1
|
Shin EJ, Jeong JH, Nguyen BT, Sharma N, Nah SY, Chung YH, Lee Y, Byun JK, Nabeshima T, Ko SK, Kim HC. Ginsenoside Re Protects against Serotonergic Behaviors Evoked by 2,5-Dimethoxy-4-iodo-amphetamine in Mice via Inhibition of PKCδ-Mediated Mitochondrial Dysfunction. Int J Mol Sci 2021; 22:ijms22137219. [PMID: 34281274 PMCID: PMC8268959 DOI: 10.3390/ijms22137219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
It has been recognized that serotonin 2A receptor (5-HT2A) agonist 2,5-dimethoxy-4-iodo-amphetamine (DOI) impairs serotonergic homeostasis. However, the mechanism of DOI-induced serotonergic behaviors remains to be explored. Moreover, little is known about therapeutic interventions against serotonin syndrome, although evidence suggests that ginseng might possess modulating effects on the serotonin system. As ginsenoside Re (GRe) is well-known as a novel antioxidant in the nervous system, we investigated whether GRe modulates 5-HT2A receptor agonist DOI-induced serotonin impairments. We proposed that protein kinase Cδ (PKCδ) mediates serotonergic impairments. Treatment with GRe or 5-HT2A receptor antagonist MDL11939 significantly attenuated DOI-induced serotonergic behaviors (i.e., overall serotonergic syndrome behaviors, head twitch response, hyperthermia) by inhibiting mitochondrial translocation of PKCδ, reducing mitochondrial glutathione peroxidase activity, mitochondrial dysfunction, and mitochondrial oxidative stress in wild-type mice. These attenuations were in line with those observed upon PKCδ inhibition (i.e., pharmacologic inhibitor rottlerin or PKCδ knockout mice). Furthermore, GRe was not further implicated in attenuation mediated by PKCδ knockout in mice. Our results suggest that PKCδ is a therapeutic target for GRe against serotonergic behaviors induced by DOI.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Bao-Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 05029, Korea;
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Chungju 28644, Korea;
| | - Jae Kyung Byun
- Korea Society of Forest Environmental Research, Namyanju 12106, Korea;
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake 470-1192, Japan;
| | - Sung Kwon Ko
- Department of Oriental Medical Food and Nutrition, Semyung University, Jecheon 27136, Korea
- Correspondence: (S.K.K.); (H.-C.K.); Tel.: +82-33-250-6917 (H.-C.K.); Fax: +82-33-259-5631 (H.-C.K.)
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Korea; (E.-J.S.); (B.-T.N.); (N.S.)
- Correspondence: (S.K.K.); (H.-C.K.); Tel.: +82-33-250-6917 (H.-C.K.); Fax: +82-33-259-5631 (H.-C.K.)
| |
Collapse
|
2
|
Phan DH, Shin EJ, Sharma N, Hoang Yen TP, Dang DK, Lee YS, Lee YJ, Nah SY, Cheong JH, Jeong JH, Kim HC. 5-HT 2A receptor-mediated PKCδ phosphorylation is critical for serotonergic impairments induced by p-chloroamphetamine in mice. Food Chem Toxicol 2020; 141:111395. [PMID: 32437895 DOI: 10.1016/j.fct.2020.111395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/18/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
p-Chloroamphetamine (PCA), an amphetamine derivative, has been shown to induce serotonergic toxicity. However, the precise mechanism of serotonergic toxicity induced by PCA remains unclear. In this study, PCA treatment (20 mg/kg, i.p.) did not significantly change 5-HT1A receptor gene expression, but significantly increased 5-HT2A receptor gene expression. Furthermore, 5-HT2A receptor antagonist MDL11939, but not 5-HT1A receptor antagonist WAY100635, significantly attenuated PCA-induced serotonergic impairments. We investigated whether PCA activated a specific isoform of protein kinase C (PKC), since previous evidence indicated the involvement of PKC in neurotoxicity induced by amphetamines. We observed that PCA treatment significantly increased the expression levels of PKCδ among all PKC isoforms. MDL11939 treatment significantly attenuated PCA-induced phosphorylation of PKCδ. However, PCA-induced increase in 5-HT2A receptor gene expression was not altered by rottlerin (a pharmacological inhibitor of PKCδ) in mice, suggesting that 5-HT2A receptor is an upstream molecule for the activation of PKCδ. Rottlerin or PKCδ knockout significantly attenuated serotonergic behaviors. However, MDL11939 did not show any additional effects against the attenuation caused by PKCδ knockout in mice, suggesting that PKCδ gene is a molecular target for 5-HT2A receptor-mediated serotonergic effects. Our results suggest that 5-HT2A receptor mediates PCA-induced serotonergic impairments via activation of PKC.δ.
Collapse
Affiliation(s)
- Dieu Hien Phan
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; School of Medicine and Pharmacy - Hoa Quy Ward, The University of Da Nang, Da Nang 550000, Viet Nam
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Tran Phi Hoang Yen
- Faculty of Pharmacy, University of Medicine and Pharmacy of Ho Chi Minh City, 710000, Viet Nam
| | - Duy-Khanh Dang
- Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yu Jeung Lee
- Clinical Pharmacy, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jae Hoon Cheong
- Department of Pharmacy, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, BK21 PLUS Project, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
3
|
|
4
|
Abstract
Phenethylamine-induced hyperthermia can occur following exposure to several different types of illicit stimulants, such as amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine ("Molly"), synthetic cathinones ("bath salts"), and N-methoxybenyl ("NBOMe"), to name a few. Peripheral norepinephrine release mediated by these sympathomimetic agents induces a double-edged sword of heat accumulation through β-adrenoreceptor-dependent activation of uncoupling protein (UCP1 and 3)-regulated thermogenesis and loss of heat dissipation through α1-adrenoreceptor-mediated vasoconstriction. Additionally, thyroid hormones are important determinants of the capacity of thermogenesis induced by phenethylamines through the regulation of free fatty acid release and the transcriptional activation of a host of metabolic genes, including adrenergic receptors and mitochondrial uncoupling proteins. Here, we review the central and peripheral mechanistic "triggers" of phenethylamine-induced hyperthermia and outline potential pharmacologic interventions for managing phenethylamine-induced hyperthermia based on these recently discovered hyperthermia mediators.
Collapse
|
5
|
Coman D, Sanganahalli BG, Jiang L, Hyder F, Behar KL. Distribution of temperature changes and neurovascular coupling in rat brain following 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") exposure. NMR IN BIOMEDICINE 2015; 28:1257-66. [PMID: 26286889 PMCID: PMC4573923 DOI: 10.1002/nbm.3375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 06/22/2015] [Accepted: 07/19/2015] [Indexed: 05/05/2023]
Abstract
(+/-)3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is an abused psychostimulant that produces strong monoaminergic stimulation and whole-body hyperthermia. MDMA-induced thermogenesis involves activation of uncoupling proteins (UCPs), primarily a type specific to skeletal muscle (UCP-3) and absent from the brain, although other UCP types are expressed in the brain (e.g. thalamus) and might contribute to thermogenesis. Since neuroimaging of brain temperature could provide insights into MDMA action, we measured spatial distributions of systemically administered MDMA-induced temperature changes and dynamics in rat cortex and subcortex using a novel magnetic resonance method, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), with an exogenous temperature-sensitive probe (thulium ion and macrocyclic chelate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetramethyl-1,4,7,10-tetraacetate (DOTMA(4-))). The MDMA-induced temperature rise was greater in the cortex than in the subcortex (1.6 ± 0.4 °C versus 1.3 ± 0.4 °C) and occurred more rapidly (2.0 ± 0.2 °C/h versus 1.5 ± 0.2 °C/h). MDMA-induced temperature changes and dynamics in the cortex and body were correlated, although the body temperature exceeded the cortex temperature before and after MDMA. Temperature, neuronal activity, and blood flow (CBF) were measured simultaneously in the cortex and subcortex (i.e. thalamus) to investigate possible differences of MDMA-induced warming across brain regions. MDMA-induced warming correlated with increases in neuronal activity and blood flow in the cortex, suggesting that the normal neurovascular response to increased neural activity was maintained. In contrast to the cortex, a biphasic relationship was seen in the subcortex (i.e. thalamus), with a decline in CBF as temperature and neural activity rose, transitioning to a rise in CBF for temperature above 37 °C, suggesting that MDMA affected CBF and neurovascular coupling differently in subcortical regions. Considering that MDMA effects on CBF and heat dissipation (as well as potential heat generation) may vary regionally, neuroprotection may require different cooling strategies.
Collapse
Affiliation(s)
- Daniel Coman
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Basavaraju G. Sanganahalli
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Lihong Jiang
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT 06520, USA
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Kevin L. Behar
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT 06520, USA
- Department of Psychiatry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
6
|
García-García L, Delgado M, Al-Sayed AA, Bascuñana P, Fernández de la Rosa R, Bermejo-Bescós P, Martín-Aragón S, Pozo MA. In Vivo [18F] FDG PET Imaging Reveals that p-Chloroamphetamine Neurotoxicity is Associated with Long-Term Cortical and Hippocampal Hypometabolism. Mol Imaging Biol 2014; 17:239-47. [DOI: 10.1007/s11307-014-0794-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Haberzettl R, Bert B, Fink H, Fox MA. Animal models of the serotonin syndrome: a systematic review. Behav Brain Res 2013; 256:328-45. [PMID: 24004848 DOI: 10.1016/j.bbr.2013.08.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 11/16/2022]
Abstract
The serotonin syndrome (SS) is a potentially life-threatening disorder in humans which is induced by ingestion of an overdose or by combination of two or more serotonin (5-HT)-enhancing drugs. In animals, acute administration of direct and indirect 5-HT agonists also leads to a set of behavioral and autonomic responses. In the current review, we provide an overview of the existing versions of the animal model of the SS. With a focus on studies in rats and mice, we analyze the frequency of behavioral and autonomic responses following administration of 5-HT-enhancing drugs and direct 5-HT agonists administered alone or in combination, and we briefly discuss the receptor mediation of these responses. Considering species differences, we identify a distinct set of behavioral and autonomic responses that are consistently observed following administration of direct and indirect 5-HT agonists. Finally, we discuss the importance of a standardized assessment of SS responses in rodents and the utility of animal models of the SS in translational studies, and provide suggestions for future research.
Collapse
Affiliation(s)
- Robert Haberzettl
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
8
|
Methamphetamine and core temperature in the rat: ambient temperature, dose, and the effect of a D2 receptor blocker. Psychopharmacology (Berl) 2013; 228:551-61. [PMID: 23732837 DOI: 10.1007/s00213-013-3059-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/02/2013] [Indexed: 12/16/2022]
Abstract
RATIONALE Methamphetamine (METH) induces hyperthermia in warm and hypothermia in cool environments. Our first goal was to further study the role of ambient temperature in METH's effect on core temperature in rats. Previously, these effects were primarily demonstrated in high doses; we extended this investigation to the low-dose range (1 mg/kg METH). Our second goal was to identify the role of the D2 receptor in METH's effects in cool ambient temperatures. METHOD Rats received METH (saline, 1, 5, and 10 mg/kg), raclopride (saline, 0.3, 0.6, and 1.2 mg/kg), or a combination (all doses of raclopride combined with 10 mg/kg METH). Treatments occurred in ambient temperatures of 18, 24, or 30 °C. RESULTS AND CONCLUSIONS Consistent with prior research, 5 and 10 mg/kg METH caused hyperthermia or hypothermia in a dose- and ambient temperature-dependent manner (60 min after METH). In contrast, 1 mg/kg produced similar levels of hyperthermia at all ambient temperatures. These findings suggest that a threshold METH dose exists; below this dose, METH still changes core temperature, but CNS control over temperature regulation is left intact. In our experiments regarding D2 blockade, raclopride decreased METH-induced core temperature at 30 and 24 °C (60 min after METH), consistent with previous findings. We extended these findings by demonstrating that in a cool ambient temperature (18 °C), raclopride pretreatment also lowered the core temperature response to METH. Although the D2 receptor is known to mediate hypothermia, the combination of METH and D2 blockade suggests a complex mediation of the core temperature response, perhaps involving neurotransmitter interactions.
Collapse
|
9
|
Effects of exposure to amphetamine derivatives on passive avoidance performance and the central levels of monoamines and their metabolites in mice: correlations between behavior and neurochemistry. Psychopharmacology (Berl) 2012; 220:495-508. [PMID: 21993877 PMCID: PMC3289749 DOI: 10.1007/s00213-011-2504-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 09/07/2011] [Indexed: 10/16/2022]
Abstract
RATIONALE Considerable evidence indicates that amphetamine derivatives can deplete brain monoaminergic neurotransmitters. However, the behavioral and cognitive consequences of neurochemical depletions induced by amphetamines are not well established. OBJECTIVES In this study, mice were exposed to dosing regimens of 3,4-methylenedioxymethamphetamine (MDMA), methamphetamine (METH), or parachloroamphetamine (PCA) known to deplete the monoamine neurotransmitters dopamine and serotonin, and the effects of these dosing regimens on learning and memory were assessed. METHODS In the same animals, we determined deficits in learning and memory via passive avoidance (PA) behavior and changes in tissue content of monoamine neurotransmitters and their primary metabolites in the striatum, frontal cortex, cingulate, hippocampus, and amygdala via ex vivo high-pressure liquid chromatography. RESULTS Exposure to METH and PCA impaired PA performance and resulted in significant depletions of dopamine, serotonin, and their metabolites in several brain regions. Multiple linear regression analysis revealed that the tissue concentration of dopamine in the anterior striatum was the strongest predictor of PA performance, with an additional significant contribution by the tissue concentration of the serotonin metabolite 5-hydroxyindoleacetic acid in the cingulate. In contrast to the effects of METH and PCA, exposure to MDMA did not deplete anterior striatal dopamine levels or cingulate levels of 5-hydroxyindoleacetic acid, and it did not impair PA performance. CONCLUSIONS These studies demonstrate that certain amphetamines impair PA performance in mice and that these impairments may be attributable to specific neurochemical depletions.
Collapse
|
10
|
Lauzurica N, García-García L, Pinto S, Fuentes JA, Delgado M. Changes in NPY and POMC, but not serotonin transporter, following a restricted feeding/repletion protocol in rats. Brain Res 2010; 1313:103-12. [DOI: 10.1016/j.brainres.2009.11.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 11/24/2009] [Accepted: 11/29/2009] [Indexed: 10/20/2022]
|
11
|
Capela JP, Carmo H, Remião F, Bastos ML, Meisel A, Carvalho F. Molecular and Cellular Mechanisms of Ecstasy-Induced Neurotoxicity: An Overview. Mol Neurobiol 2009; 39:210-71. [DOI: 10.1007/s12035-009-8064-1] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 02/27/2009] [Indexed: 11/29/2022]
|
12
|
Perspectives on genetic animal models of serotonin toxicity. Neurochem Int 2008; 52:649-58. [DOI: 10.1016/j.neuint.2007.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 08/23/2007] [Accepted: 08/29/2007] [Indexed: 12/28/2022]
|
13
|
Bexis S, Docherty JR. Effects of MDMA, MDA and MDEA on blood pressure, heart rate, locomotor activity and body temperature in the rat involve alpha-adrenoceptors. Br J Pharmacol 2007; 147:926-34. [PMID: 16491100 PMCID: PMC2189797 DOI: 10.1038/sj.bjp.0706688] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The effects of injection of 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA) and N-ethyl-3,4-methylenedioxyamphetamine (MDEA) (all 20 mg kg(-1)) on blood pressure, heart rate, core body temperature and locomotor activity in conscious rats were investigated using radiotelemetry. MDMA and MDA produced a prolonged increase in both systolic and diastolic pressures, with MDA causing the most marked rise. MDEA produced a transient but nonsignificant fall in diastolic pressure. The pressor response produced by MDA was accompanied by bradycardia. All three amphetamine derivatives caused an initial hypothermic response; however, MDA also produced a subsequent hyperthermia, and the speed of recovery from hypothermia was MDA>MDMA>MDEA. The alpha2A-adrenoceptor antagonist 2-((4,5-dihydro-1H-imidazol-2-yl)methyl)-2,3-dihydro-1-methyl-1H-isoindole (BRL 44408) (1 mg kg(-1)) prolonged the hypothermic response to MDMA. Only MDA induced locomotor activity when given alone, but in the presence of BRL 44408, MDMA produced increased locomotor activity. The order of potency for producing isometric contractions of rat aorta (alpha1D) and vas deferens (alpha1A) was MDA>MDMA>MDEA, with MDEA acting as an alpha1-adrenoceptor antagonist with a pK(B) of 4.79+/-0.12 (n = 4) in aorta. The order of potency for prejunctional inhibition of stimulation-evoked contractions in rat vas deferens (alpha2A-adrenoceptor mediated) was MDA>MDMA>MDEA. Blood pressure actions of the three amphetamine derivatives may be at least partly due to alpha1-adrenoceptor agonism or antagonism. The reversal of the hypothermic actions are at least partly due to alpha2A-adrenoceptor agonism since the hypothermic response was more prolonged with MDEA which exhibits low alpha2A-adrenoceptor potency, and effects of MDMA after alpha2A-adrenoceptor antagonism were similar to those of MDEA.
Collapse
Affiliation(s)
- Sotiria Bexis
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
- Author for correspondence:
| |
Collapse
|
14
|
Easton N, Marsden CA. Ecstasy: are animal data consistent between species and can they translate to humans? J Psychopharmacol 2006; 20:194-210. [PMID: 16510478 DOI: 10.1177/0269881106061153] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The number of 3,4-methylenedioxymethamphetamine (ecstasy or MDMA) animal research articles is rapidly increasing and yet studies which place emphasis on the clinical significance are limited due to a lack of reliable human data. MDMA produces an acute, rapid release of brain serotonin and dopamine in experimental animals and in the rat this is associated with increased locomotor activity and the serotonin behavioural syndrome in rats. MDMA causes dose-dependent hyperthermia, which is potentially fatal, in humans, primates and rodents. Subsequent serotonergic neurotoxicity has been demonstrated by biochemical and histological studies and is reported to last for months in rats and years in non-human primates. Relating human data to findings in animals is complicated by reports that MDMA exposure in mice produces selective long-term dopaminergic impairment with no effect on serotonin. This review compares data obtained from animal and human studies and examines the acute physiological, behavioural and biochemical effects of MDMA as well as the long-term behavioural effects together with serotonergic and dopaminergic impairments. Consideration is also given to the role of neurotoxic metabolites and the influence of age, sex and user groups on the long-term actions of MDMA.
Collapse
Affiliation(s)
- Neil Easton
- School of Biomedical Science, University of Nottingham, Queen's Medical Centre, UK.
| | | |
Collapse
|
15
|
Bexis S, Docherty JR. Role of alpha2A-adrenoceptors in the effects of MDMA on body temperature in the mouse. Br J Pharmacol 2005; 146:1-6. [PMID: 16025144 PMCID: PMC1576257 DOI: 10.1038/sj.bjp.0706320] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
3,4-Methylenedioxymetamphetamine (MDMA) produces complex effects on body temperature, including hypo- and hyperthermic components that vary with ambient temperature and strain of rat. We have previously reported that MDMA is an alpha(2)-adrenoceptor agonist, and alpha(2)-adrenoceptor agonists such as clonidine produce hypothermia. The purpose of this study was to investigate the effects of MDMA on core body temperature measured by radiotelemetry in conscious wild-type (WT) and alpha(2A)-knockout (alpha(2A)-KO) mice. Clonidine (0.1 mg kg(-1), subcutaneously (s.c.)) produced a hypothermic response in WT mice, but did not significantly affect temperature in alpha(2)-KO mice. MDMA (20 mg kg(-1), s.c.) produced a significant hyperthermia in WT mice beginning at approximately 100 min after injection, recovering by 300 min, but produced a biphasic response, hypothermia followed by hyperthermia, in alpha(2)-KO mice. In WT mice, following the alpha(2A)-adrenoceptor antagonist 2-((4,5-dihydro-1H-imidazol-2-yl)methyl)-2,3-dihydro-1-methyl-1H-isoindole (1 mg kg(-1), s.c.), MDMA (20 mg kg(-1)) produced an initial hypothermia. Hence, alpha(2)-adrenoceptor agonist actions of MDMA contribute to its effects on body temperature, but in a surprising way. Although selective alpha(2A)-adrenoceptor agonism produces hypothermia, the alpha(2A)-adrenoceptor actions of MDMA alter the body temperature response to MDMA from biphasic (hypothermia followed by hyperthermia) to monophasic hyperthemia.
Collapse
Affiliation(s)
- Sotiria Bexis
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2
| | - James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2
- Author for correspondence:
| |
Collapse
|
16
|
Buecking A, Vandeleur CL, Khazaal Y, Zullino DF. Mirtazapine in drug-induced excessive sweating. Eur J Clin Pharmacol 2005; 61:543-4. [PMID: 16007419 DOI: 10.1007/s00228-005-0956-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Accepted: 05/03/2005] [Indexed: 11/26/2022]
Abstract
Excessive sweating is a well-known side effect of a selective serotonin reuptake inhibitor treatment, but little is known about the impact of sweating on treatment discontinuation or the general quality of life of patients. In this case report, we present a patient suffering from excessive sweating induced by escitalopram. When mirtazapine was administered as an additional treatment, a dose-dependent reduction of drug-induced excessive sweating was observed. Taking into account the particular serotonin antagonistic properties of mirtazapine, its eventual influence on the regulation of body temperature and diaphoresis in the central nervous system is discussed.
Collapse
Affiliation(s)
- Ansgar Buecking
- University Department for Adult Psychiatrie, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
17
|
Jan CR. Effect of p-chloroamphetamine on calcium movement and viability in renal tubular cells. Life Sci 2005; 77:589-99. [PMID: 15904675 DOI: 10.1016/j.lfs.2004.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022]
Abstract
In Madin-Darby canine kidney (MDCK) cells, the effect of p-chloroamphetamine, a neurotoxin that depletes intracellular serotonin, on intracellular Ca2+ concentration ([Ca2+]i) and viability was measured by using the Ca2+-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium. p-Chloroamphetamine (> or = 10 microM) caused a rapid rise of [Ca2+]i in a concentration-dependent manner. p-Chloroamphetamine-induced [Ca2+]i rise was partly reduced by removal of extracellular Ca2+. p-Chloroamphetamine-induced extracellular Ca2+ influx was also suggested by Mn2+ influx-induced fura-2 fluorescence quench. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which p-chloroamphetamine failed to increase [Ca2+]i; also, pretreatment with p-chloroamphetamine reduced 50% of thapsigargin-sensitive Ca2+ stores. U73122, an inhibitor of phospholipase C, abolished ATP (but not p-chloroamphetamine)-induced [Ca2+]i rise. Overnight incubation with 1-500 microM p-chloroamphetamine decreased cell viability. These findings suggest that p-chloroamphetamine evokes a rapid increase in [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and is cytotoxic.
Collapse
Affiliation(s)
- Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan 813.
| |
Collapse
|
18
|
Honda M, Imaida K, Tanabe M, Ono H. Endogenously released 5-hydroxytryptamine depresses the spinal monosynaptic reflex via 5-HT1D receptors. Eur J Pharmacol 2005; 503:55-61. [PMID: 15496296 DOI: 10.1016/j.ejphar.2004.09.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 09/06/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
In the spinal cord, various 5-hydroxytryptamine (5-HT) receptor subtypes are involved in the modulation of motor output. Previously, we have shown that 5-HT1B receptors mediate the monosynaptic reflex depression induced by exogenously applied 5-HT that was formed from the precursor L-5-hydroxytryptophan in spinalized rats. In this study, we determined the effects of endogenous 5-HT, which was released from serotonergic terminals by DL-p-chloroamphetamine, on spinal reflexes. DL-p-chloroamphetamine depressed the monosynaptic reflex and increased the polysynaptic reflex. The depletion of 5-HT abolished the monosynaptic reflex depression, but the increase in polysynaptic reflexes was maintained, suggesting that endogenous 5-HT released by DL-p-chloroamphetamine mediates depression of the monosynaptic reflex in the spinal cord. The depression of the monosynaptic reflex was antagonized by GR127935 (N-[methoxy-3-(4-methyl-l-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)[1,1-biphenyl]-4-carboxamide; 5-HT1B/1D receptor antagonist) and BRL15572 (3-[4-(4-chlorophenyl)piperazin-1-yl]-1,1-diphenyl-2-propanol; 5-HT1D receptor antagonist) but not by isamoltane (5-HT(1B) receptor antagonist). These results suggest that 5-HT released from serotonergic terminals depresses monosynaptic reflex transmission via 5-HT1D receptors.
Collapse
Affiliation(s)
- Motoko Honda
- Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | | | | | | |
Collapse
|
19
|
Green AR, O'shea E, Colado MI. A review of the mechanisms involved in the acute MDMA (ecstasy)-induced hyperthermic response. Eur J Pharmacol 2004; 500:3-13. [PMID: 15464016 DOI: 10.1016/j.ejphar.2004.07.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 11/29/2022]
Abstract
The predominant severe acute adverse effect following ingestion of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) by recreational users is hyperthermia which can induce other associated clinical problems and occasionally death. There is no pharmacologically specific treatment. MDMA also induces dose-dependent hyperthermia in experimental animals. This review examines the consequences of MDMA administration on body temperature in humans and rodents. In rats hyperthermia results primarily from dopamine release and is influenced by dose, ambient temperature and other housing conditions. The response is increased in rats with a prior MDMA-induced neurotoxic lesion of 5-hydroxytryptamine (5-HT) nerve endings. Increased MDMA-induced locomotor activity appears to play no role in the hyperthermic response. However, the size of the acute hyperthermic response plays a major role in determining the severity of the subsequent neurotoxicity. These results suggest that any MDMA-induced hyperthermic response will be enhanced in hot, crowded dance club conditions and that ingesting the drug in such conditions increases the possibility of subsequent cerebral neurotoxic effect.
Collapse
Affiliation(s)
- A Richard Green
- Neuropharmacology Research Group, School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.
| | | | | |
Collapse
|
20
|
Shioda K, Nisijima K, Yoshino T, Kato S. Extracellular serotonin, dopamine and glutamate levels are elevated in the hypothalamus in a serotonin syndrome animal model induced by tranylcypromine and fluoxetine. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:633-40. [PMID: 15276688 DOI: 10.1016/j.pnpbp.2004.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2004] [Indexed: 11/16/2022]
Abstract
Serotonin (5-HT) syndrome is a potentially fatal condition associated with various combinations of serotonergic drugs. The present study was undertaken to demonstrate that nervous systems other than the 5-HT system also participate in the pathophysiology of 5-HT syndrome. Concentrations of 5-HT, dopamine (DA) and glutamate in the hypothalamus were measured in two different 5-HT syndrome animal models using a microdialysis technique. The first model was induced by tranylcypromine, a nonselective monoamine oxidase (MAO) inhibitor (3.5 mg/kg) and fluoxetine, a selective serotonin reuptake inhibitor (SSRI) (10 mg/kg). The second model was induced by clorgyline, an MAO-A inhibitor (1.2 mg/kg) and 5-hydroxy-L-tryptophan, a precursor of 5-HT (5-HTP) (80 mg/kg). In the first model, the levels of 5-HT and DA increased by 40-fold and 44-fold, respectively, compared with the preadministration levels. In the second model, the concentrations of 5-HT increased by up to 140-fold, whereas DA levels increased by only 10-fold, of the preadministration levels. Although the level of glutamate in the second model barely changed, a delayed increase in the glutamate level was observed in the first model. These findings suggest that not only hyperactivity of the 5-HT system, but also hyperactivity of the DA system, are present in 5-HT syndrome, and that the glutamatergic system is influenced in some 5-HT syndrome cases in which the DA concentration markedly increases.
Collapse
Affiliation(s)
- Katsutoshi Shioda
- Department of Psychiatry, Jichi Medical School, Minamikawachi-Machi, Kawachi-Gun, Tochigi-Ken, 329-0498, Japan
| | | | | | | |
Collapse
|
21
|
Colado MI, O'Shea E, Green AR. Acute and long-term effects of MDMA on cerebral dopamine biochemistry and function. Psychopharmacology (Berl) 2004; 173:249-63. [PMID: 15083264 DOI: 10.1007/s00213-004-1788-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 12/22/2003] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES The majority of experimental and clinical studies on the pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) tend to focus on its action on 5-HT biochemistry and function. However, there is considerable evidence for MDMA having marked acute effects on dopamine release. Furthermore, while MDMA produces long-term effects on 5-HT neurones in most species examined, in mice its long-term effects appear to be restricted to the dopamine system. The objective of this review is to examine the actions of MDMA on dopamine biochemistry and function in mice, rats, guinea pigs, monkeys and humans. RESULTS AND DISCUSSION MDMA appears to produce a major release of dopamine from its nerve endings in all species investigated. This release plays a significant role in the expression of many of the behaviours that occur, including behavioural changes, alterations of the mental state in humans and the potentially life-threatening hyperthermia that can occur. While MDMA appears to be a selective 5-HT neurotoxin in most species examined (rats, guinea pigs and primates), it is a selective dopamine neurotoxin in mice. Selectivity may be a consequence of what neurotoxic metabolites are produced (which may depend on dosing schedules), their selectivity for monoamine nerve endings, or the endogenous free radical trapping ability of specific nerve endings, or both. We suggest more focus be made on the actions of MDMA on dopamine neurochemistry and function to provide a better understanding of the acute and long-term consequences of using this popular recreational drug.
Collapse
Affiliation(s)
- M Isabel Colado
- Departamento de Farmacologia, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain.
| | | | | |
Collapse
|
22
|
Green AR, Sanchez V, O'Shea E, Saadat KS, Elliott JM, Colado MI. Effect of ambient temperature and a prior neurotoxic dose of 3,4-methylenedioxymethamphetamine (MDMA) on the hyperthermic response of rats to a single or repeated ('binge' ingestion) low dose of MDMA. Psychopharmacology (Berl) 2004; 173:264-9. [PMID: 14726996 DOI: 10.1007/s00213-003-1725-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 11/10/2003] [Indexed: 11/30/2022]
Abstract
RATIONALE 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) administration to rats produces acute hyperthermia and long-term neurotoxic damage to 5-hydroxytryptamine (serotonin, 5-HT) neurones. OBJECTIVE We wished to examine MDMA-induced hyperthermia in rats housed at normal (19 degrees C) and high (30 degrees C) room temperatures and investigate the effect of a prior neurotoxic lesion. METHODS Rectal temperature was measured after administration of single or repeated doses of MDMA to rats housed at 19 degrees C and 30 degrees C. RESULTS MDMA (5 mg/kg i.p.) produced a sustained hyperthermic response in rats housed at 30 degrees C, but not in rats housed at 19 degrees C. A prior (5 weeks earlier) neurotoxic dose of MDMA (12.5 mg/kg i.p.) resulted in MDMA (5 mg/kg) producing a greater hyperthermic response in rats housed at 30 degrees C than in non-pre-treated animals. Repeated MDMA administration (binge dosing; 2, 4 or 6 mg/kg x3) produced dose-dependent hyperthermia in rats housed at 19 degrees C, with MDMA (2 mg/kg x3) having little effect. However, this dose produced significant hyperthermia (> or =2 degrees C above control values)in rats housed at 30 degrees C following the third dose. A prior neurotoxic dose of MDMA resulted in MDMA (2 mg/kg x3) producing marked hyperthermia (>1 degrees C) after the first dose and severe hyperthermia (> or =2 degrees C) after the third dose. CONCLUSIONS MDMA administration to rats housed at 30 degrees C produces a more severe hyperthermic response than that seen in rats housed at 19 degrees C. A prior neurotoxic dose enhances the response further in animals housed at 30 degrees C. Binge dosing produces a higher final peak response than a similar non-divided dose. This effect is more marked in animals housed at high room temperature. These data may have implications for recreational users of MDMA in hot environments, particularly those who may have damaged serotoninergic neurones because of prior heavy or frequent use of the drug.
Collapse
Affiliation(s)
- A Richard Green
- Neuropharmacology Research Group, School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Green AR, Mechan AO, Elliott JM, O'Shea E, Colado MI. The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy"). Pharmacol Rev 2003; 55:463-508. [PMID: 12869661 DOI: 10.1124/pr.55.3.3] [Citation(s) in RCA: 799] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The amphetamine derivative (+/-)-3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is a popular recreational drug among young people, particularly those involved in the dance culture. MDMA produces an acute, rapid enhancement in the release of both serotonin (5-HT) and dopamine from nerve endings in the brains of experimental animals. It produces increased locomotor activity and the serotonin behavioral syndrome in rats. Crucially, it produces dose-dependent hyperthermia that is potentially fatal in rodents, primates, and humans. Some recovery of 5-HT stores can be seen within 24 h of MDMA administration. However, cerebral 5-HT concentrations then decline due to specific neurotoxic damage to 5-HT nerve endings in the forebrain. This neurodegeneration, which has been demonstrated both biochemically and histologically, lasts for months in rats and years in primates. In general, other neurotransmitters appear unaffected. In contrast, MDMA produces a selective long-term loss of dopamine nerve endings in mice. Studies on the mechanisms involved in the neurotoxicity in both rats and mice implicate the formation of tissue-damaging free radicals. Increased free radical formation may result from the further breakdown of MDMA metabolic products. Evidence for the occurrence of MDMA-induced neurotoxic damage in human users remains equivocal, although some biochemical and functional data suggest that damage may occur in the brains of heavy users. There is also some evidence for long-term physiological and psychological changes occurring in human recreational users. However, such evidence is complicated by the lack of knowledge of doses ingested and the fact that many subjects studied are or have been poly-drug users.
Collapse
|