron Isotope Effects. Angew Chem Int Ed Engl 2024; 63:e202410430. [PMID: 39373974 DOI: 10.1002/anie.202410430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Recent advances in luminescent materials highlight the significant impact of hydrogen isotope effects on improving optoelectronic properties. However, the research on the influence of the boron isotope effects on photophysical properties remains underdeveloped. This study focused on exploring the boron isotope effects in boron-cluster-based luminogens. In doing so, we designed and synthesized carborane-based luminogens containing 98 % 10B and 95 % 11B, respectively, and observed distinct photophysical behaviors. Compared to the 10B-enriched luminogens, the 11B-enriched counterparts can significantly enhance luminescence efficiency, prolong emission lifetime, and reduce full-width at half-maximum. Additionally, increased thermal stability, redshifted B-H vibrations, and a fourfold enhanced electrochemiluminescence intensity have also been observed. On the other hand, the biological assessments of a 10B-enriched luminogen reveals low cytotoxicity, high boron uptake, and excellent fluorescence imaging capability, indicating the potential application in boron neutron capture therapy (BNCT). This work presents the first comprehensive exploration on the boron isotope effects in boron clusters, and provides valuable insights into the rational design of organic luminogens for advanced optoelectronic and biomedical applications.
Collapse
Affiliation(s)
- Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianyu Zhang
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Jibo Zong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongyuan Ren
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qinfeng Xu
- Department of Nuclear Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
7
|
Koike D, Masu H, Kikkawa S, Chiba A, Kamohara K, Okuda A, Hikawa H, Azumaya I. Chiral spherical aromatic amides: one-step synthesis and their stereochemical/chiroptical properties. Org Biomol Chem 2024; 23:145-150. [PMID: 39513648 DOI: 10.1039/d4ob01458h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Macrocyclic aromatic amides 2, in which the meta-positions of all four benzene rings are linked by tertiary amide bonds, were successfully synthesized by a one-step condensation reaction of two monomers using dichlorotriphenylphosphorane or triphenylphosphine/hexachloroethane (dehydration-condensation reagents for carboxy and amino groups), or LiHMDS (aminolysis for esters) as coupling reagents. Single crystal X-ray analyses of the N-methyl and N-ethyl derivatives were performed and revealed that each compound adopted a spherical structure with chirality because of the fixed axis rotation and combined polarity of the amide bonds. Enantiomers of each spherical macrocycle were separated by chiral column chromatography and showed mirror-imaged CD spectra to each other.
Collapse
Affiliation(s)
- Daiki Koike
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Hyuma Masu
- Center for Analytical Instrumentation, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Ayako Chiba
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Kaho Kamohara
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Arisa Okuda
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
8
|
Selg C, Gordić V, Krajnović T, Buzharevski A, Laube M, Kazimir A, Lönnecke P, Wolniewicz M, Sárosi MB, Schädlich J, Pietzsch J, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Re-design and evaluation of diclofenac-based carborane-substituted prodrugs and their anti-cancer potential. Sci Rep 2024; 14:30488. [PMID: 39681576 DOI: 10.1038/s41598-024-81414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, we investigated a novel anti-cancer drug design approach by revisiting diclofenac-based carborane-substituted prodrugs. The redesigned compounds combine the robust carborane scaffold with the oxindole framework, resulting in four carborane-derivatized oxindoles and a unique zwitterionic amidine featuring a nido-cluster. We tested the anti-cancer potential of these prodrugs against murine colon adenocarcinoma (MC38), human colorectal carcinoma (HCT116), and human colorectal adenocarcinoma (HT29). The tests showed that diclofenac and the carborane-substituted oxindoles exhibited no cytotoxicity, the dichlorophenyl-substituted oxindole had moderate anti-cancer activity, while with the amidine this effect was strongly potentiated with activity mapping within low micromolar range. Compound 3 abolished the viability of selected colon cancer cell line MC38 preferentially through strong inhibition of cell division and moderate apoptosis accompanied by ROS/RNS depletion. Our findings suggest that carborane-based prodrugs could be a promising direction for new anti-cancer therapies. Inhibition assays for COX-1 and COX-2 revealed that while diclofenac had strong COX inhibition, the re-engineered carborane compounds demonstrated a varied range of anti-cancer effects, probably owing to both, COX inhibition and COX-independent pathways.
Collapse
Affiliation(s)
- Christoph Selg
- Department of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Vuk Gordić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Tamara Krajnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Antonio Buzharevski
- Department of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Aleksandr Kazimir
- Institute for Drug Discovery, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Peter Lönnecke
- Department of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Mara Wolniewicz
- Department of Chemistry and Mineralogy, Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Menyhárt B Sárosi
- Department of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Jonas Schädlich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11108, Serbia
| | - Evamarie Hey-Hawkins
- Department of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany.
| |
Collapse
|
9
|
Villani S, Imperio D, Panza L, Confalonieri L, Fallarini S, Aprile S, Del Grosso E. Exploring the pharmaceutical potential of ammonium organotrifluoroborate functional group: Comprehensive chemical, metabolic, and plasma stability evaluation. Eur J Med Chem 2024; 279:116844. [PMID: 39260320 DOI: 10.1016/j.ejmech.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Boronated carbohydrate derivatives have good potential for targeting malignant cells in Boron Neutron Capture Therapy (BNCT) due to their preferential glucose uptake. In particular, with the introduction of the ammonium trifluoroborate moiety, boronated sugars can function as both BNCT agents and Positron Emission Tomography (PET) tracers. Their 18F radiolabeling allows real-time tracking of biodistribution. This study evaluates the chemical, metabolic, and plasma stability of ammonium trifluoroborates for pharmaceutical purposes using LC-HRMS, presenting stability data under various conditions -acidic, basic, pseudophysiological, and oxidative- and highlighting degradation products and mechanisms. The data are supported by 1H NMR and 19F NMR. Metabolic and plasma stabilities, along with preliminary toxicological data (MTT assays), are also provided to better predict the clinical applicability of these compounds.
Collapse
Affiliation(s)
- Salvatore Villani
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Daniela Imperio
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Luigi Panza
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Laura Confalonieri
- Carbon Bionanotechnology Group - CICbiomaGUNE, Parque Científico y Tecnológico de Gipuzkoa, Paseo Miramón 194, 20014 Donostia - San Sebastián Gipuzkoa, Spain
| | - Silvia Fallarini
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvio Aprile
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Erika Del Grosso
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
10
|
Ordóñez-Hernández J, Planas JG, Núñez R. Carborane-based BODIPY dyes: synthesis, structural analysis, photophysics and applications. Front Chem 2024; 12:1485301. [PMID: 39564434 PMCID: PMC11574714 DOI: 10.3389/fchem.2024.1485301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/02/2024] [Indexed: 11/21/2024] Open
Abstract
Icosahedral boron clusters-based BODIPY dyes represent a cutting-edge class of compounds that merge the unique properties of boron clusters with the exceptional fluorescence characteristics of BODIPY dyes. These kinds of molecules have garnered substantial interest due to their potential applications across various fields, mainly including optoelectronics, bioimaging, and potential use as boron carriers for Boron Neutron Capture Therapy (BNCT). Carborane clusters are known for their exceptional stability, rigid geometry, and 3D-aromaticity, while BODIPY dyes are renowned for their strong absorption, high fluorescence quantum yields, and photostability. The integration of carborane into BODIPY structures leverages the stability and versatility of carboranes while enhancing the photophysical properties of BODIPY-based fluorophores. This review explores the synthesis and structural diversity of boron clusters-based BODIPY dyes, highlighting how carborane incorporation can lead to significant changes in the electronic and optical properties of the dyes. We discuss the enhanced photophysical characteristics, such as red-shifted absorption and emission poperties, charge and electronic transfer effects, and improved cellular uptake, resulting from carborane substitution. The review also delves into the diverse applications of these compounds. In bioimaging, carborane-BODIPY dyes offer superior fluorescence properties and cellular internalization, making them ideal for cell tracking. In photodynamic therapy, (PDT) these dyes can act as potent photosensitizers capable of generating reactive oxygen species (ROS) for targeted cancer treatment making them excellent candidates for PDT. Additionally, their unique electronic properties make them suitable candidates for optoelectronic applications, including organic light-emitting diodes (OLEDs) and sensors. Overall, carborane-BODIPY dyes represent a versatile and promising class of materials with significant potential for innovation in scientific and technological applications. This review aims to provide a comprehensive overview of the current state of research on carborane-BODIPY dyes, highlighting their synthesis, properties, and broad application spectrum.
Collapse
Affiliation(s)
| | - José Giner Planas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, Spain
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, Spain
| |
Collapse
|
11
|
Tüzün EZ, Pazderová L, Bavol D, Litecká M, Hnyk D, Růžičková Z, Horáček O, Kučera R, Grűner B. Carbon-Substituted Amines of the Cobalt Bis(dicarbollide) Ion: Stereochemistry and Acid-Base Properties. Inorg Chem 2024; 63:20600-20616. [PMID: 39393080 PMCID: PMC11523243 DOI: 10.1021/acs.inorgchem.4c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Organic amines are found to be abundant in natural living systems. They also constitute an inestimable family of building blocks available in drug design. Considering the man-made cluster [(1,2-C2B9H11)2-3,3'-Co(III)]- ion (1-) and its application as an emerging unconventional pharmacophore, the availability of the corresponding amines has been limited and those with amino groups attached directly to carbon atoms have remained unknown. This paper describes the synthesis of compounds containing one or two primary amino groups attached to the carbon atoms of the cobaltacarborane cage that are accessible via the reduction of newly synthesized azides or via the Curtius rearrangement of the corresponding acyl azide. This substitution represents the first members of the series of azides and primary amines with functional groups bound directly to the carbon atoms of the cage. As expected, the absence of the linker along with the presence of the bulky anionic polyhedral ion leads to a significant alteration of the chemical and physicochemical properties. On a broader series of amines of the ion 1- we have thus observed significant differences in the acidity of the amino groups, depending on whether these are attached to the carbon or boron atoms of the cage, or the C-substituted amines contain an aliphatic linker of variable length. The compounds are relevant for potential use as cobalt bis(dicarbollide) structural blocks in medicinal chemistry and material science. Our study includes single-crystal X-ray diffraction (XRD) structures of both amines and a discussion of their stereochemical and structural features.
Collapse
Affiliation(s)
- Ece Zeynep Tüzün
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 25068 Řež, Czech Republic
- Dpt.
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague, Czech Republic
| | - Lucia Pazderová
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 25068 Řež, Czech Republic
| | - Dmytro Bavol
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 25068 Řež, Czech Republic
| | - Miroslava Litecká
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 25068 Řež, Czech Republic
| | - Drahomír Hnyk
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 25068 Řež, Czech Republic
| | - Zdeňka Růžičková
- Dpt.
of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 53210 Pardubice, Czech Republic
| | - Ondřej Horáček
- Faculty
of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Radim Kučera
- Faculty
of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Bohumír Grűner
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, 25068 Řež, Czech Republic
| |
Collapse
|
12
|
Gutiérrez-Gálvez L, García-Mendiola T, Lorenzo E, Nuez-Martinez M, Ocal C, Yan S, Teixidor F, Pinheiro T, Marques F, Viñas C. Compelling DNA intercalation through 'anion-anion' anti-coulombic interactions: boron cluster self-vehicles as promising anticancer agents. J Mater Chem B 2024; 12:9550-9565. [PMID: 39141010 DOI: 10.1039/d4tb01177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Anticancer drugs inhibit DNA replication by intercalating between DNA base pairs, forming covalent bonds with nucleotide bases, or binding to the DNA groove. To develop safer drugs, novel molecular structures with alternative binding mechanisms are essential. Stable boron hydrides offer a promising alternative for cancer therapy, opening up additional options like boron neutron capture therapy based on 10B and thermal neutron beams or proton boron fusion therapy using 11B and proton beams. These therapies are more efficient when the boron compound is ideally located inside cancer cells, particularly in the nucleus. Current cancer treatments often utilize small, polycyclic, aromatic, planar molecules that intercalate between ds-DNA base pairs, requiring only a spacing of approximately 0.34 nm. In this paper, we demonstrate another type of intercalation. Notably, [3,3'-Fe(1,2-C2B9H11)2]-, ([o-FESAN]-), a compact 3D molecule measuring 1.1 nm × 0.6 nm, can as well intercalate by strong non-bonding interactions preferentially with guanine. Unlike known intercalators, which are positive or neutral, [o-FESAN]- is a negative species and when an [o-FESAN]- molecule approaches the negatively charged DNA phosphate chain an anion-anion interaction consistently anti-electrostatic via Ccluster-H⋯O-P bonds occurs. Then, when more molecules approach, an elongated outstandingly self-assembled structure of [o-FESAN]--[o-FESAN]- forms moving anions towards the interthread region to interact with base pairs and form aggregates of four [o-FESAN]- anions per base pair. These aggregates, in this environment, are generated by Ccluster-H⋯O-C, N-H⋯H-B and Ccluster-H⋯H-B interactions. The ferrabis(dicarbollide) boron-rich small molecules not only effectively penetrate the nucleus but also intercalate with ds-DNA, making them promising for cancer treatment. This amphiphilic anionic molecule, used as a carrier-free drug, can enhance radiotherapy in a multimodal perspective, providing healthcare professionals with improved tools for cancer treatment. This work demonstrates these findings with a plethora of techniques.
Collapse
Affiliation(s)
- Laura Gutiérrez-Gálvez
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Tania García-Mendiola
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Encarnación Lorenzo
- Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- IMDEA-Nanociencia, Ciudad Universitaria de Cantoblanco, 28049, Madrid, Spain
| | - Miquel Nuez-Martinez
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Carmen Ocal
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Shunya Yan
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| | - Teresa Pinheiro
- iBB - Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Fernanda Marques
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
- C2TN - Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (C.S.I.C.) Campus U.A.B, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
13
|
Matović J, Järvinen J, Sokka IK, Imlimthan S, Aitio O, Sarparanta M, Rautio J, Ekholm FS. Towards New Delivery Agents for Boron Neutron Capture Therapy: Synthesis and In Vitro Evaluation of a Set of Fluorinated Carbohydrate Derivatives. Molecules 2024; 29:4263. [PMID: 39275111 PMCID: PMC11397260 DOI: 10.3390/molecules29174263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024] Open
Abstract
Boron Neutron Capture Therapy (BNCT) is a cancer treatment which combines tumor-selective boron delivery agents with thermal neutrons in order to selectively eradicate cancer cells. In this work, we focus on the early-stage development of carbohydrate delivery agents for BNCT. In more detail, we expand upon our previous GLUT-targeting approach by synthesizing and evaluating the potential embedded in a representative set of fluorinated carbohydrates bearing a boron cluster. Our findings indicate that these species may have advantages over the boron delivery agents in current clinical use, e.g., significantly improved boron delivery capacity at the cellular level. Simultaneously, the carbohydrate delivery agents were found to bind strongly to plasma proteins, which may be a concern requiring further action before progression to in vivo studies. Altogether, this work brings new insights into factors which need to be accounted for if attempting to develop theranostic agents for BNCT based on carbohydrates in the future.
Collapse
Affiliation(s)
- Jelena Matović
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Juulia Järvinen
- School of Pharmacy, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Iris K Sokka
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Surachet Imlimthan
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Olli Aitio
- Glykos Finland Ltd., FI-00790 Helsinki, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Filip S Ekholm
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
14
|
Gos M, Cebula J, Goszczyński TM. Metallacarboranes in Medicinal Chemistry: Current Advances and Future Perspectives. J Med Chem 2024; 67:8481-8501. [PMID: 38769934 DOI: 10.1021/acs.jmedchem.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Metallacarboranes, exemplified by cobalt bis(dicarbollide) ([COSAN]-), have excelled their historical metallocene analogue label to become promising in drug design, medical studies, and fundamental biological research. Serving as a unique platform for conjugation with biomolecules, they also constitute an auspicious building block for biologically active derivatives and a carrier for cellular transport of membrane-impermeable cargos. Modified [COSAN]- exhibits specific antimicrobial, antiviral, and anticancer actions showing promise for preclinical trials. Contributing to the ongoing development in medicinal chemistry, metallacarboranes offer desirable physicochemical properties and low acute toxicity. This article presents a critical look at metallacarboranes in the context of their application in medicinal chemistry, emphasizing [COSAN]- as a potential game-changer in drug design and biomedical sciences. As medicinal chemistry seeks innovative building blocks, metallacarboranes emerge as an important novelty with versatile solutions and promising implications.
Collapse
Affiliation(s)
- Michalina Gos
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Jakub Cebula
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Tomasz M Goszczyński
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| |
Collapse
|
15
|
Selg C, Grell T, Brakel A, Andrews PC, Hoffmann R, Hey-Hawkins E. Fusing Bismuth and Mercaptocarboranes: Design and Biological Evaluation of Low-Toxicity Antimicrobial Thiolato Complexes. Chempluschem 2024; 89:e202300759. [PMID: 38263504 DOI: 10.1002/cplu.202300759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
This study proposes an innovative strategy to enhance the pharmacophore model of antimicrobial bismuth thiolato complex drugs by substituting hydrocarbon ligand structures with boron clusters, particularly icosahedral closo-dicarbadodecaborane (C2B10H12, carboranes). The hetero- and homoleptic mercaptocarborane complexes BiPh2L (1) and BiL3 (2) (L=9-S-1,2-C2B10H11) were prepared from 9-mercaptocarborane (HL) and triphenylbismuth. Comprehensive characterization using NMR, IR, MS, and XRD techniques confirmed their successful synthesis. Evaluation of antimicrobial activity in a liquid broth microdilution assay demonstrated micromolar to submicromolar minimum inhibitory concentrations (MIC) suggesting high effectiveness against S. aureus and limited efficacy against E. coli. This study highlights the potential of boron-containing bismuth complexes as promising antimicrobial agents, especially targeting Gram-positive bacteria, thus contributing to the advancement of novel therapeutic approaches.
Collapse
Affiliation(s)
- Christoph Selg
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Toni Grell
- Department of Chemistry, University of Milano, Via Camillo Golgi 19, 20133, Milano, Italy
| | - Alexandra Brakel
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, 3800, Melbourne, VIC, Australia
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| |
Collapse
|
16
|
Gao J, Li M, Yin J, Liu M, Wang H, Du J, Li J. The Different Strategies for the Radiolabeling of [ 211At]-Astatinated Radiopharmaceuticals. Pharmaceutics 2024; 16:738. [PMID: 38931860 PMCID: PMC11206656 DOI: 10.3390/pharmaceutics16060738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Astatine-211 (211At) has emerged as a promising radionuclide for targeted alpha therapy of cancer by virtue of its favorable nuclear properties. However, the limited in vivo stability of 211At-labeled radiopharmaceuticals remains a major challenge. This review provides a comprehensive overview of the current strategies for 211At radiolabeling, including nucleophilic and electrophilic substitution reactions, as well as the recent advances in the development of novel bifunctional coupling agents and labeling approaches to enhance the stability of 211At-labeled compounds. The preclinical and clinical applications of 211At-labeled radiopharmaceuticals, including small molecules, peptides, and antibodies, are also discussed. Looking forward, the identification of new molecular targets, the optimization of 211At production and quality control methods, and the continued evaluation of 211At-labeled radiopharmaceuticals in preclinical and clinical settings will be the key to realizing the full potential of 211At-based targeted alpha therapy. With the growing interest and investment in this field, 211At-labeled radiopharmaceuticals are poised to play an increasingly important role in future cancer treatment.
Collapse
Affiliation(s)
- Jie Gao
- China Institute for Radiation Protection, National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, CNNC Key Laboratory on Radiotoxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan 030006, China; (J.G.); (M.L.); (J.Y.); (M.L.)
- China Institute of Atomic Energy, Beijing 102413, China;
| | - Mei Li
- China Institute for Radiation Protection, National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, CNNC Key Laboratory on Radiotoxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan 030006, China; (J.G.); (M.L.); (J.Y.); (M.L.)
| | - Jingjing Yin
- China Institute for Radiation Protection, National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, CNNC Key Laboratory on Radiotoxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan 030006, China; (J.G.); (M.L.); (J.Y.); (M.L.)
| | - Mengya Liu
- China Institute for Radiation Protection, National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, CNNC Key Laboratory on Radiotoxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan 030006, China; (J.G.); (M.L.); (J.Y.); (M.L.)
- China Institute of Atomic Energy, Beijing 102413, China;
| | - Hongliang Wang
- First Hospital of Shanxi Medical University, Taiyuan 030001, China;
| | - Jin Du
- China Institute of Atomic Energy, Beijing 102413, China;
- China Isotope & Radiation Corporation, Beijing 100089, China
| | - Jianguo Li
- China Institute for Radiation Protection, National Atomic Energy Agency Nuclear Technology (Nonclinical Evaluation of Radiopharmaceuticals) Research and Development Center, CNNC Key Laboratory on Radiotoxicology and Radiopharmaceutical Preclinical Evaluation, Taiyuan 030006, China; (J.G.); (M.L.); (J.Y.); (M.L.)
| |
Collapse
|
17
|
Li Z, Arauzo A, Giner Planas J, Bartolomé E. Magnetic properties and magnetocaloric effect of Ln = Dy, Tb carborane-based metal-organic frameworks. Dalton Trans 2024; 53:8969-8979. [PMID: 38651660 DOI: 10.1039/d4dt00626g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We present the synthesis and magneto-thermal properties of carborane-based lanthanide metal-organic frameworks (MOFs) with the formula {[(Ln)3(mCB-L)4(NO3)(DMF)n]·Solv}, where Ln = Dy or Tb, characterized by dc and ac susceptibility, X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD) and heat capacity measurements. The MOF structure is formed by polymeric 1D chains of Ln ions with three different coordination environments (Ln1, Ln2, Ln3) running along the b-axis, linked by carborane-based linkers thus to provide a 3D structure. Static magnetic measurements reveal that these MOFs behave at low temperature as a system of S* = 1/2 Ising spins, weakly interacting ferromagnetically along the 1D polymeric chain (J*/kB = +0.45 K (+0.5 K) interaction constant estimated for Dy-MOF (Tb-MOF)) and coupled to Ln ions in adjacent chains through dipolar antiferromagnetic interactions. The Dy MOF exhibits slow relaxation of magnetization through a thermally activated process, transitioning to quantum tunneling of the magnetization at low temperatures, while both compounds exhibit field-induced relaxation through a very slow, direct process. The maximum magnetic entropy changes (-ΔSmaxm) for an applied magnetic field change of 2-0 T are 5.71 J kg-1 K-1 and 4.78 J kg-1 K-1, for Dy and Tb MOFs, respectively, while the magnetocaloric effect (MCE) peak for both occurs at T ∼ 1.6 K, approximately double that for the Gd counterpart.
Collapse
Affiliation(s)
- Zhen Li
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Ana Arauzo
- Instituto de Nanociencia y Materiales de Aragón (INMA), Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain
| | - José Giner Planas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.
| | - Elena Bartolomé
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.
| |
Collapse
|
18
|
Lanfranco A, Rakhshan S, Alberti D, Renzi P, Zarechian A, Protti N, Altieri S, Crich SG, Deagostino A. Combining BNCT with carbonic anhydrase inhibition for mesothelioma treatment: Synthesis, in vitro, in vivo studies of ureidosulfamido carboranes. Eur J Med Chem 2024; 270:116334. [PMID: 38552427 DOI: 10.1016/j.ejmech.2024.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Mesothelioma is a malignant neoplasm of mesothelial cells caused by exposure to asbestos. The average survival time after diagnosis is usually nine/twelve months. A multi-therapeutic approach is therefore required to treat and prevent recurrence. Boronated derivatives containing a carborane cage, a sulfamido group and an ureido functionality (CA-USF) have been designed, synthesised and tested, in order to couple Boron Neutron Capture Therapy (BNCT) and the inhibition of Carbonic Anhydrases (CAs), which are overexpressed in many tumours. In vitro studies showed greater inhibition than the reference drug acetazolamide (AZ). To increase solubility in aqueous media, CA-USFs were used as inclusion complexes of hydroxypropyl β-cyclodextrin (HP-β-CD) in all the inhibition and cell experiments. BNCT experiments carried out on AB22 (murine mesothelioma) cell lines showed a marked inhibition of cell proliferation by CA-USFs, and in one case a complete inhibition of proliferation twenty days after neutron irradiation. Finally, in vivo neutron irradiation experiments on a mouse model of mesothelioma demonstrated the efficiency of combining CA IX inhibition and BNCT treatment. Indeed, a greater reduction in tumour mass was observed in treated mice compared to untreated mice, with a significant higher effect when combined with BNCT. For in vivo experiments CA-USFs were administered as inclusion complexes of higher molecular weight β-CD polymers thus increasing the selective extravasation into tumour tissue and reducing clearance. In this way, boron uptake was maximised and CA-USFs demonstrated to be in vivo well tolerated at a therapeutic dose. The therapeutic strategy herein described could be expanded to other cancers with increased CA IX activity, such as melanoma, glioma, and breast cancer.
Collapse
Affiliation(s)
- Alberto Lanfranco
- Department of Chemistry, University of Torino, Via P. Giuria, 7, 10125, Turin, Italy
| | - Sahar Rakhshan
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - Diego Alberti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - Polyssena Renzi
- Department of Chemistry, University of Torino, Via P. Giuria, 7, 10125, Turin, Italy
| | - Ayda Zarechian
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy
| | - Nicoletta Protti
- Department of Physics, University of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy; Nuclear Physics National Institute (INFN), Unit of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy
| | - Saverio Altieri
- Department of Physics, University of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy; Nuclear Physics National Institute (INFN), Unit of Pavia, Via Agostino Bassi 6, 27100, Pavia, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Turin, Italy.
| | - Annamaria Deagostino
- Department of Chemistry, University of Torino, Via P. Giuria, 7, 10125, Turin, Italy.
| |
Collapse
|
19
|
Alpatova VM, Rys EG, Kononova EG, Ol'shevskaya VA. Synthesis of new representatives of A 3B-type carboranylporphyrins based on meso-tetra(pentafluorophenyl)porphyrin transformations. Beilstein J Org Chem 2024; 20:767-776. [PMID: 38633913 PMCID: PMC11022374 DOI: 10.3762/bjoc.20.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
A carboranylporphyrin of A3B-type bearing a single pentafluorophenyl ring was prepared through the regioselective nucleophilic aromatic substitution reaction of the p-fluorine atoms in 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin with 9-mercapto-m-carborane. The reaction of this porphyrin with sodium azide led to the selective substitution of the p-fluorine atom in the pentafluorophenyl substituent with an azide functionality which upon reduction with SnCl2 resulted in the formation of the corresponding porphyrin with an amino group. Pentafluorophenyl-substituted A3B-porphyrins were studied and transformed to thiol and amino-substituted compounds allowing for the preparation of porphyrins with different reactive groups such as hydroxy and amino derivatives capable for further functionalization and conjugation of these porphyrins to other substrates. In addition, conjugates containing maleimide or biotin entities in the structure of carborane A3B-porphyrin were also synthesized based on the amino-substituted A3B-porphyrin. The structures of the prepared carboranylporphyrins were determined by UV-vis, IR, 1H, 19F, 11B NMR spectroscopic data and MALDI mass spectrometry.
Collapse
Affiliation(s)
- Victoria M Alpatova
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova street, 119334 Moscow, Russian Federation
| | - Evgeny G Rys
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova street, 119334 Moscow, Russian Federation
| | - Elena G Kononova
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova street, 119334 Moscow, Russian Federation
| | - Valentina A Ol'shevskaya
- A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova street, 119334 Moscow, Russian Federation
| |
Collapse
|
20
|
Yuhara K, Tanaka K. The Photosalient Effect and Thermochromic Luminescence Based on o-Carborane-Assisted π-Stacking in the Crystalline State. Angew Chem Int Ed Engl 2024; 63:e202319712. [PMID: 38339862 DOI: 10.1002/anie.202319712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Herein, we report the unique multiple-stimuli responsiveness of anthracene-tethered o-carborane derivatives. We designed and synthesized anthracene derivatives with different substitution positions and numbers of the o-carborane units. Two compounds had characteristic crystal structures involving the columnar π-stacking structures of the anthracene units. From the analysis of crystalline-state structure-property relationships, it was revealed that the crystals exhibited the photosalient effect accompanied by photochemical [4+4] cycloaddition reactions and temperature-dependent photophysical dual-emission properties including excimer emission of anthracene. Those properties were considered as non-radiative and radiative deactivation pathways through the excimer formation in the excited state and the formation of excimer species was facilitated by the π-stacking structure of anthracene units. Moreover, we found unusual temperature dependency on the occurrence of the photosalient effect. According to the data from variable temperature X-ray crystallography, a strong correlation between lattice shrinkage and strain accumulation is suggested.
Collapse
Affiliation(s)
- Kazuhiro Yuhara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
21
|
Ma W, Wang Y, Xue Y, Wang M, Lu C, Guo W, Liu YH, Shu D, Shao G, Xu Q, Tu D, Yan H. Molecular engineering of AIE-active boron clustoluminogens for enhanced boron neutron capture therapy. Chem Sci 2024; 15:4019-4030. [PMID: 38487248 PMCID: PMC10935674 DOI: 10.1039/d3sc06222h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
The development of boron delivery agents bearing an imaging capability is crucial for boron neutron capture therapy (BNCT), yet it has been rarely explored. Here we present a new type of boron delivery agent that integrates aggregation-induced emission (AIE)-active imaging and a carborane cluster for the first time. In doing so, the new boron delivery agents have been rationally designed by incorporating a high boron content unit of a carborane cluster, an erlotinib targeting unit towards lung cancer cells, and a donor-acceptor type AIE unit bearing naphthalimide. The new boron delivery agents demonstrate both excellent AIE properties for imaging purposes and highly selective accumulation in tumors. For example, at a boron delivery agent dose of 15 mg kg-1, the boron amount reaches over 20 μg g-1, and both tumor/blood (T/B) and tumor/normal cell (T/N) ratios reach 20-30 times higher than those required by BNCT. The neutron irradiation experiments demonstrate highly efficient tumor growth suppression without any observable physical tissue damage and abnormal behavior in vivo. This study not only expands the application scopes of both AIE-active molecules and boron clusters, but also provides a new molecular engineering strategy for a deep-penetrating cancer therapeutic protocol based on BNCT.
Collapse
Affiliation(s)
- Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yanyang Wang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Yilin Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Mengmeng Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Wanhua Guo
- Department of Nuclear Medicine, Nanjing Tongren Hospital, the Affiliated Hospital of Southeast University Medical School Nanjing 210033 China
| | - Yuan-Hao Liu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Diyun Shu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Qinfeng Xu
- Department of Nuclear Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029 China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
22
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
23
|
Beau M, Jeannin O, Fourmigué M, Aubert E, Espinosa E, Lee S, Han WS, Jeon IR. Carborane-based heteromolecular extended networks driven by directional C-Te⋯N chalcogen bonding interactions. Chem Commun (Camb) 2023; 59:13727-13730. [PMID: 37909258 DOI: 10.1039/d3cc04338j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
We demonstrate that o-closo-(TeMe)2carborane directs, in the presence of linear ditopic neutral Lewis bases, the formation of co-crystals with 1D extended supramolecular networks. Specifically, the network formation is systematically stabilized by short and quasi-linear C-Te⋯N chalcogen-bonding (ChB) interactions. In sum, we report efficient carborane-based tectons to rationally design high-dimensional neutral heteromolecular networks.
Collapse
Affiliation(s)
- Maxime Beau
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, Rennes 35000, France.
| | - Olivier Jeannin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, Rennes 35000, France.
| | - Marc Fourmigué
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, Rennes 35000, France.
| | | | | | - Sunhee Lee
- Department of Chemistry, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Won-Sik Han
- Department of Chemistry, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Ie-Rang Jeon
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), Campus de Beaulieu, Rennes 35000, France.
| |
Collapse
|
24
|
Marforio TD, Carboni A, Calvaresi M. In Vivo Application of Carboranes for Boron Neutron Capture Therapy (BNCT): Structure, Formulation and Analytical Methods for Detection. Cancers (Basel) 2023; 15:4944. [PMID: 37894311 PMCID: PMC10605826 DOI: 10.3390/cancers15204944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Carboranes have emerged as one of the most promising boron agents in boron neutron capture therapy (BNCT). In this context, in vivo studies are particularly relevant, since they provide qualitative and quantitative information about the biodistribution of these molecules, which is of the utmost importance to determine the efficacy of BNCT, defining their localization and (bio)accumulation, as well as their pharmacokinetics and pharmacodynamics. First, we gathered a detailed list of the carboranes used for in vivo studies, considering the synthesis of carborane derivatives or the use of delivery system such as liposomes, micelles and nanoparticles. Then, the formulation employed and the cancer model used in each of these studies were identified. Finally, we examined the analytical aspects concerning carborane detection, identifying the main methodologies applied in the literature for ex vivo and in vivo analysis. The present work aims to identify the current strengths and weakness of the use of carboranes in BNCT, establishing the bottlenecks and the best strategies for future applications.
Collapse
Affiliation(s)
| | - Andrea Carboni
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
25
|
Zhang X, Lin Y, Hosmane NS, Zhu Y. Nanostructured boron agents for boron neutron capture therapy: a review of recent patents. MEDICAL REVIEW (2021) 2023; 3:425-443. [PMID: 38283251 PMCID: PMC10811353 DOI: 10.1515/mr-2023-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/16/2023] [Indexed: 01/30/2024]
Abstract
Boron neutron capture therapy (BNCT) is a potential radiation therapy modality for cancer, and tumor-targeted stable boron-10 (10B) delivery agents are an important component of BNCT. Currently, two low-molecular-weight boron-containing compounds, sodium mercaptoundecahydro-closo-dodecaborate (BSH) and boronophenylalanine (BPA), are mainly used in BNCT. Although both have suboptimal tumor selectivity, they have shown some therapeutic benefit in patients with high-grade glioma and several other tumors. To improve the efficacy of BNCT, great efforts have been devoted for the development of new boron delivery agents with better uptake and favorable pharmacokinetic profiles. This article reviews the application and research progress of boron nanomaterials as boron carriers in boron neutron capture therapy and hopes to stimulate people's interest in nanomaterial-based delivery agents by summarizing various kinds of boron nanomaterial patents disclosed in the past decade.
Collapse
Affiliation(s)
- Xiyin Zhang
- Shenzhen HEC Industrial Development Co., Ltd., Shenzhen, Guangdong Province, China
| | - Yusheng Lin
- Shenzhen HEC Industrial Development Co., Ltd., Shenzhen, Guangdong Province, China
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, USA
| | - Yinghuai Zhu
- Sunshine Lake Pharma Co. Ltd, Dongguan, Guangdong Province, China
| |
Collapse
|
26
|
Avdeeva VV, Nikiforova SE, Malinina EA, Sivaev IB, Kuznetsov NT. Composites and Materials Prepared from Boron Cluster Anions and Carboranes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6099. [PMID: 37763377 PMCID: PMC10533147 DOI: 10.3390/ma16186099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Here, we present composites and materials that can be prepared starting with boron hydride cluster compounds (decaborane, decahydro-closo-decaborate and dodecahydro-closo-dodecaborate anions and carboranes). Recent examples of their utilization as boron protective coatings including using them to synthesize boron carbide, boron nitride, metal borides, metal-containing composites, and neutron shielding materials are discussed. The data are generalized demonstrate the versatile application of materials based on boron cluster anions and carboranes in various fields.
Collapse
Affiliation(s)
- Varvara V. Avdeeva
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninskii Av., Moscow 119991, Russia; (S.E.N.); (E.A.M.); (N.T.K.)
| | - Svetlana E. Nikiforova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninskii Av., Moscow 119991, Russia; (S.E.N.); (E.A.M.); (N.T.K.)
| | - Elena A. Malinina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninskii Av., Moscow 119991, Russia; (S.E.N.); (E.A.M.); (N.T.K.)
| | - Igor B. Sivaev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow 119991, Russia;
- Basic Department of Chemistry of Innovative Materials and Technologies, Plekhanov Russian University of Economics, 36 Stremyannyi Line, Moscow 117997, Russia
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninskii Av., Moscow 119991, Russia; (S.E.N.); (E.A.M.); (N.T.K.)
| |
Collapse
|
27
|
Zhang QS, He L, Liu Q, Chen XY. Charge Transfer Complex-Enabled Synthesis of (Hetero)arylated m-Carboranes from m-Carborane Phosphonium Salts. Org Lett 2023; 25:5768-5773. [PMID: 37534925 DOI: 10.1021/acs.orglett.3c01989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
A photoinduced charge transfer complex (CTC)-enabled photoreduction of carborane phosphonium salts for the cage carbon (hetero)arylation of carboranes was developed. It offers a convenient approach for introducing a wide range of aryl and heteroaryl groups, such as pyrroles, thiophenes, indoles, thianaphthenes, benzofurans, pyridines, and benzenes, into carboranes. This strategy offers operational simplicity, mild reaction conditions, and a broad substrate scope, making it highly advantageous.
Collapse
Affiliation(s)
- Qing-Shuang Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China
| |
Collapse
|
28
|
Teixidor F, Núñez R, Viñas C. Towards the Application of Purely Inorganic Icosahedral Boron Clusters in Emerging Nanomedicine. Molecules 2023; 28:molecules28114449. [PMID: 37298925 DOI: 10.3390/molecules28114449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Traditionally, drugs were obtained by extraction from medicinal plants, but more recently also by organic synthesis. Today, medicinal chemistry continues to focus on organic compounds and the majority of commercially available drugs are organic molecules, which can incorporate nitrogen, oxygen, and halogens, as well as carbon and hydrogen. Aromatic organic compounds that play important roles in biochemistry find numerous applications ranging from drug delivery to nanotechnology or biomarkers. We achieved a major accomplishment by demonstrating experimentally/theoretically that boranes, carboranes, as well as metallabis(dicarbollides), exhibit global 3D aromaticity. Based on the stability-aromaticity relationship, as well as on the progress made in the synthesis of derivatized clusters, we have opened up new applications of boron icosahedral clusters as key components in the field of novel healthcare materials. In this brief review, we present the results obtained at the Laboratory of Inorganic Materials and Catalysis (LMI) of the Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) with icosahedral boron clusters. These 3D geometric shape clusters, the semi-metallic nature of boron and the presence of exo-cluster hydrogen atoms that can interact with biomolecules through non-covalent hydrogen and dihydrogen bonds, play a key role in endowing these compounds with unique properties in largely unexplored (bio)materials.
Collapse
Affiliation(s)
- Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, 08193 Bellaterra, Spain
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, 08193 Bellaterra, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, 08193 Bellaterra, Spain
| |
Collapse
|
29
|
Matović J, Bahrami K, Stockmann P, Sokka IK, Khng YC, Sarparanta M, Hey-Hawkins E, Rautio J, Ekholm FS. Sweet Battle of the Epimers─Continued Exploration of Monosaccharide-Derived Delivery Agents for Boron Neutron Capture Therapy. Mol Pharm 2023. [PMID: 37134022 DOI: 10.1021/acs.molpharmaceut.3c00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Boron neutron capture therapy (BNCT) is a cancer therapy in which boron delivery agents play a crucial role. In theory, delivery agents with high tumor targeting capabilities can lead to selective eradication of tumor cells without causing harmful side effects. We have been working on a GLUT1-targeting strategy to BNCT for a number of years and found multiple promising hit compounds which outperform the clinically employed boron delivery agents in vitro. Herein, we continue our work in the field by further diversification of the carbohydrate scaffold in order to map the optimal stereochemistry of the carbohydrate core. In the sweet battle of the epimers, carborane-bearing d-galactose, d-mannose, and d-allose are synthesized and subjected to in vitro profiling studies─with earlier work on d-glucose serving as the reference. We find that all of the monosaccharide delivery agents display a significantly improved boron delivery capacity over the delivery agents approved for clinical use in vitro, thus providing a sound foundation for advancing toward in vivo preclinical assessment studies.
Collapse
Affiliation(s)
- Jelena Matović
- Department of Chemistry, University of Helsinki, Finland, P.O. Box 55, Helsinki FI-00014, Finland
| | - Katayun Bahrami
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Philipp Stockmann
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Leipzig D-04103, Germany
| | - Iris K Sokka
- Department of Chemistry, University of Helsinki, Finland, P.O. Box 55, Helsinki FI-00014, Finland
| | - You Cheng Khng
- Department of Chemistry, University of Helsinki, Finland, P.O. Box 55, Helsinki FI-00014, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, University of Helsinki, Finland, P.O. Box 55, Helsinki FI-00014, Finland
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Leipzig D-04103, Germany
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| | - Filip S Ekholm
- Department of Chemistry, University of Helsinki, Finland, P.O. Box 55, Helsinki FI-00014, Finland
| |
Collapse
|
30
|
Zaitsev AV, Kiselev SS, Smol'yakov AF, Fedorov YV, Kononova EG, Borisov YA, Ol'shevskaya VA. BODIPY derivatives modified with carborane clusters: synthesis, characterization and DFT studies. Org Biomol Chem 2023; 21:4084-4094. [PMID: 37128951 DOI: 10.1039/d3ob00255a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
An efficient approach for the preparation of 3,5-dicarborane-substituted BODIPY conjugates was developed via the functionalization of 3,5-dibromo-8-pentafluorophenyl-BODIPY with neutral and anionic carborane S-nucleophiles. It was found that 3,5-dicarborane-substituted BODIPYs could be easily modified with a third carborane cluster using SNAr substitution reactions of the para-fluorine atom in the meso-pentafluorophenyl BODIPY substituent with the corresponding carborane S-nucleophile affording boron-enriched BODIPYs in good yields. The influence of bromine atom substitution with carborane moieties on the position of absorption and fluorescence bands and the fluorescence quantum yields of the prepared BODIPYs were analyzed. The crystal structures of BODIPYs 4 and 8 were investigated. Density functional theory methods (DFT wb97xd/6-31G* and wb97xd/lanl2dz) were performed to study the geometrical structures, electronic characteristics, the highest occupied and the lowest unoccupied molecular orbitals (HOMOs and LUMOs) and other chemical descriptors of the synthesized compounds.
Collapse
Affiliation(s)
- Andrei V Zaitsev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova St., 119334 Moscow, Russian Federation.
| | - Sergey S Kiselev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova St., 119334 Moscow, Russian Federation.
| | - Alexander F Smol'yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova St., 119334 Moscow, Russian Federation.
- Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russian Federation
| | - Yury V Fedorov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova St., 119334 Moscow, Russian Federation.
| | - Elena G Kononova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova St., 119334 Moscow, Russian Federation.
| | - Yurii A Borisov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova St., 119334 Moscow, Russian Federation.
| | - Valentina A Ol'shevskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1 Vavilova St., 119334 Moscow, Russian Federation.
| |
Collapse
|
31
|
Harmgarth N, Liebing P, Lorenz V, Engelhardt F, Hilfert L, Busse S, Goldhahn R, Edelmann FT. Synthesis and Structural Characterization of p-Carboranylamidine Derivatives. Molecules 2023; 28:molecules28093837. [PMID: 37175246 PMCID: PMC10179778 DOI: 10.3390/molecules28093837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
In this contribution, the first amidinate and amidine derivatives of p-carborane are described. Double lithiation of p-carborane (1) with n-butyllithium followed by treatment with 1,3-diorganocarbodiimides, R-N=C=N-R (R = iPr, Cy (= cyclohexyl)), in DME or THF afforded the new p-carboranylamidinate salts p-C2H10B10[C(NiPr)2Li(DME)]2 (2) and p-C2H10B10[C(NCy)2Li(THF)2]2 (3). Subsequent treatment of 2 and 3 with 2 equiv. of chlorotrimethylsilane (Me3SiCl) provided the silylated neutral bis(amidine) derivatives p-C2H10B10[C{iPrN(SiMe3)}(=NiPr)]2 (4) and p-C2H10B10[C{CyN(SiMe3)}(=NCy)]2 (5). The new compounds 3 and 4 have been structurally characterized by single-crystal X-ray diffraction. The lithium carboranylamidinate 3 comprises a rare trigonal planar coordination geometry around the lithium ions.
Collapse
Affiliation(s)
- Nicole Harmgarth
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Phil Liebing
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Volker Lorenz
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Felix Engelhardt
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Liane Hilfert
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Sabine Busse
- Chemisches Institut, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Rüdiger Goldhahn
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Frank T Edelmann
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
32
|
Flieger S, Takagaki M, Kondo N, Lutz MR, Gupta Y, Ueda H, Sakurai Y, Moran G, Kempaiah P, Hosmane N, Suzuki M, Becker DP. Carborane-Containing Hydroxamate MMP Ligands for the Treatment of Tumors Using Boron Neutron Capture Therapy (BNCT): Efficacy without Tumor Cell Entry. Int J Mol Sci 2023; 24:ijms24086973. [PMID: 37108137 PMCID: PMC10139035 DOI: 10.3390/ijms24086973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
New carborane-bearing hydroxamate matrix metalloproteinase (MMP) ligands have been synthesized for boron neutron capture therapy (BNCT) with nanomolar potency against MMP-2, -9 and -13. New analogs are based on MMP inhibitor CGS-23023A, and two previously reported MMP ligands 1 (B1) and 2 (B2) were studied in vitro for BNCT activity. The boronated MMP ligands 1 and 2 showed high in vitro tumoricidal effects in an in vitro BNCT assay, exhibiting IC50 values for 1 and 2 of 2.04 × 10-2 mg/mL and 2.67 × 10-2 mg/mL, respectively. The relative killing effect of 1 to L-boronophenylalanine (BPA) is 0.82/0.27 = 3.0, and that of 2 is 0.82/0.32 = 2.6, whereas the relative killing effect of 4 is comparable to boronophenylalanine (BPA). The survival fraction of 1 and 2 in a pre-incubation boron concentration at 0.143 ppm 10B and 0.101 ppm 10B, respectively, were similar, and these results suggest that 1 and 2 are actively accumulated through attachment to the Squamous cell carcinoma (SCC)VII cells. Compounds 1 and 2 very effectively killed glioma U87 delta EGFR cells after BNCT. This study is noteworthy in demonstrating BNCT efficacy through binding to MMP enzymes overexpressed at the surface of the tumor cell without tumor cell penetration.
Collapse
Affiliation(s)
- Sebastian Flieger
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Mao Takagaki
- Research Center for Nuclear Physics, Osaka University, 10-1 Mihoga-oka, Ibaraki-City 567-0047, Osaka, Japan
| | - Natsuko Kondo
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun 590-0494, Osaka, Japan
| | - Marlon R Lutz
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Yash Gupta
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hiroki Ueda
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun 590-0494, Osaka, Japan
| | - Yoshinori Sakurai
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun 590-0494, Osaka, Japan
| | - Graham Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Prakasha Kempaiah
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Narayan Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Minoru Suzuki
- Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-Nishi, Kumatori, Sennan-gun 590-0494, Osaka, Japan
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| |
Collapse
|
33
|
Chuprin AS, Pavlov AA, Vologzhanina AV, Dorovatovskii PV, Makarenkov AV, Ol'shevskaya VA, Dudkin SV, Voloshin YZ. Multistep synthesis and X-ray structures of carboxyl-terminated hybrid iron(II) phthalocyaninatoclathrochelates and their postsynthetic transformation into polytopic carboranyl-containing derivatives. Dalton Trans 2023; 52:3884-3895. [PMID: 36877091 DOI: 10.1039/d3dt00076a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A multistep general synthetic strategy towards polytopic carboranyl-containing (semi)clathrochelate metal complexes, based on the template synthesis, transmetallation, amide condensation and 1,3-dipolar cycloaddition reactions, is developed. Their mono(semi)clathrochelate precursors with a single reactive group were obtained using a transmetallation of the triethylantimony-capped macrobicyclic precursor. The thus obtained carboxyl-terminated iron(II) semiclathrochelate underwent a macrobicyclization with zirconium(IV) phthalocyaninate to form the corresponding phthalocyaninatoclathrochelate. The direct one-pot template condensation of the suitable chelating and cross-linking ligand synthons on the Fe2+ ion as a matrix was also used for its preparation. Further amide condensation of the aforementioned semiclathrochelate and hybrid complexes with propargylamine in the presence of carbonyldiimidazole gave the (pseudo)cage derivatives with a terminal CC bond. Their "click" reaction with an appropriate carboranylmethyl azide afforded the ditopic carboranosemiclathrochelates and the tritopic carboranyl-containing phthalocyaninatoclathrochelates with a flexible spacer fragment between their polyhedral entities. The obtained new complexes were characterized using elemental analysis, MALDI-TOF mass spectrometry, multinuclear NMR, and UV-vis spectroscopy, and by single crystal X-ray diffraction experiments. Their FeN6-coordination polyhedra show a truncated trigonal-pyramidal geometry, while the cross-linking heptacoordinate Zr4+ or Hf4+ cations in the hybrid compounds form the MIVN4O3-coordination polyhedra with the geometry of a capped trigonal prism.
Collapse
Affiliation(s)
- Alexander S Chuprin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Alexander A Pavlov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
- BMSTU Center of National Technological Initiative "Digital Material Science: New Material and Substances", Bauman Moscow State Technical University, 2nd Baumanskaya st. 5, 105005, Moscow, Russia
| | - Anna V Vologzhanina
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Pavel V Dorovatovskii
- National Research Center Kurchatov Institute, 1 Kurchatova pl., 123098, Moscow, Russia
| | - Anton V Makarenkov
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Valentina A Ol'shevskaya
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Semyon V Dudkin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
| | - Yan Z Voloshin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 28-1 Vavilova st., 119334 Moscow, Russia.
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia
| |
Collapse
|
34
|
Useini L, Mojić M, Laube M, Lönnecke P, Mijatović S, Maksimović-Ivanić D, Pietzsch J, Hey-Hawkins E. Carborane Analogues of Fenoprofen Exhibit Improved Antitumor Activity. ChemMedChem 2023; 18:e202200583. [PMID: 36583943 DOI: 10.1002/cmdc.202200583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
Fenoprofen is a widely used nonsteroidal anti-inflammatory drug (NSAID) against rheumatoid arthritis, degenerative joint disease, ankylosing spondylitis and gout. Like other NSAIDs, fenoprofen inhibits the synthesis of prostaglandins by blocking both cyclooxygenase (COX) isoforms, COX-1 the "house-keeping" enzyme and COX-2 the induced isoform from pathological stimuli. Unselective inhibition of both COX isoforms results in many side effects, but off-target effects have also been reported. The steric modifications of the drugs could afford the desired COX-2 selectivity. Furthermore, NSAIDs have shown promising cytotoxic properties. The structural modification of fenoprofen using bulky dicarba-closo-dodecaborane(12) (carborane) clusters and the biological evaluation of the carborane analogues for COX inhibition and antitumor potential showed that the carborane analogues exhibit stronger antitumor potential compared to their respective aryl-based compounds.
Collapse
Affiliation(s)
- Liridona Useini
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, 04103, Leipzig, Germany
| | - Marija Mojić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany
| | - Peter Lönnecke
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, 04103, Leipzig, Germany
| | - Sanja Mijatović
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069, Dresden, Germany
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, 04103, Leipzig, Germany
| |
Collapse
|
35
|
Minyaylo EO, Zaitsev AV, Ol'shevskaya VA, Peregudov AS, Anisimov AA. The CH-functionalization of B-substituted organosilicon derivatives of polyhedral carboranes as a way to obtain new materials. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Jia H, Qiu Z. Recent Advances in Transition Metal-Catalyzed B—H Bond Activation for Synthesis of o-Carborane Derivatives with B—Heteroatom Bond. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202211040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
37
|
Sivaev IB, Anufriev SA, Shmalko AV. How substituents at boron atoms affect the CH-acidity and the electron-withdrawing effect of the ortho-carborane cage: A close look on the 1H NMR spectra. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Belchior A, Fernandes A, Lamotte M, da Silva AFF, Seixas RSGR, Silva AMS, Marques F. Exploring the Physical and Biological Aspects of BNCT with a Carboranylmethylbenzo[ b]acridone Compound in U87 Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms232314929. [PMID: 36499256 PMCID: PMC9737597 DOI: 10.3390/ijms232314929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a re-emerging technique for selectively killing tumor cells. Briefly, the mechanism can be described as follows: after the uptake of boron into cells, the thermal neutrons trigger the fission of the boron atoms, releasing the α-particles and recoiling lithium particles and high-energy photons that damage the cells. We performed a detailed study of the reactor dosimetry, cellular dose assessment, and radiobiological effects induced by BNCT in glioblastoma (GBM) cells. At maximum reactor power, neutron fluence rates were ϕ0 = 6.6 × 107 cm−2 s−1 (thermal) and θ = 2.4 × 104 cm−2 s−1 with a photon dose rate of 150 mGy·h−1. These values agreed with simulations to within 85% (thermal neutrons), 78% (epithermal neutrons), and 95% (photons), thereby validating the MCNPX model. The GEANT4 simulations, based on a realistic cell model and measured boron concentrations, showed that >95% of the dose in cells was due to the BNC reaction. Carboranylmethylbenzo[b]acridone (CMBA) is among the different proposed boron delivery agents that has shown promising properties due to its lower toxicity and important cellular uptake in U87 glioblastoma cells. In particular, the results obtained for CBMA reinforce radiobiological effects demonstrating that damage is mostly induced by the incorporated boron with negligible contribution from the culture medium and adjacent cells, evidencing extranuclear cell radiosensitivity.
Collapse
Affiliation(s)
- Ana Belchior
- Centre for Nuclear Sciences and Technologies, Instituto Superior Técnico, Lisbon University, Nuclear and Technological Campus, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Ana Fernandes
- Centre for Nuclear Sciences and Technologies, Instituto Superior Técnico, Lisbon University, Nuclear and Technological Campus, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Lisbon University, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Maxime Lamotte
- Centre for Nuclear Sciences and Technologies, Instituto Superior Técnico, Lisbon University, Nuclear and Technological Campus, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | | | | | - Artur M. S. Silva
- Department of Chemistry QOPNA, Aveiro University, 3810-193 Aveiro, Portugal
| | - Fernanda Marques
- Centre for Nuclear Sciences and Technologies, Instituto Superior Técnico, Lisbon University, Nuclear and Technological Campus, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Department of Nuclear Sciences and Engineering, Instituto Superior Técnico, Lisbon University, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
- Correspondence:
| |
Collapse
|
39
|
Li S, Zhang J, Xie Z. Visible-Light-Induced Palladium-Catalyzed Cross-Coupling of Iodocarboranes with (Hetero)Arenes. Org Lett 2022; 24:7497-7501. [PMID: 36201284 DOI: 10.1021/acs.orglett.2c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work describes a general method for the efficient production of a class of cage B-centered carboranyl radicals at the B3, B4, and B9 sites via a visible-light-promoted palladium(0)/palladium(I) pathway using readily available iodo-o-carboranes as the starting materials. The electrophilicities of these hypervalent boron-centered radicals decrease in the following order: B3 > B4 > B9. They are useful intermediates for the preparation of a family of cage B-(hetero)arylated o-carboranes at ambient temperature.
Collapse
Affiliation(s)
- Shimeng Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
40
|
Matović J, Järvinen J, Sokka IK, Stockmann P, Kellert M, Imlimthan S, Sarparanta M, Johansson MP, Hey-Hawkins E, Rautio J, Ekholm FS. Synthesis and In Vitro Evaluation of a Set of 6-Deoxy-6-thio-carboranyl d-Glucoconjugates Shed Light on the Substrate Specificity of the GLUT1 Transporter. ACS OMEGA 2022; 7:30376-30388. [PMID: 36061667 PMCID: PMC9434784 DOI: 10.1021/acsomega.2c03646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/04/2022] [Indexed: 05/20/2023]
Abstract
Glucose- and sodium-dependent glucose transporters (GLUTs and SGLTs) play vital roles in human biology. Of the 14 GLUTs and 12 SGLTs, the GLUT1 transporter has gained the most widespread recognition because GLUT1 is overexpressed in several cancers and is a clinically valid therapeutic target. We have been pursuing a GLUT1-targeting approach in boron neutron capture therapy (BNCT). Here, we report on surprising findings encountered with a set of 6-deoxy-6-thio-carboranyl d-glucoconjugates. In more detail, we show that even subtle structural changes in the carborane cluster, and the linker, may significantly reduce the delivery capacity of GLUT1-based boron carriers. In addition to providing new insights on the substrate specificity of this important transporter, we reach a fresh perspective on the boundaries within which a GLUT1-targeting approach in BNCT can be further refined.
Collapse
Affiliation(s)
- Jelena Matović
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Juulia Järvinen
- School
of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Iris K. Sokka
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Philipp Stockmann
- Institute
of Inorganic Chemistry, Leipzig University, D-04103 Leipzig, Germany
| | - Martin Kellert
- Institute
of Inorganic Chemistry, Leipzig University, D-04103 Leipzig, Germany
| | - Surachet Imlimthan
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Mirkka Sarparanta
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Mikael P. Johansson
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
- Helsinki
Institute of Sustainability Science, HELSUS, FI-00014 Helsinki, Finland
- CSC
− IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | | | - Jarkko Rautio
- School
of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Filip S. Ekholm
- Department
of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| |
Collapse
|
41
|
Sun F, Tan S, Cao H, Xu J, Bregadze VI, Tu D, Lu C, Yan H. Palladium‐Catalyzed Hydroboration of Alkynes with Carboranes: Facile Construction of a Library of Boron Cluster‐Based AIE‐Active Luminogens. Angew Chem Int Ed Engl 2022; 61:e202207125. [DOI: 10.1002/anie.202207125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Fangxiang Sun
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Shuaimin Tan
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Hou‐Ji Cao
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Jingkai Xu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Vladimir I. Bregadze
- A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS) Russian Academy of Sciences Moscow 119991 Russia
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
42
|
Zhang J, Xie Z. N-Ligand-Enabled Aromatic Nucleophilic Amination of 1,2-Diaryl-o-Carboranes with (R 2 N) 2 Mg for Selective Synthesis of 4-R 2 N-o-Carboranes and 2-R 2 N-m-Carboranes. Angew Chem Int Ed Engl 2022; 61:e202202675. [PMID: 35579912 DOI: 10.1002/anie.202202675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 11/08/2022]
Abstract
The nucleophilic aromatic BH substitution reaction of carboranes is uncommon, compared to the electrophilic one. This work reported a pyridine-enabled transition-metal-free regioselective nucleophilic aromatic cage B(4)-H amination of 1,2-diaryl-o-carboranes with magnesium bisamides, giving a series of B(4)-aminated o-carboranes. DFT calculations showcased a stepwise B-N formation/B-H cleavage process, in which Mg-H formation/cage closure is the rate-determining step. Unprecedentedly, in the presence of 4,4'-di-tert-butyl-2,2'-dipyridyl (dtbpy), a tandem B(4)-amination/cage isomerization reaction of o-carboranes was discovered for the facile preparation of B(2)-aminated m-carboranes. Control experiments indicated that magnesium complex, bidentate ligand (dtbpy) and reaction temperature were crucial in the cage isomerization process. This direct nucleophilic aromatic cage B-H amination reaction offers an alternative strategy for selective amination of o- and m-carboranes.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
43
|
Dezhenkova LG, Druzina AA, Volodina YL, Dudarova NV, Nekrasova NA, Zhidkova OB, Grin MA, Bregadze VI. Synthesis of Cobalt Bis(Dicarbollide)—Curcumin Conjugates for Potential Use in Boron Neutron Capture Therapy. Molecules 2022; 27:molecules27144658. [PMID: 35889538 PMCID: PMC9324984 DOI: 10.3390/molecules27144658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
A series of novel cobalt bis(dicarbollide)—curcumin conjugates were synthesized. Two conjugates were obtained through the nucleophilic ring-opening reaction of the 1,4-dioxane and tetrahydropyran derivatives of cobalt bis(dicarbollide) with the OH group of curcumin, and using two equiv. of the oxonium derivatives, two other conjugates containing two cobalt bis(dicarbollide) units per molecule were obtained. In contrast to curcumin, the conjugates obtained were found to be non-cytotoxic against both tumor and normal cell lines. The analysis of the intracellular accumulation of the conjugates by flow cytometry showed that all cobalt bis(dicarbollide)—curcumin conjugates entered HCT116 colorectal carcinoma cells in a time-dependent manner. New non-cytotoxic conjugates contain a large amount of boron atoms in the biomolecule and can potentially be used for further biological research into boron neutron capture therapy (BNCT).
Collapse
Affiliation(s)
- Lyubov G. Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia;
| | - Anna A. Druzina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (N.V.D.); (N.A.N.); (O.B.Z.); (V.I.B.)
- Correspondence: ; Tel.: +7-926-404-5566
| | - Yulia L. Volodina
- Blokhin Cancer Center, 24 Kashirskoye Shosse, 115478 Moscow, Russia;
| | - Nadezhda V. Dudarova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (N.V.D.); (N.A.N.); (O.B.Z.); (V.I.B.)
| | - Natalia A. Nekrasova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (N.V.D.); (N.A.N.); (O.B.Z.); (V.I.B.)
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Russian Technological University, 86 Vernadsky Av., 119571 Moscow, Russia;
| | - Olga B. Zhidkova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (N.V.D.); (N.A.N.); (O.B.Z.); (V.I.B.)
| | - Mikhail A. Grin
- M.V. Lomonosov Institute of Fine Chemical Technology, MIREA—Russian Technological University, 86 Vernadsky Av., 119571 Moscow, Russia;
| | - Vladimir I. Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia; (N.V.D.); (N.A.N.); (O.B.Z.); (V.I.B.)
| |
Collapse
|
44
|
Useini L, Mojić M, Laube M, Lönnecke P, Dahme J, Sárosi MB, Mijatović S, Maksimović-Ivanić D, Pietzsch J, Hey-Hawkins E. Carboranyl Analogues of Mefenamic Acid and Their Biological Evaluation. ACS OMEGA 2022; 7:24282-24291. [PMID: 35874202 PMCID: PMC9301635 DOI: 10.1021/acsomega.2c01523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mefenamic acid represents a widely used nonsteroidal anti-inflammatory drug (NSAID) to treat the pain of postoperative surgery and heavy menstrual bleeding. Like other NSAIDs, mefenamic acid inhibits the synthesis of prostaglandins by nonselectively blocking cyclooxygenase (COX) isoforms COX-1 and COX-2. For the improved selectivity of the drug and, therefore, reduced related side effects, the carborane analogues of mefenamic acid were evaluated. The ortho-, meta-, and para-carborane derivatives were synthesized in three steps: halogenation of the respective cluster, followed by a Pd-catalyzed B-N coupling and hydrolysis of the nitrile derivatives under acidic conditions. The COX inhibitory activity and cytotoxicity for different cancer cell lines revealed that the carborane analogues have stronger antitumor potential compared to their parent organic compound.
Collapse
Affiliation(s)
- Liridona Useini
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Marija Mojić
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”,
National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Markus Laube
- Department
of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Peter Lönnecke
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Jonas Dahme
- Wilhelm-Ostwald-Institute
for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 2, 04103 Leipzig, Germany
| | - Menyhárt B. Sárosi
- Wilhelm-Ostwald-Institute
for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 2, 04103 Leipzig, Germany
| | - Sanja Mijatović
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”,
National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department
of Immunology, Institute for Biological Research “Sinisa Stankovic”,
National Institute of Republic of Serbia, University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Jens Pietzsch
- Department
of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany
- Faculty
of Chemistry and Food Chemistry, School of Science, Technical University Dresden, 01069 Dresden, Germany
| | - Evamarie Hey-Hawkins
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
45
|
Lanfranco A, Alberti D, Parisotto S, Renzi P, Lecomte V, Geninatti Crich S, Deagostino A. Biotinylation of a MRI/Gd BNCT theranostic agent to access a novel tumour-targeted delivery system. Org Biomol Chem 2022; 20:5342-5354. [PMID: 35748589 DOI: 10.1039/d2ob00764a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new biotin based BNCT (Boron Neutron Capture Therapy)-MRI theranostic is here reported (Gd-AL01) in order to exploit the high tumour specificity of biotin and the selectivity of BNCT in a synergistic manner. The key is the preparation of an intermediate where an o-carborane is linked to two amino groups orthogonally protected via the exploitation of two consecutive Mitsunobu reactions. The aim is its functionalisation in two different steps with biotin as the biological vector and Gd-DOTA as the MRI probe and GdNCT agent. Cell uptake was evaluated on HeLa tumour cells overexpressing biotin receptors. The internalised boron is proportional to the concentration of the theranostic agent incubated in the presence of cells. A maximum value of 77 ppm is reached and a well detectable signal intensity increase in the T1 weighted image of HeLa cells was observed, differently from clinically used GdHPDO3A, where no contrast is detected. These excellent results indicate that Gd-AL01 can be applied as a theranostic probe in BNCT studies.
Collapse
Affiliation(s)
- Alberto Lanfranco
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy.
| | - Diego Alberti
- Department of Molecular Biotechnology and Health Sciences University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Stefano Parisotto
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy.
| | - Polyssena Renzi
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy.
| | - Valentin Lecomte
- Department of Molecular Biotechnology and Health Sciences University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Annamaria Deagostino
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy.
| |
Collapse
|
46
|
Carboranes in drug discovery, chemical biology and molecular imaging. Nat Rev Chem 2022; 6:486-504. [PMID: 37117309 DOI: 10.1038/s41570-022-00400-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
There exists a paucity of structural innovation and limited molecular diversity associated with molecular frameworks in drug discovery and biomolecular imaging/chemical probe design. The discovery and exploitation of new molecular entities for medical and biological applications will necessarily involve voyaging into previously unexplored regions of chemical space. Boron clusters, notably the carboranes, offer an alternative to conventional (poly)cyclic organic frameworks that may address some of the limitations associated with the use of novel molecular frameworks in chemical biology or medicine. The high thermal stability, unique 3D structure and aromaticity, kinetic inertness to metabolism and ability to engage in unusual types of intermolecular interactions, such as dihydrogen bonds, with biological receptors make carboranes exquisite frameworks in the design of probes for chemical biology, novel drug candidates and biomolecular imaging agents. This Review highlights the key developments of carborane derivatives made over the last decade as new design tools in medicinal chemistry and chemical biology, showcasing the versatility of this unique family of boron compounds.
Collapse
|
47
|
Zhang J, Xie Z. N‐Ligand‐Enabled Aromatic Nucleophilic Amination of 1,2‐Diaryl‐
o
‐Carboranes with (R
2
N)
2
Mg for Selective Synthesis of 4‐R
2
N‐
o
‐Carboranes and 2‐R
2
N‐
m
‐Carboranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jie Zhang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, New Territories, Hong Kong China
| | - Zuowei Xie
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The Chinese University of Hong Kong Shatin, New Territories, Hong Kong China
| |
Collapse
|
48
|
Sun F, Tan S, Cao HJ, Xu J, Bregadze V, Tu D, Lu C, Yan H. Palladium‐Catalyzed Hydroboration of Alkynes with Carboranes: Facile Construction of a Library of Boron Cluster‐Based AIE‐Active Luminogens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fangxiang Sun
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Shuaimin Tan
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hou-Ji Cao
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jingkai Xu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Vladimir Bregadze
- Russian Academy of Science A. N. Nesmeyanov Institute of Organoelement Compounds (INEOS) RUSSIAN FEDERATION
| | - Deshuang Tu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Changsheng Lu
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Hong Yan
- Nanjing University School of Chemistry and Chemical Engineering 22 Hankou Rd. 210093 Nanjing CHINA
| |
Collapse
|
49
|
Li Z, Núñez R, Light ME, Ruiz E, Teixidor F, Viñas C, Ruiz-Molina D, Roscini C, Planas JG. Water-Stable Carborane-Based Eu 3+/Tb 3+ Metal-Organic Frameworks for Tunable Time-Dependent Emission Color and Their Application in Anticounterfeiting Bar-Coding. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:4795-4808. [PMID: 35637791 PMCID: PMC9136944 DOI: 10.1021/acs.chemmater.2c00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/19/2022] [Indexed: 05/27/2023]
Abstract
Luminescent lanthanide metal-organic frameworks (Ln-MOFs) have been shown to exhibit relevant optical properties of interest for practical applications, though their implementation still remains a challenge. To be suitable for practical applications, Ln-MOFs must be not only water stable but also printable, easy to prepare, and produced in high yields. Herein, we design and synthesize a series of m CB-Eu y Tb 1-y (y = 0-1) MOFs using a highly hydrophobic ligand mCBL1: 1,7-di(4-carboxyphenyl)-1,7-dicarba-closo-dodecaborane. The new materials are stable in water and at high temperature. Tunable emission from green to red, energy transfer (ET) from Tb3+ to Eu3+, and time-dependent emission of the series of mixed-metal m CB-Eu y Tb 1-y MOFs are reported. An outstanding increase in the quantum yield (QY) of 239% of mCB-Eu (20.5%) in the mixed mCB-Eu0.1Tb0.9 (69.2%) is achieved, along with an increased and tunable lifetime luminescence (from about 0.5 to 10 000 μs), all of these promoted by a highly effective ET process. The observed time-dependent emission (and color), in addition to the high QY, provides a simple method for designing high-security anticounterfeiting materials. We report a convenient method to prepare mixed-metal Eu/Tb coordination polymers (CPs) that are printable from water inks for potential applications, among which anticounterfeiting and bar-coding have been selected as a proof-of-concept.
Collapse
Affiliation(s)
- Zhen Li
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Rosario Núñez
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Mark E. Light
- Department
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Eliseo Ruiz
- Departament
de Química Inorgànica i Orgànica and Institut
de Recerca de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Francesc Teixidor
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Clara Viñas
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Daniel Ruiz-Molina
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Claudio Roscini
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC, and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - José Giner Planas
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
50
|
Conformation-Dependent Electron Donation of Nido-Carborane Substituents and Its Influence on Phosphorescence of Tris(2,2′-bipyridyl)ruthenium(II) Complex. CRYSTALS 2022. [DOI: 10.3390/cryst12050688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this work, we report the synthesis of the nido-carborane-substituted ruthenium complexes and the substituent effects of nido-carboranes on the optical properties. Initially, from the optical measurements, it is shown that deep-red phosphorescence was obtained from the synthesized molecule, and the phosphorescent quantum yields were significantly improved by loading onto a polyethylene glycol film. This result represents that nido-carborane can work as a strong electron donor and should be an effective unit for enhancing the solid-state phosphorescence of ruthenium complexes. Further, it is suggested that the electron-donating properties of the nido-carborane units and subsequently the optical properties can be tuned by controlling the conformation of the nido-carborane units with the steric substituents. We demonstrate in this study the potential of nido-carborane as a building block for constructing optical materials as well as fundamental information regarding electronic interactions with π-conjugated systems.
Collapse
|