1
|
Discovery of Novel Delta Opioid Receptor (DOR) Inverse Agonist and Irreversible (Non-Competitive) Antagonists. Molecules 2021; 26:molecules26216693. [PMID: 34771099 PMCID: PMC8587863 DOI: 10.3390/molecules26216693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 02/03/2023] Open
Abstract
The delta opioid receptor (DOR) is a crucial receptor system that regulates pain, mood, anxiety, and similar mental states. DOR agonists, such as SNC80, and DOR-neutral antagonists, such as naltrindole, were developed to investigate the DOR in vivo and as potential therapeutics for pain and depression. However, few inverse agonists and non-competitive/irreversible antagonists have been developed, and none are widely available. This leaves a gap in our pharmacological toolbox and limits our ability to investigate the biology of this receptor. Thus, we designed and synthesized the novel compounds SRI-9342 as an irreversible antagonist and SRI-45128 as an inverse agonist. These compounds were then evaluated in vitro for their binding affinity by radioligand binding, their functional activity by 35S-GTPγS coupling, and their cAMP accumulation in cells expressing the human DOR. Both compounds demonstrated high binding affinity and selectivity at the DOR, and both displayed their hypothesized molecular pharmacology of irreversible antagonism (SRI-9342) or inverse agonism (SRI-45128). Together, these results demonstrate that we have successfully designed new inverse agonists and irreversible antagonists of the DOR based on a novel chemical scaffold. These new compounds will provide new tools to investigate the biology of the DOR or even new potential therapeutics.
Collapse
|
2
|
Hirayama S, Fujii H. δ Opioid Receptor Inverse Agonists and their In Vivo Pharmacological Effects. Curr Top Med Chem 2020; 20:2889-2902. [PMID: 32238139 DOI: 10.2174/1568026620666200402115654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 11/22/2022]
Abstract
The discovery of δ opioid receptor inverse agonist activity induced by ICI-174,864, which was previously reported as an δ opioid receptor antagonist, opened the door for the investigation of inverse agonism/constitutive activity of the receptors. Various peptidic or non-peptidic δ opioid receptor inverse agonists have since been developed. Compared with the reports dealing with in vitro inverse agonist activities of novel compounds or known compounds as antagonists, there have been almost no publications describing the in vivo pharmacological effects induced by a δ opioid receptor inverse agonist. After the observation of anorectic effects with the δ opioid receptor antagonism was discussed in the early 2000s, the short-term memory improving effects and antitussive effects have been very recently reported as possible pharmacological effects induced by a δ opioid receptor inverse agonist. In this review, we will survey the developed δ opioid receptor inverse agonists and summarize the possible in vivo pharmacological effects by δ opioid receptor inverse agonists. Moreover, we will discuss important issues involved in the investigation of the in vivo pharmacological effects produced by a δ opioid receptor inverse agonist.
Collapse
Affiliation(s)
- Shigeto Hirayama
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5- 9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry and Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5- 9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
3
|
Montgomery D, Anand JP, Griggs NW, Fernandez TJ, Hartman JG, Sánchez-Santiago AA, Pogozheva ID, Traynor JR, Mosberg HI. Novel Dimethyltyrosine-Tetrahydroisoquinoline Peptidomimetics with Aromatic Tetrahydroisoquinoline Substitutions Show in Vitro Kappa and Mu Opioid Receptor Agonism. ACS Chem Neurosci 2019; 10:3682-3689. [PMID: 31199621 DOI: 10.1021/acschemneuro.9b00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The dimethyltyrosine-tetrahydroisoquinoline (Dmt-Tiq) scaffold was originally developed in the production of selective delta opioid receptor (DOR) antagonists. Installation of a 7-benzyl pendant on the tetrahydroisoquinoline core of this classic opioid scaffold introduced kappa opioid receptor (KOR) agonism. Further modification of this pendant resulted in retention of KOR agonism and the addition of mu opioid receptor (MOR) partial agonism, a bifunctional profile with potential to be used in the treatment of cocaine addiction.
Collapse
Affiliation(s)
- Deanna Montgomery
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica P. Anand
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas W. Griggs
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas J. Fernandez
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joshua G. Hartman
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ashley A. Sánchez-Santiago
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Irina D. Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - John R. Traynor
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry I. Mosberg
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Edward F. Domino Research Center, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Hirayama S, Iwai T, Higashi E, Nakamura M, Iwamatsu C, Itoh K, Nemoto T, Tanabe M, Fujii H. Discovery of δ Opioid Receptor Full Inverse Agonists and Their Effects on Restraint Stress-Induced Cognitive Impairment in Mice. ACS Chem Neurosci 2019; 10:2237-2242. [PMID: 30913383 DOI: 10.1021/acschemneuro.9b00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cyclopropylmethyl group in classical δ opioid receptor (DOR) antagonist NTI, BNTX, and NTB was replaced with various electron-withdrawing groups to develop DOR inverse agonists. N-Benzyl NTB derivative SYK-657 was a potent DOR full inverse agonist and its potency was over 10-fold potent than that of a reference compound ICI-174,864. Intraperitoneal administration of SYK-657 induced the short-term memory improving effect in mice without abnormal behaviors.
Collapse
Affiliation(s)
- Shigeto Hirayama
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane,
Minato-ku, Tokyo 108-8641, Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane,
Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Iwai
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane,
Minato-ku, Tokyo 108-8641, Japan
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1, Shirokane,
Minato-ku, Tokyo 108-8641, Japan
| | - Eika Higashi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane,
Minato-ku, Tokyo 108-8641, Japan
| | - Minami Nakamura
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1, Shirokane,
Minato-ku, Tokyo 108-8641, Japan
| | - Chiharu Iwamatsu
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane,
Minato-ku, Tokyo 108-8641, Japan
| | - Kennosuke Itoh
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane,
Minato-ku, Tokyo 108-8641, Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane,
Minato-ku, Tokyo 108-8641, Japan
| | - Toru Nemoto
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane,
Minato-ku, Tokyo 108-8641, Japan
| | - Mitsuo Tanabe
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane,
Minato-ku, Tokyo 108-8641, Japan
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, 5-9-1, Shirokane,
Minato-ku, Tokyo 108-8641, Japan
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane,
Minato-ku, Tokyo 108-8641, Japan
- Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane,
Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
5
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2017; 68:631-700. [PMID: 27343248 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
6
|
Naltrindole derivatives with fluorinated ethyl substituents on the 17-nitrogen as δ opioid receptor inverse agonists. Bioorg Med Chem Lett 2015; 25:2927-30. [DOI: 10.1016/j.bmcl.2015.05.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/13/2015] [Accepted: 05/18/2015] [Indexed: 11/21/2022]
|
7
|
Khilnani G, Khilnani AK. Inverse agonism and its therapeutic significance. Indian J Pharmacol 2011; 43:492-501. [PMID: 22021988 PMCID: PMC3195115 DOI: 10.4103/0253-7613.84947] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 01/10/2011] [Accepted: 07/01/2011] [Indexed: 01/14/2023] Open
Abstract
A large number of G-protein-coupled receptors (GPCRs) show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced) receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity) or prevent the effect of an agonist (antagonist with zero intrinsic activity). Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity). Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors) have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics) have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H1 and H2 antihistaminics (antagonists) have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D2 receptors antagonist), antihypertensive (AT1 receptor antagonists), antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103), a highly selective 5-HT2A inverse agonist, attenuates psychosis in patients with Parkinson's disease with psychosis and is devoid of extrapyramidal side effects. This dissociation is also evident from the development of anxioselective benzodiazepines devoid of habit-forming potential. Hemopressin is a peptide ligand that acts as an antagonist as well as inverse agonist. This agent acts as an antinociceptive agent in different in vivo models of pain. Treatment of obesity by drugs having inverse agonist activity at CB1/2 receptors is also underway. An exciting development is evaluation of β-blockers in chronic bronchial asthma—a condition akin to congestive heart failure where β-blockade has become the standard mode of therapy. Synthesis and evaluation of selective agents is underway. Therefore, inverse agonism is an important aspect of drug–receptor interaction and has immense untapped therapeutic potential.
Collapse
|
8
|
Balboni G, Salvadori S, Marczak ED, Knapp BI, Bidlack JM, Lazarus LH, Peng X, Si YG, Neumeyer JL. Opioid bifunctional ligands from morphine and the opioid pharmacophore Dmt-Tic. Eur J Med Chem 2010; 46:799-803. [PMID: 21216504 DOI: 10.1016/j.ejmech.2010.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/28/2010] [Accepted: 12/01/2010] [Indexed: 01/31/2023]
Abstract
Bifunctional ligands containing an ester linkage between morphine and the δ-selective pharmacophore Dmt-Tic were synthesized, and their binding affinity and functional bioactivity at the μ, δ and κ opioid receptors determined. Bifunctional ligands containing or not a spacer of β-alanine between the two pharmacophores lose the μ agonism deriving from morphine becoming partial μ agonists 4 or μ antagonists 5. Partial κ agonism is evidenced only for compound 4. Finally, both compounds showed potent δ antagonism.
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliari, Via Ospedale 72, I-09124 Cagliari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kawthekar RB, Chakka SK, Francis V, Andersson PG, Kruger HG, Maguire GE, Govender T. Synthesis of tetrahydroisoquinoline (TIQ)–oxazoline ligands and their application in enantioselective Henry reactions. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.04.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Jenny M, Winkler C, Spetea M, Schennach H, Schmidhammer H, Fuchs D. Non-peptidic delta-opioid receptor antagonists suppress mitogen-induced tryptophan degradation in peripheral blood mononuclear cells in vitro. Immunol Lett 2008; 118:82-7. [PMID: 18440650 DOI: 10.1016/j.imlet.2008.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/14/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
Abstract
Opioid receptors are expressed not only on neuroendocrine cells but also on immunocompetent cells such as lymphocytes, monocytes and macrophages. micro-Opioid receptor agonists were found to exert immunosuppressive effects, whereas delta-opioid receptor agonists have been shown to act as immunostimulants. delta-Opioid receptor agonists stimulate T and B cells and activate granulocytes and monocytes, conversely, immunostimulation can be blocked by the non-peptidic delta-opioid receptor antagonist (NTI). We investigated the impact of NTI and of the two structurally related compounds HS-378 and HS-459 on degradation of tryptophan and formation of neopterin in mitogen-stimulated human peripheral blood mononuclear cells (PBMC). Both these biochemical pathways were found to be suppressed by all three opioid receptor antagonists, HS-378 and HS-459 exhibiting slightly greater potency than NTI. The suppression of tryptophan degradation suggests that the tested delta-opioid antagonists are able to influence the serotonergic system via a non-opioid action.
Collapse
Affiliation(s)
- Marcel Jenny
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
11
|
Li T, Shiotani K, Miyazaki A, Tsuda Y, Ambo A, Sasaki Y, Jinsmaa Y, Marczak E, Bryant SD, Lazarus LH, Okada Y. Bifunctional [2',6'-dimethyl-L-tyrosine1]endomorphin-2 analogues substituted at position 3 with alkylated phenylalanine derivatives yield potent mixed mu-agonist/delta-antagonist and dual mu-agonist/delta-agonist opioid ligands. J Med Chem 2007; 50:2753-66. [PMID: 17497839 PMCID: PMC2669435 DOI: 10.1021/jm061238m] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endomorphin-2 (H-Tyr-Pro-Phe-Phe-NH2) and [Dmt1]EM-2 (Dmt = 2',6'-dimethyl-l-tyrosine) analogues, containing alkylated Phe3 derivatives, 2'-monomethyl (2, 2'), 3',5'- and 2',6'-dimethyl (3, 3', and 4', respectively), 2',4',6'-trimethyl (6, 6'), 2'-ethyl-6'-methyl (7, 7'), and 2'-isopropyl-6'-methyl (8, 8') groups or Dmt (5, 5'), had the following characteristics: (i) [Xaa3]EM-2 analogues exhibited improved mu- and delta-opioid receptor affinities. The latter, however, were inconsequential (Kidelta = 491-3451 nM). (ii) [Dmt1,Xaa3]EM-2 analogues enhanced mu- and delta-opioid receptor affinities (Kimu = 0.069-0.32 nM; Kidelta = 1.83-99.8 nM) without kappa-opioid receptor interaction. (iii) There were elevated mu-bioactivity (IC50 = 0.12-14.4 nM) and abolished delta-agonism (IC50 > 10 muM in 2', 3', 4', 5', 6'), although 4' and 6' demonstrated a potent mixed mu-agonism/delta-antagonism (for 4', IC50mu = 0.12 and pA2 = 8.15; for 6', IC50mu = 0.21 nM and pA2 = 9.05) and 7' was a dual mu-agonist/delta-agonist (IC50mu = 0.17 nM; IC50delta = 0.51 nM).
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Brain/metabolism
- Guinea Pigs
- In Vitro Techniques
- Ligands
- Male
- Mice
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- Muscle, Smooth/physiology
- Myenteric Plexus/physiology
- Neuromuscular Junction/drug effects
- Neuromuscular Junction/physiology
- Oligopeptides/chemical synthesis
- Oligopeptides/pharmacology
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Structure-Activity Relationship
- Synaptosomes/metabolism
- Tyrosine/analogs & derivatives
- Tyrosine/chemical synthesis
- Tyrosine/pharmacology
- Vas Deferens/drug effects
- Vas Deferens/physiology
Collapse
Affiliation(s)
- Tingyou Li
- The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | - Kimitaka Shiotani
- The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | - Anna Miyazaki
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | - Yuko Tsuda
- The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
| | - Akihiro Ambo
- Department of Biochemistry, Tohoku Pharmaceutical University, Aoba-ku, Sendai 981-8558, Japan
| | - Yusuke Sasaki
- Department of Biochemistry, Tohoku Pharmaceutical University, Aoba-ku, Sendai 981-8558, Japan
| | - Yunden Jinsmaa
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, U.S.A
| | - Ewa Marczak
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, U.S.A
| | - Sharon D. Bryant
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, U.S.A
| | - Lawrence H. Lazarus
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, U.S.A
- Corresponding authors: Y. Okada: Tel: +81-78-974-1551, fax: +81-78-974-5689., E-mail: . L. H. Lazarus: Tel: +1-919-541-3238, fax: + 1-919-541-5737. E-mail:
| | - Yoshio Okada
- The Graduate School of Food and Medicinal Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Nishi-ku, Kobe 651-2180, Japan
- Corresponding authors: Y. Okada: Tel: +81-78-974-1551, fax: +81-78-974-5689., E-mail: . L. H. Lazarus: Tel: +1-919-541-3238, fax: + 1-919-541-5737. E-mail:
| |
Collapse
|
12
|
Vergura R, Valenti E, Hebbes CP, Gavioli EC, Spagnolo B, McDonald J, Lambert DG, Balboni G, Salvadori S, Regoli D, Calo' G. Dmt-Tic-NH-CH2-Bid (UFP-502), a potent DOP receptor agonist: in vitro and in vivo studies. Peptides 2006; 27:3322-30. [PMID: 16963157 DOI: 10.1016/j.peptides.2006.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 07/24/2006] [Accepted: 07/24/2006] [Indexed: 11/16/2022]
Abstract
Knockout and pharmacological studies demonstrated that the activation of delta opioid peptide (DOP) receptors produces antidepressant-like effects in rodents. Here we report the results obtained with the novel DOP ligand H-Dmt-Tic-NH-CH(2)-Bid (UFP-502). UFP-502 bound with high affinity (pK(i) 9.43) to recombinant DOP receptors displaying moderate selectivity over MOP and KOP. In CHO(hDOP) [(35)S]GTPgammaS binding and mouse vas deferens experiments, UFP-502 behaved as a potent (pEC(50) 10.09 and 10.70, respectively) full agonist. In these preparations, naloxone, naltrindole and N,N(CH(3))(2)Dmt-Tic-OH showed similar pA(2) values against UFP-502 and DPDPE and the same rank order of potency. In vivo in mice, UFP-502 mimicked DPDPE actions, producing a significant reduction of immobility time after intracerebroventricular administration in the forced swimming test and a clear antinociceptive effect after intrathecal injection in the tail withdrawal assay. However, while the effects of DPDPE were fully prevented by naltrindole those evoked by UFP-502 were unaffected (tail withdrawal assay) or only partially reversed (forced swimming test). In conclusion, UFP-502 represents a novel and useful chemical template for the design of selective agonists for the DOP receptor.
Collapse
Affiliation(s)
- Raffaella Vergura
- Department of Experimental and Clinical Medicine, Section of Pharmacology, and Neuroscience Centre, University of Ferrara, via Fossato di Mortara 19, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tryoen-Tóth P, Décaillot FM, Filliol D, Befort K, Lazarus LH, Schiller PW, Schmidhammer H, Kieffer BL. Inverse agonism and neutral antagonism at wild-type and constitutively active mutant delta opioid receptors. J Pharmacol Exp Ther 2004; 313:410-21. [PMID: 15590769 DOI: 10.1124/jpet.104.077321] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The delta opioid receptor modulates nociceptive and emotional behaviors. This receptor has been shown to exhibit measurable spontaneous activity. Progress in understanding the biological relevance of this activity has been slow, partly due to limited characterization of compounds with intrinsic negative activity. Here, we have used constitutively active mutant (CAM) delta receptors in two different functional assays, guanosine 5'-O-(3-thio)triphosphate binding and a reporter gene assay, to test potential inverse agonism of 15 delta opioid compounds, originally described as antagonists. These include the classical antagonists naloxone, naltrindole, 7-benzylidene-naltrexone, and naltriben, a new set of naltrindole derivatives, H-Tyr-Tic-Phe-Phe-OH (TIPP) and H-Tyr-TicPsi[CH2N]Cha-Phe-OH [TICP(Psi)], as well as three 2',6'-dimethyltyrosine-1,2,3,4-tetrahydroquinoline-3-carboxylate (Dmt-Tic) peptides. A reference agonist, SNC 80 [(+)-4-[(alphaR)-alpha-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide], and inverse agonist, ICI 174864 (N,N-diallyl-Tyr-Aib-Aib-Phe-Leu), were also included. In a screen using wild-type and CAM M262T delta receptors, naltrindole (NTI) and close derivatives were mostly inactive, and TIPP behaved as an agonist, whereas Dmt-Tic-OH and N,N(CH3)2-Dmt-Tic-NH2 showed inverse agonism. The two latter compounds showed negative activity across 27 CAM receptors, suggesting that this activity was independent from the activation mechanism. These two compounds also exhibited nanomolar potencies in dose-response experiments performed on wild-type, M262T, Y308H, and C328R CAM receptors. TICP(Psi) exhibited strong inverse agonism at the Y308H receptor. We conclude that the stable N,N(CH3)2-Dmt-Tic-NH2 compound represents a useful tool to explore the spontaneous activity of delta receptors, and NTI and novel derivatives behave as neutral antagonists.
Collapse
Affiliation(s)
- P Tryoen-Tóth
- Institut de Génétique et Biologie Moléculaire et Cellulaire, 1 rue Laurent Fries, B.P. 1042, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Opioid receptors belong to the large superfamily of seven transmembrane-spanning (7TM) G protein-coupled receptors (GPCRs). As a class, GPCRs are of fundamental physiological importance mediating the actions of the majority of known neurotransmitters and hormones. Opioid receptors are particularly intriguing members of this receptor family. They are activated both by endogenously produced opioid peptides and by exogenously administered opiate compounds, some of which are not only among the most effective analgesics known but also highly addictive drugs of abuse. A fundamental question in addiction biology is why exogenous opioid drugs, such as morphine and heroin, have a high liability for inducing tolerance, dependence, and addiction. This review focuses on many aspects of opioid receptors with the aim of gaining a greater insight into mechanisms of opioid tolerance and dependence.
Collapse
Affiliation(s)
- Maria Waldhoer
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California 94608, USA.
| | | | | |
Collapse
|
15
|
Bryant SD, Jinsmaa Y, Salvadori S, Okada Y, Lazarus LH. Dmt and opioid peptides: a potent alliance. Biopolymers 2004; 71:86-102. [PMID: 12767112 DOI: 10.1002/bip.10399] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The introduction of the Dmt (2',6'-dimethyl-L-tyrosine)-Tic pharmacophore into the design of opioid ligands produced an extraordinary family of potent delta-opioid receptor antagonists and heralded a new phase in opioid research. First reviewed extensively in 1998, the incorporation of Dmt into a diverse group of opioid molecules stimulated the opioid field leading to the development of unique analogues with remarkable properties. This overview will document the crucial role played by this residue in the proliferation of opioid peptides with high receptor affinity (K(i) equal to or less than 1 nM) and potent bioactivity. The discussion will include the metamorphosis between delta-opioid receptor antagonists to delta-agonists based solely on subtle structural changes at the C-terminal region of the Dmt-Tic pharmacophore as well as their behavior in vivo. Dmt may be considered promiscuous due to the acquisition of potent mu-agonism by dermorphin and endomorphin derivatives as well as by a unique class of opioidmimetics containing two Dmt residues separated by alkyl or pyrazinone linkers. Structural studies on the Dmt-Tic compounds were enhanced tremendously by x-ray diffraction data for three potent and biologically diverse Dmt-Tic opioidmimetics that led to the development of pharmacophores for both delta-opioid receptor agonists and antagonists. Molecular modeling studies of other unique Dmt opioid analogues illuminated structural differences between delta- and mu-receptor ligand interactions. The future of these compounds as therapeutic applications for various medical syndromes including the control of cancer-associated pain is only a matter of time and perseverance.
Collapse
Affiliation(s)
- Sharon D Bryant
- Peptide Neurochemistry, LCBRA, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | | | |
Collapse
|
16
|
Kenakin T. Efficacy as a Vector: the Relative Prevalence and Paucity of Inverse Agonism. Mol Pharmacol 2004; 65:2-11. [PMID: 14722230 DOI: 10.1124/mol.65.1.2] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This article describes the expected phenotypic behavior of all types of ligands in constitutively active receptor systems and, in particular, the molecular mechanisms of inverse agonism. The possible physiological relevance of inverse agonism also is discussed. Competitive antagonists with the molecular property of negative efficacy demonstrate inverse agonism in constitutively active receptor systems. This is a phenotypic behavior that can only be observed in the appropriate assay; a lack of observed inverse agonism is evidence that the ligand does not possess negative efficacy only if it can be shown that constitutive receptor activity is present. In the absence of constitutive activity, inverse agonists behave as simple competitive antagonists. A survey of 105 articles on the activity of 380 antagonists on 73 biological G-protein-coupled receptor targets indicates that, in this sample dataset, 322 are inverse agonists and 58 (15%) are neutral antagonists. The predominance of inverse agonism agrees with theoretical predictions which indicate that neutral antagonists are the minority species in pharmacological space.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Assay Development and Compound Profiling, GlaxoSmithKline Research and Development, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
17
|
Balboni G, Salvadori S, Guerrini R, Negri L, Giannini E, Jinsmaa Y, Bryant SD, Lazarus LH. Potent delta-opioid receptor agonists containing the Dmt-Tic pharmacophore. J Med Chem 2002; 45:5556-63. [PMID: 12459023 DOI: 10.1021/jm020336e] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conversion of delta-opioid receptor antagonists containing the 2',6'-dimethyl-L-tyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) pharmacophore into potent delta-agonists required a third heteroaromatic nucleus, such as 1H-benzimidazole-2-yl (Bid) and a linker of specified length both located C-terminally to Tic in the general formula H-Dmt-Tic-NH-CH(R)-R'. The distance between Tic and Bid is a determining factor responsible for the acquisition of delta agonism (2, 2', 3, 4, 6) or delta antagonism (8). Compounds containing a C-terminal Ala (1, 1'), Asp (5), or Asn (7) with an amide (1, 1', 5) or free acid group (7) served as delta-antagonist controls lacking the third heteroaromatic ring. A change in chirality of the spacer (2, 2') or inclusion of a negative charge via derivatives of Asp (4, 6) resulted in potent delta agonism and moderate mu agonism, although delta-receptor affinity decreased about 10-fold for 4 while mu affinity fell by over 2 orders of magnitude. Repositioning of the negative charge in the linker altered activity: H-Dmt-Tic-NH-CH(CH(2)-Bid)COOH (6) maintained high delta affinity (K(i) = 0.042 nM) and delta agonism (IC(50) = 0.015 nM), but attachment of the free acid group to Bid [H-Dmt-Tic-NH-CH(2)-Bid(CH(2)-COOH) (9)] reconstituted delta antagonism (K(e) = 0.27 nM). The data demonstrate that a linker separating the Dmt-Tic pharmacophore and Bid, regardless of the presence of a negative charge, is important in the acquisition of opioids exhibiting potent delta agonism and weak mu agonism from a parent delta antagonist.
Collapse
MESH Headings
- Animals
- Benzimidazoles/chemical synthesis
- Benzimidazoles/chemistry
- Benzimidazoles/pharmacology
- Binding, Competitive
- Brain/metabolism
- Dipeptides/chemical synthesis
- Dipeptides/chemistry
- Dipeptides/pharmacology
- Electric Stimulation
- Guinea Pigs
- In Vitro Techniques
- Intestine, Small/innervation
- Models, Molecular
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/innervation
- Myenteric Plexus/drug effects
- Neuromuscular Junction/drug effects
- Neuromuscular Junction/physiology
- Radioligand Assay
- Rats
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
- Tetrahydroisoquinolines
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliari, I-09126 Cagliari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Horie T, Shen Y, Kajino K, Gaubin M, Bonomi G, Mani JC, Berezov A, Piatier-Tonneau D, Guardiola J, Hillard B, Rostami A, Greene M, Murali R. Study of disabling T-cell activation and inhibiting T-cell-mediated immunopathology reveals a possible inverse agonist activity of CD4 peptidomimetics. Exp Mol Pathol 2002; 73:93-103. [PMID: 12231211 DOI: 10.1006/exmp.2002.2444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We designed a new class of aromatically modified exocyclic peptides based on the structure of CD4 by engineering one of the cysteine residues in a peptidomimetic derived from the CDR3 region of the CD4 molecule. All three species mediate inhibition of T-cell proliferation at concentrations ranging from 10 to 100 microM. The mimetics CD4-Cys and CD4-Met bind to sCD4 with affinities ranging from 1 to 2 microM, while CD4-Ser shows poor binding in radioisotope assay. Though these mimetics have similar structures, they exhibit different biochemical and biological functions. Activation of T-cells as measured by thymidine incorporation or IL-2 production revealed that CD4-Cys and CD4-Ser mimetics behave as classical antagonists. On the other hand, the CD4-Met species inhibited T-cell proliferation with an IC(50) of 30 microM but unexpectedly increased IL-2 secretion modestly at a less than 3 microM concentration. In experimental autoimmune encephalitis (EAE), CD4-Ser and CD4-Cys mimetics reduced the severity of EAE symptoms while the CD4-Met mimetic exacerbated the conditions. We propose that CD4-Cys and CD4-Ser are classical antagonists, but CD4-Met may possess properties of an inverse agonist. The structure-activity relationship of mimetics reveals that a minor change in the net hydropathic value is enough to alter the dynamic nature of the receptor-ligand complex.
Collapse
MESH Headings
- Animals
- Biotechnology
- CD4 Antigens/chemistry
- CD4 Antigens/metabolism
- CD4 Antigens/pharmacology
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/metabolism
- Computer Simulation
- Dimerization
- Dose-Response Relationship, Drug
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Guinea Pigs
- Humans
- In Vitro Techniques
- Interleukin-2/biosynthesis
- Interleukin-2/immunology
- Lymphocyte Activation/drug effects
- Major Histocompatibility Complex
- Mice
- Mice, Inbred C3H
- Mice, Inbred Strains
- Models, Biological
- Models, Molecular
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Protein Conformation
- Receptors, Antigen, T-Cell/metabolism
- Structure-Activity Relationship
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Takeo Horie
- Department of Pathology and School of Medicine, University of Pensylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Balboni G, Guerrini R, Salvadori S, Bianchi C, Rizzi D, Bryant SD, Lazarus LH. Evaluation of the Dmt-Tic pharmacophore: conversion of a potent delta-opioid receptor antagonist into a potent delta agonist and ligands with mixed properties. J Med Chem 2002; 45:713-20. [PMID: 11806723 DOI: 10.1021/jm010449i] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Analogues of the 2',6'-dimethyl-L-tyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) pharmacophore were prepared to test the hypothesis that a "spacer" and a third aromatic center in opioid peptides are required to convert a delta-antagonist into ligands with delta-agonist or with mixed delta-antagonist/mu-agonist properties. Potent delta-agonists and bifunctional compounds with high delta- and mu-opioid receptor affinities were obtained by varying the spacer length [none, NH-CH(2), NH-CH(2)-CH(2), Gly-NH-CH(2)] and C-terminal aromatic nucleus [1H-benzimidazole-2-yl, phenyl (Ph) and benzyl groups]. C-terminal modification primarily affected mu-opioid receptor affinities, which increased maximally 1700-fold relative to the prototype delta-antagonist H-Dmt-Tic-NH(2) and differentially modified bioactivity. In the absence of a spacer (1), the analogue exhibited dual delta-agonism (pEC(50), 7.28) and delta-antagonism (pA(2), 7.90). H-Dmt-Tic-NH-CH(2)-1H-benzimidazole-2-yl (Bid) (2) became a highly potent delta-agonist (pEC(50), 9.90), slightly greater than deltorphin C (pEC(50), 9.56), with mu-agonism (pE(50), 7.57), while H-Dmt-Tic-Gly-NH-CH(2)-Bid (4) retained potent delta-antagonism (pA(2), 9.0) but with an order of magnitude less mu-agonism. Similarly, H-Dmt-Tic-Gly-NH-Ph (5) had nearly equivalent high delta-agonism (pEC(50), 8.52) and mu-agonism (pEC(50), 8.59), while H-Dmt-Tic-Gly-NH-CH(2)-Ph (6) whose spacer was longer by a single methylene group exhibited potent delta-antagonism (pA(2), 9.25) and very high mu-agonism (pEC(50), 8.57). These data confirm that the distance between the Dmt-Tic pharmacophore and a third aromatic nucleus is an important criterion in converting Dmt-Tic from a highly potent delta-antagonist into a potent delta-agonist or into ligands with mixed delta- and mu-opioid properties.
Collapse
Affiliation(s)
- Gianfranco Balboni
- Department of Toxicology, University of Cagliary, I09126 Cagliary, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Cao CQ, Hong YG, Dray A, Perkins MN. Selective depression of nociceptive responses of dorsal horn neurones by SNC 80 in a perfused hindquarter preparation of adult mouse. Neuroscience 2002; 107:329-38. [PMID: 11731107 DOI: 10.1016/s0306-4522(01)00349-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Detailed electrophysiological characterisation of spinal opioid receptors in the mouse has been limited due to various technical difficulties. In this study, extracellular single unit recordings were made from dorsal horn neurones in a perfused spinal cord with attached trunk-hindquarter to investigate the role of delta-opioid receptor in mediating nociceptive and non-nociceptive transmission in mouse. Noxious electrical shock, pinch and heat stimuli evoked a mean response of 20.8+/-2.5 (n=10, P<0.005), 30.1+/-5.4 (n=58, P<0.005) and 40.9+/-6.3 (n=29, P<0.005) spikes per stimulus respectively. In 5 of 22 cells, repetitive noxious electrical stimuli applied to the hindpaw for 20 s produced a progressive increase in spike number, the phenomenon known as 'wind-up' and/or hyperactivity. When the selective delta-opioid receptor agonist (+)-4-[(alpha R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC 80) was perfused for 8-10 min, these evoked nociceptive responses were reversibly depressed. SNC 80 (2 microM) depressed the nociceptive responses evoked by electrical shock, pinch and heat by 74.0+/-13.7% (n=8, P<0.01), 66.5+/-16.6% (n=10, P<0.01) and 74.1+/-17.0% (n=10, P<0.01) respectively. The maximum depression by 5 microM SNC 80 was 92.6+/-6.8% (n=3). SNC 80 at 5 microM also completely abolished the wind-up and/or hypersensitivity (n=5). The depressant effects of SNC 80 on the nociceptive responses were completely blocked by 10 microM naloxone (n=5) and 3 microM 17-(cyclopropylmethyl)-6,7-dehydro-4,5 alpha-epoxy-14 beta-ethoxy-5 beta-methylindolo [2',3':6',7'] morphinan-3-ol hydrochloride (HS 378, n=8), a novel highly selective delta-opioid receptor antagonist. Interestingly, HS 378 (3 microM) itself potentiated the background activity and evoked responses to pinch and heat by 151.8+/-38.4% (P<0.05, n=8), 34.2+/-6.1% (P<0.01, n=7) and 45.5+/-11.8% (P<0.05, n=5) respectively. In contrast, the responses of non-nociceptive dorsal horn neurones were not inhibited by SNC 80 at a dose of up to 10 microM (n=5). These data demonstrate that delta-opioid receptor modulate nociceptive, but not non-nociceptive, transmission in spinal dorsal horn neurones of the adult mouse. The potentiation of neuronal activity by HS 378 may reflect an autoregulatory role of the endogenous delta-opioid in nociceptive transmission in mouse.
Collapse
Affiliation(s)
- C Q Cao
- Department of Pharmacology, AstraZeneca R&D Montreal, 7171 Frederick-Banting, St-Laurent (Montreal), QC, Canada H4S 1Z9.
| | | | | | | |
Collapse
|