1
|
Jabbari S, Zakaria ZA, Mohammadi S. Antinociceptive and antineuropathic effects of Trifolium resupinatum L. on formalin-induced nociception and cervical spinal cord hemi-contusion: Underlying Mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118913. [PMID: 39369921 DOI: 10.1016/j.jep.2024.118913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trifolium resupinatum L. (Fabaceae), known as Persian clover, ethnomedicinally used in Persian folk medicine to treat peritoneal inflammation, rheumatism, and back pain. AIM OF THE STUDY To investigate the antineuropathic and antinociceptive activities of Trifolium resupinatum leaves essential oil (TREO) in male Wistar rats, as well as to explore the potential mechanisms of action. MATERIALS AND METHODS The antinociceptive activity of TREO and its main constituents, quercetin (Qc) was assessed using the formalin-induced paw licking test. Moreover, the potential mechanisms of antinociception were evaluated through various competitive and non-competitive antagonisms. Additionally, the antineuropathic potential was investigated using the cervical spinal cord hemi-contusion (CCS) model, and the role of phosphorylated Stat-3 was analyzed using Western blotting. RESULTS TREO exerted significant antinociceptive activity (P < 0.01) in both phases of the formalin-induced test; however, its effects were more pronounced in the second phase. Modulators of the NO-cGMP-K+ channel pathway significantly reversed the antinociceptive activity of TREO (P < 0.05). Additionally, antagonists of TRPV1 and TRPV2, as well as CB1 and GABAA receptors, significantly reversed the antinociceptive effects of TREO (P < 0.05). In another study, both TREO and Qc significantly attenuated hyperalgesia and mechanical allodynia (P < 0.01) when evaluated using the CCS-induced nociception model. Notably, TREO also reduced the expression levels of interleukin-1 beta, interleukin-2, and tumor necrosis factor alpha in CCS-induced rats (P < 0.05). CONCLUSION TREO and Qc exhibit both antinociceptive and anti-neuropathic activities. The antinociceptive effects are partially mediated through the NO-cGMP-K+ channel pathways, along with the activation of TRPV, GABA, and cannabinoid receptors. Furthermore, the anti-neuropathic activity of TREO may be partially regulated through the inhibition of cytokines.
Collapse
Affiliation(s)
- Sajjad Jabbari
- Department of Biology, Faculty of Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran.
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia; Department of Environmental Health, Faculty of Public Health, Campus C Universitas Airlangga, Jalan Mulyorejo, Surabaya, 60115 East Java, Indonesia.
| | - Saeed Mohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Garrido-Suárez BB, Garrido G, Castro-Labrada M, Merino N, Valdés O, Pardo Z, Ochoa-Rodríguez E, Verdecia-Reyes Y, Delgado-Hernández R, Godoy-Figueiredo J, Ferreira SH. Anti-hypernociceptive and anti-inflammatory effects of JM-20: A novel hybrid neuroprotective compound. Brain Res Bull 2020; 165:185-197. [PMID: 33096198 DOI: 10.1016/j.brainresbull.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
The present study examines the possible effect of the novel hybrid molecule JM-20 (3-ethoxycarbonyl-2-methyl-4-(2-nitrophenyl)-411-dihydro-1H-pyrido[2,3-b] [1,5] benzodiazepine) on pain-related behaviours in a persistent pain model (5% formalin test) and in the neutrophil migration events during the inflammatory process. It further introduces JM-20 in a chronic constriction injury (CCI) model to clarify the possible subjacent mechanisms with its consequent clinical relevance. A single administration of JM-20 (20 or 40 mg/kg, per os [p.o.]) decreased licking/biting exclusively in the tonic phase of the formalin test in a GABA/benzodiazepine (BZD) receptor antagonist flumazenil-sensitive manner. JM-20 reduced in vivo neutrophil migration, rolling and adhesion to the endothelium induced by intraperitoneal administration of carrageenan in mice. In addition, plasma extravasation and tumour necrosis factor alpha production in the peritoneal fluid were decreased. Treatment with JM-20 (20 mg/kg, p.o.) for 7 days after CCI reduced mechanical hypersensitivity in a NG-monomethyl-l-arginine (L-NMMA)/methylene blue/glibenclamide-sensitive manner. Histopathological signs of Wallerian degeneration (WD) of the sciatic nerve were also attenuated, as well as interleukin-1 beta release in the spinal cord. The nitrate/nitrite concentration was increased centrally and did not show differences at the peripheral nerve level. The findings of this study suggest JM-20 can decrease persistent pain. A transient activity of its BDZ portion on nociceptive pathways mediated by GABA/BDZ receptors in association with its anti-inflammatory properties could be at least partially involved in this effect. JM-20 decreased CCI-induced mechanical hypersensitivity via the l-arginine/nitric oxide (NO)/cyclic GMP-sensitive ATP-sensitive potassium channel pathway. Its neuroprotective ability by preventing WD could be implicated in its anti-neuropathic mechanisms.
Collapse
Affiliation(s)
- Bárbara B Garrido-Suárez
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP, 10600, La Habana, Cuba.
| | - Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Edificio Ñ3, Universidad Católica del Norte, Angamos, 0610, Antofagasta, Chile.
| | - Marian Castro-Labrada
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP, 10600, La Habana, Cuba
| | - Nelson Merino
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP, 10600, La Habana, Cuba
| | - Odalys Valdés
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP, 10600, La Habana, Cuba
| | - Zenia Pardo
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP, 10600, La Habana, Cuba
| | - Estael Ochoa-Rodríguez
- Laboratorio de Síntesis Orgánica de La Facultad de Química de La Universidad de La Habana, Zapata s/n entre G y Carlitos Aguirre, Vedado Plaza de la Revolución, CP, 10400, La Habana, Cuba
| | - Yamila Verdecia-Reyes
- Laboratorio de Síntesis Orgánica de La Facultad de Química de La Universidad de La Habana, Zapata s/n entre G y Carlitos Aguirre, Vedado Plaza de la Revolución, CP, 10400, La Habana, Cuba
| | - René Delgado-Hernández
- Centro de Investigación y Desarrollo de Medicamentos, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP, 10600, La Habana, Cuba
| | - Jozi Godoy-Figueiredo
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto University of São Paulo, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Sergio H Ferreira
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto University of São Paulo, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
Senese NB, Kandasamy R, Kochan KE, Traynor JR. Regulator of G-Protein Signaling (RGS) Protein Modulation of Opioid Receptor Signaling as a Potential Target for Pain Management. Front Mol Neurosci 2020; 13:5. [PMID: 32038168 PMCID: PMC6992652 DOI: 10.3389/fnmol.2020.00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/09/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid drugs are the gold standard for the management of pain, but their use is severely limited by dangerous and unpleasant side effects. All clinically available opioid analgesics bind to and activate the mu-opioid receptor (MOR), a heterotrimeric G-protein-coupled receptor, to produce analgesia. The activity of these receptors is modulated by a family of intracellular RGS proteins or regulators of G-protein signaling proteins, characterized by the presence of a conserved RGS Homology (RH) domain. These proteins act as negative regulators of G-protein signaling by serving as GTPase accelerating proteins or GAPS to switch off signaling by both the Gα and βγ subunits of heterotrimeric G-proteins. Consequently, knockdown or knockout of RGS protein activity enhances signaling downstream of MOR. In this review we discuss current knowledge of how this activity, across the different families of RGS proteins, modulates MOR activity, as well as activity of other members of the opioid receptor family, and so pain and analgesia in animal models, with particular emphasis on RGS4 and RGS9 families. We discuss inhibition of RGS proteins with small molecule inhibitors that bind to sensitive cysteine moieties in the RH domain and the potential for targeting this family of intracellular proteins as adjuncts to provide an opioid sparing effect or as standalone analgesics by promoting the activity of endogenous opioid peptides. Overall, we conclude that RGS proteins may be a novel drug target to provide analgesia with reduced opioid-like side effects, but that much basic work is needed to define the roles for specific RGS proteins, particularly in chronic pain, as well as a need to develop newer inhibitors.
Collapse
Affiliation(s)
- Nicolas B Senese
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Psychiatry, Chicago, IL, United States
| | - Ram Kandasamy
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Psychology, California State University, East Bay, Hayward, CA, United States
| | - Kelsey E Kochan
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - John R Traynor
- Department of Pharmacology, Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Garrido-Suárez BB, Garrido G, Piñeros O, Delgado-Hernández R. Mangiferin: Possible uses in the prevention and treatment of mixed osteoarthritic pain. Phytother Res 2019; 34:505-525. [PMID: 31755173 DOI: 10.1002/ptr.6546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) pain has been proposed to be a mixed pain state, because in some patients, central nervous system factors are superimposed upon the more traditional peripheral factors. In addition, a considerable amount of preclinical and clinical evidence has shown that, accompanying the central neuroplasticity changes and partially driven by a peripheral nociceptive input, a real neuropathic component occurs that are particularly linked to disease severity and progression. Hence, innovative strategies targeting neuroprotection and particularly neuroinflammation to prevent and treat OA pain could be introduced. Mangiferin (MG) is a glucosylxanthone that is broadly distributed in higher plants, such as Mangifera indica L. Previous studies have documented its analgesic, anti-inflammatory, antioxidant, neuroprotective, and immunomodulatory properties. In this paper, we propose its potential utility as a multitargeted compound for mixed OA pain, even in the context of multimodal pharmacotherapy. This hypothesis is supported by three main aspects: the cumulus of preclinical evidence around this xanthone, some preliminary clinical results using formulations containing MG in clinical musculoskeletal or neuropathic pain, and by speculations regarding its possible mechanism of action according to recent advances in OA pain knowledge.
Collapse
Affiliation(s)
- Bárbara B Garrido-Suárez
- Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, Havana, Cuba
| | - Gabino Garrido
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Antofagasta, Chile
| | - Octavio Piñeros
- Departamento de Investigaciones, Universidad de Santiago de Cali, Cali, Colombia
| | - René Delgado-Hernández
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Havana, Cuba
| |
Collapse
|
5
|
Zhang L, Yin JB, Hu W, Zhao WJ, Fan QR, Qiu ZC, He MJ, Ding T, Sun Y, Kaye AD, Wang ER. Analgesic Effects of Duloxetine on Formalin-Induced Hyperalgesia and Its Underlying Mechanisms in the CeA. Front Pharmacol 2018; 9:317. [PMID: 29692727 PMCID: PMC5902556 DOI: 10.3389/fphar.2018.00317] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
In rodents, the amygdala has been proposed to serve as a key center for the nociceptive perception. Previous studies have shown that extracellular signal-regulated kinase (ERK) signaling cascade in the central nucleus of amygdala (CeA) played a functional role in inflammation-induced peripheral hypersensitivity. Duloxetine (DUL), a serotonin and noradrenaline reuptake inhibitor, produced analgesia on formalin-induced spontaneous pain behaviors. However, it is still unclear whether single DUL pretreatment influences formalin-induced hypersensitivity and what is the underlying mechanism. In the current study, we revealed that systemic pretreatment with DUL not only dose-dependently suppressed the spontaneous pain behaviors, but also relieved mechanical and thermal hypersensitivity induced by formalin hindpaw injection. Consistent with the analgesic effects of DUL on the pain behaviors, the expressions of Fos and pERK that were used to check the neuronal activities in the spinal cord and CeA were also dose-dependently reduced following DUL pretreatment. Meanwhile, no emotional aversive behaviors were observed at 24 h after formalin injection. The concentration of 5-HT in the CeA was correlated with the dose of DUL in a positive manner at 24 h after formalin injection. Direct injecting 5-HT into the CeA suppressed both the spontaneous pain behaviors and hyperalgesia induced by formalin injection. However, DUL did not have protective effects on the formalin-induced edema of hindpaw. In sum, the activation of CeA neurons may account for the transition from acute pain to long-term hyperalgesia after formalin injection. DUL may produce potent analgesic effects on the hyperalgesia and decrease the expressions of p-ERK through increasing the concentration of serotonin in the CeA.
Collapse
Affiliation(s)
- Lie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun-Bin Yin
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.,Department of Neurology, The 456th Hospital of PLA, Jinan, China.,Department of Human Anatomy, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.,Department of Human Anatomy, The Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Zhao
- Department of Human Anatomy, The Fourth Military Medical University, Xi'an, China
| | - Qing-Rong Fan
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhi-Chun Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ming-Jie He
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Tan Ding
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Sun
- Cadet Bridge, The Fourth Military Medical University, Xi'an, China
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Louisiana State University School of Medicine, New Orleans, LA, United States
| | - En-Ren Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
6
|
Anti-hypernociceptive effect of mangiferin in persistent and neuropathic pain models in rats. Pharmacol Biochem Behav 2014; 124:311-9. [DOI: 10.1016/j.pbb.2014.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 11/21/2022]
|
7
|
Wang G, Erpelding N, Davis KD. Sex differences in connectivity of the subgenual anterior cingulate cortex. Pain 2014; 155:755-763. [DOI: 10.1016/j.pain.2014.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/23/2013] [Accepted: 01/10/2014] [Indexed: 01/08/2023]
|
8
|
Evaluation of mechanical allodynia in an animal immobilization model using the von frey method. J Manipulative Physiol Ther 2011; 35:18-25. [PMID: 22054875 DOI: 10.1016/j.jmpt.2011.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/17/2011] [Accepted: 08/19/2011] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate the mechanical allodynia in animals after immobilization and chiropractic manipulation using the Activator instrument (Activator Methods International, Phoenix, Ariz) through the Von Frey test in an animal model that had its hind limb immobilized as a form to induce mechanical allodynia. METHOD Eighteen adult male Wistar rats were used and divided into 3 groups: control group (C) (n = 6) that was not immobilized; immobilized group (I) (n = 6) that had its right hind limb immobilized; immobilized and adjusted group (IAA) (n = 6) that had its right hind limb immobilized and received chiropractic manipulation after. The mechanical allodynia was induced through the right hind limb immobilization. At the end of the immobilization period, the first Von Frey test was performed, and after that, 6 chiropractic manipulations on the tibial tubercle were made using the Activator instrument. After the manipulation period, Von Frey test was performed again. RESULTS It was observed that after the immobilization period, groups I and IAA had an exacerbation of mechanical allodynia when compared with group C (P < .001) and that after the manipulation, group IAA had a reversion of these values (P < .001), whereas group I kept a low pain threshold when compared with group C (P < .001). CONCLUSION This study demonstrates that immobilization during 4 weeks was sufficient to promote mechanical allodynia. Considering the chiropractic manipulation using the Activator instrument, it was observed that group IAA had decreased levels of mechanical allodynia, obtaining similar values to group C.
Collapse
|
9
|
Formalin-induced long-term secondary allodynia and hyperalgesia are maintained by descending facilitation. Pharmacol Biochem Behav 2011; 98:417-24. [DOI: 10.1016/j.pbb.2011.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/14/2011] [Indexed: 12/23/2022]
|
10
|
Terashvili M, Tseng LF, Wu HE, Narayanan J, Hart LM, Falck JR, Pratt PF, Harder DR. Antinociception produced by 14,15-epoxyeicosatrienoic acid is mediated by the activation of beta-endorphin and met-enkephalin in the rat ventrolateral periaqueductal gray. J Pharmacol Exp Ther 2008; 326:614-22. [PMID: 18492947 DOI: 10.1124/jpet.108.136739] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 genes catalyze formation of epoxyeicosatrienoic acids (EETs) from arachidonic acid. The effects of 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET microinjected into the ventrolateral periaqueductal gray (vlPAG) on the thermally produced tail-flick response were studied in male Sprague-Dawley rats. 14,15-EET microinjected into vlPAG (3-156 pmol) dose-dependently inhibited the tail-flick response (ED50 = 32.5 pmol). In contrast, 5,6-EET, 8,9-EET, and 11,12-EET at a dose of 156 pmol were not active when injected into the vlPAG. 14,15-EET failed to displace the radiobinding of [3H][D-Ala2,NHPe4, Gly-ol5]enkephalin (mu-opioid receptor ligand) or [3H]naltrindole (delta-opioid receptor ligand) in crude membrane fractions of rat brain. Tail-flick inhibition produced by 14,15-EET from vlPAG was blocked by intra-vlPAG pretreatment with antiserum against beta-endorphin or Met-enkephalin or the mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) or the delta-opioid receptor antagonist naltrindole but not with dynorphin A[1-17] antiserum or the kappa-opioid receptor antagonist nor-binaltorphimine. In addition, tail-flick inhibition produced by 14,15-EET treatment was blocked by intrathecal pretreatment with Met-enkephalin antiserum, naltrindole, or CTOP but not with beta-endorphin antiserum. It is concluded that 1) 14,15-EET itself does not have any affinity for mu- or delta-opioid receptors and 2) 14,15-EET activates beta-endorphin and Met-enkephalin, which subsequently act on mu- and delta-opioid receptors to produce antinociception.
Collapse
Affiliation(s)
- Maia Terashvili
- Department of Physiology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Characterization of the hypothalamic proopiomelanocortin gene and β-endorphin expression in the hypothalamic arcuate nucleus of mice elicited by inflammatory pain. Neuroscience 2008; 152:1054-66. [DOI: 10.1016/j.neuroscience.2007.06.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Revised: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 01/05/2023]
|
12
|
Xie YF, Wang J, Huo FQ, Jia H, Tang JS. Mu but not delta and kappa opioid receptor involvement in ventrolateral orbital cortex opioid-evoked antinociception in formalin test rats. Neuroscience 2004; 126:717-26. [PMID: 15183520 DOI: 10.1016/j.neuroscience.2004.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2004] [Indexed: 10/26/2022]
Abstract
The present study was designed to investigate the roles of different subtypes of opioid receptors in ventrolateral orbital cortex (VLO) opioid-evoked antinociception in formalin test by using an automatic detection system for recording the nociceptive behavior (agitation) and a manual method for detecting the duration of licking the injected paw in the conscious rat. Formalin (5%, 50 microl) s.c. injected into the hindpaw produced a biphasic agitation response or lengthening duration of licking. Morphine (5 microg) microinjected unilaterally into VLO significantly inhibited the agitation response and the licking time, and these effects were blocked by pre-administration of the non-selective opioid receptor antagonist naloxone (1.0 microg) into the same site. Microinjection of endomorphin-1 (5 microg), a selective micro-receptor agonist, and [D-Ala2, D-Leu5]-enkephalin (DADLE, 10 microg), a delta-/micro-receptor agonist also inhibited the nociceptive behaviors, and both the effects were blocked by selective mu-receptor antagonist beta-funaltrexamine hydrochloride (beta-FNA; 3.75 microg), but the DADLE-evoked inhibition was not influenced by the selective delta-receptor antagonist naltrindole (5 microg). Microinjection of selective kappa-receptor agonist (+/-)-trans-U-50488 methanesulfonate salt (1.5 microg) failed to alter the nociceptive behaviors induced by formalin injection. The beta-FNA and naloxone applied into VLO and morphine into the adjacent regions ventral and dorsal to VLO had no effect on the formalin-evoked nociceptive behaviors. These results suggest that mu- but not delta- or kappa-opioid receptor is involved in the VLO opioid-evoked antinociception in formalin test rat.
Collapse
Affiliation(s)
- Y F Xie
- Department of Physiology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | | | | | | | | |
Collapse
|
13
|
Zhao CS, Tao YX, Tall JM, Donovan DM, Meyer RA, Raja SN. Role of micro-opioid receptors in formalin-induced pain behavior in mice. Exp Neurol 2004; 184:839-45. [PMID: 14769376 DOI: 10.1016/s0014-4886(03)00346-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Revised: 07/03/2003] [Accepted: 07/09/2003] [Indexed: 10/26/2022]
Abstract
Intraplantar formalin injection is widely used as an experimental model of tonic pain. We investigated the role of endogenous micro-opioid receptor mechanisms in formalin-induced nocifensive behavior in mice. The flinching response induced by formalin (2%, 20 microl) was studied in mice with normal (wild type, n = 8) and absent (homozygous micro-opioid receptor knockout, n = 8) micro-opioid receptor levels. The flinch responses were counted every 5 min for 60 min post-formalin injection. Lumbar spinal cord (L4, 5) was harvested 2 h post-formalin injection to examine c-Fos expression using immunohistochemistry. The effects of naloxone (5 mg/kg, sc) administered 30 min before the intraplantar formalin injection on the flinching response of wild-type mice (n = 7) were also recorded. The second-phase formalin response (10-60 min after formalin) was higher in homozygous micro-opioid receptor knockout mice compared to the wild-type mice (P < 0.01). Naloxone administration in wild-type mice before formalin injection resulted in pain behavior similar to that observed in homozygous micro-opioid receptor knockout mice (P > 0.05). The c-Fos expression induced by formalin injection in the knockout mice was not different from that observed in wild-type mice. Our results suggest that the endogenous micro-opioid system is activated by intraplantar formalin injection and exerts a tonic inhibitory effect on the pain behavior. These results suggest an important modulatory role of endogenous micro-opioid receptor mechanisms in tonic pain states.
Collapse
Affiliation(s)
- Cheng-Shui Zhao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
14
|
Sun YG, Lundeberg T, Yu LC. Involvement of endogenous beta-endorphin in antinociception in the arcuate nucleus of hypothalamus in rats with inflammation. Pain 2003; 104:55-63. [PMID: 12855314 DOI: 10.1016/s0304-3959(02)00464-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although exogenous administration of beta-endorphin to the arcuate nucleus of hypothalamus (ARC) had been shown to produce antinociception, the role of endogenous beta-endorphin of the ARC in nociceptive processing has not been studied directly. The aim of the present study was to investigate the effect of endogenous beta-endorphin in the ARC on nociception in rats with carrageenan-induced inflammation. The hindpaw withdrawal latency (HWL) to noxious thermal and mechanical stimulation was assessed by the hot-plate test and the Randall Selitto Test. Intra-ARC injection of naloxone had no significant influence on the HWL to thermal and mechanical stimulation in intact rats. The HWL decreased significantly after intra-ARC injection of 1 or 10 microg of naloxone in rats with inflammation, but not with 0.1 microg of naloxone. Furthermore, intra-ARC administration of the selective mu-opioid receptor antagonist beta-funaltrexamine (beta-FNA) decreased the nociceptive response latencies to both stimulation in a dose-dependent manner in rats with inflammation, while intra-ARC administration of the selective delta-opioid receptor antagonist naltrindole or the selective kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI) showed no influences on the nociceptive response latency. The antiserum against beta-endorphin, administered to the ARC, also dose-dependently reduced the HWL in rats with inflammation. The results indicate that endogenous beta-endorphin in the ARC plays an important role in the endogenous antinociceptive system in rats with inflammation, and that its effect is predominantly mediated by the mu-opioid receptor.
Collapse
Affiliation(s)
- Yan-Gang Sun
- Department of Physiology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | | | | |
Collapse
|
15
|
Le Guen S, Catheline G, Fournié-Zaluski MC, Roques BP, Besson JM, Buritova J. Further evidence for the interaction of mu- and delta-opioid receptors in the antinociceptive effects of the dual inhibitor of enkephalin catabolism, RB101(S). A spinal c-Fos protein study in the rat under carrageenin inflammation. Brain Res 2003; 967:106-12. [PMID: 12650971 DOI: 10.1016/s0006-8993(02)04231-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have previously shown that RB101, a dual inhibitor of enkephalin-degrading enzymes, decreased carrageenin-evoked c-Fos protein expression at the spinal cord level in awake rats. Moreover, we have also shown that c-Fos expression is a useful marker of the possible direct or indirect interactions between neural pathways, such as opioid and cholecystokinin systems. We now investigated the respective roles of the three main types of opioid receptors (mu, delta, or kappa) and their possible interactions, in the depressive effects of RB101 in inflammatory nociceptive conditions induced by intraplantar carrageenin (6 mg/150 microl of saline). We used beta-funaltrexamine (beta-FNA), naltrindole (NTI), and nor-binaltorphimine (BNI) as specific antagonists for mu, delta- and kappa-opioid receptors, respectively. c-Fos protein-immunoreactivity (c-Fos-IR) was evaluated as the number of c-Fos-IR nuclei in the lumbar spinal cord 90 min after carrageenin. c-Fos-IR nuclei were preferentially located in the superficial (I-II) and deep (V-VI) laminae of segments L4-L5 (areas containing numerous neurons responding exclusively, or not, to nociceptive stimuli). RB101(S) (30 mg/kg, i.v.) significantly reduced the total number of carrageenin-evoked c-Fos-IR nuclei (30% reduction, P<0.01). This effect was completely blocked by beta-FNA (10 mg/kg, i.v.), or NTI (1 mg/kg, i.v.). In contrast, BNI (2.5 mg/kg, i.v.) did not reverse the reducing effects of RB101(S) on carrageenin-evoked c-Fos protein expression. These results suggest that functional interactions occur between mu- and delta-opioid receptors in enkephalin-induced antinociceptive effects.
Collapse
Affiliation(s)
- Stéphanie Le Guen
- Laboratoire de Pharmacochimie Moléculaire et Structurale, INSERM U266-CNRS FRE2463, 4 Avenue de l'Observatoire, 75270 Paris Cedex 06, France.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
17
|
Parra MC, Nguyen TN, Hurley RW, Hammond DL. Persistent inflammatory nociception increases levels of dynorphin1-17 in the spinal cord, but not in supraspinal nuclei involved in pain modulation. THE JOURNAL OF PAIN 2002; 3:330-6. [PMID: 14622757 DOI: 10.1054/jpai.2002.125185] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is well established that nerve injury or inflammatory injury results in a time-dependent increase in the expression of dynorphin in the spinal cord. However, little is known about the effects of persistent pain on the expression of this endogenous opioid peptide by supraspinal nuclei implicated in the modulation of pain sensitivity. This study used enzyme-linked immunosorbent assay to measure the levels of dynorphin(1-17) in the spinal cord as well as in brainstem nuclei 4 hours, 4 days, or 2 weeks after intraplantar injection of saline or complete Freund's adjuvant in the left hind paw. As previously reported, complete Freund adjuvant produced a time-dependent increase in dynorphin that was confined to the ipsilateral dorsal horn. In contrast, levels of dynorphin(1-17) in the nucleus raphe magnus, nucleus reticularis gigantocellularis pars alpha, parabrachial nuclei, microcellular tegmentum, pontine periaqueductal gray, and midbrain periaqueductal gray were not affected at any time after injection of complete Freund adjuvant. These data suggest that alterations in levels of dynorphin do not mediate the up-regulation of activity in bulbospinal pain inhibitory or pain facilitatory pathways that occurs during persistent pain.
Collapse
|
18
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
19
|
Wu HE, Hung KC, Mizoguchi H, Nagase H, Tseng LF. Roles of endogenous opioid peptides in modulation of nocifensive response to formalin. J Pharmacol Exp Ther 2002; 300:647-54. [PMID: 11805228 DOI: 10.1124/jpet.300.2.647] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Roles of endogenous opioid peptides and their receptors in modulation of the nocifensive responses to formalin in mice were studied. Mice were pretreated i.c.v. or intrathecally (i.t.) with selective opioid receptor antagonists or intrathecally with antisera against endogenous opioid peptides and the nocifensive licking responses to intraplantar injection of formalin (0.5%, 25 microl) were then observed. Pretreatment with the epsilon-opioid receptor antagonist beta-endorphin(1-27) or the selective mu-opioid receptor antagonist D-Phe-Cys-Tyr-Orn-Thr-Pen-Thr-NH(2) (CTOP) given i.c.v. dose dependently enhanced the second, but not the first phase of the nocifensive response. However, i.c.v. pretreatment with the selective delta-receptor antagonist naltrindole or kappa-receptor antagonist nor-binaltrophimine did not affect the nocifensive responses. Intrathecal pretreatment with selective delta(1)-opioid antagonist 7-benzylidene naltrexamine significantly enhanced both the first and second phases of nocifension. Intrathecal pretreatment with CTOP also increased the second but not the first phase of the nocifension. However, i.t. pretreatment with the selective delta(2)-receptor antagonist naltriben or nor-binaltrophimine did not affect the second phase of the nocifension. Intrathecal pretreatment with antiserum against Leu-enkephalin, Met-enkephalin, or dynorphin A(1-17), but not beta-endorphin, enhanced only the second phase of nocifensive response to formalin. It is concluded that the blockade of epsilon- and mu-receptors, but not delta- or kappa-receptors, at the supraspinal sites enhanced the second phase of formalin-induced nocifension. In the spinal cord, Leu-enkephalin, and to a lesser extent, Met-enkephalin and dynorphin A(1-17) and mu- and delta(1)-opioid receptors, but not delta(2)- or kappa-opioid receptors, are involved in modulating the feedback inhibition of the second phase of formalin-induced nocifension.
Collapse
Affiliation(s)
- Hsiang-En Wu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Among the opioid receptors, which have been pharmacologically classified as mu, delta, kappa and epsilon, the existence of the epsilon receptor has been controversial, and this receptor is generally not recognized as a member of the opioid peptide receptor family because it has not been precisely characterized. However, results from pharmacological, physiological and opioid receptor binding studies clearly indicate the presence of epsilon-opioid receptors, which are distinct from mu-, delta- or kappa-opioid receptors. This putative epsilon-opioid receptor is stimulated supraspinally by the endogenous opioid peptide beta-endorphin, which induces the release of Met-enkephalin, which, in turn, acts on spinal delta2-opioid receptors to produce antinociception. In this article, this beta-endorphin-sensitive epsilon-opioid receptor-mediated descending pain control system, which is distinct from that activated by the mu-opioid receptor agonist morphine, is described and the physiological role of the beta-endorphin-mediated system in pain control activated by cold-water swimming and intraplantar injection of formalin is discussed.
Collapse
Affiliation(s)
- L F Tseng
- Dept of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|