1
|
Markus RP, Sousa KS, Ulrich H, Ferreira ZS. Partners in health and disease: pineal gland and purinergic signalling. Purinergic Signal 2024:10.1007/s11302-024-10037-8. [PMID: 39031242 DOI: 10.1007/s11302-024-10037-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
In mammal's pineal glands, ATP interacts with the high-affinity P2Y1 and the low-affinity P2X7 receptors. ATP released from sympathetic nerve terminals potentiates noradrenaline-induced serotonin N-acetyltransferase (Snat) transcription, N-acetylserotonin (NAS), and melatonin (MLT) synthesis. Circulating melatonin impairs the expression of adhesion molecules in endothelial cells, blocking the migration of leukocytes. Acute defence response induced by pathogen- and danger/damage-associated molecular patterns (PAMPs and DAMPs) triggers the NF-κB pathway in pinealocytes and blocks the transcription of Snat. Therefore, the darkness hormone is not released, and neutrophils and monocytes migrate to the lesion sites. ATP released in high amounts from apoptotic and death cells was considered a DAMP, and the blockage of P2X7 receptors was tested as a new class of drugs for treating brain damage. However, this is not a simple equation. High ATP injected in a lateral ventricle blocked MLT, but not NAS, synthesis as it impairs the transcription of acetyl serotonin N-methyltransferase. NAS is released in the plasma and the cerebral spinal fluid. NAS also blocks the rolling and adhesion of leukocytes to endothelial cells. Otherwise, it is metabolised specifically in each brain area to provide the requested concentration of MLT as a neuroprotector. As observed in physiological conditions, high extracellular ATP, different from the other DAMPs, reports the environmental light/dark cycle rhythm because NAS substitutes MLT as the nocturnal chemical indicator, the darkness hormone. Thus, blocking the P2X7R should not be considered a universal therapy for improving acute strokes, as MLT and ATP are partners in health and disease.
Collapse
Affiliation(s)
- Regina P Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
| | - Kassiano S Sousa
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Zulma S Ferreira
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
dos S. Sousa K, Quiles CL, Muxel SM, Trevisan IL, Ferreira ZS, Markus RP. Brain damage-linked ATP promotes P2X7 receptors mediated pineal N-acetylserotonin release. Neuroscience 2022; 499:12-22. [DOI: 10.1016/j.neuroscience.2022.06.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
3
|
Melatonin and the Brain–Heart Crosstalk in Neurocritically Ill Patients—From Molecular Action to Clinical Practice. Int J Mol Sci 2022; 23:ijms23137094. [PMID: 35806098 PMCID: PMC9267006 DOI: 10.3390/ijms23137094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
Brain injury, especially traumatic brain injury (TBI), may induce severe dysfunction of extracerebral organs. Cardiac dysfunction associated with TBI is common and well known as the brain–heart crosstalk, which broadly refers to different cardiac disorders such as cardiac arrhythmias, ischemia, hemodynamic insufficiency, and sudden cardiac death, which corresponds to acute disorders of brain function. TBI-related cardiac dysfunction can both worsen the brain damage and increase the risk of death. TBI-related cardiac disorders have been mainly treated symptomatically. However, the analysis of pathomechanisms of TBI-related cardiac dysfunction has highlighted an important role of melatonin in the prevention and treatment of such disorders. Melatonin is a neurohormone released by the pineal gland. It plays a crucial role in the coordination of the circadian rhythm. Additionally, melatonin possesses strong anti-inflammatory, antioxidative, and antiapoptotic properties and can modulate sympathetic and parasympathetic activities. Melatonin has a protective effect not only on the brain, by attenuating its injury, but on extracranial organs, including the heart. The aim of this study was to analyze the molecular activity of melatonin in terms of TBI-related cardiac disorders. Our article describes the benefits resulting from using melatonin as an adjuvant in protection and treatment of brain injury-induced cardiac dysfunction.
Collapse
|
4
|
Markus RP, Sousa KS, da Silveira Cruz-Machado S, Fernandes PA, Ferreira ZS. Possible Role of Pineal and Extra-Pineal Melatonin in Surveillance, Immunity, and First-Line Defense. Int J Mol Sci 2021; 22:12143. [PMID: 34830026 PMCID: PMC8620487 DOI: 10.3390/ijms222212143] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Melatonin is a highly conserved molecule found in prokaryotes and eukaryotes that acts as the darkness hormone, translating environmental lighting to the whole body, and as a moderator of innate and acquired defense, migration, and cell proliferation processes. This review evaluates the importance of pineal activity in monitoring PAMPs and DAMPs and in mounting an inflammatory response or innate immune response. Activation of the immune-pineal axis, which coordinates the pro-and anti-inflammatory phases of an innate immune response, is described. PAMPs and DAMPs promote the immediate suppression of melatonin production by the pineal gland, which allows leukocyte migration. Monocyte-derived macrophages, important phagocytes of microbes, and cellular debris produce melatonin locally and thereby initiate the anti-inflammatory phase of the acute inflammatory response. The role of locally produced melatonin in organs that directly contact the external environment, such as the skin and the gastrointestinal and respiratory tracts, is also discussed. In this context, as resident macrophages are self-renewing cells, we explore evidence indicating that, besides avoiding overreaction of the immune system, extra-pineal melatonin has a fundamental role in the homeostasis of organs and tissues.
Collapse
Affiliation(s)
- Regina P. Markus
- Laboratory Chronopharmacology, Department Physiology, Institute Bioscience, University of São Paulo, São Paulo 05508-090, Brazil; (K.S.S.); (P.A.F.); (Z.S.F.)
| | - Kassiano S. Sousa
- Laboratory Chronopharmacology, Department Physiology, Institute Bioscience, University of São Paulo, São Paulo 05508-090, Brazil; (K.S.S.); (P.A.F.); (Z.S.F.)
| | - Sanseray da Silveira Cruz-Machado
- Laboratory of Molecular, Endocrine and Reproductive Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, UNIFESP, São Paulo 04044-020, Brazil;
| | - Pedro A. Fernandes
- Laboratory Chronopharmacology, Department Physiology, Institute Bioscience, University of São Paulo, São Paulo 05508-090, Brazil; (K.S.S.); (P.A.F.); (Z.S.F.)
| | - Zulma S. Ferreira
- Laboratory Chronopharmacology, Department Physiology, Institute Bioscience, University of São Paulo, São Paulo 05508-090, Brazil; (K.S.S.); (P.A.F.); (Z.S.F.)
| |
Collapse
|
5
|
Anderson G, Reiter RJ. Melatonin: Roles in influenza, Covid-19, and other viral infections. Rev Med Virol 2020; 30:e2109. [PMID: 32314850 PMCID: PMC7235470 DOI: 10.1002/rmv.2109] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
There is a growing appreciation that the regulation of the melatonergic pathways, both pineal and systemic, may be an important aspect in how viruses drive the cellular changes that underpin their control of cellular function. We review the melatonergic pathway role in viral infections, emphasizing influenza and covid-19 infections. Viral, or preexistent, suppression of pineal melatonin disinhibits neutrophil attraction, thereby contributing to an initial "cytokine storm", as well as the regulation of other immune cells. Melatonin induces the circadian gene, Bmal1, which disinhibits the pyruvate dehydrogenase complex (PDC), countering viral inhibition of Bmal1/PDC. PDC drives mitochondrial conversion of pyruvate to acetyl-coenzyme A (acetyl-CoA), thereby increasing the tricarboxylic acid cycle, oxidative phosphorylation, and ATP production. Pineal melatonin suppression attenuates this, preventing the circadian "resetting" of mitochondrial metabolism. This is especially relevant in immune cells, where shifting metabolism from glycolytic to oxidative phosphorylation, switches cells from reactive to quiescent phenotypes. Acetyl-CoA is a necessary cosubstrate for arylalkylamine N-acetyltransferase, providing an acetyl group to serotonin, and thereby initiating the melatonergic pathway. Consequently, pineal melatonin regulates mitochondrial melatonin and immune cell phenotype. Virus- and cytokine-storm-driven control of the pineal and mitochondrial melatonergic pathway therefore regulates immune responses. Virus-and cytokine storm-driven changes also increase gut permeability and dysbiosis, thereby suppressing levels of the short-chain fatty acid, butyrate, and increasing circulating lipopolysaccharide (LPS). The alterations in butyrate and LPS can promote viral replication and host symptom severity via impacts on the melatonergic pathway. Focussing on immune regulators has treatment implications for covid-19 and other viral infections.
Collapse
Affiliation(s)
| | - Russel J. Reiter
- Department of Cellular and Structural BiologyUniversity of Texas Health Science at San AntonioSan Antonio, Texas
| |
Collapse
|
6
|
Carvalho-Sousa CE, Pereira EP, Kinker GS, Veras M, Ferreira ZS, Barbosa-Nunes FP, Martins JO, Saldiva PHN, Reiter RJ, Fernandes PA, da Silveira Cruz-Machado S, Markus RP. Immune-pineal axis protects rat lungs exposed to polluted air. J Pineal Res 2020; 68:e12636. [PMID: 32043640 DOI: 10.1111/jpi.12636] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Environmental pollution in the form of particulate matter <2.5 μm (PM2.5 ) is a major risk factor for diseases such as lung cancer, chronic respiratory infections, and major cardiovascular diseases. Our goal was to show that PM2.5 eliciting a proinflammatory response activates the immune-pineal axis, reducing the pineal synthesis and increasing the extrapineal synthesis of melatonin. Herein, we report that the exposure of rats to polluted air for 6 hours reduced nocturnal plasma melatonin levels and increased lung melatonin levels. Melatonin synthesis in the lung reduced lipid peroxidation and increased PM2.5 engulfment and cell viability by activating high-affinity melatonin receptors. Diesel exhaust particles (DEPs) promoted the synthesis of melatonin in a cultured cell line (RAW 264.7 cells) and rat alveolar macrophages via the expression of the gene encoding for AANAT through a mechanism dependent on activation of the NFκB pathway. Expression of the genes encoding AANAT, MT1, and MT2 was negatively correlated with cellular necroptosis, as disclosed by analysis of Gene Expression Omnibus (GEO) microarray data from the human alveolar macrophages of nonsmoking subjects. The enrichment score for antioxidant genes obtained from lung gene expression data (GTEx) was significantly correlated with the levels of AANAT and MT1 but not the MT2 melatonin receptor. Collectively, these data provide a systemic and mechanistic rationale for coordination of the pineal and extrapineal synthesis of melatonin by a standard damage-associated stimulus, which activates the immune-pineal axis and provides a new framework for understanding the effects of air pollution on lung diseases.
Collapse
Affiliation(s)
| | - Eliana P Pereira
- Laboratory of Chronopharmacology, Institute of Bioscience - University of São Paulo, São Paulo, Brazil
| | - Gabriela S Kinker
- Laboratory of Chronopharmacology, Institute of Bioscience - University of São Paulo, São Paulo, Brazil
| | - Mariana Veras
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Zulma S Ferreira
- Laboratory of Chronopharmacology, Institute of Bioscience - University of São Paulo, São Paulo, Brazil
| | | | - Joilson O Martins
- Faculty of Pharmacy and Biochemistry, University of São Paulo, São Paulo, Brazil
| | | | - Russel J Reiter
- Faculty of Medicine, University of Texas Health Center at San Antonio, San Antonio, Texas
| | - Pedro A Fernandes
- Laboratory of Chronopharmacology, Institute of Bioscience - University of São Paulo, São Paulo, Brazil
| | | | - Regina P Markus
- Laboratory of Chronopharmacology, Institute of Bioscience - University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Nam KI, Yoon G, Kim YK, Song J. Transcriptome Analysis of Pineal Glands in the Mouse Model of Alzheimer's Disease. Front Mol Neurosci 2020; 12:318. [PMID: 31998073 PMCID: PMC6962250 DOI: 10.3389/fnmol.2019.00318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023] Open
Abstract
The pineal gland maintains the circadian rhythm in the body by secreting the hormone melatonin. Alzheimer's disease (AD) is the most common neurodegenerative disease. Pineal gland impairment in AD is widely observed, but no study to date has analyzed the transcriptome in the pineal glands of AD. To establish resources for the study on pineal gland dysfunction in AD, we performed a transcriptome analysis of the pineal glands of AD model mice and compared them to those of wild type mice. We identified the global change of diverse protein-coding RNAs, which are implicated in the alteration in cellular transport, protein transport, protein folding, collagen expression, histone dosage, and the electron transfer system. We also discovered various dysregulated long noncoding RNAs and circular RNAs in the pineal glands of mice with AD. This study showed that the expression of diverse RNAs with important functional implications in AD was changed in the pineal gland of the AD mouse model. The analyzed data reported in this study will be an important resource for future studies to elucidate the altered physiology of the pineal gland in AD.
Collapse
Affiliation(s)
- Kwang Il Nam
- Department of Anatomy, Chonnam National University Medical School, Jeollanam-do, South Korea
| | - Gwangho Yoon
- Department of Anatomy, Chonnam National University Medical School, Jeollanam-do, South Korea.,Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, South Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, South Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, South Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Jeollanam-do, South Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, South Korea
| |
Collapse
|
8
|
Pinato L, Galina Spilla CS, Markus RP, da Silveira Cruz-Machado S. Dysregulation of Circadian Rhythms in Autism Spectrum Disorders. Curr Pharm Des 2020; 25:4379-4393. [DOI: 10.2174/1381612825666191102170450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Background:
The alterations in neurological and neuroendocrine functions observed in the autism
spectrum disorder (ASD) involves environmentally dependent dysregulation of neurodevelopment, in interaction
with multiple coding gene defects. Disturbed sleep-wake patterns, as well as abnormal melatonin and glucocorticoid
secretion, show the relevance of an underlying impairment of the circadian timing system to the behavioral
phenotype of ASD. Thus, understanding the mechanisms involved in the circadian dysregulation in ASD could
help to identify early biomarkers to improve the diagnosis and therapeutics as well as providing a significant
impact on the lifelong prognosis.
Objective:
In this review, we discuss the organization of the circadian timing system and explore the connection
between neuroanatomic, molecular, and neuroendocrine responses of ASD and its clinical manifestations. Here
we propose interconnections between circadian dysregulation, inflammatory baseline and behavioral changes in
ASD. Taking into account, the high relevancy of melatonin in orchestrating both circadian timing and the maintenance
of physiological immune quiescence, we raise the hypothesis that melatonin or analogs should be considered
as a pharmacological approach to suppress inflammation and circadian misalignment in ASD patients.
Strategy:
This review provides a comprehensive update on the state-of-art of studies related to inflammatory
states and ASD with a special focus on the relationship with melatonin and clock genes. The hypothesis raised
above was analyzed according to the published data.
Conclusion:
Current evidence supports the existence of associations between ASD to circadian dysregulation,
behavior problems, increased inflammatory levels of cytokines, sleep disorders, as well as reduced circadian
neuroendocrine responses. Indeed, major effects may be related to a low melatonin rhythm. We propose that
maintaining the proper rhythm of the circadian timing system may be helpful to improve the health and to cope
with several behavioral changes observed in ASD subjects.
Collapse
Affiliation(s)
- Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), 17525-900, Marilia, SP, Brazil
| | - Caio Sergio Galina Spilla
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), 17525-900, Marilia, SP, Brazil
| | - Regina Pekelmann Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), 05508-090, São Paulo, SP, Brazil
| | - Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Song J. Pineal gland dysfunction in Alzheimer's disease: relationship with the immune-pineal axis, sleep disturbance, and neurogenesis. Mol Neurodegener 2019; 14:28. [PMID: 31296240 PMCID: PMC6624939 DOI: 10.1186/s13024-019-0330-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a globally common neurodegenerative disease, which is accompanied by alterations to various lifestyle patterns, such as sleep disturbance. The pineal gland is the primary endocrine organ that secretes hormones, such as melatonin, and controls the circadian rhythms. The decrease in pineal gland volume and pineal calcification leads to the reduction of melatonin production. Melatonin has been reported to have multiple roles in the central nervous system (CNS), including improving neurogenesis and synaptic plasticity, suppressing neuroinflammation, enhancing memory function, and protecting against oxidative stress. Recently, reduced pineal gland volume and pineal calcification, accompanied by cognitive decline and sleep disturbances have been observed in AD patients. Here, I review current significant evidence of the contribution of pineal dysfunction in AD to the progress of AD neuropathology. I suggest new insights to understanding the relationship between AD pathogenesis and pineal gland function.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
10
|
Markus RP, Fernandes PA, Kinker GS, da Silveira Cruz-Machado S, Marçola M. Immune-pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br J Pharmacol 2017; 175:3239-3250. [PMID: 29105727 DOI: 10.1111/bph.14083] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/21/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Melatonin is well known for its circadian production by the pineal gland, and there is a growing body of data showing that it is also produced by many other cells and organs, including immune cells. The chronobiotic role of pineal melatonin, as well as its protective effects in vitro and in vivo, have been extensively explored. However, the interaction between the chronobiotic and defence functions of endogenous melatonin has been little investigated. This review details the current knowledge regarding the coordinated shift in melatonin synthesis from the pineal gland (circadian and monitoring roles) to the regulation of acute immune responses via immune cell production and autocrine effects, producing systemic interactions termed the immune-pineal axis. An acute inflammatory response drives the transcription factor, NFκB, to switch melatonin synthesis from pinealocytes to macrophages/microglia and, upon acute inflammatory resolution, back to pinealocytes. The potential pathophysiological relevance of immune-pineal axis dysregulation is highlighted, with both research and clinical implications, across several medical conditions, including host/parasite interaction, neurodegenerative diseases and cancer. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Regina P Markus
- Laboratory of Chronopharmacology and Laboratory of Neuroimmunomodulation - Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Pedro A Fernandes
- Laboratory of Chronopharmacology and Laboratory of Neuroimmunomodulation - Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Gabriela S Kinker
- Laboratory of Chronopharmacology and Laboratory of Neuroimmunomodulation - Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology and Laboratory of Neuroimmunomodulation - Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Marina Marçola
- Laboratory of Chronopharmacology and Laboratory of Neuroimmunomodulation - Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Fernandes PA, Tamura EK, D'Argenio-Garcia L, Muxel SM, da Silveira Cruz-Machado S, Marçola M, Carvalho-Sousa CE, Cecon E, Ferreira ZS, Markus RP. Dual Effect of Catecholamines and Corticosterone Crosstalk on Pineal Gland Melatonin Synthesis. Neuroendocrinology 2017; 104:126-134. [PMID: 26954684 DOI: 10.1159/000445189] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM The nocturnal production of melatonin by the pineal gland is triggered by sympathetic activation of adrenoceptors and may be modulated by immunological signals. The effect of glucocorticoids on nocturnal melatonin synthesis is controversial; both stimulatory and inhibitory effects have been reported. During pathophysiological processes, an increased sympathetic tonus could result in different patterns of adrenoceptor activation in the pineal gland. Therefore, in this investigation, we evaluated whether the pattern of adrenergic stimulation of the pineal gland drives the direction of the glucocorticoid effect on melatonin production. METHODS The corticosterone effect on the pineal hormonal production induced by β-adrenoceptor or β+α1-adrenoceptor activation was evaluated in cultured glands. We also investigated whether the in vivo lipopolysaccharide (LPS)-induced inhibition of melatonin is dependent on the interaction of glucocorticoids and the α1-adrenoceptor in adrenalectomized animals and on the in vivo blockade of glucocorticoid receptors (GRs) or the α1-adrenoceptor. RESULTS Corticosterone potentiated β-adrenoceptor-induced pineal melatonin synthesis, whilst corticosterone-dependent inhibition was observed when melatonin production was induced by β+α1-adrenoceptors agonists. The inhibitory effect of corticosterone is mediated by GR, as it was abolished in the presence of a GR antagonist. Moreover, LPS-induced reduction in melatonin nocturnal plasma content was reversed by adrenalectomy and by antagonizing GR or α1-adrenoceptors. CONCLUSIONS The dual effect of corticosterone on pineal melatonin synthesis is determined by the activation pattern of adrenoceptors (β or β+α1) in the gland during GR activation, suggesting that increased activation of the sympathetic system and the hypothalamic-pituitary-adrenal axis are necessary for the control of melatonin production during defense responses.
Collapse
Affiliation(s)
- Pedro A Fernandes
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Souza-Teodoro LH, Dargenio-Garcia L, Petrilli-Lapa CL, Souza EDS, Fernandes PACM, Markus RP, Ferreira ZS. Adenosine triphosphate inhibits melatonin synthesis in the rat pineal gland. J Pineal Res 2016; 60:242-9. [PMID: 26732366 DOI: 10.1111/jpi.12309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
Adenosine triphosphate (ATP) is released onto the pinealocyte, along with noradrenaline, from sympathetic neurons and triggers P2Y1 receptors that enhance β-adrenergic-induced N-acetylserotonin (NAS) synthesis. Nevertheless, the biotransformation of NAS into melatonin, which occurs due to the subsequent methylation by acetylserotonin O-methyltransferase (ASMT; EC 2.1.1.4), has not yet been evaluated in the presence of purinergic stimulation. We therefore evaluated the effects of purinergic signaling on melatonin synthesis induced by β-adrenergic stimulation. ATP increased NAS levels, but, surprisingly, inhibited melatonin synthesis in an inverse, concentration-dependent manner. Our results demonstrate that enhanced NAS levels, which depend on phospholipase C (PLC) activity (but not the induction of gene transcription), are a post-translational effect. By contrast, melatonin reduction is related to an ASMT inhibition of expression at both the gene transcription and protein levels. These results were independent of nuclear factor-kappa B (NF-kB) translocation. Neither the P2Y1 receptor activation nor the PLC-mediated pathway was involved in the decrease in melatonin, indicating that ATP regulates pineal metabolism through different mechanisms. Taken together, our data demonstrate that purinergic signaling differentially modulates NAS and melatonin synthesis and point to a regulatory role for ATP as a cotransmitter in the control of ASMT, the rate-limiting enzyme in melatonin synthesis. The endogenous production of melatonin regulates defense responses; therefore, understanding the mechanisms involving ASMT regulation might provide novel insights into the development and progression of neurological disorders since melatonin presents anti-inflammatory, neuroprotective, and neurogenic effects.
Collapse
Affiliation(s)
| | - Letícia Dargenio-Garcia
- Laboratory of Chronopharmacology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Ewerton da Silva Souza
- Laboratory of Chronopharmacology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Pedro A C M Fernandes
- Laboratory of Chronopharmacology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Regina P Markus
- Laboratory of Chronopharmacology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Zulma S Ferreira
- Laboratory of Chronopharmacology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal 2014; 10:189-231. [PMID: 24265070 PMCID: PMC3944044 DOI: 10.1007/s11302-013-9396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
There is widespread involvement of purinergic signalling in endocrine biology. Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone release. Adenosine 5'-triphosphate (ATP) regulates insulin release in the pancreas and is involved in the secretion of thyroid hormones. ATP plays a major role in the synthesis, storage and release of catecholamines from the adrenal gland. In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion, while in the testes, both Sertoli and Leydig cells express purinoceptors that mediate secretion of oestradiol and testosterone, respectively. ATP released as a cotransmitter with noradrenaline is involved in activities of the pineal gland and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and adenosine stimulate or modulate the release of luteinising hormone-releasing hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X and P2Y receptors have been identified on human placental syncytiotrophoblast cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes have been recognised recently to have endocrine function involving purinoceptors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
14
|
Markus RP, Silva CLM, Franco DG, Barbosa EM, Ferreira ZS. Is modulation of nicotinic acetylcholine receptors by melatonin relevant for therapy with cholinergic drugs? Pharmacol Ther 2010; 126:251-62. [PMID: 20398699 DOI: 10.1016/j.pharmthera.2010.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 02/24/2010] [Indexed: 12/31/2022]
Abstract
Melatonin, the darkness hormone, synchronizes several physiological functions to light/dark cycle. Besides the awake/sleep cycle that is intuitively linked to day/night, daily variations in memory acquisition and innate or acquired immune responses are some of the major activities linked to melatonin rhythm. The daily variation of these complex processes is due to changes in specific mechanisms. In the last years we focused on the influence of melatonin on the expression and function of nicotinic acetylcholine receptors (nAChRs). Melatonin, either "in vivo" or "in vitro", increases, in a selective manner, the efficiency of alpha-bungarotoxin (alpha-BTX)-sensitive nAChRs. Melatonin's effect on receptors located in rat sympathetic nerve terminals, cerebellum, skeletal muscle and chick retina, was tested. We observed that melatonin is essential for the development of alpha-BTX-sensitive nAChRs, and important for receptor maintenance in aging models. Taking into account that both melatonin and alpha-7 nAChRs (one of the subtypes sensitive to alpha-BTX) are involved in the development of Alzheimer's disease, here we discuss the possibility of a therapeutic strategy focused on both melatonin replacement and its potential association with cholinergic drugs.
Collapse
Affiliation(s)
- Regina P Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Bioscience, Universidade de São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
15
|
Cecon E, Fernandes PA, Pinato L, Ferreira ZS, Markus RP. DAILY VARIATION OF CONSTITUTIVELY ACTIVATED NUCLEAR FACTOR KAPPA B (NFKB) IN RAT PINEAL GLAND. Chronobiol Int 2010; 27:52-67. [DOI: 10.3109/07420521003661615] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Couto-Moraes R, Palermo-Neto J, Markus RP. The immune-pineal axis: stress as a modulator of pineal gland function. Ann N Y Acad Sci 2009; 1153:193-202. [PMID: 19236342 DOI: 10.1111/j.1749-6632.2008.03978.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The temporal organization of mammals presents a daily adjustment to the environmental light/dark cycle. The environmental light detected by the retina adjusts the central clock in the suprachiasmatic nuclei, which innervate the pineal gland through a polysynaptic pathway. During the night, this gland produces and releases the nocturnal hormone melatonin, which circulates throughout the whole body and adjusts several bodily functions according to the existence and duration of darkness. We have previously shown that during the time frame of an inflammatory response, pro-inflammatory cytokines, such as tumor necrosis factor-alpha, inhibit while anti-inflammatory mediators, such as glucocorticoids, enhance the synthesis of melatonin, interfering in the daily adjustment of the light/dark cycle. Therefore, injury disconnects the organism from environmental cycling, while recovery restores the light/dark information to the whole organism. Here, we extend these observations by evaluating the effect of a mild restraint stress, which did not induce macroscopic gastric lesions. After 2 h of restraint, there was an increase in circulating corticosterone, indicating activation of the hypothalamus-pituitary-adrenal (HPA) axis. In parallel, an increase in melatonin production was observed. Taking into account the data obtained with models of inflammation and stress, we reinforce the hypothesis that the activity of the pineal gland is modulated by the state of the immune system and the HPA axis, implicating the darkness hormone melatonin as a modulator of defense responses.
Collapse
Affiliation(s)
- Renato Couto-Moraes
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Bioscience, Universidade de São Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
17
|
Fernandes PACM, Bothorel B, Clesse D, Monteiro AWA, Calgari C, Raison S, Simonneaux V, Markus RP. Local corticosterone infusion enhances nocturnal pineal melatonin production in vivo. J Neuroendocrinol 2009; 21:90-7. [PMID: 19076264 DOI: 10.1111/j.1365-2826.2008.01817.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melatonin, an important marker of the endogenous rhythmicity in mammals, also plays a role in the body defence against pathogens and injuries. In vitro experiments have shown that either pro- or anti-inflammatory agents, acting directly in the organ, are able to change noradrenaline-induced pineal indoleamine production. Whereas corticosterone potentiates melatonin production, incubation of the gland with tumour necrosis factor-alpha decreases pineal hormonal production. In the present study, we show that nocturnal melatonin production measured by intra-pineal microdialysis is enhanced in pineals perfused with corticosterone at concentrations similar to those measured in inflamed animals. In vitro experiments suggest that this enhancement may be due to an increase in the activity of the two enzymes that convert serotonin to N-acetylserotonin (NAS) and NAS to melatonin. The present results support the hypothesis that the pineal gland is a sensor of inflammation mediators and that it plays a central role in the control of the inflammatory response.
Collapse
Affiliation(s)
- P A C M Fernandes
- Laboratório de Cronofarmacologia, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
P2Y1 receptor switches to neurons from glia in juvenile versus neonatal rat cerebellar cortex. BMC DEVELOPMENTAL BIOLOGY 2007; 7:77. [PMID: 17598884 PMCID: PMC1931589 DOI: 10.1186/1471-213x-7-77] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 06/28/2007] [Indexed: 12/03/2022]
Abstract
Background In the CNS, several P2 receptors for extracellular nucleotides are identified on neurons and glial cells to participate to neuron-neuron, glia-glia and glia-neuron communication. Results In this work, we describe the cellular and subcellular presence of metabotropic P2Y1 receptor in rat cerebellum at two distinct developmental ages, by means of immunofluorescence-confocal and electron microscopy as well as western blotting and direct membrane separation techniques. At postnatal day 21, we find that P2Y1 receptor in addition to Purkinje neurons, is abundant on neuronal specializations identified as noradrenergic by anatomical, morphological and biochemical features. P2Y1 receptor immunoreactivity colocalizes with dopamine β-hydroxylase, tyrosine hydroxylase, neurofilament light chain, synaptophysin and flotillin, but not with glial fibrillary acidic protein for astrocytes. P2Y1 receptor is found enriched in membrane microdomains such as lipid rafts, in cerebellar synaptic vesicles, and is moreover visualized on synaptic varicosities by electron microscopy analysis. When examined at postnatal day 7, P2Y1 receptor immunoreactivity is instead predominantly expressed only on Bergmann and astroglial cells, as shown by colocalization with glial fibrillary acidic protein rather then neuronal markers. At this age, we moreover identify that P2Y1 receptor-positive Bergmann fibers wrap up doublecortin-positive granule cells stretching along them, while migrating through the cerebellar layers. Conclusion Membrane components including purinergic receptors are already known to mediate cellular contact and aggregation in platelets. Our results suggesting a potential role for P2Y1 protein in cell junction/communication and development, are totally innovative for the CNS.
Collapse
|
19
|
Markus RP, Ferreira ZS, Fernandes PACM, Cecon E. The immune-pineal axis: a shuttle between endocrine and paracrine melatonin sources. Neuroimmunomodulation 2007; 14:126-33. [PMID: 18073503 DOI: 10.1159/000110635] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The time course of the innate immunological response involves a pro-inflammatory phase followed by an anti-inflammatory phase. Pro-inflammatory responses serve as a defense against several stressor conditions, and sequential processes that shut down these responses are necessary to avoid exacerbation or the development of chronic diseases. In the present review, we put together recent data that show that the pineal gland is a player in bidirectional control of the inflammatory response. Healthy organisms stay in standby mode, ready to react. The nocturnal melatonin surge impairs the rolling and adherence of leukocytes to endothelial layers, limiting cell migration, and stimulates nocturnal production of IL-2 by T helper lymphocytes, exerting an immunostimulatory effect. Otherwise, the release of TNF-alpha from activated macrophages suppresses the nocturnal melatonin surge, allowing a full cell migration and inhibiting IL-2 production. In sequence, activated mononuclear and polymorphonuclear cells produce melatonin in a paracrine manner at the site of injury, which scavenges free radicals and collaborates to resolve the inflammatory response. The sequential diminution of TNF-alpha production is followed by the recovery of the nocturnal melatonin surge and IL-2 production. In summary, the immune-pineal axis, implicated in the sequential involvement of the melatonin produced by the pineal gland and immune-competent cells, is an integral participant of the innate immune response.
Collapse
Affiliation(s)
- Regina P Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brasil.
| | | | | | | |
Collapse
|
20
|
Fernandes PACM, Cecon E, Markus RP, Ferreira ZS. Effect of TNF-alpha on the melatonin synthetic pathway in the rat pineal gland: basis for a 'feedback' of the immune response on circadian timing. J Pineal Res 2006; 41:344-50. [PMID: 17014691 DOI: 10.1111/j.1600-079x.2006.00373.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A retino-hypothalamic-sympathetic pathway drives the nocturnal surge of pineal melatonin production that determines the synchronization of pineal function with the environmental light/dark cycle. In many studies, melatonin has been implicated in the modulation of the inflammatory response. However, scant information on the feedback action of molecules present in the blood on the pineal gland during the time course of an inflammatory response is available. Here we analyzed the effect of tumor necrosis factor-alpha (TNF-alpha) and corticosterone on the transcription of the Aa-nat, hiomt and 14-3-3 protein genes in denervated pineal glands of rats stimulated for 5 hr with norepinephrine, using real-time reverse transcription-polymerase chain reaction. The transcription of Aa-nat, a gene encoding the key enzyme in melatonin biosynthesis, together with the synthesis of the melatonin precursor N-acetylserotonin, was inhibited by TNF-alpha. This inhibition was transient, and a preincubation of TNF-alpha for more than 24 hr had no detectable effect. In fact, a protein(s) transcribed, later on, as shown by cycloheximide, was responsible for the reversal of the inhibition of Aa-nat transcription. In addition, corticosterone induced a potentiation of norepinephrine-induced Aa-nat transcription even after 48 hr of incubation. These data support the hypothesis that the nocturnal surge in melatonin is impaired at the beginning of an inflammatory response and restored either during the shutdown of an acute response or in a chronic inflammatory pathology. Here, we introduce a new molecular pathway involved in the feedback of an inflammatory response on pineal activity, and provide a molecular basis for understanding the expression of circadian timing in injured organisms.
Collapse
Affiliation(s)
- Pedro A C M Fernandes
- Laboratory of Chronopharmacology, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
21
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 581] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
22
|
Ferreira ZS, Garcia CRS, Spray DC, Markus RP. P2Y(1) receptor activation enhances the rate of rat pinealocyte-induced extracellular acidification via a calcium-dependent mechanism. Pharmacology 2003; 69:33-7. [PMID: 12886028 DOI: 10.1159/000071264] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Accepted: 02/26/2003] [Indexed: 11/19/2022]
Abstract
Pineal gland G-protein coupled P2Y(1) receptors potentiate noradrenaline-induced N'-acetylserotonin production, a long term response which occurs after 5 h incubation. In the current study we show that a short-term effect of stimulation of P2Y(1) receptors is the increase in extracellular acidification rate (ECAR), which is mediated by an increase in intracellular calcium concentration ([Ca(2+)](i)). The pD(2) values for ATP (3.06 +/- 0.12)-induced ECAR increase was significantly smaller (p < 0.01) than that for ADP (3.64 +/- 0.18), 2MeSATP (3.56 +/- 0.02) and 2MeSADP (3.65 +/- 0.13). The selective P2Y(1) receptor antagonists A3'P-5'P and A3'P-5'PS inhibited the increase in ECAR-induced by ADP. Clamping [Ca(2+)](i) with BAPTA (30 and 50 micromol/l) led to inhibition of ADP-induced increase in ECAR. Agonist and antagonist data indicate P2Y(1) activation leads to a [Ca(2+)](i)-dependent acidification of the extracellular medium.
Collapse
Affiliation(s)
- Zulma Silva Ferreira
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
23
|
Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 2003; 55:325-95. [PMID: 12773631 DOI: 10.1124/pr.55.2.2] [Citation(s) in RCA: 449] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melatonin, the major hormone produced by the pineal gland, displays characteristic daily and seasonal patterns of secretion. These robust and predictable rhythms in circulating melatonin are strong synchronizers for the expression of numerous physiological processes in photoperiodic species. In mammals, the nighttime production of melatonin is mainly driven by the circadian clock, situated in the suprachiasmatic nucleus of the hypothalamus, which controls the release of norepinephrine from the dense pineal sympathetic afferents. The pivotal role of norepinephrine in the nocturnal stimulation of melatonin synthesis has been extensively dissected at the cellular and molecular levels. Besides the noradrenergic input, the presence of numerous other transmitters originating from various sources has been reported in the pineal gland. Many of these are neuropeptides and appear to contribute to the regulation of melatonin synthesis by modulating the effects of norepinephrine on pineal biochemistry. The aim of this review is firstly to update our knowledge of the cellular and molecular events underlying the noradrenergic control of melatonin synthesis; and secondly to gather together early and recent data on the effects of the nonadrenergic transmitters on modulation of melatonin synthesis. This information reveals the variety of inputs that can be integrated by the pineal gland; what elements are crucial to deliver the very precise timing information to the organism. This also clarifies the role of these various inputs in the seasonal variation of melatonin synthesis and their subsequent physiological function.
Collapse
Affiliation(s)
- Valerie Simonneaux
- Laboratoire de Neurobiologie Rythmes, UMR 7518 CNRS/ULP, 12, rue de l'Université, 67000 Strasbourg, France.
| | | |
Collapse
|
24
|
Markus RP, Santos JM, Zago W, Reno LAC. Melatonin nocturnal surge modulates nicotinic receptors and nicotine-induced [3H]glutamate release in rat cerebellum slices. J Pharmacol Exp Ther 2003; 305:525-30. [PMID: 12606693 DOI: 10.1124/jpet.102.045625] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In mammals, the most important synchronizer for endogenous rhythms is the environmental light/dark cycle. In this report we have explored the ability of light/dark cycle and melatonin, the pineal hormone released during the night, to modulate cerebellar cholinergic input by interfering with the nicotinic acetylcholine receptors' (nAChRs) availability. Through the analysis of the response to selective cholinergic agonists and antagonists, we observed that nAChRs containing the alpha7 gene product mediate the release of [(3)H]glutamate from rat cerebellum slices. The [(3)H]glutamate overflow induced by alpha7 nAChR activation was higher during the dark phase, although the number of alpha-[(125)I]bungarotoxin binding sites, but not the [(3)H]nicotine binding sites (B(max)), was reduced. On the other hand, glutamate-evoked [(3)H]glutamate release was not modified by the hour of the day. Finally, we show that the nocturnal increase in nicotine-evoked [(3)H]glutamate release is imposed by a nocturnal surge of melatonin, as it is abolished when pineal melatonin production is inhibited by either maintaining the animals in constant light for 48 h or by injecting propranolol just before lights off for 2 days. The difference between light and dark [(3)H]glutamate-evoked release is restored in propranolol-treated animals that received melatonin during the dark period. In conclusion, we show that nicotine-evoked [(3)H]glutamate release in rat cerebellum presents a diurnal variation, driven by nocturnal pineal melatonin surge.
Collapse
Affiliation(s)
- Regina P Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
25
|
Garcia CR, Markus RP, Madeira L. Tertian and quartan fevers: temporal regulation in malarial infection. J Biol Rhythms 2001; 16:436-43. [PMID: 11669417 DOI: 10.1177/074873001129002114] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The periodicity in the development of Plasmodium parasites in infected animals, including man, has been known for almost 100 years. In turn, this periodicity is a consequence of the synchronous maturation of the parasite during its intracellular development. The cyclic fever that characterizes malarial infections is the outward manifestation of the parasite development. Until recently, little was known about the mechanisms by which parasite synchronicity is established and maintained. This review surveys the recent literature bearing on two main questions. (1) What are the mechanisms involved in the process of parasite synchronicity? (2) Do the circadian rhythms of the host interfere with the parasite cycle?
Collapse
Affiliation(s)
- C R Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Brazil.
| | | | | |
Collapse
|
26
|
Suh BC, Kim TD, Lee JU, Seong JK, Kim KT. Pharmacological characterization of adenosine receptors in PGT-beta mouse pineal gland tumour cells. Br J Pharmacol 2001; 134:132-42. [PMID: 11522605 PMCID: PMC1572918 DOI: 10.1038/sj.bjp.0704218] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The adenosine receptor in mouse pinealocytes was identified and characterized using pharmacological and physiological approaches. 2. Expression of the two adenosine receptor subtypes A2B and A3 was detected in mouse pineal glands and PGT-beta cells by polymerase chain reaction and nucleotide sequencing. 3. Adenosine and 5'-N-ethylcarboxamidoadenosine (NECA) evoked cyclic AMP generation but the A2)-selective agonist 2-(4-(2-carboxyethyl)phenylethylamino)adenosine-5'-N-ethylcarboxamideadenosine (CGS 21680) and the A1-specific agonists R-N(6)-(2-phenylisopropyl)adenosine (R-PIA) and N(6)-cyclopentyladenosine (CPA) had little effect on intracellular cyclic AMP levels. The A2B receptor selective antagonists alloxazine and enprofylline completely blocked NECA-mediated cyclic AMP accumulation. 4. Treatment of cells with the A3-selective agonist N(6)-(3-iodobenzyl)-5'-(N-methylcarbamoyl)adenosine (IB-MECA) inhibited the elevation of the cyclic AMP level induced by NECA or isoproterenol in a concentration-dependent manner with maximal inhibition of 40 - 50%. These responses were blocked by the specific A3 adenosine receptor antagonist MRS 1191. Pretreatment of the cells with pertussis toxin attenuated the IB-MECA-induced responses, suggesting that this effect occurred via the pertussis toxin-sensitive inhibitory G proteins. 5. IB-MECA also caused a concentration-dependent elevation in [Ca(2+)]i and IP3 content. Both the responses induced by IB-MECA were attenuated by treatment with U73122 or phorbol 12-myristate 13-acetate. 6. These data suggest the presence of both A2B and A3 adenosine receptors in mouse pineal tumour cells and that the A2B receptor is positively coupled to adenylyl cyclase whereas the A3 receptor is negatively coupled to adenylyl cyclase and also coupled to phospholipase C.
Collapse
MESH Headings
- 4-(3-Butoxy-4-methoxybenzyl)-2-imidazolidinone/pharmacology
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenosine Triphosphate/pharmacology
- Adenosine-5'-(N-ethylcarboxamide)/pharmacology
- Adenylate Cyclase Toxin
- Adenylyl Cyclases/metabolism
- Animals
- Calcium/metabolism
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Dihydropyridines/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Estrenes/pharmacology
- GTP-Binding Proteins/drug effects
- GTP-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Inositol 1,4,5-Trisphosphate/metabolism
- Isoproterenol/pharmacology
- Mice
- Mice, Inbred CBA
- Pertussis Toxin
- Phospholipases/metabolism
- Pinealoma/metabolism
- Pinealoma/pathology
- Pyrrolidinones/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Adenosine A2B
- Receptor, Adenosine A3
- Receptors, Purinergic P1/drug effects
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/physiology
- Tetradecanoylphorbol Acetate/pharmacology
- Time Factors
- Tumor Cells, Cultured
- Virulence Factors, Bordetella/pharmacology
Collapse
Affiliation(s)
- Byung-Chang Suh
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784, Korea
| | - Tae-Don Kim
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784, Korea
| | - Jung-Uek Lee
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784, Korea
| | - Je-Kyung Seong
- Department of Laboratory Animal Medicine, Medical Research Center, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemun-gu, Seoul 120 – 752, Korea
| | - Kyong-Tai Kim
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyoja-Dong, Pohang 790-784, Korea
- Author for correspondence:
| |
Collapse
|
27
|
Suh BC, Kim JS, Namgung U, Han S, Kim KT. Selective inhibition of beta(2)-adrenergic receptor-mediated cAMP generation by activation of the P2Y(2) receptor in mouse pineal gland tumor cells. J Neurochem 2001; 77:1475-85. [PMID: 11413231 DOI: 10.1046/j.1471-4159.2001.00367.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rhythmic noradrenergic signaling from the hypothalamic clock in the suprachiasmatic nucleus to the pineal gland causes an increase in intracellular cAMP which regulates the circadian fluctuation of melatonin synthesis. The activation of phospholipase C (PLC)-coupled P2Y(2) receptors upon treatment with ATP and UTP exclusively inhibited the isoproterenol-stimulated cAMP production in mouse pineal gland tumor cells. However, the activation of other PLC-coupled receptors including P2Y(1) and bombesin receptors had little or no effect on the isoproterenol-stimulated cAMP production. Also, ATP did not inhibit cAMP production caused by forskolin, prostaglandin E(2), or the adenosine analog NECA. These results suggest a selective coupling between signalings of P2Y(2) and beta(2)-adrenergic receptors. The binding of [(3)H]CGP12177 to beta(2)-adrenergic receptors was not effected by the presence of ATP or UTP. Ionomycin decreased the isoproterenol-stimulated cAMP production, whereas phorbol 12-myristate 13-acetate slightly potentiated the isoproterenol response. Chelation of intracellular Ca(2+), however, had little effect on the ATP-induced inhibition of cAMP production, while it completely reversed the ionomycin-induced inhibition. Treatment of cells with pertussis toxin almost completely blocked the inhibitory effect of nucleotides. Pertussis toxin also inhibited the nucleotide-induced increase in intracellular Ca(2+) and inositol 1,4,5-trisphosphate production by 30-40%, suggesting that the ATP-mediated inhibition of the cAMP generation and the partial activation of PLC are mediated by pertussis toxin-sensitive G(i)-protein. We conclude that one of the functions of P2Y(2) receptors on the pineal gland is the selective inhibition of beta-adrenergic receptor-mediated signaling pathways via the inhibitory G-proteins.
Collapse
Affiliation(s)
- B C Suh
- Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Korea
| | | | | | | | | |
Collapse
|
28
|
Abstract
The rat pineal gland possesses P2 receptors which potentiate the effect of noradrenaline-induced N'-acetyl-5-hydroxytryptamine (N'-acetyl-5-HT) production. In the current study, this receptor was characterised according to agonist selectivity and signal transduction mechanisms. 2-MethylthioATP (2MeSATP), 2-chloroATP (2-ClATP), adenosine 5'-O-2-thiodiphosphate, (ADPbetaS), ATP and ADP, but not UTP, potentiated noradrenaline-induced N'-acetyl-5-HT production in a concentration-dependent manner. 2MeSATP neither induced the production of adenosine 3':5'-cyclic monophosphate (cyclic AMP), nor inhibited its formation when the glands were stimulated by forskolin. The phospholipase C inhibitor 1-[6-[[(17beta)-3-Methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122), but not the inactive analogue, 1-[6-[[(17beta)-3-Methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-2,5-pyrrolidinedione (U73343), blocked the 2MeSATP effect. The P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-dissulphonic acid (PPADS), which inhibits phospholipase C-coupled P2Y(1) receptors, blocked the 2MeSATP effect. In conclusion, our data strongly suggest that the P2-like receptor that is present in rat pinealocytes and which is responsible for the potentiation of noradrenaline-induced N'-acetyl-5-HT production is a P2Y(1)-like receptor, coupled to a G protein which stimulates phospholipase C.
Collapse
Affiliation(s)
- Z S Ferreira
- Department of Physiology, Instituto de Biociências, Universidade de São Paulo, Brazil
| | | |
Collapse
|