1
|
Galdino GT, Mailhot O, Najmanovich R. Understanding and Predicting Ligand Efficacy in the μ-Opioid Receptor through Quantitative Dynamical Analysis of Complex Structures. J Chem Inf Model 2024. [PMID: 39496284 DOI: 10.1021/acs.jcim.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
The μ-opioid receptor (MOR) is a G-protein coupled receptor involved in nociception and the primary target of opioid drugs. Understanding the relationships among the ligand structure, receptor dynamics, and efficacy in activating MOR is crucial for drug discovery and development. Here, we use coarse-grained normal-mode analysis to predict ligand-induced changes in receptor dynamics with the Quantitative Dynamics Activity Relationship (QDAR) DynaSig-ML methodology, training a LASSO regression model on the entropic signatures (ESs) computed from ligand-receptor complexes. We train and validate the methodology using a data set of 179 MOR ligands with experimentally measured efficacies split into strictly chemically different cross-validation sets. By analyzing the coefficients of the ES LASSO model, we identified key residues involved in MOR activation, several of which have mutational data supporting their role in MOR activation. Additionally, we explored a contact-only LASSO model based on ligand-protein interactions. While the model showed predictive power, it failed at predicting efficacy for ligands with low structural similarity to the training set, emphasizing the importance of receptor dynamics for predicting ligand-induced receptor activation. Moreover, the low computational cost of our approach, at 3 CPU s per ligand-receptor complex, opens the door to its application in large-scale virtual screening contexts. Our work contributes to a better understanding of dynamics-function relationships in the μ-opioid receptor and provides a framework for predicting ligand efficacy based on ligand-induced changes in receptor dynamics.
Collapse
Affiliation(s)
- Gabriel T Galdino
- Department of Pharmacology and Physiology Faculty of Medicine, University of Montreal, 2960 Chemin de la Tour, H3T 1J4 Montréal, Quebec, Canada
| | - Olivier Mailhot
- Department of Pharmacology and Physiology Faculty of Medicine, University of Montreal, 2960 Chemin de la Tour, H3T 1J4 Montréal, Quebec, Canada
| | - Rafael Najmanovich
- Department of Pharmacology and Physiology Faculty of Medicine, University of Montreal, Room 3147, Pavillon Paul-G.-Desmarais 2960 Chemin de la Tour, H3T 1J4 Montréal, Quebec, Canada
| |
Collapse
|
2
|
Che T, Roth BL. Molecular basis of opioid receptor signaling. Cell 2023; 186:5203-5219. [PMID: 37995655 PMCID: PMC10710086 DOI: 10.1016/j.cell.2023.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Opioids are used for pain management despite the side effects that contribute to the opioid crisis. The pursuit of non-addictive opioid analgesics remains unattained due to the unresolved intricacies of opioid actions, receptor signaling cascades, and neuronal plasticity. Advancements in structural, molecular, and computational tools illuminate the dynamic interplay between opioids and opioid receptors, as well as the molecular determinants of signaling pathways, which are potentially interlinked with pharmacological responses. Here, we review the molecular basis of opioid receptor signaling with a focus on the structures of opioid receptors bound to endogenous peptides or pharmacological agents. These insights unveil specific interactions that dictate ligand selectivity and likely their distinctive pharmacological profiles. Biochemical analysis further unveils molecular features governing opioid receptor signaling. Simultaneously, the synergy between computational biology and medicinal chemistry continues to expedite the discovery of novel chemotypes with the promise of yielding more efficacious and safer opioid compounds.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill 27599, NC, USA.
| |
Collapse
|
3
|
Xie B, Goldberg A, Shi L. A comprehensive evaluation of the potential binding poses of fentanyl and its analogs at the µ-opioid receptor. Comput Struct Biotechnol J 2022; 20:2309-2321. [PMID: 35615021 PMCID: PMC9123087 DOI: 10.1016/j.csbj.2022.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022] Open
Abstract
Fentanyl and its analogs are selective agonists of the µ-opioid receptor (MOR). Among novel synthetic opioids (NSOs), they dominate the recreational drug market and are the main culprits for the opioid crisis, which has been exacerbated by the COVID-19 pandemic. By taking advantage of the crystal structures of the MOR, several groups have investigated the binding mechanism of fentanyl, but have not reached a consensus, in terms of both the binding orientation and the fentanyl conformation. Thus, the binding mechanism of fentanyl at the MOR remains an unsolved and challenging question. Here, we carried out a systematic computational study to investigate the preferred fentanyl conformations, and how these conformations are being accommodated in the MOR binding pocket. We characterized the free energy landscape of fentanyl conformations with metadynamics simulations, and compared and evaluated several possible fentanyl binding conditions in the MOR with long-timescale molecular dynamics simulations. Our results indicate that the most preferred binding pose in the MOR binding pocket corresponds well with the global minimum on the energy landscape of fentanyl in the absence of the receptor, while the energy landscape can be reconfigured by modifying the fentanyl scaffold. The interactions with the receptor may stabilize a slightly unfavored fentanyl conformation in an alternative binding pose. By extending similar investigations to fentanyl analogs, our findings establish a structure–activity relationship of fentanyl binding at the MOR. In addition to providing a structural basis to understand the potential toxicity of the emerging NSOs, such insights will contribute to developing new, safer analgesics.
Collapse
|
4
|
Sturaro C, Malfacini D, Argentieri M, Djeujo FM, Marzola E, Albanese V, Ruzza C, Guerrini R, Calo’ G, Molinari P. Pharmacology of Kappa Opioid Receptors: Novel Assays and Ligands. Front Pharmacol 2022; 13:873082. [PMID: 35529436 PMCID: PMC9068900 DOI: 10.3389/fphar.2022.873082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
The present study investigated the in vitro pharmacology of the human kappa opioid receptor using multiple assays, including calcium mobilization in cells expressing chimeric G proteins, the dynamic mass redistribution (DMR) label-free assay, and a bioluminescence resonance energy transfer (BRET) assay that allows measurement of receptor interaction with G protein and β-arrestin 2. In all assays, dynorphin A, U-69,593, and [D-Pro10]dyn(1-11)-NH2 behaved as full agonists with the following rank order of potency [D-Pro10]dyn(1-11)-NH2 > dynorphin A ≥ U-69,593. [Dmt1,Tic2]dyn(1-11)-NH2 behaved as a moderate potency pure antagonist in the kappa-β-arrestin 2 interaction assay and as low efficacy partial agonist in the other assays. Norbinaltorphimine acted as a highly potent and pure antagonist in all assays except kappa-G protein interaction, where it displayed efficacy as an inverse agonist. The pharmacological actions of novel kappa ligands, namely the dynorphin A tetrameric derivative PWT2-Dyn A and the palmitoylated derivative Dyn A-palmitic, were also investigated. PWT2-Dyn A and Dyn A-palmitic mimicked dynorphin A effects in all assays showing similar maximal effects but 3–10 fold lower potency. In conclusion, in the present study, multiple in vitro assays for the kappa receptor have been set up and pharmacologically validated. In addition, PWT2-Dyn A and Dyn A-palmitic were characterized as potent full agonists; these compounds are worthy of further investigation in vivo for those conditions in which the activation of the kappa opioid receptor elicits beneficial effects e.g. pain and pruritus.
Collapse
Affiliation(s)
- Chiara Sturaro
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- *Correspondence: Davide Malfacini,
| | - Michela Argentieri
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Francine M. Djeujo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Erika Marzola
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Valentina Albanese
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
- Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
- Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy
| | - Girolamo Calo’
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Paola Molinari
- National Center for Drug Research and Evaluation, National Institute of Health, Rome, Italy
| |
Collapse
|
5
|
Opioid Receptors and Protonation-Coupled Binding of Opioid Drugs. Int J Mol Sci 2021; 22:ijms222413353. [PMID: 34948150 PMCID: PMC8707250 DOI: 10.3390/ijms222413353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023] Open
Abstract
Opioid receptors are G-protein-coupled receptors (GPCRs) part of cell signaling paths of direct interest to treat pain. Pain may associate with inflamed tissue characterized by acidic pH. The potentially low pH at tissue targeted by opioid drugs in pain management could impact drug binding to the opioid receptor, because opioid drugs typically have a protonated amino group that contributes to receptor binding, and the functioning of GPCRs may involve protonation change. In this review, we discuss the relationship between structure, function, and dynamics of opioid receptors from the perspective of the usefulness of computational studies to evaluate protonation-coupled opioid-receptor interactions.
Collapse
|
6
|
Zhang F, Chen X, Chen J, Xu Y, Li S, Guo Y, Pu X. Probing Allosteric Regulation Mechanism of W7.35 on Agonist-Induced Activity for μOR by Mutation Simulation. J Chem Inf Model 2021; 62:5120-5135. [PMID: 34779608 DOI: 10.1021/acs.jcim.1c00650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The residue located at 15 positions before the most conserved residue in TM7 (7.35 of Ballesteros-Weinstein number) plays important roles in ligand binding and the receptor activity for class A GPCRs. Nevertheless, its regulation mechanism has not been clearly clarified in experiments, and some controversies also exist for its impact on μ-opioid receptors (μOR) bound by agonists. Thus, we chose the μ-opioid receptor (μOR) of class A GPCRs as a representative and utilized a microsecond accelerated molecular dynamics simulation (aMD) coupled with a protein structure network (PSN) to explore the effect of W3187.35 on its functional activity induced by the agonist endomorphin2 mainly by a comparison of the wild system and its W7.35A mutant. When endomorphin2 binds to the wild-type μOR, TM6 in μOR moves outward to form an open intracellular conformation that is beneficial to accommodating the β-arrestin transducer, rather than the G-protein transducer due to the clash with the α5 helix of G-protein, thus acting as a β-arrestin biased agonist. However, the W318A mutation induces the intracellular part of μOR to form a closed state, which disfavors coupling with either G-protein or β-arrestin. The allosteric pathway analysis further reveals that the binding of endomorphin2 to the wild-type μOR transmits more activation signals to the β-arrestin binding site while the W318A mutation induces more structural signals to transmit to common binding residues of the G protein and β-arrestin. More interestingly, the residue at the 7.35 position regulates the shortest allosteric pathway in indirect ways by influencing the interactions between other ligand-binding residues and endomorphin2. W2936.48 and F2896.44 are important for regulating the different activities of μOR induced either by the agonist or by the mutation. Y3367.53, F3438.50, and D3408.47 play crucial roles in activating the β-arrestin biased signal induced by the agonist endomorphin2, while L1583.43 and V2866.41 devote important contributions to the change in the activity of endomorphin2 from the β-arrestin biased agonist to the antagonist upon the W318A mutation.
Collapse
Affiliation(s)
- Fuhui Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xin Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanjiani Xu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shiqi Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Eshleman AJ, Nagarajan S, Wolfrum KM, Reed JF, Nilsen A, Torralva R, Janowsky A. Affinity, potency, efficacy, selectivity, and molecular modeling of substituted fentanyls at opioid receptors. Biochem Pharmacol 2020; 182:114293. [PMID: 33091380 DOI: 10.1016/j.bcp.2020.114293] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 01/04/2023]
Abstract
Substituted fentanyls are abused and cause rapid fatal overdose. As their pharmacology is not well characterized, we examined in vitro pharmacology and structure-activity relationships of 22 substituted fentanyls with modifications of the fentanyl propyl group, and conducted in silico receptor/ligand modeling. Affinities for mu, kappa, and delta opioid receptors (MOR, KOR, and DOR, respectively) heterologously expressed in mammalian cells were assessed in agonist radioligand binding assays. At MOR, furanyl fentanyl had higher affinity than fentanyl, while acryl, isobutyryl and cyclopropyl fentanyls had similar affinities. Comparing affinities, thiophene and methoxyacetyl fentanyls had highest selectivity for MOR (2520- and 2730-fold compared to KOR and DOR, respectively). Functional activities were assessed using [35S]GTPγS binding assays. At MOR, furanyl fentanyl had higher potency and 11 substituted fentanyls had similar high potencies compared to fentanyl. Eight compounds were full agonists of MOR and twelve compounds were partial agonists, with efficacies from 8.8% (phenyl fentanyl) to 60.2% (butyryl fentanyl). All efficacious compounds had selective functional potency for MOR. The predicted binding poses of flexible fentanyl and rigid morphine against MOR show partially overlapping binding pockets, with fentanyl maintaining additional interaction with the transmembrane (TM) 2 helix. Subsequent molecular dynamics simulations revealed a predominant fentanyl binding pose involving various TM interactions. The piperidine nitrogen of substituted fentanyls establishes a salt-bridge with the conserved D-1473.32 residue and the propanamide carbonyl group establishes a hydrogen bond with the indole side-chain (-NH) of W-3187.35. The simulation suggests theN-linked phenethyl group may regulate the rotameric switch of W-2936.48. The predicted binding pose, in conjunction with in vitro binding affinity, clarified the molecular basis of the binding/selectivity profile of furanyl fentanyl and other derivatives at the sequence level. In summary, substituted fentanyls with high MOR potencies, selectivities, and efficacies are likely to have abuse and overdose potential. The work presented here is a prototype to investigate fentanyl derivatives and their abuse potential.
Collapse
Affiliation(s)
- Amy J Eshleman
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR, United States; Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Shanthi Nagarajan
- Medicinal Chemistry Core, Oregon Health and Science University, Portland, OR, United States
| | - Katherine M Wolfrum
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - John F Reed
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Aaron Nilsen
- Medicinal Chemistry Core, Oregon Health and Science University, Portland, OR, United States
| | - Randy Torralva
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR, United States; Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
| | - Aaron Janowsky
- Research Service, Veterans Affairs Portland Health Care System, Portland, OR, United States; Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States; The Methamphetamine Abuse Research Center, Oregon Health and Science University, Portland, OR, United States.
| |
Collapse
|
8
|
Molecular Basis of Opioid Action: From Structures to New Leads. Biol Psychiatry 2020; 87:6-14. [PMID: 31653480 PMCID: PMC6898784 DOI: 10.1016/j.biopsych.2019.08.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 02/06/2023]
Abstract
Since the isolation of morphine from the opium poppy over 200 years ago, the molecular basis of opioid action has remained the subject of intense inquiry. The identification of specific receptors responsible for opioid function and the discovery of many chemically diverse molecules with unique opioid-like efficacies have provided glimpses into the molecular logic of opioid action. Recent revolutions in the structural biology of transmembrane proteins have, for the first time, yielded high-resolution views into the 3-dimensional shapes of all 4 opioid receptors. These studies have begun to decode the chemical logic that enables opioids to specifically bind and activate their receptor targets. A combination of spectroscopic experiments and computational simulations has provided a view into the molecular movements of the opioid receptors, which itself gives rise to the complex opioid pharmacology observed at the cellular and behavioral levels. Further diversity in opioid receptor structure is driven by both genetic variation and receptor oligomerization. These insights have enabled computational drug discovery efforts, with some evidence of success in the design of completely novel opioids with unique efficacies. The combined progress over the past few years provides hope for new, efficacious opioids devoid of the side effects that have made them the scourge of humanity for millennia.
Collapse
|
9
|
Molecular dynamics of fentanyl bound to μ-opioid receptor. J Mol Model 2019; 25:144. [DOI: 10.1007/s00894-019-3999-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/21/2019] [Indexed: 12/17/2022]
|
10
|
Cheng JX, Cheng T, Li WH, Liu GX, Zhu WL, Tang Y. Computational insights into the subtype selectivity and "message-address-efficacy" mechanisms of opioid receptors through JDTic binding and unbinding. Acta Pharmacol Sin 2018; 39:482-491. [PMID: 29047460 PMCID: PMC5843831 DOI: 10.1038/aps.2017.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/21/2017] [Indexed: 11/09/2022] Open
Abstract
In drug design and discovery, binding affinity and selectivity are two basic properties of a drug candidate. Opioid receptors (ORs) are the main targets of strong analgesics. Like some other class A members of G-protein-coupled receptors (GPCRs), ORs exhibit complex selectivity on their ligands. The diversity of binding activity and selectivity among opioids has deeply attracted researchers for a long time. To investigate the subtype selectivity of μ, δ and κ ORs in detail, using the κ-selective antagonist JDTic as a probe, we performed a series of computational simulations, including molecular dynamics and metadynamics, on JDTic-μ/δ/κ-OR complexes. From the simulations, we found that the decisive factor of JDTic selectivity on the μ-subtype was the 2.63 position, which affected the efficacy of JDTic through changing the dynamics of the Q2.60 residue. In addition to the 2.63-position residue, the 7.35 position was the other crucial aspect of JDTic selectivity for the δ-subtype. Based on the results, we suggest a new concept, the "message-address-efficacy" hypothesis, to explain the relationships among the affinity, selectivity and function between ORs and opioids. Thus, all the detailed dynamics of JDTic-bound ORs might be helpful to deeply understand the subtype selectivity and binding mechanisms of other GPCRs.
Collapse
Affiliation(s)
- Jian-xin Cheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tao Cheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wei-hua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Gui-xia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wei-liang Zhu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
11
|
Vardy E, Sassano MF, Rennekamp AJ, Kroeze WK, Mosier PD, Westkaemper RB, Stevens CW, Katritch V, Stevens RC, Peterson RT, Roth BL. Single Amino Acid Variation Underlies Species-Specific Sensitivity to Amphibian Skin-Derived Opioid-like Peptides. ACTA ACUST UNITED AC 2016; 22:764-75. [PMID: 26091169 DOI: 10.1016/j.chembiol.2015.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/14/2015] [Accepted: 05/01/2015] [Indexed: 01/08/2023]
Abstract
It has been suggested that the evolution of vertebrate opioid receptors (ORs) follow a vector of increased functionality. Here, we test this idea by comparing human and frog ORs. Interestingly, some of the most potent opioid peptides known have been isolated from amphibian skin secretions. Here we show that such peptides (dermorphin and deltorphin) are highly potent in the human receptors and inactive in frog ORs. The molecular basis for the insensitivity of the frog ORs to these peptides was studied using chimeras and molecular modeling. The insensitivity of the delta OR (DOR) to deltorphin was due to variation of a single amino acid, Trp7.35, which is a leucine in mammalian DORs. Notably, Trp7.35 is completely conserved in all known DOR sequences from lamprey, fish, and amphibians. The deltorphin-insensitive phenotype was verified in fish. Our results provide a molecular explanation for the species selectivity of skin-derived opioid peptides.
Collapse
Affiliation(s)
- Eyal Vardy
- Department of Pharmacology, UNC Chapel Hill Medical School, 4072 Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27514, USA
| | - Maria F Sassano
- Department of Pharmacology, UNC Chapel Hill Medical School, 4072 Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27514, USA
| | - Andrew J Rennekamp
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 149 13(th) Street, Charlestown, MA 02129, USA; Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Wesley K Kroeze
- Department of Pharmacology, UNC Chapel Hill Medical School, 4072 Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27514, USA
| | - Philip D Mosier
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298, USA
| | - Richard B Westkaemper
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298, USA
| | - Craig W Stevens
- Department of Pharmacology & Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17(th) Street, Tulsa, OK 74107, USA
| | - Vsevolod Katritch
- Department of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Raymond C Stevens
- Department of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Randall T Peterson
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 149 13(th) Street, Charlestown, MA 02129, USA; Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Bryan L Roth
- Department of Pharmacology, UNC Chapel Hill Medical School, 4072 Genetic Medicine Building, 120 Mason Farm Road, Chapel Hill, NC 27514, USA.
| |
Collapse
|
12
|
Lee SM, Booe JM, Pioszak AA. Structural insights into ligand recognition and selectivity for classes A, B, and C GPCRs. Eur J Pharmacol 2015; 763:196-205. [PMID: 25981303 DOI: 10.1016/j.ejphar.2015.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/05/2015] [Accepted: 05/12/2015] [Indexed: 01/14/2023]
Abstract
The G protein-coupled receptor (GPCR) superfamily constitutes the largest collection of cell surface signaling proteins with approximately 800 members in the human genome. GPCRs regulate virtually all aspects of physiology and they are an important class of drug targets with ~30% of drugs on the market targeting a GPCR. Breakthroughs in GPCR structural biology in recent years have significantly expanded our understanding of GPCR structure and function and ushered in a new era of structure-based drug design for GPCRs. Crystal structures for nearly thirty distinct GPCRs are now available including receptors from each of the major classes, A, B, C, and F. These structures provide a foundation for understanding the molecular basis of GPCR pharmacology. Here, we review structural mechanisms of ligand recognition and selectivity of GPCRs with a focus on selected examples from classes A, B, and C, and we highlight major unresolved questions for future structural studies.
Collapse
Affiliation(s)
- Sang-Min Lee
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jason M Booe
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Augen A Pioszak
- Department of Biochemistry and Molecular Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
13
|
Abstract
The publication of high-resolution structures for all of the opioid receptor subfamilies has unveiled exciting opportunities for mechanistic insight into the molecular mechanisms underlying the biology of nociception, reward, and higher cognitive functions, as well as promises for progress in several clinical areas such as pain management, physiological dependence, addiction, and mood disorders. To turn this promise into novel and improved therapeutic entities, however, this information needs to be supplemented with research strategies that explore the dynamic behavior of the proteins and their interactions with other receptors and ligands in their physiological environment.Here we describe state-of-the-art molecular dynamics computational protocols, based on all-atom and coarse-grained modeling techniques, designed to estimate crucial thermodynamic and kinetic parameters describing the binding of small-molecule ligands and the formation of supramolecular complexes.
Collapse
|
14
|
Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, Cherezov V, Roth BL, Stevens RC. Molecular control of δ-opioid receptor signalling. Nature 2014; 506:191-6. [PMID: 24413399 DOI: 10.1038/nature12944] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/06/2013] [Indexed: 01/12/2023]
Abstract
Opioids represent widely prescribed and abused medications, although their signal transduction mechanisms are not well understood. Here we present the 1.8 Å high-resolution crystal structure of the human δ-opioid receptor (δ-OR), revealing the presence and fundamental role of a sodium ion in mediating allosteric control of receptor functional selectivity and constitutive activity. The distinctive δ-OR sodium ion site architecture is centrally located in a polar interaction network in the seven-transmembrane bundle core, with the sodium ion stabilizing a reduced agonist affinity state, and thereby modulating signal transduction. Site-directed mutagenesis and functional studies reveal that changing the allosteric sodium site residue Asn 131 to an alanine or a valine augments constitutive β-arrestin-mediated signalling. Asp95Ala, Asn310Ala and Asn314Ala mutations transform classical δ-opioid antagonists such as naltrindole into potent β-arrestin-biased agonists. The data establish the molecular basis for allosteric sodium ion control in opioid signalling, revealing that sodium-coordinating residues act as 'efficacy switches' at a prototypic G-protein-coupled receptor.
Collapse
Affiliation(s)
- Gustavo Fenalti
- 1] Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA [2]
| | - Patrick M Giguere
- 1] National Institute of Mental Health Psychoactive Drug Screening Program and Department of Pharmacology and Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina 27599, USA [2]
| | - Vsevolod Katritch
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Xi-Ping Huang
- National Institute of Mental Health Psychoactive Drug Screening Program and Department of Pharmacology and Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina 27599, USA
| | - Aaron A Thompson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Vadim Cherezov
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Bryan L Roth
- National Institute of Mental Health Psychoactive Drug Screening Program and Department of Pharmacology and Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina 27599, USA
| | - Raymond C Stevens
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
15
|
Abstract
Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes-primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated.
Collapse
Affiliation(s)
- Gavril W Pasternak
- Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065.
| | | |
Collapse
|
16
|
Yuan Y, Elbegdorj O, Chen J, Akubathini SK, Zhang F, Stevens DL, Beletskaya IO, Scoggins KL, Zhang Z, Gerk PM, Selley DE, Akbarali HI, Dewey WL, Zhang Y. Design, synthesis, and biological evaluation of 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(4'-pyridyl)carboxamido]morphinan derivatives as peripheral selective μ opioid receptor Agents. J Med Chem 2012; 55:10118-29. [PMID: 23116124 DOI: 10.1021/jm301247n] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peripheral selective μ opioid receptor (MOR) antagonists could alleviate the symptoms of opioid-induced constipation (OIC) without compromising the analgesic effect of opioids. However, a variety of adverse effects were associated with them, partially due to their relatively low MOR selectivity. NAP, a 6β-N-4'-pyridyl substituted naltrexamine derivative, was identified previously as a potent and highly selective MOR antagonist mainly acting within the peripheral nervous system. The noticeable diarrhea associated with it prompted the design and synthesis of its analogues in order to study its structure-activity relationship. Among them, compound 8 showed improved pharmacological profiles compared to the original lead, acting mainly at peripheral while increasing the intestinal motility in morphine-pelleted mice (ED(50) = 0.03 mg/kg). The slight decrease of the ED(50) compared to the original lead was well compensated by the unobserved adverse effect. Hence, this compound seems to be a more promising lead to develop novel therapeutic agents toward OIC.
Collapse
Affiliation(s)
- Yunyun Yuan
- Department of Medicinal Chemistry, Virginia Commonwealth University , 800 East Leigh Street, Richmond, Virginia 23298, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Panova TI, Kazakov VM, Shevchenko TO. Mechanism of the Action of Comenic Acid on Opioid Receptors. NEUROPHYSIOLOGY+ 2012. [DOI: 10.1007/s11062-012-9303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK. Structure of the δ-opioid receptor bound to naltrindole. Nature 2012; 485:400-4. [PMID: 22596164 PMCID: PMC3523198 DOI: 10.1038/nature11111] [Citation(s) in RCA: 527] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/11/2012] [Indexed: 12/24/2022]
Abstract
The opioid receptor family comprises three members, the µ-, δ- and κ-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The δ-opioid receptor (δ-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the µ-OR and κ-OR have recently been solved. Here we report the crystal structure of the mouse δ-OR, bound to the subtype-selective antagonist naltrindole. Together with the structures of the µ-OR and κ-OR, the δ-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the δ-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.
Collapse
Affiliation(s)
- Sébastien Granier
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA. USA
- CNRS UMR 5203, and INSERM U661, and Université Montpellier 1 et 2, Institut de Génomique Fonctionnelle, Montpellier, 34094, France
| | - Aashish Manglik
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA. USA
| | - Andrew C. Kruse
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA. USA
| | - Tong Sun Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA. USA
| | - Foon Sun Thian
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA. USA
| | - William I. Weis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA. USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA. USA
| |
Collapse
|
19
|
Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature 2012; 485:321-6. [PMID: 22437502 PMCID: PMC3523197 DOI: 10.1038/nature10954] [Citation(s) in RCA: 1056] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 02/09/2012] [Indexed: 12/26/2022]
Abstract
Opium is one of the world's oldest drugs, and its derivatives morphine and codeine are among the most used clinical drugs to relieve severe pain. These prototypical opioids produce analgesia as well as many undesirable side effects (sedation, apnoea and dependence) by binding to and activating the G-protein-coupled µ-opioid receptor (µ-OR) in the central nervous system. Here we describe the 2.8 Å crystal structure of the mouse µ-OR in complex with an irreversible morphinan antagonist. Compared to the buried binding pocket observed in most G-protein-coupled receptors published so far, the morphinan ligand binds deeply within a large solvent-exposed pocket. Of particular interest, the µ-OR crystallizes as a two-fold symmetrical dimer through a four-helix bundle motif formed by transmembrane segments 5 and 6. These high-resolution insights into opioid receptor structure will enable the application of structure-based approaches to develop better drugs for the management of pain and addiction.
Collapse
Affiliation(s)
- Aashish Manglik
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Andrew C. Kruse
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tong Sun Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Foon Sun Thian
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jesper M. Mathiesen
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Roger K. Sunahara
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - William I. Weis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Brian K. Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sébastien Granier
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Wojciechowski P, Szereda-Przestaszewska M, Lipkowski AW. Delta opioid receptors contribute to the cardiorespiratory effects of biphalin in anesthetized rats. Pharmacol Rep 2011; 63:1235-42. [PMID: 22180367 DOI: 10.1016/s1734-1140(11)70644-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/08/2011] [Indexed: 10/25/2022]
Abstract
Biphalin expresses almost equal affinity for μ- and δ-opioid receptors. The aim of this study was to delineate a possible role of δ-opioid receptors in the cardio-respiratory effects of systemic injection of biphalin in anesthetized, spontaneously breathing rats. In control animals, an intravenous bolus of biphalin (0.3 μmol/kg) evoked apnea, followed by a decreased breathing rate and increased tidal volume, hypotension and bradycardia. Blockade of δ-opioid receptors with naltrindole (4.2 μmol/kg) significantly reduced the duration of apnea, slowdown of respiration, immediate post-challenge hypotension and bradycardia induced by biphalin administration. These results indicate that the activation of δ-opioid receptors adds to the depressive response produced by biphalin.
Collapse
Affiliation(s)
- Piotr Wojciechowski
- Laboratory of Respiratory Reflexes, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, PL 02-106 Warszawa, Poland
| | | | | |
Collapse
|
21
|
Kazakov VM, Panova TI, Prokof’yeva NV. Quantum-Chemical Simulation of Binding between Molecules as a Technique for Estimation of the Probability for Ligand − Receptor Complexification of Comenic Acid. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
De Wachter R, de Graaf C, Keresztes A, Vandormael B, Ballet S, Tóth G, Rognan D, Tourwé D. Synthesis, Biological Evaluation, and Automated Docking of Constrained Analogues of the Opioid Peptide H-Dmt-d-Ala-Phe-Gly-NH2 Using the 4- or 5-Methyl Substituted 4-Amino-1,2,4,5-tetrahydro-2-benzazepin-3-one Scaffold. J Med Chem 2011; 54:6538-47. [DOI: 10.1021/jm2003574] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rien De Wachter
- Department of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Chris de Graaf
- Structural Chemogenomics, UMR 7200 CNRS-UdS, Université de Strasbourg, Illkirch F-67401, France
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, The Netherlands
| | - Atilla Keresztes
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Bart Vandormael
- Department of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Steven Ballet
- Department of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Géza Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Didier Rognan
- Structural Chemogenomics, UMR 7200 CNRS-UdS, Université de Strasbourg, Illkirch F-67401, France
| | - Dirk Tourwé
- Department of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
23
|
González A, Perez-Acle T, Pardo L, Deupi X. Molecular basis of ligand dissociation in β-adrenergic receptors. PLoS One 2011; 6:e23815. [PMID: 21915263 PMCID: PMC3168429 DOI: 10.1371/journal.pone.0023815] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/25/2011] [Indexed: 01/25/2023] Open
Abstract
The important and diverse biological functions of β-adrenergic receptors (βARs) have promoted the search for compounds to stimulate or inhibit their activity. In this regard, unraveling the molecular basis of ligand binding/unbinding events is essential to understand the pharmacological properties of these G protein-coupled receptors. In this study, we use the steered molecular dynamics simulation method to describe, in atomic detail, the unbinding process of two inverse agonists, which have been recently co-crystallized with β1 and β2ARs subtypes, along four different channels. Our results indicate that this type of compounds likely accesses the orthosteric binding site of βARs from the extracellular water environment. Importantly, reconstruction of forces and energies from the simulations of the dissociation process suggests, for the first time, the presence of secondary binding sites located in the extracellular loops 2 and 3 and transmembrane helix 7, where ligands are transiently retained by electrostatic and Van der Waals interactions. Comparison of the residues that form these new transient allosteric binding sites in both βARs subtypes reveals the importance of non-conserved electrostatic interactions as well as conserved aromatic contacts in the early steps of the binding process.
Collapse
Affiliation(s)
- Angel González
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, Spain
- Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Tomas Perez-Acle
- Computational Biology Lab, Center for Mathematical Modeling, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
- Centro Interdisciplinario de Neurociencias de Valparaíso, Playa Ancha, Valparaíso, Chile
- Fundación Ciencia para la Vida, Ñuñoa, Santiago, Chile
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, Spain
| | - Xavier Deupi
- Condensed Matter Theory Group and Laboratory of Biomolecular Research, Paul Scherrer Institut, Villigen PSI, Switzerland
- * E-mail:
| |
Collapse
|
24
|
Ślusarz MJ. Molecular modeling study of the opioid receptor interactions with series of cyclic deltorphin analogues. J Pept Sci 2011; 17:554-64. [DOI: 10.1002/psc.1371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 02/18/2011] [Accepted: 02/21/2011] [Indexed: 11/08/2022]
|
25
|
Marron Fdez de Velasco E, Law PY, Rodríguez RE. Mu opioid receptor from the zebrafish exhibits functional characteristics as those of mammalian mu opioid receptor. Zebrafish 2009; 6:259-68. [PMID: 19761379 DOI: 10.1089/zeb.2009.0594] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The functional characterization of the mu opioid receptor from the zebrafish (zfMOR) is reported here. After transfection in HEK-293 cell line, using both peptidergic and nonpeptidergic opioid ligands in the competition and saturation-binding experiments, in addition to the functional assays of (35)S-GTPgammaS-binding assays and intracellular 3'-5'-cyclic adenosine monophosphate (cAMP) level determinations, we demonstrate that zfMOR exhibits a pharmacological profile similar to that of the mammalian MOR. Besides, the internalization process of zfMOR after opiate agonist treatment (morphine, DAMGO, etorphine) resembles the pattern observed for its mammalian counterpart. These similarities suggest that the zebrafish is a good model for the study of the opioid effects in development.
Collapse
Affiliation(s)
- Ezequiel Marron Fdez de Velasco
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
| | | | | |
Collapse
|
26
|
Abstract
Earlier studies suggest that opioid receptors in the ventral tegmental area, but not the nucleus accumbens (NAc), play a role in relapse to drug-seeking behavior. However, environmental stimuli that elicit relapse also release the endogenous opioid beta-endorphin in the NAc. Using a within-session extinction/reinstatement paradigm in rats that self-administer cocaine, we found that NAc infusions of the mu-opioid receptor (MOR) agonist DAMGO moderately reinstated responding on the cocaine-paired lever at low doses (1.0-3.0 ng/side), whereas the delta-opioid receptor (DOR) agonist DPDPE induced greater responding at higher doses (300-3000 ng/side) that also enhanced inactive lever responding. Using doses of either agonist that induced responding on only the cocaine-paired lever, we found that DAMGO-induced responding was blocked selectively by pretreatment with the MOR antagonist, CTAP, whereas DPDPE-induced responding was selectively blocked by the DOR antagonist, naltrindole. Cocaine-primed reinstatement was blocked by intra-NAc CTAP but not naltrindole, indicating a role for endogenous MOR-acting peptides in cocaine-induced reinstatement of cocaine-seeking behavior. In this regard, intra-NAc infusions of beta-endorphin (100-1000 ng/side) induced marked cocaine-seeking behavior, an effect blocked by intra-NAc pretreatment with the MOR but not DOR antagonist. Conversely, cocaine seeking elicited by the enkephalinase inhibitor thiorphan (1-10 microg/side) was blocked by naltrindole but not CTAP. MOR stimulation in more dorsal caudate-putamen sites was ineffective, whereas DPDPE infusions induced cocaine seeking. Together, these findings establish distinct roles for MOR and DOR in cocaine relapse and suggest that NAc MOR could be an important therapeutic target to neutralize the effects of endogenous beta-endorphin release on cocaine relapse.
Collapse
|
27
|
Li G, Aschenbach LCK, He H, Selley DE, Zhang Y. 14-O-Heterocyclic-substituted naltrexone derivatives as non-peptide mu opioid receptor selective antagonists: design, synthesis, and biological studies. Bioorg Med Chem Lett 2009; 19:1825-9. [PMID: 19217280 PMCID: PMC2802822 DOI: 10.1016/j.bmcl.2008.12.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 11/26/2022]
Abstract
Mu opioid receptor antagonists have clinical utility and are important research tools. To develop non-peptide and highly selective mu opioid receptor antagonist, a series of 14-O-heterocyclic-substituted naltrexone derivatives were designed, synthesized, and evaluated. These compounds showed subnanomolar-to-nanomolar binding affinity for the mu opioid receptor. Among them, compound 1 exhibited the highest selectivity for the mu opioid receptor over the delta and kappa receptors. These results implicated an alternative 'address' domain in the extracellular loops of the mu opioid receptor.
Collapse
Affiliation(s)
- Guo Li
- Department of Medicinal Chemistry, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298-0613, USA
| | - Lindsey C. K. Aschenbach
- Department of Medicinal Chemistry, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298-0613, USA
| | - Hengjun He
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298-0613, USA
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298-0613, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298-0613, USA
| |
Collapse
|
28
|
Li G, Aschenbach LC, Chen J, Cassidy MP, Stevens DL, Gabra BH, Selley DE, Dewey WL, Westkaemper RB, Zhang Y. Design, synthesis, and biological evaluation of 6alpha- and 6beta-N-heterocyclic substituted naltrexamine derivatives as mu opioid receptor selective antagonists. J Med Chem 2009; 52:1416-27. [PMID: 19199782 PMCID: PMC2880636 DOI: 10.1021/jm801272c] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Opioid receptor selective antagonists are important pharmacological probes in opioid receptor structural characterization and opioid agonist functional study. Thus far, a nonpeptidyl, highly selective and reversible mu opioid receptor (MOR) antagonist is unavailable. On the basis of our modeling studies, a series of novel naltrexamine derivatives have been designed and synthesized. Among them, two compounds were identified as leads based on the results of in vitro and in vivo assays. Both of them displayed high binding affinity for the MOR (K(i) = 0.37 and 0.55 nM). Compound 6 (NAP) showed over 700-fold selectivity for the MOR over the delta receptor (DOR) and more than 150-fold selectivity over the kappa receptor (KOR). Compound 9 (NAQ) showed over 200-fold selectivity for the MOR over the DOR and approximately 50-fold selectivity over the KOR. Thus these two novel ligands will serve as leads to further develop more potent and selective antagonists for the MOR.
Collapse
MESH Headings
- Amino Acid Sequence
- Analgesics/chemical synthesis
- Analgesics/pharmacology
- Analgesics, Opioid/antagonists & inhibitors
- Analgesics, Opioid/pharmacology
- Animals
- Binding Sites
- Binding, Competitive
- CHO Cells
- Cricetinae
- Cricetulus
- Drug Design
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Morphinans/chemical synthesis
- Morphinans/pharmacology
- Morphine/antagonists & inhibitors
- Morphine/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/chemical synthesis
- Naltrexone/pharmacology
- Radioligand Assay
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Sequence Alignment
- Structure-Activity Relationship
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Zhang
- To whom correspondence should be addressed. Phone: 804-828-0021. Fax: 804-828-7625.
| |
Collapse
|
29
|
Docking studies suggest ligand-specific delta-opioid receptor conformations. J Mol Model 2008; 15:267-80. [PMID: 19052783 DOI: 10.1007/s00894-008-0396-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
An automated docking procedure was used to study binding of a series of delta-selective ligands to three models of the delta-opioid receptor. These models are thought to represent the three ligand-specific receptor conformations. Docking results are in agreement with point mutation studies and suggest that different ligands--agonists and antagonists--may bind to the same binding site under different receptor conformations. Docking to different receptor models (conformations) also suggests that by changing to a receptor-specific conformation, the receptor may open or close different binding sites to other ligands.
Collapse
|
30
|
Conformationally constrained opioid ligands: the Dmt-Aba and Dmt-Aia versus Dmt-Tic scaffold. Bioorg Med Chem Lett 2008; 19:433-7. [PMID: 19062273 DOI: 10.1016/j.bmcl.2008.11.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 11/13/2008] [Accepted: 11/14/2008] [Indexed: 11/23/2022]
Abstract
Replacement of the constrained phenylalanine analogue 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) in the opioid Dmt-Tic-Gly-NH-Bn scaffold by the 4-amino-1,2,4,5-tetrahydro-indolo[2,3-c]azepin-3-one (Aia) and 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Aba) scaffolds has led to the discovery of novel potent mu-selective agonists (Structures 5 and 12) as well as potent and selective delta-opioid receptor antagonists (Structures 9 and 15). Both stereochemistry and N-terminal N,N-dimethylation proved to be crucial factors for opioid receptor selectivity and functional bioactivity in the investigated small peptidomimetic templates. In addition to the in vitro pharmacological evaluation, automated docking models of Dmt-Tic and Dmt-Aba analogues were constructed in order to rationalize the observed structure-activity data.
Collapse
|
31
|
Geisinger E, George EA, Chen J, Muir TW, Novick RP. Identification of ligand specificity determinants in AgrC, the Staphylococcus aureus quorum-sensing receptor. J Biol Chem 2008; 283:8930-8. [PMID: 18222919 DOI: 10.1074/jbc.m710227200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Activation of the agr system, a major regulator of staphylococcal virulence, is initiated by the binding of a specific autoinducing peptide (AIP) to the extracellular domain of AgrC, a classical receptor histidine protein kinase. There are four known agr specificity groups in Staphylococcus aureus, and we have previously localized the determinant of AIP receptor specificity to the C-terminal half of the AgrC sensor domain. We have now identified the specific amino acid residues that determine ligand activation specificity for agr groups I and IV, the two most closely related. Comparison of the AgrC-I and AgrC-IV sequences revealed a set of five divergent residues in the region of the second extracellular loop of the receptor that could be responsible. Accordingly, we exchanged these residues between AgrC-I and AgrC-IV and tested the resulting constructs for activation by the respective AIPs, measuring activation kinetics with a transcriptional fusion of blaZ to the principal agr promoter, P3. Exchange of all five residues caused a complete switch in receptor specificity. Replacement of two of the AgrC-IV residues by the corresponding residues in AgrC-I caused the receptor to be activated by AIP-I nearly as well as the wild type AgrC-I receptor. Replacement of two different AgrC-I residues by the corresponding AgrC-IV residues broadened receptor recognition specificity to include both AIPs. Various types of intermediate activity were observed with other replacement mutations. Preliminary characterization of the AgrC-I-AIP-I interaction suggests that ligand specificity may be sterically determined.
Collapse
Affiliation(s)
- Edward Geisinger
- Molecular Pathogenesis Program and Departments of Microbiology and Medicine, the Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
32
|
Kane BE, Svensson B, Ferguson DM. Molecular recognition of opioid receptor ligands. AAPS JOURNAL 2006; 8:E126-37. [PMID: 16584119 PMCID: PMC2751431 DOI: 10.1208/aapsj080115] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cloning of the opioid receptors and subsequent use of recombinant DNA technology have led to many new insights into ligand binding. Instead of focusing on the structural features that lead to increased affinity and selectivity, researchers are now able to focus on why these features are important. Site-directed mutagenesis and chimeric data have often been at the forefront in answering these questions. Herein, we survey pharmacophores of several opioid ligands in an effort to understand the structural requirements for ligand binding and selectivity. Models are presented and compared to illustrate key sites of recognition for both opiate and nonopiate ligands. The results indicate that different ligand classes may recognize different sites within the receptor, suggesting that multiple epitopes may exist for ligand binding and selectivity.
Collapse
Affiliation(s)
- Brian E. Kane
- College of Pharmacy, Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, 55455 Minneapolis, MN
| | - Bengt Svensson
- College of Pharmacy, Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, 55455 Minneapolis, MN
| | - David M. Ferguson
- College of Pharmacy, Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, 55455 Minneapolis, MN
| |
Collapse
|
33
|
Hutchinson MR, Somogyi AA. Characterisation of the in vitro modulation of splenocyte proliferation by non-4,5-epoxymorphinan opioids. Int Immunopharmacol 2005; 5:1713-22. [PMID: 16102521 DOI: 10.1016/j.intimp.2005.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 04/15/2005] [Accepted: 05/10/2005] [Indexed: 11/27/2022]
Abstract
Opioids, such as morphine, can directly alter immune function via receptors expressed on immunocompetent cells. However, several studies have questioned the classical opioid nature of this change in immune response. Therefore, it is unclear how opioids that are not from the same structural class as morphine (4,5-epoxymorphinan), will modulate the immune system, if they do not behave in a classical opioid manner. Therefore, the aim of this study was to investigate the in vitro modulatory effects of a range of non-4,5-epoxymorphinan opioids on splenocyte proliferation and compare the response characteristics to their central opioid characteristics. The modulation of concanavalin A stimulated mouse splenocyte proliferation by non-4,5-epoxymorphinan opioids resulted in three types of responses: an inhibitory concentration-response curve (e.g. methadone, inhibitory EC(50)=79.4 microM), an inverted bell shaped curve (e.g. fentanyl, inhibitory EC(50)=0.06 microM) and an induction concentration response curve (e.g. nor-binaltorphimine, induction EC(50)=0.16 microM). Non-stereoselectivity, naloxone-insensitivity, naloxone-sensitivity and non-classical opioid rank order of effect were all observed. These data support the non-classical opioid nature of direct opioid modulation of splenocyte proliferation.
Collapse
Affiliation(s)
- Mark R Hutchinson
- Department of Clinical and Experimental Pharmacology, Level 5, Medical School North, University of Adelaide, Adelaide, South Australia, 5005, Australia.
| | | |
Collapse
|
34
|
Pogozheva ID, Przydzial MJ, Mosberg HI. Homology modeling of opioid receptor-ligand complexes using experimental constraints. AAPS JOURNAL 2005; 7:E434-48. [PMID: 16353922 PMCID: PMC2750980 DOI: 10.1208/aapsj070243] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Opioid receptors interact with a variety of ligands, including endogenous peptides, opiates, and thousands of synthetic compounds with different structural scaffolds. In the absence of experimental structures of opioid receptors, theoretical modeling remains an important tool for structure-function analysis. The combination of experimental studies and modeling approaches allows development of realistic models of ligand-receptor complexes helpful for elucidation of the molecular determinants of ligand affinity and selectivity and for understanding mechanisms of functional agonism or antagonism. In this review we provide a brief critical assessment of the status of such theoretical modeling and describe some common problems and their possible solutions. Currently, there are no reliable theoretical methods to generate the models in a completely automatic fashion. Models of higher accuracy can be produced if homology modeling, based on the rhodopsin X-ray template, is supplemented by experimental structural constraints appropriate for the active or inactive receptor conformations, together with receptor-specific and ligand-specific interactions. The experimental constraints can be derived from mutagenesis and cross-linking studies, correlative replacements of ligand and receptor groups, and incorporation of metal binding sites between residues of receptors or receptors and ligands. This review focuses on the analysis of similarity and differences of the refined homology models of mu, delta, and kappa-opioid receptors in active and inactive states, emphasizing the molecular details of interaction of the receptors with some representative peptide and nonpeptide ligands, underlying the multiple modes of binding of small opiates, and the differences in binding modes of agonists and antagonists, and of peptides and alkaloids.
Collapse
Affiliation(s)
- Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
35
|
Zhang Y, Sham YY, Rajamani R, Gao J, Portoghese PS. Homology Modeling and Molecular Dynamics Simulations of the Mu Opioid Receptor in a Membrane-Aqueous System. Chembiochem 2005; 6:853-9. [PMID: 15776407 DOI: 10.1002/cbic.200400207] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Three types of opioid receptors-mu, delta, and kappa-belong to the rhodopsin subfamily in the G protein-coupled receptor superfamily. With the recent characterization of the high-resolution X-ray crystal structure of bovine rhodopsin, considerable attention has been focused on molecular modeling of these transmembrane proteins. In this study, a homology model of the mu opioid receptor was constructed based on the X-ray crystal structure of bovine rhodopsin. A phospholipid bilayer was built around the receptor, and two water layers were placed on both surfaces of the lipid bilayer. Molecular-dynamics simulations were carried out by using CHARMM for the entire system, which consisted of 316 amino acid residues, 92 phospholipid molecules, 8327 water molecules, and 11 chloride counter ions-40 931 atoms altogether. The whole system was equilibrated for 250 ps followed by another 2 ns dynamic simulation. The opioid ligand naltrexone was docked into the optimized model, and the critical amino acid residues for binding were identified. The mu opioid receptor homology model optimized in a complete membrane-aqueous system should provide a good starting point for further characterization of the binding modes for opioid ligands. Furthermore, the method developed herein will be applicable to molecular model building to other opioid receptors as well as other GPCRs.
Collapse
MESH Headings
- Animals
- Binding Sites
- Cattle
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Computer Simulation
- Crystallography, X-Ray
- Lipid Metabolism
- Lipids/chemistry
- Models, Molecular
- Naltrexone/analogs & derivatives
- Naltrexone/chemistry
- Naltrexone/pharmacology
- Protein Structure, Tertiary
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Rhodopsin/chemistry
- Sequence Homology
- Solvents/chemistry
- Solvents/metabolism
- Structural Homology, Protein
- Water/chemistry
- Water/metabolism
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
36
|
Liu XH, Huang DA, Yang FY, Hao YS, Du GG, Li PF, Li G. A new cytokine: the possible effect pathway of methionine enkephalin. World J Gastroenterol 2003; 9:169-73. [PMID: 12508376 PMCID: PMC4728236 DOI: 10.3748/wjg.v9.i1.169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate experimentally the effects of methionine enkephalin on signal transduction of mouse myeloma NS-1 cells.
METHODS: The antigen determinate of delta opioid receptor was designed in this lab and the polypeptide fragment of antigen determinate with 12 amino acids residues was synthesized. Monoclonal antibody against this peptide fragment was prepared. Proliferation of Mouse NS-1 cells treated with methionine enkephalin of 1 × 10-6 mol·L-1 was observed. The activities of protein kinase A (PKA) and protein kinase C (PKC) were measured and thereby the mechanism of effect of methionine enkephalin was postulated.
RESULTS: The results demonstrated that methionine enkephalin could enhance the proliferation of NS-1 cells and the effect of methionine enkephalin could be particularly blocked by monoclonal antibody. The activity of PKA was increased in both cytosol and cell membrane. With reference to PKC, the intracellular activity of PKC in NS-1 cells was elevated at 1 × 10-7 mol·L-1 and then declined gradually as the concentration of methionine enkephalin was raised. The effects of methionine enkephalin might be reversed by both naloxone and monoclonal antibody.
CONCLUSION: Coupled with the findings, it in-dicates that the signal transduction systems via PKA and PKC are involved in the effects of methionine enkephalin by binding with the traditional opioid receptors, and therefore resulting in different biological effects.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cytokines
- Enkephalin, Methionine/metabolism
- Enkephalin, Methionine/pharmacology
- Mice
- Mice, Inbred BALB C
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Protein Kinase C/metabolism
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/immunology
- Receptors, Opioid, delta/metabolism
- Signal Transduction/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Xin-Hua Liu
- Department of Biochemistry and Molecular Biology, Health Science Center, Peking University, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Janczewski WA, Onimaru H, Homma I, Feldman JL. Opioid-resistant respiratory pathway from the preinspiratory neurones to abdominal muscles: in vivo and in vitro study in the newborn rat. J Physiol 2002; 545:1017-26. [PMID: 12482904 PMCID: PMC2290709 DOI: 10.1113/jphysiol.2002.023408] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We report that after spontaneous breathing movements are stopped by administration of opioids (opioid-induced apnoea) in neonatal rats, abdominal muscles continue to contract at a rate similar to that observed during periods of ventilation. Correspondingly, in vitro bath application of a mu opioid receptor agonist suppresses the activity of the fourth cervical root (C4) supplying the diaphragm, but not the rhythmic activity of the first lumbar root (L1) innervating the abdominal muscles. This indicates the existence of opioid-resistant rhythmogenic neurones and a neuronal pathway transmitting their activity to the abdominal motoneurones. We have investigated this pathway by using a brainstem-spinal cord preparation of the neonatal rat. We identified bulbospinal neurones with a firing pattern identical to that of the L1 root. These neurones were located caudal to the obex in the vicinity of the nucleus retroambiguus. Resting potentials ranged from -49 to -40 mV (mean +/- S.D. -44.0 +/- 4.3 mV). The mean input resistance was 315.5 +/- 54.8 MOmega. The mean antidromic latency from the L1 level was 42.8 +/- 4.4 ms. Axons crossed the midline at the level of the cell body. The activity pattern of the bulbospinal neurones and the L1 root consisted of two bursts per respiratory cycle with a silent period during inspiration. This pattern is characteristic of preinspiratory neurones. We found that 11 % of the preinspiratory neurones projected to the area where the bulbospinal neurones were located. These preinspiratory neurones were found in the rostral ventrolateral medulla close (200-350 microm) to the ventral surface at the level of the rostral half of the nucleus retrofacialis. Our data suggest the operation of a disynaptic pathway from the preinspiratory neurones to the L1 motoneurones in the in vitro preparation. We propose that the same pathway is responsible for rhythmic activation of the abdominal muscles during opioid-induced apnoea in the newborn rat.
Collapse
Affiliation(s)
- Wiktor A Janczewski
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Box 951763, 10833 Le Conte Avenue, Los Angeles, CA 90095-1763, USA.
| | | | | | | |
Collapse
|
38
|
Chavkin C, McLaughlin JP, Celver JP. Regulation of opioid receptor function by chronic agonist exposure: constitutive activity and desensitization. Mol Pharmacol 2001; 60:20-5. [PMID: 11408596 DOI: 10.1124/mol.60.1.20] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- C Chavkin
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA.
| | | | | |
Collapse
|