1
|
Park J, Hong T, An G, Park H, Song G, Lim W. Triadimenol promotes the production of reactive oxygen species and apoptosis with cardiotoxicity and developmental abnormalities in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160761. [PMID: 36502969 DOI: 10.1016/j.scitotenv.2022.160761] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Various types of fungicides, especially triazole fungicides, are used to prevent fungal diseases on farmlands. However, the developmental toxicity of one of the triazole fungicides, triadimenol, remains unclear. Therefore, we used the zebrafish animal model, a representative toxicological model, to investigate it. Triadimenol induced morphological alterations in the eyes and body length along with yolk sac and heart edema. It also stimulated the production of reactive oxygen species and expression of inflammation-related genes and caused apoptosis in the anterior regions of zebrafish, especially in the heart. The phosphorylation levels of Akt, ERK, JNK, and p38 proteins involved in the PI3K and MAPK pathways, which are important for the development process, were also reduced by triadimenol. These changes led to malformation of the heart and vascular structures, as observed in the flk1:eGFP transgenic zebrafish models and a reduction in the heart rate. In addition, the expression of genes associated with cardiac and vascular development was also reduced. Therefore, we elucidated the mechanisms associated with triadimenol toxicity that leads to various abnormalities and developmental toxicity in zebrafish.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
2
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
3
|
Abstract
Congenital heart disease is the most frequent birth defect and the leading cause of death for the fetus and in the first year of life. The wide phenotypic diversity of congenital heart defects requires expert diagnosis and sophisticated repair surgery. Although these defects have been described since the seventeenth century, it was only in 2005 that a consensus international nomenclature was adopted, followed by an international classification in 2017 to help provide better management of patients. Advances in genetic engineering, imaging, and omics analyses have uncovered mechanisms of heart formation and malformation in animal models, but approximately 80% of congenital heart defects have an unknown genetic origin. Here, we summarize current knowledge of congenital structural heart defects, intertwining clinical and fundamental research perspectives, with the aim to foster interdisciplinary collaborations at the cutting edge of each field. We also discuss remaining challenges in better understanding congenital heart defects and providing benefits to patients.
Collapse
Affiliation(s)
- Lucile Houyel
- Unité de Cardiologie Pédiatrique et Congénitale and Centre de Référence des Malformations Cardiaques Congénitales Complexes (M3C), Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France.,Université de Paris, 75015 Paris, France
| | - Sigolène M Meilhac
- Université de Paris, 75015 Paris, France.,Imagine-Institut Pasteur Unit of Heart Morphogenesis, INSERM UMR 1163, 75015 Paris, France;
| |
Collapse
|
4
|
Khosravi F, Ahmadvand N, Bellusci S, Sauer H. The Multifunctional Contribution of FGF Signaling to Cardiac Development, Homeostasis, Disease and Repair. Front Cell Dev Biol 2021; 9:672935. [PMID: 34095143 PMCID: PMC8169986 DOI: 10.3389/fcell.2021.672935] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
The current focus on cardiovascular research reflects society’s concerns regarding the alarming incidence of cardiac-related diseases and mortality in the industrialized world and, notably, an urgent need to combat them by more efficient therapies. To pursue these therapeutic approaches, a comprehensive understanding of the mechanism of action for multifunctional fibroblast growth factor (FGF) signaling in the biology of the heart is a matter of high importance. The roles of FGFs in heart development range from outflow tract formation to the proliferation of cardiomyocytes and the formation of heart chambers. In the context of cardiac regeneration, FGFs 1, 2, 9, 16, 19, and 21 mediate adaptive responses including restoration of cardiac contracting rate after myocardial infarction and reduction of myocardial infarct size. However, cardiac complications in human diseases are correlated with pathogenic effects of FGF ligands and/or FGF signaling impairment. FGFs 2 and 23 are involved in maladaptive responses such as cardiac hypertrophic, fibrotic responses and heart failure. Among FGFs with known causative (FGFs 2, 21, and 23) or protective (FGFs 2, 15/19, 16, and 21) roles in cardiac diseases, FGFs 15/19, 21, and 23 display diagnostic potential. The effective role of FGFs on the induction of progenitor stem cells to cardiac cells during development has been employed to boost the limited capacity of postnatal cardiac repair. To renew or replenish damaged cardiomyocytes, FGFs 1, 2, 10, and 16 were tested in (induced-) pluripotent stem cell-based approaches and for stimulation of cell cycle re-entry in adult cardiomyocytes. This review will shed light on the wide range of beneficiary and detrimental actions mediated by FGF ligands and their receptors in the heart, which may open new therapeutic avenues for ameliorating cardiac complications.
Collapse
Affiliation(s)
- Farhad Khosravi
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Negah Ahmadvand
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Saverio Bellusci
- Cardio-Pulmonary Institute, Justus Liebig University Giessen, Giessen, Germany
| | - Heinrich Sauer
- Department of Physiology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Yamagishi T, Narematsu M, Nakajima Y. Msx1 upregulates p27 expression to control cellular proliferation during valvuloseptal endocardial cushion formation in the chick embryonic heart. Anat Rec (Hoboken) 2020; 304:1732-1744. [PMID: 33191650 DOI: 10.1002/ar.24572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022]
Abstract
Cushion tissues, the primordia of valves and septa of the adult heart, are formed in the atrioventricular (AV) and outflow tract (OFT) regions of the embryonic heart. The cushion tissues are generated by the endothelial-mesenchymal transition (EMT), involving many soluble factors, extracellular matrix, and transcription factors. Moreover, neural crest-derived mesenchymal cells also migrate into the OFT cushion. The transcription factor Msx1 is known to be expressed in the endothelial and mesenchymal cells during cushion tissue formation. However, its exact role in EMT during cushion tissue formation is still unknown. In this study, we investigated the expression patterns of Msx1 mRNA and protein during chick heart development. Msx1 mRNA was localized in endothelial cells of the AV region at Stage 14, and its protein was first detected at Stage 15. Thereafter, Msx1 mRNA and protein were observed in the endothelial and mesenchymal cells of the OFT and AV regions. in vitro assays showed that ectopic Msx1 expression in endothelial cells induced p27, a cell-cycle inhibitor, expression and inhibited fibroblast growth factor 4 (FGF4)-induced cell proliferation. Although the FGF signal reduced the EMT-inducing activities of transforming growth factor β (TGFβ), ectopic Msx1 expression in endothelial cells enhanced TGFβ signaling-induced αSMA, an EMT marker, expression. These results suggest that Msx1 may support the transformation of endothelial cells due to a TGFβ signal in EMT during cushion tissue formation.
Collapse
Affiliation(s)
- Toshiyuki Yamagishi
- School of Medical Technology, Faculty of Health and Medical Care, Saitama Medical University, Hidaka, Saitama, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Mayu Narematsu
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Yuji Nakajima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| |
Collapse
|
6
|
New Concepts in the Development and Malformation of the Arterial Valves. J Cardiovasc Dev Dis 2020; 7:jcdd7040038. [PMID: 32987700 PMCID: PMC7712390 DOI: 10.3390/jcdd7040038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
Although in many ways the arterial and atrioventricular valves are similar, both being derived for the most part from endocardial cushions, we now know that the arterial valves and their surrounding structures are uniquely dependent on progenitors from both the second heart field (SHF) and neural crest cells (NCC). Here, we will review aspects of arterial valve development, highlighting how our appreciation of NCC and the discovery of the SHF have altered our developmental models. We will highlight areas of research that have been particularly instructive for understanding how the leaflets form and remodel, as well as those with limited or conflicting results. With this background, we will explore how this developmental knowledge can help us to understand human valve malformations, particularly those of the bicuspid aortic valve (BAV). Controversies and the current state of valve genomics will be indicated.
Collapse
|
7
|
Abstract
The valves of the heart are crucial for ensuring that blood flows in one direction from the heart, through the lungs and back to the rest of the body. Heart valve development is regulated by complex interactions between different cardiac cell types and is subject to blood flow-driven forces. Recent work has begun to elucidate the important roles of developmental pathways, valve cell heterogeneity and hemodynamics in determining the structure and function of developing valves. Furthermore, this work has revealed that many key genetic pathways involved in cardiac valve development are also implicated in diseased valves. Here, we review recent discoveries that have furthered our understanding of the molecular, cellular and mechanosensitive mechanisms of valve development, and highlight new insights into congenital and acquired valve disease.
Collapse
Affiliation(s)
- Anna O'Donnell
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Katherine E Yutzey
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
8
|
Vilches-Moure JG. Embryonic Chicken ( Gallus gallus domesticus) as a Model of Cardiac Biology and Development. Comp Med 2019; 69:184-203. [PMID: 31182184 PMCID: PMC6591676 DOI: 10.30802/aalas-cm-18-000061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/06/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease remains one of the top contributors to morbidity and mortality in the United States. Increasing evidence suggests that many processes, pathways, and programs observed during development and organogenesis are recapitulated in adults in the face of disease. Therefore, a heightened understanding of cardiac development and organogenesis will help increase our understanding of developmental defects and cardiovascular diseases in adults. Chicks have long served as a model system in which to study developmental problems. Detailed descriptions of morphogenesis, low cost, accessibility, ease of manipulation, and the optimization of genetic engineering techniques have made chicks a robust model for studying development and make it a powerful platform for cardiovascular research. This review summarizes the cardiac developmental milestones of embryonic chickens, practical considerations when working with chicken embryos, and techniques available for use in chicks (including tissue chimeras, genetic manipulations, and live imaging). In addition, this article highlights examples that accentuate the utility of the embryonic chicken as model system in which to study cardiac development, particularly epicardial development, and that underscore the importance of how studying development informs our understanding of disease.
Collapse
Affiliation(s)
- José G Vilches-Moure
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California,
| |
Collapse
|
9
|
Yu W, Ma X, Xu J, Heumüller AW, Fei Z, Feng X, Wang X, Liu K, Li J, Cui G, Peng G, Ji H, Li J, Jing N, Song H, Lin Z, Zhao Y, Wang Z, Zhou B, Zhang L. VGLL4 plays a critical role in heart valve development and homeostasis. PLoS Genet 2019; 15:e1007977. [PMID: 30789911 PMCID: PMC6400400 DOI: 10.1371/journal.pgen.1007977] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/05/2019] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Heart valve disease is a major clinical problem worldwide. Cardiac valve development and homeostasis need to be precisely controlled. Hippo signaling is essential for organ development and tissue homeostasis, while its role in valve formation and morphology maintenance remains unknown. VGLL4 is a transcription cofactor in vertebrates and we found it was mainly expressed in valve interstitial cells at the post-EMT stage and was maintained till the adult stage. Tissue specific knockout of VGLL4 in different cell lineages revealed that only loss of VGLL4 in endothelial cell lineage led to valve malformation with expanded expression of YAP targets. We further semi-knockout YAP in VGLL4 ablated hearts, and found hyper proliferation of arterial valve interstitial cells was significantly constrained. These findings suggest that VGLL4 is important for valve development and manipulation of Hippo components would be a potential therapy for preventing the progression of congenital valve disease. VGLL4, a new member of the Hippo pathway, is intensively investigated in inhibition of tumor progression via competing with YAP to bind TEADs, but its role in cardiovascular field remains unclear. Here we generated VGLL4 knockout mouse line and VGLL4-eGFP reporter mouse line. VGLL4-eGFP reporter mouse line showed VGLL4 was mainly expressed in valve interstitial cells from post-EMT stage to adult stage. Genetic loss of function and lineage tracing data demonstrated only endothelial loss of VGLL4 led to valve malformation with up-regulation of YAP targets. Of note, semi-knockout YAP could rescue this phenotype of VGLL4 knockouts. This is the first study to show the Hippo pathway plays a critical role in valve remodeling, maturation and homeostasis. Our findings suggest that mutations in VGLL4 may underlie human congenital heart valve dysplasia.
Collapse
Affiliation(s)
- Wei Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xueyan Ma
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinjin Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Andreas Wilhelm Heumüller
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Institute for Cardiovascular Regeneration, Goethe-University Hospital, Frankfurt, Germany
| | - Zhaoliang Fei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xue Feng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaodong Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Kuo Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinhui Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guizhong Cui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hai Song
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Zhiqiang Lin
- Masonic medical research institute, Utica, NY, United States of America
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zuoyun Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- * E-mail: (ZW); (BZ); (LZ)
| | - Bin Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- The Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- * E-mail: (ZW); (BZ); (LZ)
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- * E-mail: (ZW); (BZ); (LZ)
| |
Collapse
|
10
|
Markwald RR, Moreno-Rodriguez RA, Ghatak S, Misra S, Norris RA, Sugi Y. Role of Periostin in Cardiac Valve Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:177-191. [PMID: 31037635 DOI: 10.1007/978-981-13-6657-4_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although periostin plays a significant role in adult cardiac remodeling diseases, the focus of this review is on periostin as a valvulogenic gene. Periostin is expressed throughout valvular development, initially being expressed in endocardial endothelial cells that have been activated to transform into prevalvular mesenchyme termed "cushion tissues" that sustain expression of periostin throughout their morphogenesis into mature (compacted) valve leaflets. The phenotype of periostin null indicates that periostin is not required for endocardial transformation nor the proliferation of its mesenchymal progeny but rather promotes cellular behaviors that promote migration, survival (anti-apoptotic), differentiation into fibroblastic lineages, collagen secretion and postnatal remodeling/maturation. These morphogenetic activities are promoted or coordinated by periostin signaling through integrin receptors activating downstream kinases in cushion cells that activate hyaluronan synthetase II (Akt/PI3K), collagen synthesis (Erk/MapK) and changes in cytoskeletal organization (Pak1) which regulate postnatal remodeling of cells and associated collagenous matrix into a trilaminar (zonal) histoarchitecture. Pak1 binding to filamin A is proposed as one mechanism by which periostin supports remodeling. The failure to properly remodel cushions sets up a trajectory of degenerative (myxomatous-like) changes that over time reduce biomechanical properties and increase chances for prolapse, regurgitation or calcification of the leaflets. Included in the review are considerations of lineage diversity and the role of periostin as a determinant of mesenchymal cell fate.
Collapse
Affiliation(s)
- Roger R Markwald
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina CRI 609, Charleston, SC, USA.
| | - Ricardo A Moreno-Rodriguez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina CRI 609, Charleston, SC, USA
| | - Sibnath Ghatak
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina CRI 609, Charleston, SC, USA
| | - Suniti Misra
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina CRI 609, Charleston, SC, USA
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina CRI 609, Charleston, SC, USA
| | - Yukiko Sugi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina CRI 609, Charleston, SC, USA
| |
Collapse
|
11
|
Choe G, Park J, Jo H, Kim YS, Ahn Y, Lee JY. Studies on the effects of microencapsulated human mesenchymal stem cells in RGD-modified alginate on cardiomyocytes under oxidative stress conditions using in vitro biomimetic co-culture system. Int J Biol Macromol 2018; 123:512-520. [PMID: 30445088 DOI: 10.1016/j.ijbiomac.2018.11.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/16/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
Stem cell therapy has been recognized as a promising approach for myocardium regeneration post myocardial infarction (MI); however, it unfortunately often remains a challenge because of poor survival of transplanted cells and a lack of clear understanding of their interactions with host cells. High oxidative stress at heart tissues post MI is considered one of the important factors damaging transplanted cells and native cells/tissues. Here, we employed an in vitro co-culture system, capable of mimicking cases of stem cell transplantation into the myocardium presenting high oxidative stress, using human mesenchymal stem cells (hMSCs) encapsulated in alginate or cell interactive Arg-Gly-Asp (RGD) peptide-modified alginate micro-hydrogels. Under H2O2-induced oxidative stress conditions, viabilities of hMSCs and CMs were significantly higher in their co-culture than in their individual monolayer cultures. Expression of cardiac muscle markers remained high even with H2O2 treatment when cardiomyocytes (CMs) were co-cultured with hMSCs in RGD-alginate. Higher levels of various growth factors (associated with angiogenesis, cardiac regeneration, and contractility) were found in co-culture (noticeably with RGD-alginate) compared to monolayer cultures of CMs or hMSCs. These results can benefit the study of in vivo MI progression with transplanted stem cells and the development of effective stem cell-based therapeutic strategies for various oxidative stress-related diseases.
Collapse
Affiliation(s)
- Goeun Choe
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Hyerim Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yong Sook Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea; Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
12
|
Wang Y, Wu B, Farrar E, Lui W, Lu P, Zhang D, Alfieri CM, Mao K, Chu M, Yang D, Xu D, Rauchman M, Taylor V, Conway SJ, Yutzey KE, Butcher JT, Zhou B. Notch-Tnf signalling is required for development and homeostasis of arterial valves. Eur Heart J 2018; 38:675-686. [PMID: 26491108 DOI: 10.1093/eurheartj/ehv520] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 09/15/2015] [Indexed: 01/04/2023] Open
Abstract
Aims Congenital anomalies of arterial valves are common birth defects, leading to valvar stenosis. With no pharmaceutical treatment that can prevent the disease progression, prosthetic replacement is the only choice of treatment, incurring considerable morbidity and mortality. Animal models presenting localized anomalies and stenosis of congenital arterial valves similar to that of humans are critically needed research tools to uncover developmental molecular mechanisms underlying this devastating human condition. Methods and results We generated and characterized mouse models with conditionally altered Notch signalling in endothelial or interstitial cells of developing valves. Mice with inactivation of Notch1 signalling in valvar endothelial cells (VEC) developed congenital anomalies of arterial valves including bicuspid aortic valves and valvar stenosis. Notch1 signalling in VEC was required for repressing proliferation and activating apoptosis of valvar interstitial cells (VIC) after endocardial-to-mesenchymal transformation (EMT). We showed that Notch signalling regulated Tnfα expression in vivo, and Tnf signalling was necessary for apoptosis of VIC and post-EMT development of arterial valves. Furthermore, activation or inhibition of Notch signalling in cultured pig aortic VEC-promoted or suppressed apoptosis of VIC, respectively. Conclusion We have now met the need of critical animal models and shown that Notch-Tnf signalling balances proliferation and apoptosis for post-EMT development of arterial valves. Our results suggest that mutations in its components may lead to congenital anomaly of aortic valves and valvar stenosis in humans.
Collapse
Affiliation(s)
- Yidong Wang
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Price 420, 1301 Morris Park Avenue, Bronx, NY 14061, USA
| | - Bingruo Wu
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Price 420, 1301 Morris Park Avenue, Bronx, NY 14061, USA
| | - Emily Farrar
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Wendy Lui
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Price 420, 1301 Morris Park Avenue, Bronx, NY 14061, USA
| | - Pengfei Lu
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Price 420, 1301 Morris Park Avenue, Bronx, NY 14061, USA
| | - Donghong Zhang
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Price 420, 1301 Morris Park Avenue, Bronx, NY 14061, USA
| | - Christina M Alfieri
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Centre, Cincinnati, OH, USA
| | - Kai Mao
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ming Chu
- Department of Medicine and Geriatrics (Cardiology), First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Di Yang
- Department of Medicine and Geriatrics (Cardiology), First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Di Xu
- Department of Medicine and Geriatrics (Cardiology), First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Michael Rauchman
- Department of Internal Medicine, Saint Louis University, St. Louis, MO, USA
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Simon J Conway
- Department of Paediatrics, Indiana University, Indianapolis, IN, USA
| | - Katherine E Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Centre, Cincinnati, OH, USA
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Bin Zhou
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Price 420, 1301 Morris Park Avenue, Bronx, NY 14061, USA.,Department of Medicine and Geriatrics (Cardiology), First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Yao Q, Song R, Ao L, Cleveland JC, Fullerton DA, Meng X. Neurotrophin 3 upregulates proliferation and collagen production in human aortic valve interstitial cells: a potential role in aortic valve sclerosis. Am J Physiol Cell Physiol 2017; 312:C697-C706. [PMID: 28356268 DOI: 10.1152/ajpcell.00292.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/27/2022]
Abstract
Calcific aortic valve disease (CAVD) is a leading cardiovascular disorder in the elderly. Diseased aortic valves are characterized by sclerosis (fibrosis) and nodular calcification. Sclerosis, an early pathological change, is caused by aortic valve interstitial cell (AVIC) proliferation and overproduction of extracellular matrix (ECM) proteins. However, the mechanism of aortic valve sclerosis remains unclear. Recently, we observed that diseased human aortic valves overexpress growth factor neurotrophin 3 (NT3). In the present study, we tested the hypothesis that NT3 is a profibrogenic factor to human AVICs. AVICs isolated from normal human aortic valves were cultured in M199 growth medium and treated with recombinant human NT3 (0.10 µg/ml). An exposure to NT3 induced AVIC proliferation, upregulated the production of collagen and matrix metalloproteinase (MMP), and augmented collagen deposition. These changes were abolished by inhibition of the Trk receptors. NT3 induced Akt phosphorylation and increased cyclin D1 protein levels in a Trk receptor-dependent fashion. Inhibition of Akt abrogated the effect of NT3 on cyclin D1 production. Furthermore, inhibition of either Akt or cyclin D1 suppressed NT3-induced cellular proliferation and MMP-9 and collagen production, as well as collagen deposition. Thus, NT3 upregulates cellular proliferation, ECM protein production, and collagen deposition in human AVICs. It exerts these effects through the Trk-Akt-cyclin D1 cascade. NT3 is a profibrogenic mediator in human aortic valve, and overproduction of NT3 by aortic valve tissue may contribute to the mechanism of valvular sclerosis.
Collapse
Affiliation(s)
- Qingzhou Yao
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Rui Song
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Lihua Ao
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | | | - David A Fullerton
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Xianzhong Meng
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
14
|
Bosada FM, Devasthali V, Jones KA, Stankunas K. Wnt/β-catenin signaling enables developmental transitions during valvulogenesis. Development 2016; 143:1041-54. [PMID: 26893350 DOI: 10.1242/dev.130575] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/31/2016] [Indexed: 01/12/2023]
Abstract
Heart valve development proceeds through coordinated steps by which endocardial cushions (ECs) form thin, elongated and stratified valves. Wnt signaling and its canonical effector β-catenin are proposed to contribute to endocardial-to-mesenchymal transformation (EMT) through postnatal steps of valvulogenesis. However, genetic redundancy and lethality have made it challenging to define specific roles of the canonical Wnt pathway at different stages of valve formation. We developed a transgenic mouse system that provides spatiotemporal inhibition of Wnt/β-catenin signaling by chemically inducible overexpression of Dkk1. Unexpectedly, this approach indicates canonical Wnt signaling is required for EMT in the proximal outflow tract (pOFT) but not atrioventricular canal (AVC) cushions. Furthermore, Wnt indirectly promotes pOFT EMT through its earlier activity in neighboring myocardial cells or their progenitors. Subsequently, Wnt/β-catenin signaling is activated in cushion mesenchymal cells where it supports FGF-driven expansion of ECs and then AVC valve extracellular matrix patterning. Mice lacking Axin2, a negative Wnt regulator, have larger valves, suggesting that accumulating Axin2 in maturing valves represents negative feedback that restrains tissue overgrowth rather than simply reporting Wnt activity. Disruption of these Wnt/β-catenin signaling roles that enable developmental transitions during valvulogenesis could account for common congenital valve defects.
Collapse
Affiliation(s)
- Fernanda M Bosada
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA Department of Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | - Vidusha Devasthali
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | - Kimberly A Jones
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA Department of Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA Department of Biology, University of Oregon, Eugene, OR 97403-1229, USA
| |
Collapse
|
15
|
Wang Z, Calpe B, Zerdani J, Lee Y, Oh J, Bae H, Khademhosseini A, Kim K. High-throughput investigation of endothelial-to-mesenchymal transformation (EndMT) with combinatorial cellular microarrays. Biotechnol Bioeng 2015; 113:1403-12. [PMID: 26666585 DOI: 10.1002/bit.25905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 01/09/2023]
Abstract
In the developing heart, a specific subset of endocardium undergoes an endothelial-to-mesenchymal transformation (EndMT) thus forming nascent valve leaflets. Extracellular matrix (ECM) proteins and growth factors (GFs) play important roles in regulating EndMT but the combinatorial effect of GFs with ECM proteins is less well understood. Here we use microscale engineering techniques to create single, binary, and tertiary component microenvironments to investigate the combinatorial effects of ECM proteins and GFs on the attachment and transformation of adult ovine mitral valve endothelial cells to a mesenchymal phenotype. With the combinatorial microenvironment microarrays, we utilized 60 different combinations of ECM proteins (Fibronectin, Collagen I, II, IV, Laminin) and GFs (TGF-β1, bFGF, VEGF) and were able to identify new microenvironmental conditions capable of modulating EndMT in MVECs. Experimental results indicated that TGF-β1 significantly upregulated the EndMT while either bFGF or VEGF downregulated EndMT process markedly. Also, ECM proteins could influence both the attachment of MVECs and the response of MVECs to GFs. In terms of attachment, fibronectin is significantly better for the adhesion of MVECs among the five tested proteins. Overall collagen IV and fibronectin appeared to play important roles in promoting EndMT process. Great consistency between macroscale and microarrayed experiments and present studies demonstrates that high-throughput cellular microarrays are a promising approach to study the regulation of EndMT in valvular endothelium. Biotechnol. Bioeng. 2016;113: 1403-1412. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zongjie Wang
- School of Engineering, University of British Columbia, Kelowna, BC, V1V1V7, Canada
| | - Blaise Calpe
- Institute of Molecular Health Sciences, ETH Zürich, Zürich, Switzerland.,Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts
| | - Jalil Zerdani
- Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts.,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts.,Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Youngsang Lee
- Department of Mathematics and Statistics, University of British Columbia, Kelowna, BC, Canada
| | - Jonghyun Oh
- Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts.,Division of Mechanical Design Engineering, Chonbuk National University, Jeonjoo, Republic of Korea.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Hojae Bae
- Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.,Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, Republic of Korea
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts. .,Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts. .,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139. .,Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| | - Keekyoung Kim
- School of Engineering, University of British Columbia, Kelowna, BC, V1V1V7, Canada. .,Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts. .,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139.
| |
Collapse
|
16
|
Drug delivery in aortic valve tissue engineering. J Control Release 2014; 196:307-23. [DOI: 10.1016/j.jconrel.2014.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 01/08/2023]
|
17
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 DOI: 10.3389/fphys.2014.00318/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 05/25/2023] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
18
|
Lindsey SE, Butcher JT, Yalcin HC. Mechanical regulation of cardiac development. Front Physiol 2014; 5:318. [PMID: 25191277 PMCID: PMC4140306 DOI: 10.3389/fphys.2014.00318] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/03/2014] [Indexed: 12/21/2022] Open
Abstract
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development.
Collapse
Affiliation(s)
| | - Jonathan T Butcher
- Department of Biomedical Engineering, Cornell University Ithaca, NY, USA
| | - Huseyin C Yalcin
- Department of Mechanical Engineering, Dogus University Istanbul, Turkey
| |
Collapse
|
19
|
AcvR1-mediated BMP signaling in second heart field is required for arterial pole development: implications for myocardial differentiation and regional identity. Dev Biol 2014; 390:191-207. [PMID: 24680892 DOI: 10.1016/j.ydbio.2014.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/23/2022]
Abstract
BMP signaling plays an essential role in second heart field-derived heart and arterial trunk development, including myocardial differentiation, right ventricular growth, and interventricular, outflow tract and aortico-pulmonary septation. It is mediated by a number of different BMP ligands, and receptors, many of which are present simultaneously. The mechanisms by which they regulate morphogenetic events and degree of redundancy amongst them have still to be elucidated. We therefore assessed the role of BMP Type I receptor AcvR1 in anterior second heart field-derived cell development, and compared it with that of BmpR1a. By removing Acvr1 using the driver Mef2c[AHF]-Cre, we show that AcvR1 plays an essential role in arterial pole morphogenesis, identifying defects in outflow tract wall and cushion morphology that preceded a spectrum of septation defects from double outlet right ventricle to common arterial trunk in mutants. Its absence caused dysregulation in gene expression important for myocardial differentiation (Isl1, Fgf8) and regional identity (Tbx2, Tbx3, Tbx20, Tgfb2). Although these defects resemble to some degree those in the equivalent Bmpr1a mutant, a novel gene knock-in model in which Bmpr1a was expressed in the Acvr1 locus only partially restored septation in Acvr1 mutants. These data show that both BmpR1a and AcvR1 are needed for normal heart development, in which they play some non-redundant roles, and refine our understanding of the genetic and morphogenetic processes underlying Bmp-mediated heart development important in human congenital heart disease.
Collapse
|
20
|
Chester AH, El-Hamamsy I, Butcher JT, Latif N, Bertazzo S, Yacoub MH. The living aortic valve: From molecules to function. Glob Cardiol Sci Pract 2014; 2014:52-77. [PMID: 25054122 PMCID: PMC4104380 DOI: 10.5339/gcsp.2014.11] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022] Open
Abstract
The aortic valve lies in a unique hemodynamic environment, one characterized by a range of stresses (shear stress, bending forces, loading forces and strain) that vary in intensity and direction throughout the cardiac cycle. Yet, despite its changing environment, the aortic valve opens and closes over 100,000 times a day and, in the majority of human beings, will function normally over a lifespan of 70–90 years. Until relatively recently heart valves were considered passive structures that play no active role in the functioning of a valve, or in the maintenance of its integrity and durability. However, through clinical experience and basic research the aortic valve can now be characterized as a living, dynamic organ with the capacity to adapt to its complex mechanical and biomechanical environment through active and passive communication between its constituent parts. The clinical relevance of a living valve substitute in patients requiring aortic valve replacement has been confirmed. This highlights the importance of using tissue engineering to develop heart valve substitutes containing living cells which have the ability to assume the complex functioning of the native valve.
Collapse
|
21
|
Inai K, Burnside JL, Hoffman S, Toole BP, Sugi Y. BMP-2 induces versican and hyaluronan that contribute to post-EMT AV cushion cell migration. PLoS One 2013; 8:e77593. [PMID: 24147033 PMCID: PMC3795687 DOI: 10.1371/journal.pone.0077593] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/09/2013] [Indexed: 11/24/2022] Open
Abstract
Distal outgrowth and maturation of mesenchymalized endocardial cushions are critical morphogenetic events during post-EMT atrioventricular (AV) valvuloseptal morphogenesis. We explored the role of BMP-2 in the regulation of valvulogenic extracellular matrix (ECM) components, versican and hyaluronan (HA), and cell migration during post-EMT AV cushion distal outgrowth/expansion. We observed intense staining of versican and HA in AV cushion mesenchyme from the early cushion expansion stage, Hamburger and Hamilton (HH) stage-17 to the cushion maturation stage, HH stage-29 in the chick. Based on this expression pattern we examined the role of BMP-2 in regulating versican and HA using 3D AV cushion mesenchymal cell (CMC) aggregate cultures on hydrated collagen gels. BMP-2 induced versican expression and HA deposition as well as mRNA expression of versican and Has2 by CMCs in a dose dependent manner. Noggin, an antagonist of BMP, abolished BMP-2-induced versican and HA as well as mRNA expression of versican and Has2. We further examined whether BMP-2-promoted cell migration was associated with expression of versican and HA. BMP-2- promoted cell migration was significantly impaired by treatments with versican siRNA and HA oligomer. In conclusion, we provide evidence that BMP-2 induces expression of versican and HA by AV CMCs and that these ECM components contribute to BMP-2-induced CMC migration, indicating critical roles for BMP-2 in distal outgrowth/expansion of mesenchymalized AV cushions.
Collapse
Affiliation(s)
- Kei Inai
- Department of Regenerative Medicine and Cell Biology and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jessica L. Burnside
- Department of Regenerative Medicine and Cell Biology and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Stanley Hoffman
- Department of Regenerative Medicine and Cell Biology and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Bryan P. Toole
- Department of Regenerative Medicine and Cell Biology and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yukiko Sugi
- Department of Regenerative Medicine and Cell Biology and Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
22
|
Zhang Q, He X, Chen L, Zhang C, Gao X, Yang Z, Liu G. Synergistic regulation of p53 by Mdm2 and Mdm4 is critical in cardiac endocardial cushion morphogenesis during heart development. J Pathol 2012; 228:416-28. [DOI: 10.1002/path.4077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 07/08/2012] [Accepted: 07/11/2012] [Indexed: 12/23/2022]
|
23
|
Abstract
Emerging data in the field of cardiac development as well as repair and regeneration indicate a complex and important interplay between endocardial, epicardial, and myofibroblast populations that is critical for cardiomyocyte differentiation and postnatal function. For example, epicardial cells have been shown to generate cardiac myofibroblasts and may be one of the primary sources for this cell lineage during development. Moreover, paracrine signaling from the epicardium and endocardium is critical for proper development of the heart and pathways such as Wnt, fibroblast growth factor, and retinoic acid signaling have been shown to be key players in this process. Despite this progress, interactions between nonmyocyte cells and cardiomyocytes in the heart are still poorly understood. We review the various nonmyocyte-myocyte interactions that occur in the heart and how these interactions, primarily through signaling networks, help direct cardiomyocyte differentiation and regulate postnatal cardiac function.
Collapse
Affiliation(s)
- Ying Tian
- Department of Medicine, University of Pennsylvania, PA 19104-5129, USA
| | | |
Collapse
|
24
|
de Vlaming A, Sauls K, Hajdu Z, Visconti RP, Mehesz AN, Levine RA, Slaugenhaupt SA, Hagège A, Chester AH, Markwald RR, Norris RA. Atrioventricular valve development: new perspectives on an old theme. Differentiation 2012; 84:103-16. [PMID: 22579502 DOI: 10.1016/j.diff.2012.04.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/26/2012] [Accepted: 04/01/2012] [Indexed: 11/19/2022]
Abstract
Atrioventricular valve development commences with an EMT event whereby endocardial cells transform into mesenchyme. The molecular events that induce this phenotypic change are well understood and include many growth factors, signaling components, and transcription factors. Besides their clear importance in valve development, the role of these transformed mesenchyme and the function they serve in the developing prevalve leaflets is less understood. Indeed, we know that these cells migrate, but how and why do they migrate? We also know that they undergo a transition to a mature, committed cell, largely defined as an interstitial fibroblast due to their ability to secrete various matrix components including collagen type I. However, we have yet to uncover mechanisms by which the matrix is synthesized, how it is secreted, and how it is organized. As valve disease is largely characterized by altered cell number, cell activation, and matrix disorganization, answering questions of how the valves are built will likely provide us with information of real clinical relevance. Although expression profiling and descriptive or correlative analyses are insightful, to advance the field, we must now move past the simplicity of these assays and ask fundamental, mechanistic based questions aimed at understanding how valves are "built". Herein we review current understandings of atrioventricular valve development and present what is known and what isn't known. In most cases, basic, biological questions and hypotheses that were presented decades ago on valve development still are yet to be answered but likely hold keys to uncovering new discoveries with relevance to both embryonic development and the developmental basis of adult heart valve diseases. Thus, the goal of this review is to remind us of these questions and provide new perspectives on an old theme of valve development.
Collapse
Affiliation(s)
- Annemarieke de Vlaming
- Department of Regenerative Medicine and Cell Biology, School of Medicine, Cardiovascular Developmental Biology Center, Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The epicardium, the tissue layer covering the cardiac muscle (myocardium), develops from the proepicardium, a mass of coelomic progenitors located at the venous pole of the embryonic heart. Proepicardium cells attach to and spread over the myocardium to form the primitive epicardial epithelium. The epicardium subsequently undergoes an epithelial-to-mesenchymal transition to give rise to a population of epicardium-derived cells, which in turn invade the heart and progressively differentiate into various cell types, including cells of coronary blood vessels and cardiac interstitial cells. Epicardial cells and epicardium-derived cells signal to the adjacent cardiac muscle in a paracrine fashion, promoting its proliferation and expansion. Recently, high expectations have been raised about the epicardium as a candidate source of cells for the repair of the damaged heart. Because of its developmental importance and therapeutic potential, current research on this topic focuses on the complex signals that control epicardial biology. This review describes the signaling pathways involved in the different stages of epicardial development and discusses the potential of epicardial signals as targets for the development of therapies to repair the diseased heart.
Collapse
|
26
|
The structural biology of the FGF19 subfamily. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 728:1-24. [PMID: 22396159 DOI: 10.1007/978-1-4614-0887-1_1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ability of the Fibroblast Growth Factor (FGF) 19 subfamily to signal in an endocrine fashion sets this subfamily apart from the remaining five FGF subfamilies known for their paracrine functions during embryonic development. Compared to the members of paracrine FGF subfamiles, the three members of the FGF19 subfamily, namely FGF19, FGF21 and FGF23, have poor affinity for heparan sulfate (HS) and therefore can diffuse freely in the HS-rich extracellular matrix to enter into the bloodstream. In further contrast to paracrine FGFs, FGF19 subfamily members have unusually poor affinity for their cognate FGF receptors (FGFRs) and therefore cannot bind and activate them in a solely HS-dependent fashion. As a result, the FGF19 subfamily requires α/βklotho coreceptor proteins in order to bind, dimerize and activate their cognate FGFRs. This klotho-dependency also determines the tissue specificity of endocrine FGFs. Recent structural and biochemical studies have begun to shed light onto the molecular basis for the klotho-dependent endocrine mode of action of the FGF19 subfamily. Crystal structures of FGF19 and FGF23 show that the topology of the HS binding site (HBS) of FGF19 subfamily members deviates drastically from the common topology adopted by the paracrine FGFs. The distinct topologies of the HBS of FGF19 and FGF23 prevent HS from direct hydrogen bonding with the backbone atoms of the HBS of these ligands and accordingly decrease the HS binding affinity of this subfamily. Recent biochemical data reveal that the ?klotho ectodomain binds avidly to the ectodomain of FGFR1c, the main cognate FGFR of FGF23, creating a de novo high affinity binding site for the C-terminal tail of FGF23. The isolated FGF23 C-terminus can be used to effectively inhibit the formation of the FGF23-FGFR1c-αklotho complex and alleviate hypophosphatemia in renal phosphate disorders due to elevated levels of FGF23.
Collapse
|
27
|
Abstract
Abstract
The formation and remodeling of the embryonic valves is a complex and dynamic process that occurs within a constantly changing hemodynamic environment. Defects in embryonic and fetal valve remodeling are the leading cause of congenital heart defects, yet very little is known about how fibrous leaflet tissue is created from amorphous gelatinous masses called cushions. Microenvironmental cues such as mechanical forces and extracellular matrix composition play major roles in cell differentiation, but almost all research efforts in valvulogenesis center around genetics and molecular approaches. This review summarizes what is known about the dynamic mechanical and extracellular matrix microenvironment of the atrioventricular and semilunar valves during embryonic development and their possible guidance roles. A variety of new computational tools and sophisticated experimental techniques are progressing that enable precise microenvironmental alterations that are critical to complement genetic gain and loss of function approaches. Studies at the interface of mechanical and genetic signaling in embryonic valvulogenesis will likely pay significant dividends, not only in terms of increasing our mechanistic understanding, but also lead to the development of novel therapeutic strategies for patients with congenital valve abnormalities.
Collapse
Affiliation(s)
| | - Jonathan T. Butcher
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
28
|
Wu B, Wang Y, Lui W, Langworthy M, Tompkins KL, Hatzopoulos AK, Baldwin HS, Zhou B. Nfatc1 coordinates valve endocardial cell lineage development required for heart valve formation. Circ Res 2011; 109:183-92. [PMID: 21597012 DOI: 10.1161/circresaha.111.245035] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RATIONALE Formation of heart valves requires early endocardial to mesenchymal transformation (EMT) to generate valve mesenchyme and subsequent endocardial cell proliferation to elongate valve leaflets. Nfatc1 (nuclear factor of activated T cells, cytoplasmic 1) is highly expressed in valve endocardial cells and is required for normal valve formation, but its role in the fate of valve endocardial cells during valve development is unknown. OBJECTIVE Our aim was to investigate the function of Nfatc1 in cell-fate decision making by valve endocardial cells during EMT and early valve elongation. METHODS AND RESULTS Nfatc1 transcription enhancer was used to generate a novel valve endocardial cell-specific Cre mouse line for fate-mapping analyses of valve endocardial cells. The results demonstrate that a subpopulation of valve endocardial cells marked by the Nfatc1 enhancer do not undergo EMT. Instead, these cells remain within the endocardium as a proliferative population to support valve leaflet extension. In contrast, loss of Nfatc1 function leads to enhanced EMT and decreased proliferation of valve endocardium and mesenchyme. The results of blastocyst complementation assays show that Nfatc1 inhibits EMT in a cell-autonomous manner. We further reveal by gene expression studies that Nfatc1 suppresses transcription of Snail1 and Snail2, the key transcriptional factors for initiation of EMT. CONCLUSIONS These results show that Nfatc1 regulates the cell-fate decision making of valve endocardial cells during valve development and coordinates EMT and valve elongation by allocating endocardial cells to the 2 morphological events essential for valve development.
Collapse
Affiliation(s)
- Bingruo Wu
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Price Center 420, 1301 Morris Park Ave, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
The epicardium in cardiac repair: From the stem cell view. Pharmacol Ther 2011; 129:82-96. [DOI: 10.1016/j.pharmthera.2010.09.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/09/2010] [Indexed: 12/12/2022]
|
30
|
Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 2010; 90:1507-46. [PMID: 20959622 PMCID: PMC3808831 DOI: 10.1152/physrev.00054.2009] [Citation(s) in RCA: 563] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among the myriad of intracellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart.
Collapse
Affiliation(s)
- Beth A Rose
- Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, Molecular Biology, Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
31
|
Zhang J, Chang JYF, Huang Y, Lin X, Luo Y, Schwartz RJ, Martin JF, Wang F. The FGF-BMP signaling axis regulates outflow tract valve primordium formation by promoting cushion neural crest cell differentiation. Circ Res 2010; 107:1209-19. [PMID: 20847311 DOI: 10.1161/circresaha.110.225318] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Heart valves develop from precursor structures called cardiac cushions, an endothelial-lined cardiac jelly that resides in the inner side of the heart tube. The cushions are then invaded by cells from different sources, undergo a series of complicated and poorly understood remodeling processes, and give rise to valves. Disruption of the fibroblast growth factor (FGF) signaling axis impairs morphogenesis of the outflow tract (OFT). Yet, whether FGF signaling regulates OFT valve formation is unknown. OBJECTIVE To study how OFT valve formation is regulated and how aberrant cell signaling causes valve defects. METHODS AND RESULTS By using mouse genetic manipulation, cell lineage tracing, ex vivo heart culture, and molecular biology approaches, we demonstrated that FGF signaling in the OFT myocardium upregulated Bmp4 expression, which then enhanced smooth muscle differentiation of neural crest cells (NCCs) in the cushion. FGF signaling also promoted OFT myocardial cell invasion to the cushion. Disrupting FGF signaling interrupted cushion remodeling with reduced NCCs differentiation into smooth muscle and less cardiomyocyte invasion and resulted in malformed OFT valves. CONCLUSIONS The results demonstrate a novel mechanism by which the FGF-BMP signaling axis regulates formation of OFT valve primordia by controlling smooth muscle differentiation of cushion NCCs.
Collapse
Affiliation(s)
- Jue Zhang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030-3303, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The establishment of the coronary circulation is critical for the development of the embryonic heart. Over the last several years, there has been tremendous progress in elucidating the pathways that control coronary development. Interestingly, many of the pathways that regulate the development of the coronary vasculature are distinct from those governing vasculogenesis in the rest of the embryo. It is becoming increasingly clear that coronary development depends on a complex communication between the epicardium, the subepicardial mesenchyme, and the myocardium mediated in part by secreted growth factors. This communication coordinates the growth of the myocardium with the formation of the coronary vasculature. This review summarizes our present understanding of the role of these growth factors in the regulation of coronary development. Continued progress in this field holds the potential to lead to novel therapeutics for the treatment of patients with coronary artery disease.
Collapse
Affiliation(s)
- Harold E Olivey
- Section of Cardiology, Department of Medicine, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637, USA
| | | |
Collapse
|
33
|
Neagu A, Mironov V, Kosztin I, Barz B, Neagu M, Moreno-Rodriguez RA, Markwald RR, Forgacs G. Computational modeling of epithelial-mesenchymal transformations. Biosystems 2009; 100:23-30. [PMID: 20005917 DOI: 10.1016/j.biosystems.2009.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 11/17/2009] [Accepted: 12/03/2009] [Indexed: 12/22/2022]
Abstract
An epithelial-mesenchymal transformation (EMT) involves alterations in cell-cell and cell-matrix adhesion, the detachment of epithelial cells from their neighbors, the degradation of the basal lamina and acquisition of mesenchymal phenotype. Here we present Monte Carlo simulations for a specific EMT in early heart development: the formation of cardiac cushions. Cell rearrangements are described in accordance with Steinberg's differential adhesion hypothesis, which states that cells possess a type-dependent adhesion apparatus and are sufficiently motile to give rise to the tissue conformation with the largest number of strong bonds. We also implement epithelial and mesenchymal cell proliferation, cell type change and extracellular matrix production by mesenchymal cells. Our results show that an EMT is promoted more efficiently by an increase in cell-substrate adhesion than by a decrease in cell-cell adhesion. In addition to cushion tissue formation, the model also accounts for the phenomena of matrix invasion and mesenchymal condensation. We conclude that in order to maintain epithelial integrity during EMT the number of epithelial cells must increase at a controlled rate. Our model predictions are in qualitative agreement with available experimental data.
Collapse
Affiliation(s)
- Adrian Neagu
- Department of Physics, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Vrljicak P, Chang ACY, Morozova O, Wederell ED, Niessen K, Marra MA, Karsan A, Hoodless PA. Genomic analysis distinguishes phases of early development of the mouse atrio-ventricular canal. Physiol Genomics 2009; 40:150-7. [PMID: 19952280 DOI: 10.1152/physiolgenomics.00142.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Valve formation during embryonic heart development involves a complex interplay of regional specification, cell transformations, and remodeling events. While many studies have addressed the role of specific genes during this process, a global understanding of the genetic basis for the regional specification and development of the heart valves is incomplete. We have undertaken genome-wide transcriptional profiling of the developing heart valves in the mouse. Four Serial Analysis of Gene Expression libraries were generated and analyzed from the mouse atrio-ventricular canal (AVC) at embryonic days 9.5-12.5, covering the stages from initiation of endothelial to mesenchymal transition (EMT) through to the beginning of endocardial cushion remodeling. We identified 14 distinct temporal patterns of gene expression during AVC development. These were associated with specific functions and signaling pathway members. We defined the temporal distribution of mesenchyme genes during the EMT process and of specific Notch and transforming growth factor-beta targets. This work provides the first comprehensive temporal dataset during the formation of heart valves. These results identify molecular signatures that distinguish different phases of early heart valve formation allowing gene expression and function to be further investigated.
Collapse
Affiliation(s)
- Pavle Vrljicak
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada V5Z 1L3
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Steinberg F, Zhuang L, Beyeler M, Kälin RE, Mullis PE, Brändli AW, Trueb B. The FGFRL1 receptor is shed from cell membranes, binds fibroblast growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos. J Biol Chem 2009; 285:2193-202. [PMID: 19920134 DOI: 10.1074/jbc.m109.058248] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs.
Collapse
|
36
|
Abstract
In recent years, significant advances have been made in the definition of regulatory pathways that control normal and abnormal cardiac valve development. Here, we review the cellular and molecular mechanisms underlying the early development of valve progenitors and establishment of normal valve structure and function. Regulatory hierarchies consisting of a variety of signaling pathways, transcription factors, and downstream structural genes are conserved during vertebrate valvulogenesis. Complex intersecting regulatory pathways are required for endocardial cushion formation, valve progenitor cell proliferation, valve cell lineage development, and establishment of extracellular matrix compartments in the stratified valve leaflets. There is increasing evidence that the regulatory mechanisms governing normal valve development also contribute to human valve pathology. In addition, congenital valve malformations are predominant among diseased valves replaced late in life. The understanding of valve developmental mechanisms has important implications in the diagnosis and management of congenital and adult valve disease.
Collapse
Affiliation(s)
- Michelle D Combs
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center ML7020, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | | |
Collapse
|
37
|
Kosaka N, Sakamoto H, Terada M, Ochiya T. Pleiotropic function of FGF-4: its role in development and stem cells. Dev Dyn 2009; 238:265-76. [PMID: 18792115 DOI: 10.1002/dvdy.21699] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fibroblast growth factors (FGFs) were initially recognized as fibroblast-specific growth factor, and it is now apparent that these growth factors regulate multiple biological functions. The diversity of FGFs function is paralleled by the emerging diversity of interactions between FGF ligands and their receptors. FGF-4 is a member of the FGF superfamily and is a mitogen exhibiting strong action on numerous different cell types. It plays a role in various stages of development and morphogenesis, as well as in a variety of biological processes. Recent studies reveal the molecular mechanisms of FGF-4 gene regulation in mammalian cells, which is involved in the developmental process. Furthermore, FGF-4 also acts on the regulation of proliferation and differentiation in embryonic stem cells and tissue stem cells. In this review, we focus on the diverse biological functions of FGF-4 in the developmental process and also discuss its putative roles in stem cell biology.
Collapse
Affiliation(s)
- Nobuyoshi Kosaka
- Section for Studies on Metastasis, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
38
|
Catela C, Bilbao-Cortes D, Slonimsky E, Kratsios P, Rosenthal N, Te Welscher P. Multiple congenital malformations of Wolf-Hirschhorn syndrome are recapitulated in Fgfrl1 null mice. Dis Model Mech 2009; 2:283-94. [PMID: 19383940 DOI: 10.1242/dmm.002287] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Wolf-Hirschhorn syndrome (WHS) is caused by deletions in the short arm of chromosome 4 (4p) and occurs in about one per 20,000 births. Patients with WHS display a set of highly variable characteristics including craniofacial dysgenesis, mental retardation, speech problems, congenital heart defects, short stature and a variety of skeletal anomalies. Analysis of patients with 4p deletions has identified two WHS critical regions (WHSCRs); however, deletions targeting mouse WHSCRs do not recapitulate the classical WHS defects, and the genes contributing to WHS have not been conclusively established. Recently, the human FGFRL1 gene, encoding a putative fibroblast growth factor (FGF) decoy receptor, has been implicated in the craniofacial phenotype of a WHS patient. Here, we report that targeted deletion of the mouse Fgfrl1 gene recapitulates a broad array of WHS phenotypes, including abnormal craniofacial development, axial and appendicular skeletal anomalies, and congenital heart defects. Fgfrl1 null mutants also display a transient foetal anaemia and a fully penetrant diaphragm defect, causing prenatal and perinatal lethality. Together, these data support a wider role for Fgfrl1 in development, implicate FGFRL1 insufficiency in WHS, and provide a novel animal model to dissect the complex aetiology of this human disease.
Collapse
Affiliation(s)
- Catarina Catela
- European Molecular Biology Laboratory, Mouse Biology Unit, Monterotondo, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009; 8:235-53. [PMID: 19247306 DOI: 10.1038/nrd2792] [Citation(s) in RCA: 1430] [Impact Index Per Article: 89.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The family of fibroblast growth factors (FGFs) regulates a plethora of developmental processes, including brain patterning, branching morphogenesis and limb development. Several mitogenic, cytoprotective and angiogenic therapeutic applications of FGFs are already being explored, and the recent discovery of the crucial roles of the endocrine-acting FGF19 subfamily in bile acid, glucose and phosphate homeostasis has sparked renewed interest in the pharmacological potential of this family. This Review discusses traditional applications of recombinant FGFs and small-molecule FGF receptor kinase inhibitors in the treatment of cancer and cardiovascular disease and their emerging potential in the treatment of metabolic syndrome and hypophosphataemic diseases.
Collapse
Affiliation(s)
- Andrew Beenken
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
40
|
Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation. Proc Natl Acad Sci U S A 2009; 106:4736-41. [PMID: 19251646 DOI: 10.1073/pnas.0810053106] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Noonan syndrome (NS), the most common single-gene cause of congenital heart disease, is an autosomal dominant disorder that also features proportionate short stature, facial abnormalities, and an increased risk of myeloproliferative disease. Germline-activating mutations in PTPN11, which encodes the protein tyrosine phosphatase SHP2, cause about half of NS cases; other causative alleles include KRAS, SOS1, and RAF1 mutants. We showed previously that knock-in mice bearing the NS mutant Ptpn11(D61G) on a mixed 129S4/SvJae X C57BL6/J background exhibit all major NS features, including a variety of cardiac defects, with variable penetrance. However, the cellular and molecular mechanisms underlying NS cardiac defects and whether genetic background and/or the specific NS mutation contribute to the NS phenotype remained unclear. Here, using an inducible knock-in approach, we show that all cardiac defects in NS result from mutant Shp2 expression in the endocardium, not in the myocardium or neural crest. Furthermore, the penetrance of NS defects is affected by genetic background and the specific Ptpn11 allele. Finally, ex vivo assays and pharmacological approaches show that NS mutants cause cardiac valve defects by increasing Erk MAPK activation, probably downstream of ErbB family receptor tyrosine kinases, extending the interval during which cardiac endocardial cells undergo endocardial-mesenchymal transformation. Our data provide a mechanistic underpinning for the cardiac defects in this disorder.
Collapse
|
41
|
Slaugenhaupt SA, Levine RA, Hagege AA, Jeunemaitre X, Le Marec H, Schott JJ, Probst V. Genetic mechanisms of mitral valve prolapse. CURRENT CARDIOVASCULAR RISK REPORTS 2008. [DOI: 10.1007/s12170-008-0082-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Seyed M, Dimario JX. Fibroblast growth factor receptor 1 gene expression is required for cardiomyocyte proliferation and is repressed by Sp3. J Mol Cell Cardiol 2008; 44:510-9. [PMID: 18275970 DOI: 10.1016/j.yjmcc.2007.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 12/18/2007] [Accepted: 12/18/2007] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is the only high-affinity FGFR in the vertebrate myocardium. FGFR1 is a tyrosine kinase receptor and has a non-redundant role in proliferation and differentiation of cardiomyocytes during embryogenesis. Results presented here demonstrate that FGFR1 gene expression declines as neonatal cardiomyocytes develop into adult cardiomyocytes. Furthermore, silencing FGFR1 gene expression reduced neonatal cardiomyocyte proliferation, indicating that FGFR1 gene expression is required for the optimal proliferative capacity of cardiomyocytes. To determine the mechanism that governs FGFR1 gene expression in cardiomyocytes, sequence analysis of the proximal mouse FGFR1 promoter identified a potential binding site for Sp transcription factors. Mutation of this site increased FGFR1 promoter activity compared to the wild-type promoter, indicating the presence of a negative transcriptional regulator of the FGFR1 promoter at this site in cardiomyocytes. Sp3 expression in neonatal cardiomyocytes and Drosophila SL2 cells reduced FGFR1 promoter activity in a dose-dependent manner. Western blots and immunocytochemistry indicated that Sp3 was present in the nuclear and cytoplasmic compartments of neonatal cardiomyocytes. Chromatin-immunoprecipitation studies verified that endogenous Sp3 in cardiomyocytes interacts with the FGFR1 promoter. Transient chromatin-immunoprecipitation studies using wild-type and mutated FGFR1 promoter constructs in SL2 cells identified the specific Sp3 binding site within the FGFR1 promoter. These studies implicate Sp3 as a negative transcriptional regulator of FGFR1 promoter activity in cardiomyocytes and as a suppressor of cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Mahdie Seyed
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| | | |
Collapse
|
43
|
Domínguez JN, de la Rosa Á, Navarro F, Franco D, Aránega AE. Tissue distribution and subcellular localization of the cardiac sodium channel during mouse heart development. Cardiovasc Res 2008; 78:45-52. [DOI: 10.1093/cvr/cvm118] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Inai K, Norris RA, Hoffman S, Markwald RR, Sugi Y. BMP-2 induces cell migration and periostin expression during atrioventricular valvulogenesis. Dev Biol 2007; 315:383-96. [PMID: 18261719 DOI: 10.1016/j.ydbio.2007.12.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 11/26/2022]
Abstract
Atrioventricular (AV) endocardium transforms into the cushion mesenchyme, the primordia of the valves and membranous septa, through epithelial-mesenchymal transformation (EMT). While bone morphogenetic protein (BMP)-2 is known to be critical for AV EMT, the role of BMP-2 in post-EMT AV valvulogenesis remains to be elucidated. To find BMP signaling loops, we first localized Type I BMP receptors (BMPRs), BMPR-1A (ALK3), -1B (ALK6) and ALK2 in AV cushion mesenchyme in stage-24 chick embryos. Based on the BMP receptor expression pattern, we examined the functional roles of BMP-2 and BMP signaling in post-EMT valvulogenesis by using stage-24 AV cushion mesenchymal cell aggregates cultured on 3D-collagen gels. Exogenous BMP-2 or constitutively active (ca) BMPR-1B (ALK6)-virus treatments induced migration of the mesenchymal cells into the collagen gels, whereas noggin, an antagonist of BMPs, or dominant-negative (dn) BMPR-1 B (ALK6)-virus treatments reduced cell migration from the mesenchymal cell aggregates. Exogenous BMP-2 or caBMPR-1B (ALK6) treatments significantly promoted expression of an extracellular matrix (ECM) protein, periostin, a known valvulogenic matrix maturation mediator, at both mRNA and protein levels, whereas periostin expression was repressed by adding noggin or dnBMPR-1B (ALK6)-virus to the culture. Moreover, transcripts of Twist and Id1, which have been implicated in cell migration in embryogenesis and activation of the periostin promoter, were induced by BMP-2 but repressed by noggin in cushion mesenchymal cell cultures. These data provide evidence that BMP-2 and BMP signaling induce biological processes involved in early AV valvulogenesis, i.e. mesenchymal cell migration and expression of periostin, indicating critical roles for BMP signaling in post-EMT AV cushion tissue maturation and differentiation.
Collapse
Affiliation(s)
- Kei Inai
- Department of Cell Biology and Anatomy and Cardiovascular Developmental Biology Center, Medical University of South Carolina, 171 Ashley Ave., Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
45
|
Schulz C, Kress W, Schömig A, Wessely R. Endocardial cushion defect in a patient with Crouzon syndrome carrying a mutation in the fibroblast growth factor receptor (FGFR)-2 gene. Clin Genet 2007; 72:305-7. [PMID: 17850625 DOI: 10.1111/j.1399-0004.2007.00861.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crouzon syndrome is an autosomal dominant disorder caused by mutation in the fibroblast growth factor receptor (FGFR)-2 gene. Recent findings from animal studies imply a critical role for FGFs in the regulation of cardiac development including cardiac cushion proliferation and valvulogenesis. We report on a 36-year-old woman, who required surgical closure for an atrial septal defect, a clinical feature that has not been previously reported in other patients with Crouzon syndrome. The findings suggest that cardiac investigations are warranted in patients with a diagnosis of Crouzon syndrome.
Collapse
Affiliation(s)
- C Schulz
- German Heart Center and 1st Department of Medicine, Klinikum rechts der Isar, University of Technology, Lazarettstrasse 36, 80636 Munich, Germany
| | | | | | | |
Collapse
|
46
|
Abstract
Valvulogenesis is an extremely complex process by which a fragile gelatinous matrix is populated and remodelled during embryonic development into thin fibrous leaflets capable of maintaining unidirectional flow over a lifetime. This process occurs during exposure to constantly changing haemodynamic forces, with a success rate of approximately 99%. Defective valvulogenesis results in impaired cardiac function and lifelong complications. This review integrates what is known about the roles of genetics and mechanics in the development of valves and how changes in either result in impaired morphogenesis. It is hoped that appropriate developmental cues and phenotypic endpoints could help engineers and clinicians in their efforts to regenerate living valve alternatives.
Collapse
Affiliation(s)
- Jonathan T Butcher
- Department of Biomedical Engineering, 270 Olin Hall, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
47
|
Zhao B, Etter L, Hinton RB, Benson DW. BMP and FGF regulatory pathways in semilunar valve precursor cells. Dev Dyn 2007; 236:971-80. [PMID: 17326134 DOI: 10.1002/dvdy.21097] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the developing atrioventricular (AV) valve, limb bud, and somites, cartilage cell lineage differentiation is regulated by bone morphogenetic protein (BMP), while fibroblast growth factor (FGF) controls tendon cell fate. We observed aggrecan and sox9, characteristic of cartilage cell types, and scleraxis and tenascin, characteristic of tendon cell types, in developing avian semilunar valves. Addition of BMP4 to outflow tract (OFT) precursor cells of young (E4.5) but not older (E6) chick embryos activated Smad1/5/8 and induced sox9 and aggrecan expression, while FGF4 treatment increased phosphorylated MAPK (dpERK) signaling and promoted expression of scleraxis and tenascin. These results identify BMP and FGF pathways that promote expression of cartilage- or tendon-like characteristics in semilunar valve precursor cells. In contrast to AV valve precursor cells, which diversify into leaflets (cartilage-like) or chordae tendineae (tendon-like), semilunar valve cells exhibit both cartilage- and tendon-like characteristics in the developing and mature valve cusp.
Collapse
Affiliation(s)
- Bin Zhao
- Division of Cardiology, MLC 7042, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
48
|
Seyed M, Dimario JX. Sp1 is required for transcriptional activation of the fibroblast growth factor receptor 1 gene in neonatal cardiomyocytes. Gene 2007; 400:150-7. [PMID: 17628354 DOI: 10.1016/j.gene.2007.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 11/17/2022]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is the predominant FGFR in cardiac tissue and regulates proliferation, differentiation, and maintenance of normal myocardium. During development of cardiac tissue, FGFR1 gene expression regulates cardiomyocyte proliferation. The focus of this study was to determine the molecular mechanism of transcriptional activation of the FGFR1 gene in proliferating neonatal cardiomyocytes. Analysis of DNA sequence of the FGFR1 gene identified three potential Sp factor binding sites located at 49 bp, 68 bp, and 100 bp upstream from the 3' end of the promoter segment. Mutation of each of these sites resulted in a significant decline in FGFR1 promoter activity compared to wild type promoter activity, and combinatorial mutation of all three sites completely abrogated promoter activity to background levels. In addition, overexpression of Sp1 in neonatal cardiomyocytes resulted in a dose-dependent increase in wild type FGFR1 promoter activity. However, Sp1-mediated up-regulation of promoter activity was abrogated when all three Sp interacting sites were mutated. Chromatin immunoprecipitation (ChIP) assays were used to demonstrate direct interactions of Sp1 with the proximal promoter region of the FGFR1 gene in neonatal cardiomyocytes. ChIP assays using Drosophila Schneider Line 2 (SL2) cells transiently transfected with wild type or mutant FGFR1 promoter constructs verified the direct interaction between Sp1 and the three Sp1 interacting sites of the promoter. Western blot analyses indicated that Sp1 was present in cytoplasmic and nuclear extracts of neonatal myocardium. These results indicate that Sp1 is a necessary positive regulator of FGFR1 gene transcription in neonatal cardiomyocytes.
Collapse
Affiliation(s)
- Mahdie Seyed
- Rosalind Franklin University of Medicine and Science, The Chicago Medical School, Department of Cell Biology and Anatomy, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| | | |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Mitral valve prolapse is a common disorder with a strong hereditary component. It is associated with important mitral regurgitation requiring surgical repair and other clinical complications. Genetic studies can provide clues to mechanism and therapy. RECENT FINDINGS Advances in phenotypic classification have led to linkage to sites on chromosomes 11, 13 and 16 and identification of the first mutation in familial mitral valve prolapse not related to connective tissue syndromes - an X-linked filamin A mutation. New understanding of mechanism based on studies in a mouse Marfan model emphasize the dynamic interplay of differentiating cells and growth factors, with strong potential for therapy. SUMMARY This new knowledge brings us closer to the ultimate goal of preventing the progression of mitral valve disease to the stage of clinical expression.
Collapse
Affiliation(s)
- Robert A Levine
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
50
|
Smith TK, Bader DM. Signals from both sides: Control of cardiac development by the endocardium and epicardium. Semin Cell Dev Biol 2006; 18:84-9. [PMID: 17267246 PMCID: PMC2849752 DOI: 10.1016/j.semcdb.2006.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It is readily apparent that the process of heart development is an intricate one, in which cells derived from many embryonic sources coalesce and coordinate their behaviors and development, resulting in the mature heart. The behaviors and mechanisms of this process are complex, and still incompletely understood. However, it is readily apparent that communication between diverse cell types must be involved in this process. The signaling that emanates from epicardial and endocardial sources is the focus of this review.
Collapse
Affiliation(s)
- Travis K Smith
- The Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, Department of Medicine, Vanderbilt University Medical Center, 2200 Pierce Ave, 348 Preston Research Building, Nashville, TN 37232-6300, USA
| | | |
Collapse
|