1
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Baldwin LA, Calabrese V. The chemoprotective hormetic effects of rosmarinic acid. Open Med (Wars) 2024; 19:20241065. [PMID: 39444791 PMCID: PMC11497216 DOI: 10.1515/med-2024-1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Rosmarinic acid is a polyphenol found in numerous fruits and vegetables, consumed in supplement form, and tested in numerous clinical trials for therapeutic applications due to its putative chemopreventive properties. Rosmarinic acid has been extensively studied at the cellular, whole animal, and molecular mechanism levels, presenting a complex array of multi-system biological effects. Rosmarinic acid-induced hormetic dose responses are widespread, occurring in numerous biological models and cell types for a broad range of endpoints. Consequently, this article provides the first assessment of rosmarinic acid-induced hormetic concentration/dose responses, their quantitative features, mechanistic foundations, extrapolative strengths/limitations, and their biomedical, clinical, and public health implications.
Collapse
Affiliation(s)
- Edward J. Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I-N344, University of Massachusetts, Amherst, MA, 01003, United States of America
| | - Peter Pressman
- University of Maine, Orono, ME, 04469, United States of America
| | - A. Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, United States of America
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, United States of America
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Linda A. Baldwin
- 5 Sapphire Lane, Greenfield, MA, 01301, United States of America
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Catania, 95123, Italy
| |
Collapse
|
2
|
Mykhailenko O, Hurina V, Ivanauskas L, Marksa M, Skybitska M, Kovalenko O, Lytkin D, Vladymyrova I, Georgiyants V. Lavandula angustifolia Herb from Ukraine: Comparative Chemical Profile and in vitro Antioxidant Activity. Chem Biodivers 2024; 21:e202400640. [PMID: 39129131 DOI: 10.1002/cbdv.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/21/2024] [Indexed: 08/13/2024]
Abstract
Lavandula L. genus plants have always been relevant as medicines for various purposes in food, medicine, pharmaceuticals, cosmetology and aromology. Ukraine is a new territory in the mass plant cultivation and lavender essential oil production. Therefore, the issue of integrated use of herbal raw materials and their intended use is still relevant. For the first time, ten samples of Lavendula angustifolia herb from 5 growing regions of Ukraine were studied for the composition and content of polyphenols and terpenoids using HPLC and HPTLC methods, respectively, to assess the prospects and quality of herbal raw materials. The results obtained showed that L. angustifolia herb has pronounced antioxidant activity due to the high content of phenolic compounds, namely hyperoside (5.665-11.629 mg/g), vanillic acid (5.986-11.196 mg/g), rosmarinic acid (0.211 to 1.488 mg/g), caffeic acid (0.369-3.835 mg/g), chlorogenic acid (0.239-4.619 mg/g), genistein-7-O-glucoside, as well as due to the presence of linalool and linalyl acetate, which was confirmed by qualitative analysis. The total antioxidant activity was the highest in samples from Lviv Botanical Garden (0.293 Trolox mg/mL), Kyiv OLawander (0.288 Trolox mg/mL), Kharkiv Bohodukhiv (0.270 Trolox mg/mL) which is due to the qualitative composition of phenolic compounds. At the same time, the most intense zones of terpenoids in lavender herb were noted for images from Kharkiv region Lebiazhe and Kitchenkivka villiges. Cluster analysis showed priority in the selection of marker compounds (vanillic acid, hyperoside, chlorogenic acid, rosmarinic acid) for lavender herb based on their quantitative content in the samples. In the future, lavender herb from Ukraine can be considered as a promising raw material with neuroprotective properties as part of its complex use, as research continues.
Collapse
Affiliation(s)
- Olha Mykhailenko
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentynivska str., 61168, Kharkiv, Ukraine Tel:
- Pharmacognosy and Phytotherapy Group, UCL School of Pharmacy, 29-39 Brunswick Square, WC1 N 1AX, London, United Kingdom
| | - Viktoriia Hurina
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentynivska str., 61168, Kharkiv, Ukraine Tel:
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, 9-A. Mickevičiaus g., 44307, Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, 9-A. Mickevičiaus g., 44307, Kaunas, Lithuania
| | - Mariia Skybitska
- Botanical Garden of the Lviv National Ivan Franko University, 44-Cheremshini str., 79000, Lviv, Ukraine
| | - Oleh Kovalenko
- Mykolayiv National Agrarian University, Department of Plant Growing and Landscape Gardening, 9-Georgiy Gongadze st., 54000, Mykolaiv, Ukraine
| | - Dmytro Lytkin
- Educational and Scientific Institute of Applied Pharmacy, National University of Pharmacy of Ministry of Health of Ukraine, 12 Kulykivska str., 61000, Kharkiv, Ukraine
| | - Inna Vladymyrova
- Department of Pharmaceutical Technologies and Medicines Quality Assurance, National University of Pharmacy, 4-Valentynivska st., 61168, Kharkiv, Ukraine
| | - Victoriya Georgiyants
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4-Valentynivska str., 61168, Kharkiv, Ukraine Tel:
| |
Collapse
|
3
|
Martínez-Hernández GB, Jiménez-Ferrer E, González-Cortazar M, Alejandro Z, Monterrosas-Brisson N, Herrera-Ruiz M. Salvia elegans Vahl Counteracting Metabolic Syndrome and Depression in Mice on a High-Fat Diet. Molecules 2024; 29:4070. [PMID: 39274918 PMCID: PMC11396540 DOI: 10.3390/molecules29174070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Salvia elegans Vahl is a plant commonly used in Mexico as a remedy for nervous disorders, inflammatory diseases, and "ringing in the ears"; the latter can be associated with arteriosclerotic conditions and arterial hypertension. Therefore, based on medicinal use, this work aimed to evaluate the hydroalcoholic extract (SeHA, 100 mg/kg) of this plant and two fractions, ethyl acetate (SeFAc, 50 mg/kg), and obtained from SeFAc fractionation denominated SeF3 (10 mg/kg), on several alterations derived from metabolic syndrome (MetS) derived from the ingestion of a high-calorie diet (high-fat diet), in ICR (Institute of Cancer Research) mice, leading to chronic inflammation that results in neurological damage such as depression. Therefore, several MetS-related parameters, such as forced swim tests, hypertension, serum corticosterone levels, glucose, triglycerides, cholesterol, adiposity index, and insulin resistance, will be evaluated. Additionally, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 levels were measured in kidneys, fat tissue, brains, and spleens. It was proven that all those S. elegans-derived treatments reversed the damage, showing antidepressant, antihypertensive, antihyperglycemic, and antidyslipidemic effects and decreased adiposity, insulin resistance, and serum corticosterone. They induced a modulatory response by modifying the levels of TNF-α, IL-1β, IL-6, and IL-10 in different organs. High-performance liquid chromatography (HPLC) analysis of the acetate of ethyl fraction from S. elegans (SeFAc) fraction revealed the presence of rosmarinic and caffeic acids as well as flavonoids, while the fraction from SeFAc called SeF3 Was identified by gas mass as methyl glucose, glycerol, and known sterols, among others. Thus, it was concluded that S. elegans protects against the harmful effects of MetS.
Collapse
Affiliation(s)
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Xochitepec 62790, Mexico
| | - Manases González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Xochitepec 62790, Mexico
| | - Zamilpa Alejandro
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Xochitepec 62790, Mexico
| | - Nayeli Monterrosas-Brisson
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca 62209, Mexico
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, Xochitepec 62790, Mexico
| |
Collapse
|
4
|
Atefipour N, Dianat M, Badavi M, Radan M, Mard SA. The Role of Rosmarinic Acid in the Protection Against Inflammatory Factors in Rats Model With Monocrotaline-Induced Pulmonary Hypertension: Investigating the Signaling Pathway of NFκB, OPG, Runx2, and P-Selectin in Heart. J Cardiovasc Pharmacol 2024; 83:258-264. [PMID: 38151743 DOI: 10.1097/fjc.0000000000001534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
ABSTRACT Shortness of breath and syncope are common symptoms of right ventricular failure caused by pulmonary arterial hypertension (PAH), which is the result of blockage and increased pressure in the pulmonary arteries. There is a significant amount of evidence supporting the idea that inflammation and vascular calcification (VC) are important factors in PAH pathogenesis. Therefore, we aimed to investigate the features of the inflammatory process and gene expression involved in VC in monocrotaline (MCT)-induced PAH rats. MCT (60 mg/kg, i.p.) was used to induce PAH. Animals were given normal saline or rosmarinic acid (RA) (10, 15, and 30 mg/kg, gavage) for 21 days. An increase in right ventricular systolic pressure was evaluated as confirming PAH. To determine the level of inflammation in lung tissue, pulmonary edema and the total and differential white blood cell counts in the bronchoalveolar lavage fluid were measured. Also, the expression of NFκB, OPG, Runx2, and P-selectin genes was investigated to evaluate the level of VC in the heart. Our experiment showed that RA significantly decreased right ventricular hypertrophy, inflammatory factors, NFκB, Runx2, and P-selectin gene expression, pulmonary edema, total and differential white blood cell count, and increased OPG gene expression. Therefore, our research showed that RA protects against MCT-induced PAH by reducing inflammation and VC in rats.
Collapse
Affiliation(s)
- Narges Atefipour
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; and
| | - Mahin Dianat
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; and
- Persian Gulf Physiology Research Center, Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; and
- Persian Gulf Physiology Research Center, Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Radan
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; and
- Persian Gulf Physiology Research Center, Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyyed Ali Mard
- Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; and
- Persian Gulf Physiology Research Center, Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
5
|
Bae SH, Lee MH, Lee JH, Yu Y, Lee J, Kim TH. The Genome of the Korean Island-Originated Perilla citriodora 'Jeju17' Sheds Light on Its Environmental Adaptation and Fatty Acid and Lipid Production Pathways. Genes (Basel) 2023; 14:1898. [PMID: 37895247 PMCID: PMC10606934 DOI: 10.3390/genes14101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Perilla is a key component of Korean food. It contains several plant-specialized metabolites that provide medical benefits. In response to an increased interest in healthy supplement food from the public, people are focusing on the properties of Perilla. Nevertheless, unlike rice and soybeans, there are few studies based on molecular genetics on Perilla, so it is difficult to systematically study the molecular breed. The wild Perilla, Perilla citriodora 'Jeju17', was identified a decade ago on the Korean island of Jeju. Using short-reads, long-reads, and Hi-C, a chromosome-scale genome spanning 676 Mbp, with high contiguity, was assembled. Aligning the 'Jeju17' genome to the 'PC002' Chinese species revealed significant collinearity with respect to the total length. A total of 31,769 coding sequences were predicted, among which 3331 were 'Jeju17'-specific. Gene enrichment of the species-specific gene repertoire highlighted environment adaptation, fatty acid metabolism, and plant-specialized metabolite biosynthesis. Using a homology-based approach, genes involved in fatty acid and lipid triacylglycerol biosynthesis were identified. A total of 22 fatty acid desaturases were found and comprehensively characterized. Expression of the FAD genes in 'Jeju17' was examined at the seed level, and hormone signaling factors were identified. The results showed that the expression of FAD genes in 'Jeju17' at the seed level was high 25 days after flowering, and their responses of hormones and stress were mainly associated with hormone signal transduction and abiotic stress via cis-elements patterns. This study presents a chromosome-level genome assembly of P. citriodora 'Jeju17', the first wild Perilla to be sequenced from the Korean island of Jeju. The analyses provided can be useful in designing ALA-enhanced Perilla genotypes in the future.
Collapse
Affiliation(s)
- Seon-Hwa Bae
- Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Myoung Hee Lee
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea;
| | - Jeong-Hee Lee
- SEEDERS Inc., 118, Jungang-ro, Jung-gu, Daejeon 34912, Republic of Korea;
| | - Yeisoo Yu
- DNACARE Co., Ltd., 48, Teheran-ro 25-gil, Gangnam-gu, Seoul 06126, Republic of Korea;
| | - Jundae Lee
- Department of Horticulture, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Tae-Ho Kim
- Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| |
Collapse
|
6
|
Huang S, Nan Y, Chen G, Ning N, Du Y, Lu D, Yang Y, Meng F, Yuan L. The Role and Mechanism of Perilla frutescens in Cancer Treatment. Molecules 2023; 28:5883. [PMID: 37570851 PMCID: PMC10421205 DOI: 10.3390/molecules28155883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Perilla frutescens is an annual herb of the Labiatae family and is widely grown in several countries in Asia. Perilla frutescens is a plant that is used medicinally in its entirety, as seen in its subdivision into perilla seeds, perilla stalks, and perilla leaves, which vary more markedly in their chemical composition. Several studies have shown that Perilla frutescens has a variety of pharmacological effects, including anti-inflammatory, antibacterial, detoxifying, antioxidant, and hepatoprotective. In the absence of a review of Perilla frutescens for the treatment of cancer. This review provides an overview of the chemical composition and molecular mechanisms of Perilla frutescens for cancer treatment. It was found that the main active components of Perilla frutescens producing cancer therapeutic effects were perilla aldehyde (PAH), rosmarinic acid (Ros A), lignan, and isoestrogen (IK). In addition to these, extracts of the leaves and fruits of Perilla frutescens are also included. Among these, perilla seed oil (PSO) has a preventive effect against colorectal cancer due to the presence of omega-3 polyunsaturated fatty acids. This review also provides new ideas and thoughts for scientific innovation and clinical applications related to Perilla frutescens.
Collapse
Affiliation(s)
- Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Yi Nan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| | - Doudou Lu
- Clinical Medical School, Ningxia Medical University, Yinchuan 750004, China;
| | - Yating Yang
- Institute of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (F.M.)
| | - Fandi Meng
- Institute of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China; (Y.Y.); (F.M.)
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; (S.H.); (Y.N.); (G.C.); (N.N.); (Y.D.)
| |
Collapse
|
7
|
Jeong JH, Park HJ, Chi GY, Choi YH, Park SH. An Ethanol Extract of Perilla frutescens Leaves Suppresses Adrenergic Agonist-Induced Metastatic Ability of Cancer Cells by Inhibiting Src-Mediated EMT. Molecules 2023; 28:molecules28083414. [PMID: 37110648 PMCID: PMC10141214 DOI: 10.3390/molecules28083414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Previous studies have indicated that the adrenergic receptor signaling pathway plays a fundamental role in chronic stress-induced cancer metastasis. In this study, we investigated whether an ethanol extract of Perilla frutescens leaves (EPF) traditionally used to treat stress-related symptoms by moving Qi could regulate the adrenergic agonist-induced metastatic ability of cancer cells. Our results show that adrenergic agonists including norepinephrine (NE), epinephrine (E), and isoproterenol (ISO) increased migration and invasion of MDA-MB-231 human breast cancer cells and Hep3B human hepatocellular carcinoma cells. However, such increases were completely abrogated by EPF treatment. E/NE induced downregulation of E-cadherin and upregulation of N-cadherin, Snail, and Slug. Such effects were clearly reversed by pretreatment with EPF, suggesting that the antimetastatic activity of EPF could be related to epithelial-mesenchymal transition (EMT) regulation. EPF suppressed E/NE-stimulated Src phosphorylation. Inhibition of Src kinase activity with dasatinib completely suppressed the E/NE-induced EMT process. Transfecting MDA-MB-231 cells with constitutively activated Src (SrcY527F) diminished the antimigration effect of EPF. Taken together, our results demonstrate that EPF can suppress the adrenergic agonist-promoted metastatic ability of cancer cells by inhibiting Src-mediated EMT. This study provides basic evidence supporting the probable use of EPF to prevent metastasis in cancer patients, especially those under chronic stress.
Collapse
Affiliation(s)
- Jae-Hoon Jeong
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Hyun-Ji Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Gyoo-Yong Chi
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Yung-Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| | - Shin-Hyung Park
- Department of Pathology, College of Korean Medicine, Dong-eui University, Busan 47227, Republic of Korea
| |
Collapse
|
8
|
Sakae K, Nonaka D, Kishida M, Hirata Y, Fujiwara R, Kondo A, Noda S, Tanaka T. Caffeic acid production from glucose using metabolically engineered Escherichia coli. Enzyme Microb Technol 2023; 164:110193. [PMID: 36621069 DOI: 10.1016/j.enzmictec.2023.110193] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Caffeic acid (3,4-dihydroxycinnamic acid) is a precursor for high-valued compounds with anticancer, antiviral activities, and anti-inflammatory making it an important substance in the food additive, cosmetics, and pharmaceutical industries. Here, we developed an engineered Escherichia coli strain capable of directly producing high levels of caffeic acid from glucose. Tyrosine ammonia-lyase from Rhodotorula glutinis (RgTAL) and p-coumaric acid 3-hydroxylase from Saccharothrix espanaensis (SeC3H) were expressed. Next, feedback-resistant chorismate mutase/prephenate dehydrogenase, was introduced to promote l-tyrosine synthesis. This engineered strain CA3 produced 1.58 g/L of caffeic acid from glucose without tyrosine supplemented to the medium. Furthermore, to reduce p-coumaric acid accumulation, 4-hydroxyphenylacetate 3-hydroxylase from Pseudomonas aeruginosa (PaHpaBC) was introduced. Finally, an engineered strain CA8 directly produced 6.17 g/L of caffeic acid from glucose using a jar fermenter. The E. coli developed in this study would be helpful as a chassis strain to produce value-added caffeic acid-derivatives.
Collapse
Affiliation(s)
- Kosuke Sakae
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Daisuke Nonaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mayumi Kishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Ryosuke Fujiwara
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Shuhei Noda
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
9
|
Jee HJ, Ryu D, Kim S, Yeon SH, Son RH, Hwang SH, Jung YS. Fermented Perilla frutescens Ameliorates Depression-like Behavior in Sleep-Deprivation-Induced Stress Model. Int J Mol Sci 2022; 24:ijms24010622. [PMID: 36614066 PMCID: PMC9820360 DOI: 10.3390/ijms24010622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Excessive stress plays a critical role in the pathogenesis of mood disorders such as depression. Fermented natural products have recently attracted attention because of their health benefits. We evaluated the antidepressant-like efficacy of fermented Perilla frutescens (FPF), and its underlying mechanisms, in sleep deprivation (SD)-induced stress mice. SD-stressed mice revealed a remarkable increase in the immobility time in both forced swimming test and tail suspension test; this increase was ameliorated by treatment with FPF at doses of 100 and 150 mg/kg. FPF treatment also reduced the level of stress hormones such as corticosterone and adrenocorticotropic hormone. Additionally, FPF increased the levels of serotonin and dopamine which were significantly decreased in the brain tissues of SD-stressed mice. The increased expression of proinflammatory cytokines, such as TNF-α and IL1β, and the decreased expression of brain-derived neurotrophic factor (BDNF) in the stressed mice were significantly reversed by FPF treatment. Furthermore, FPF also increased phosphorylation of tropomyosin receptor kinase B (TrkB), extracellular regulated protein kinase (ERK), and cAMP response element binding protein (CREB). Among the six components isolated from FPF, protocatechuic acid and luteolin-7-O-glucuronide exhibited significant antidepressant-like effects, suggesting that they are major active components. These findings suggest that FPF has therapeutic potential for SD-induced stress, by correcting dysfunction of hypothalamic-pituitary-adrenal axis and modulating the BDNF/TrkB/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Hye Jin Jee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- AI-Super Convergence KIURI Translational Research Center, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Dajung Ryu
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Suyeon Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Sung Hum Yeon
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea
| | - Rak Ho Son
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea
| | - Seung Hwan Hwang
- R&D Center, Huons Co., Ltd., 55 Hanyangdaehak-ro, Ansan 15588, Republic of Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
- Correspondence: ; Tel.: +82-31-219-3444
| |
Collapse
|
10
|
Arshad HM, Ahmad FUD, Lodhi AH. Methanolic Extract of Aerva javanica Leaves Prevents LPS-Induced Depressive Like Behavior in Experimental Mice. Drug Des Devel Ther 2022; 16:4179-4204. [PMID: 36514526 PMCID: PMC9741839 DOI: 10.2147/dddt.s383054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Aim Depression is a chronic recurrent neuropsychiatric disorder associated with inflammation. This study explored the pharmacological activities of Aerva javanica leaves crude extract (Aj.Cr) on lipopolysaccharide (LPS)-induced depressive-like behavior in experimental mice. Methods Aj.Cr was evaluated for its phenolic and flavonoid contents, bioactive potential, amino acid profiling and enzyme inhibition assays using different analytical techniques followed by in-silico molecular docking was performed. In addition, three ligands identified in HPLC analysis and standard galantamine were docked to acetyl cholinesterase (AchE) enzyme to assess the ligand interaction along with their binding affinities. In in-vivo analysis, mice were given normal saline (10 mL/kg), imipramine (10 mg/kg) and Aj.Cr (100, 300, and 500 mg/kg) orally for 14-consecutive days. On the 14th day, respective treatment was given 30-minutes before intra-peritoneal administration of (0.83 mg/kg) LPS. Open field, forced swim and tail suspension tests were performed 24-hours after LPS injection, followed by a sucrose preference test 48-hours later. Serum corticosterone levels, as well as levels of nitric oxide (NO), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), tumor necrosis factor-alpha (TNF-), interleukin-1β (IL-1β), interleukin-6 (IL-6), brain-derived neurotrophic factor (BDNF) and catecholamines were determined in brain tissues. Results In-vitro results revealed that crude extract of Aj.Cr possesses anti-depressant agents with solid antioxidant potential. In-vivo analysis showed that LPS significantly increased depressive-like behavior followed by alteration in serum and tissue biomarkers as compared to normal control (p < 0.001). While imipramine and Aj.Cr (100, 300, and 500 mg/kg) treated groups significantly (p<0.05) improved the depressive-like behavior and biomarkers when compared to the LPS group. Conclusion The mitigation of LPS-induced depressive-like behavior by Aj.Cr may be linked to the modulation of oxidative stress, neuro-inflammation and catecholamines due to the presence of potent bioactive compounds exerting anti-depressant effects.
Collapse
Affiliation(s)
- Hafiza Maida Arshad
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fiaz-ud-Din Ahmad
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan,Correspondence: Fiaz-ud-Din Ahmad, Department of Pharmacology, the Islamia University of Bahawalpur, Pakistan Khawaja Fareed Campus, Railway Road, Bahawalpur, 63100, Pakistan, Tel +92-320-8402376, Email
| | - Arslan Hussain Lodhi
- Department of Pharmacology, Faculty of Pharmacy, the Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
11
|
Porras-Dávila SL, Jiménez-Ferrer E, Román Ramos R, González-Cortazar M, Almanza-Pérez JC, Herrera-Ruiz M. Herniarin, Dimethylfraxetin and Extracts from Tagetes lucida, in Psychosis Secondary to Ketamine and Its Interaction with Haloperidol. PLANTS (BASEL, SWITZERLAND) 2022; 11:2789. [PMID: 36297813 PMCID: PMC9610474 DOI: 10.3390/plants11202789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Tagetes lucida Cav., is a medicinal plant used in Mexico to alleviate different disorders related to alterations of the central nervous system, such as behaviors associated with psychosis. The present work evaluated the effect of different extracts separated from this plant, TlHex, TlEA, TlMet, and TlAq, and of two isolated coumarins, herniarin (HN) and dimethylfraxetin (DF), on haloperidol-induced catalepsy (HAL), and psychotic behaviors provoked with a glutamatergic antagonist, ketamine (KET) on ICR mice. The extracts TlEA, TlAq, and the isolated compounds HN and DF, induced an increment of the cataleptic effect of HAL. Schizophrenia-like symptoms caused by KET were analyzed through the behavior of the animals in the open field (OFT), forced swimming (FST), passive avoidance test (PAT), and social interaction test (SIT). Treatments derived from T. lucida could interact with this substance in all tests except for FST, in which only TlMet blocks its activity. Mainly, TlEA, TlAq, HN, and DF, blocked the effects of KET on stereotyped behavior, hyperlocomotion, cognitive impairment, and detriment in the social interaction of rodents. T. lucida interacted with dopaminergic and glutamatergic systems.
Collapse
Affiliation(s)
- Sandra Liliana Porras-Dávila
- Centro de Investigación Biomédica del Sur, Instituto Mexicano Del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico
- Doctorado en Ciencias Biológicas y de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Ciudad de México 04960, Mexico
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano Del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico
| | - Rubén Román Ramos
- Doctorado en Ciencias Biológicas y de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Ciudad de México 04960, Mexico
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Leyes de Reforma 1era Secc., Ciudad de México 09310, Mexico
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano Del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico
| | - Julio César Almanza-Pérez
- Doctorado en Ciencias Biológicas y de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana (UAM), Ciudad de México 04960, Mexico
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Leyes de Reforma 1era Secc., Ciudad de México 09310, Mexico
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano Del Seguro Social, Argentina No. 1, Col. Centro, Xochitepec 62790, Morelos, Mexico
| |
Collapse
|
12
|
Phenolic Acids as Antidepressant Agents. Nutrients 2022; 14:nu14204309. [PMID: 36296993 PMCID: PMC9610055 DOI: 10.3390/nu14204309] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
Depression is a psychiatric disorder affecting the lives of patients and their families worldwide. It is an important pathophysiology; however, the molecular pathways involved are not well understood. Pharmacological treatment may promote side effects or be ineffective. Consequently, efforts have been made to understand the molecular pathways in depressive patients and prevent their symptoms. In this context, animal models have suggested phytochemicals from medicinal plants, especially phenolic acids, as alternative treatments. These bioactive molecules are known for their antioxidant and antiinflammatory activities. They occur in some fruits, vegetables, and herbal plants. This review focused on phenolic acids and extracts from medicinal plants and their effects on depressive symptoms, as well as the molecular interactions and pathways implicated in these effects. Results from preclinical trials indicate the potential of phenolic acids to reduce depressive-like behaviour by regulating factors associated with oxidative stress, neuroinflammation, autophagy, and deregulation of the hypothalamic-pituitary-adrenal axis, stimulating monoaminergic neurotransmission and neurogenesis, and modulating intestinal microbiota.
Collapse
|
13
|
Verma H, Shivavedi N, Tej GNVC, Kumar M, Nayak PK. Prophylactic administration of rosmarinic acid ameliorates depression-associated cardiac abnormalities in Wistar rats: Evidence of serotonergic, oxidative, and inflammatory pathways. J Biochem Mol Toxicol 2022; 36:e23160. [PMID: 35838106 DOI: 10.1002/jbt.23160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/05/2022] [Accepted: 07/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders and associated cardiac comorbidities have increased the risk of mortality worldwide. Researchers reported that depression increases the possibility of future cardiac abnormalities by approximately 30%. Therefore, there is an unmet need to develop therapeutic interventions to treat depression and associated cardiac abnormalities. The present study was conducted to evaluate the prophylactic effect of rosmarinic acid (RA) against chronic unpredictable stress (CUS)-induced depression associated cardiac abnormalities in Wistar rats. The CUS paradigm, which comprised several stressors, was employed for 40 days to induce depressive-like behavior and associated cardiac abnormalities in rats. Along with CUS, RA at a dose of 25 and 50 mg/kg was administered orally to two groups of animals for 40 days. Behavioral tests (forced swim test and sucrose consumption test) and molecular biomarkers (corticosterone and serotonin) were performed. Electrocardiography was performed before CUS (Day 0), Day 20, and Day 40 to study electrocardiogram parameters. Furthermore, changes in body weight, organ weight, tissue lipid peroxidation, glutathione, catalase, cTn-I, MMP-2, and proinflammatory cytokines (TNF-α and IL-6) were estimated. Our results showed that RA treatment caused a reduction in immobility period, adrenal hyperplasia, corticosterone level, tissue lipid peroxidation, cTn-I, MMP-2, proinflammatory cytokines, and QRS complex duration, while an increase in sucrose consumption, brain serotonin level, T-wave width, glutathione, and catalase activity as compared with the CUS-control group. The results of our study proved that RA administration ameliorates CUS-induced depression-associated cardiac abnormalities in rats via serotonergic, oxidative, and inflammatory pathways.
Collapse
Affiliation(s)
- Himanshu Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Naveen Shivavedi
- Shri Ram Group Of Institutions, Faculty of Pharmacy, Jabalpur, Madhya Pradesh, India
| | - Gullanki N V C Tej
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Mukesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Prasanta K Nayak
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
14
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
15
|
Hou T, Netala VR, Zhang H, Xing Y, Li H, Zhang Z. Perilla frutescens: A Rich Source of Pharmacological Active Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113578. [PMID: 35684514 PMCID: PMC9182122 DOI: 10.3390/molecules27113578] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/14/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022]
Abstract
Perilla frutescens (L.) Britton, an important pharmaceutical and nutraceutical crop, is widely cultivated in East Asian countries. In this review, we present the latest research findings on the phytochemistry and pharmacological activities of P. frutescens. Different databases, including PubMed, Scopus, CNKI, Agricola, Scifinder, Embase, ScienceDirect, DOAJ, and Web of Science, were searched to present the best review. In this review, we clearly represent the active constituents responsible for each and every pharmacological activity, plausible mechanism of action, and maximum inhibitory concentrations, as well as IC50 values. Approximately 400 different bioactive compounds, including alkaloids, terpenoids, quinines, phenylpropanoids, polyphenolic compounds, flavonoids, coumarins, anthocyanins, carotenoids, neolignans, fatty acids, polycosanols, tocopherols, and sitosterols, have been reported in the leaves, seeds, roots, and aerial parts of P. frutescens. The bioactive constituents of P. frutescens exhibited different enzyme-inhibition properties, including antihyaluronidase effects and aldose reductase inhibitory, α-glucosidase inhibitory, xanthine oxidase inhibitory, and tyrosinase inhibitory properties. P. frutescens showed strong anti-inflammatory, antidepressant, anti-spasmodic, anticancer, antioxidant, antimicrobial, insecticidal, neuroprotective, and hepatoprotective effects. Hence, the active constituents of P. frutescens used in the treatment of diabetes and diabetic complications (retinopathy, neuropathy, and nephropathy), prevention of hyperuricemia in gout patients, hyper pigmentation, allergic conditions, skin inflammation, skin allergy, atopic dermatitis, periodontosis, androgenic alopecia, gastric inflammation, oesophagitis, carcinogenesis, cardiovascular, Alzheimer’s, Parkinson’s, and cerebral ischemic disorders. Furthermore, we revealed the most active constituents and possible mechanisms of the pharmacological properties of P. frutescens.
Collapse
Affiliation(s)
- Tianyu Hou
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (H.Z.); (H.L.)
- Jinzhong Institute of Industrial Technology and Innovation, North University of China, Jinzhong 030600, China
- Correspondence: or (T.H.); (Z.Z.)
| | - Vasudeva Reddy Netala
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (H.Z.); (H.L.)
| | - Hongjiao Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (H.Z.); (H.L.)
| | - Yun Xing
- Graduate School of Humanities, Nagoya University, Nagoya 4648601, Japan;
| | - Huizhen Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (H.Z.); (H.L.)
- Jinzhong Institute of Industrial Technology and Innovation, North University of China, Jinzhong 030600, China
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China; (V.R.N.); (H.Z.); (H.L.)
- Jinzhong Institute of Industrial Technology and Innovation, North University of China, Jinzhong 030600, China
- Correspondence: or (T.H.); (Z.Z.)
| |
Collapse
|
16
|
Hong SW, Teesdale-Spittle P, Page R, Ellenbroek B, Truman P. Biologically Active Compounds Present in Tobacco Smoke: Potential Interactions Between Smoking and Mental Health. Front Neurosci 2022; 16:885489. [PMID: 35557609 PMCID: PMC9087043 DOI: 10.3389/fnins.2022.885489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022] Open
Abstract
Tobacco dependence remains one of the major preventable causes of premature morbidity and mortality worldwide. There are well over 8,000 compounds present in tobacco and tobacco smoke, but we do not know what effect, if any, many of them have on smokers. Major interest has been on nicotine, as well as on toxic and carcinogenic effects and several major and minor components of tobacco smoke responsible for the negative health effects of smoking have been elucidated. Smokers themselves report a variety of positive effects from smoking, including effects on depression, anxiety and mental acuity. Smoking has also been shown to have protective effects in Parkinson’s Disease. Are the subjective reports of a positive effect of smoking due to nicotine, of some other components of tobacco smoke, or are they a manifestation of the relief from nicotine withdrawal symptoms that smoking provides? This mini-review summarises what is currently known about the components of tobacco smoke with potential to have positive effects on smokers.
Collapse
Affiliation(s)
- Sa Weon Hong
- School of Health Sciences, Massey University, Wellington, New Zealand
| | - Paul Teesdale-Spittle
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Rachel Page
- School of Health Sciences, Massey University, Wellington, New Zealand
| | - Bart Ellenbroek
- Department of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Penelope Truman
- School of Health Sciences, Massey University, Wellington, New Zealand
| |
Collapse
|
17
|
Advances in Understanding the Genetic Basis of Fatty Acids Biosynthesis in Perilla: An Update. PLANTS 2022; 11:plants11091207. [PMID: 35567213 PMCID: PMC9099743 DOI: 10.3390/plants11091207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022]
Abstract
Perilla, also termed as purple mint, Chinese basil, or Perilla mint, is a flavoring herb widely used in East Asia. Both crude oil and essential oil are employed for consumption as well as industrial purposes. Fatty acids (FAs) biosynthesis and oil body assemblies in Perilla have been extensively investigated over the last three decades. Recent advances have been made in order to reveal the enzymes involved in the fatty acid biosynthesis in Perilla. Among those fatty acids, alpha-linolenic acid retained the attention of scientists mainly due to its medicinal and nutraceutical properties. Lipids synthesis in Perilla exhibited similarities with Arabidopsis thaliana lipids’ pathway. The homologous coding genes for polyunsaturated fatty acid desaturases, transcription factors, and major acyl-related enzymes have been found in Perilla via de novo transcriptome profiling, genome-wide association study, and in silico whole-genome screening. The identified genes covered de novo fatty acid synthesis, acyl-CoA dependent Kennedy pathway, acyl-CoA independent pathway, Triacylglycerols (TAGs) assembly, and acyl editing of phosphatidylcholine. In addition to the enzymes, transcription factors including WRINKLED, FUSCA3, LEAFY COTYLEDON1, and ABSCISIC ACID INSENSITIVE3 have been suggested. Meanwhile, the epigenome aspect impacting the transcriptional regulation of FAs is still unclear and might require more attention from the scientific community. This review mainly outlines the identification of the key gene master players involved in Perilla FAs biosynthesis and TAGs assembly that have been identified in recent years. With the recent advances in genomics resources regarding this orphan crop, we provided an updated overview of the recent contributions into the comprehension of the genetic background of fatty acid biosynthesis. The provided resources can be useful for further usage in oil-bioengineering and the design of alpha-linolenic acid-boosted Perilla genotypes in the future.
Collapse
|
18
|
Talebi S, Rahmati B, Jorjani M, Emadi F, Ghaffari F, Naseri M. Synergistic effects of
Nepeta menthoides
and
Melissa officinalis
aqueous extracts on reserpine‐induced depressive‐like behaviors in mice. Phytother Res 2022; 36:2481-2494. [DOI: 10.1002/ptr.7457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Sedighe Talebi
- Department of Traditional Persian Medicine, School of Medicine Shahed University Tehran Iran
| | - Batool Rahmati
- Department of Physiology, Faculty of Medicine Shahed University Tehran Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center and Department of Pharmacology , Faculty of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Fatemeh Emadi
- Department of Traditional Persian Medicine, School of Medicine Shahed University Tehran Iran
- Traditional Medicine Clinical Trial Research Center Shahed University Tehran Iran
| | - Farzaneh Ghaffari
- School of Traditional Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohsen Naseri
- Department of Traditional Persian Medicine, School of Medicine Shahed University Tehran Iran
- Traditional Medicine Clinical Trial Research Center Shahed University Tehran Iran
- Hikmat, Islamic and Traditional Medicine Department The Academy of Medical Sciences Tehran Iran
| |
Collapse
|
19
|
Donati Zeppa S, Ferrini F, Agostini D, Amatori S, Barbieri E, Piccoli G, Sestili P, Stocchi V. Nutraceuticals and Physical Activity as Antidepressants: The Central Role of the Gut Microbiota. Antioxidants (Basel) 2022; 11:antiox11020236. [PMID: 35204119 PMCID: PMC8868311 DOI: 10.3390/antiox11020236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a common mental illness. Evidence suggests that the gut microbiota play an essential role in regulating brain functions and the pathogenesis of neuropsychiatric diseases, including MDD. There are numerous mechanisms through which the gut microbiota and brain can exchange information in a continuous, bidirectional communication. Current research emphasizes the interexchange of signals influenced by the gut microbiota that are detected and transduced in information from the gut to the nervous system involving neural, endocrine, and inflammatory mechanisms, suggesting a relationship between oxidative stress and the pathophysiology of MDD via the hyperactivation of inflammatory responses. Potential sources of inflammation in the plasma and hippocampus of depressed individuals could stem from increases in intestinal permeability. Some nutraceuticals, such as specific probiotics, namely psychobiotics, polyphenols, carotenoids, butyrate, and prebiotics, have been demonstrated to exert an antidepressant activity, but most of them need to be metabolized and activated by gut microorganisms. By inducing changes in the gut microbiota composition, physical exercise might also exert a role in alleviating depression-like symptoms. The mutual relationships among nutraceuticals, exercise, and depression will be discussed, and the potential role of the gut microbiota as a therapeutic target to treat depression will be explored.
Collapse
Affiliation(s)
- Sabrina Donati Zeppa
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Fabio Ferrini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Deborah Agostini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Stefano Amatori
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
- Correspondence:
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Giovanni Piccoli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | - Piero Sestili
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (S.D.Z.); (F.F.); (D.A.); (E.B.); (G.P.); (P.S.)
| | | |
Collapse
|
20
|
Dalmagro AP, Holzmann I, Zimath PL, Cazarin CA, Souza MMD. Antidepressant-like effect of caffeic acid: Involvement of the cellular signaling pathways. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
21
|
Lataliza AAB, de Assis PM, da Rocha Laurindo L, Gonçalves ECD, Raposo NRB, Dutra RC. Antidepressant-like effect of rosmarinic acid during LPS-induced neuroinflammatory model: The potential role of cannabinoid receptors/PPAR-γ signaling pathway. Phytother Res 2021; 35:6974-6989. [PMID: 34709695 DOI: 10.1002/ptr.7318] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/17/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
Rosmarinic acid (RA), an ester of caffeic acid and 3, 4-dihydroxyphenyllactic acid, has anti-inflammatory and neuroprotective activities. Herein, this study investigated in silico the drug-likeness and the potential molecular targets to RA. Moreover, it tested the antidepressant-like potential of RA in the lipopolysaccharide (LPS)-induced depression model. RA (MW = 360.31 g/mol) meets the criteria of both Lipinski's rule of five and the Ghose filter. It also attends to relevant pharmacokinetic parameters. Target prediction analysis identified RA's potential targets and biological activities, including the peroxisome proliferator-activated receptor (PPAR) and the cannabinoid receptors CB1 and CB2 . In vivo, RA's acute, repetitive, and therapeutic administration showed antidepressant-like effect since it significantly reduced the immobility time in the tail suspension test and increased grooming time in the splash test. Further, the pretreatment with antagonists of CB1 , CB2 , and PPAR-γ receptors significantly blocked the antidepressant-like effect of RA. Altogether, our findings suggest that cannabinoid receptors/PPAR-γ signaling pathways are involved with the antidepressant-like effect of RA. Moreover, this molecule meets important physicochemical and pharmacokinetic parameters that favor its bioavailability. RA constitutes a promising, innovative, and safe molecule for the pharmacotherapy of major depressive disorder.
Collapse
Affiliation(s)
- Alexandre Augusto Barros Lataliza
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Pollyana Mendonça de Assis
- Center for Research and Innovation in Health Sciences (NUPICS), Faculty of Pharmacy, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Larissa da Rocha Laurindo
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
| | - Elaine Cristina Dalazen Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Nádia Rezende Barbosa Raposo
- Center for Research and Innovation in Health Sciences (NUPICS), Faculty of Pharmacy, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, Brazil
- Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
22
|
Yilmaz MA, Ertas A, Yener I, Olmez OT, Firat M, Temel H, Ozturk M, Kolak U. Development and Validation of a Novel LC-MS/MS Method for the Quantitation of 19 Fingerprint Phytochemicals in Salvia Species: A Chemometric Approach. J Chromatogr Sci 2021; 60:770-785. [PMID: 34725681 DOI: 10.1093/chromsci/bmab125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/24/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022]
Abstract
Being traditionally utilized mainly as appetizers and herbal teas as well as used to ease abdominal pains, colds and gastrointestinal issues, the genus Salvia L. has gained significant consideration owing to its remarkable phytochemicals and industrial importance. The present study aimed to develop and validate an LC-MS/MS method for the qualitative and quantitative investigation of 19 fingerprint phytochemicals in six endemic Salvia species. The validation parameters of the developed LC-MS/MS method were repeatability (intermediate precision), recovery (accuracy), limits of detection and quantification, linearity and uncertainty (U% at 95% confidence level (k = 2)). Reversed-phase HPLC separation and mass spectrometry parameters were optimized for each analyte. Ethanol extracts of the studied Salvia species collected in three consecutive years were screened for their fingerprint phytochemicals by using the developed and validated LC-MS/MS method. Moreover, studied Salvia species were subjected to multivariate analysis such as principal component analysis techniques to demonstrate the variabilities in phytochemical contents by years and parts of the samples. Roots, flowers, leaves, branches and whole plant of the Salvia species collected in 2015, 2016 and 2017 were used for the analyses. It was observed that the roots and branches of Salvia species were similar in terms of their salvianolic acid A, caffeic acid, and 6,7-dehydroroyleanone components. Accordingly, apigenin, rosmarinic acid, luteolin 7-O-glucoside, caffeic acid, salvianolic acid B, and 6,7-dehydroroyleanone were notable phytochemicals that were present in the studied Salvia species.
Collapse
Affiliation(s)
- Mustafa Abdullah Yilmaz
- Dicle University Science and Technology Research and Application Center, 21280 Diyarbakir, Turkey.,Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, 21280 Diyarbakir, Turkey
| | - Abdulselam Ertas
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, 21280 Diyarbakir, Turkey
| | - Ismail Yener
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, 21280 Diyarbakir, Turkey
| | - Ozge Tokul Olmez
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, 48121 Mugla, Turkey
| | - Mehmet Firat
- Department of Biology, Faculty of Education, Yuzuncu Yil University, 65080 Van, Turkey
| | - Hamdi Temel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dicle University, 21280 Diyarbakir, Turkey
| | - Mehmet Ozturk
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, 48121 Mugla, Turkey
| | - Ufuk Kolak
- Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Turkey
| |
Collapse
|
23
|
Jalali A, Firouzabadi N, Zarshenas MM. Pharmacogenetic-based management of depression: Role of traditional Persian medicine. Phytother Res 2021; 35:5031-5052. [PMID: 34041799 DOI: 10.1002/ptr.7134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
Depression is one of the most common mental disorders worldwide. The genetic factors are linked to depression and anti-depressant outcomes. Traditional Persian medicine (TPM) manuscripts have provided various anti-depressant remedies, which may be useful in depression management. This review has studied the bioactive compounds, underlying mechanisms, and treatment outcomes of the medicinal plants traditionally mentioned effective for depression from "The storehouse of medicament" (a famous pharmacopeia of TPM) to merge those with the novel genetics science and serve new scope in depression prevention and management. This review paper has been conducted in two sections: (1) Collecting medicinal plants and their bioactive components from "The storehouse of medicament," "Physician's Desk Reference (PDR) for Herbal Medicines," and "Google scholar" database. (2) The critical key factors and genes in depression pathophysiology, prevention, and treatment were clarified. Subsequently, the association between bioactive components' underlying mechanism and depression treatment outcomes via considering polymorphisms in related genes was derived. Taken together, α-Mangostin, β-carotene, β-pinene, apigenin, caffeic acid, catechin, chlorogenic acid, citral, ellagic acid, esculetin, ferulic acid, gallic acid, gentiopicroside, hyperoside, kaempferol, limonene, linalool, lycopene, naringin, protocatechuic acid, quercetin, resveratrol, rosmarinic acid, and umbelliferone are suitable for future pharmacogenetics-based studies in the management of depression.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Küpeli Akkol E, Tatlı Çankaya I, Şeker Karatoprak G, Carpar E, Sobarzo-Sánchez E, Capasso R. Natural Compounds as Medical Strategies in the Prevention and Treatment of Psychiatric Disorders Seen in Neurological Diseases. Front Pharmacol 2021; 12:669638. [PMID: 34054540 PMCID: PMC8155682 DOI: 10.3389/fphar.2021.669638] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Psychiatric disorders are frequently encountered in many neurological disorders, such as Alzheimer’s and Parkinson diseases along with epilepsy, migraine, essential tremors, and stroke. The most common comorbid diagnoses in neurological diseases are depression and anxiety disorders along with cognitive impairment. Whether the underlying reason is due to common neurochemical mechanisms or loss of previous functioning level, comorbidities are often overlooked. Various treatment options are available, such as pharmacological treatments, cognitive-behavioral therapy, somatic interventions, or electroconvulsive therapy. However oral antidepressant therapy may have some disadvantages, such as interaction with other medications, low tolerability due to side effects, and low efficiency. Natural compounds of plant origin are extensively researched to find a better and safer alternative treatment. Experimental studies have shown that phytochemicals such as alkaloids, terpenes, flavonoids, phenolic acids as well as lipids have significant potential in in vitro and in vivo models of psychiatric disorders. In this review, various efficacy of natural products in in vitro and in vivo studies on neuroprotective and their roles in psychiatric disorders are examined and their neuro-therapeutic potentials are shed light.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Irem Tatlı Çankaya
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | | | - Elif Carpar
- Department of Psychiatry, Private French La Paix Hospital, Istanbul, Turkey
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile.,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Potici, Italy
| |
Collapse
|
25
|
Martinez-Mota L, Cruz-Tavera A, Dorantes-Barrón AM, Arrieta-Báez D, Ramírez-Salado I, Cruz-Aguilar MA, Mayagoitia-Novales L, Cassani J, Estrada-Reyes R. Calea zacatechichi Schltdl. (Compositae) produces anxiolytic- and antidepressant-like effects, and increases the hippocampal activity during REM sleep in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113316. [PMID: 32866569 DOI: 10.1016/j.jep.2020.113316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Calea zacatechichi is a plant with an extensive popular and ritual use in Mexico. In healthy volunteers, it induces well-being and tranquility senses, and facilitates superficial stages of sleep. However, anxiolytic, and antidepressant-like effects and changes on the sleep-waking stages have not been explored. AIM To determine anxiolytic and antidepressant-like effects of an aqueous extract of C. zacatechichi (CZ) in rodents and to analyze their effects on hippocampal activity in the rat sleep-waking cycle. MATERIAL AND METHODS CZ anxiolytic- and antidepressant-like effects were evaluated in several mice and rat behavioral paradigms. CZ effects on temporal distribution of sleep were described, and hippocampus EEG frequency patterns were analyzed during the sleep-waking cycle; absolute and relative powers were analyzed during Rapid Eye Movements (REM) and non-REM sleep stages. CZ chemical analysis was performed by UPLC-ESI-MS. RESULTS CZ produced specific and robust anxiolytic- and antidepressant-like effects in mice and rats, similar to those of prototypical drugs, at doses ranging from 0.5 to 50 mg/kg. CZ at 100 mg/kg produced visible mild sedative effects in rats, associated with a significant increase in Slow Wave Sleep episodes during a 6 h recording, and enhanced fast frequencies of hippocampus (gamma-band:31-50 Hz) during REM sleep. CONCLUSION Results could support the well-being and tranquility senses reported by healthy consumers, and to explain the oneiric content during dreams and some improvements in cognitive processes described by consumers. Anxiolytic- and antidepressant-like effects of this species, reported for first time in this study could improve some aspects of mental health.
Collapse
Affiliation(s)
- Lucía Martinez-Mota
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Adrián Cruz-Tavera
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Ana María Dorantes-Barrón
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Daniel Arrieta-Báez
- Instituto Politécnico Nacional, CNMN, Luis Enrique Erro S/n, Unidad Prof. Adolfo López Mateos, Gustavo A. Madero, 07738, Ciudad de México, Mexico
| | - Ignacio Ramírez-Salado
- Laboratorio de Cronobiología y Sueño, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Manuel Alejandro Cruz-Aguilar
- Laboratorio de Cronobiología y Sueño, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Lilian Mayagoitia-Novales
- Departamento de Etología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico
| | - Julia Cassani
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, 04960, Mexico
| | - Rosa Estrada-Reyes
- Laboratorio de Fitofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370, Ciudad de México, Mexico.
| |
Collapse
|
26
|
Adenylyl Cyclase (AC) Mediates the Antidepressant-Like Effects of Tropisetron on a Mouse Model of Maternal Separation Stress. DEPRESSION RESEARCH AND TREATMENT 2021; 2021:5586119. [PMID: 33976935 PMCID: PMC8084677 DOI: 10.1155/2021/5586119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 01/02/2023]
Abstract
The adenylyl cyclase (AC) pathway is involved in the pathophysiology of depression. Finding new antidepressants with high medicinal properties and low side effects is warranted. Therefore, this study was designed to determine the antidepressant-like effect of tropisetron on a maternal separation (MS) model in mice, considering the possible role of AC. NMRI male mice were divided into eleven groups. The control group was treated with saline and MS groups were treated with saline, tropisetron (a 5-HT3 receptor antagonist) at doses of 1, 3, and 5 mg/kg; forskolin (an activator of AC) at doses of 5, 10, and 25 mg/kg; a subeffective dose of forskolin with a subeffective dose of tropisetron; and an effective dose of tropisetron plus an effective dose of NB001 (3 mg/kg) (an AC inhibitor). After treatment, animals were subjected to behavioral tests including the forced swimming test (FST), splash test, and open field test (OFT). We showed that MS caused depressive-like behaviors determined as an increase in the immobility time in the forced swimming test (FST) and decreased grooming time in the splash test. Our results showed that administration of tropisetron, as well as forskolin, mitigated the depressive-like behaviors in MS mice. We found that coadministration of a subeffective dose of tropisetron plus a subeffective dose of forskolin potentiated the antidepressant-like effect of tropisetron. However, coadministration of an effective dose of NB001 with an effective dose of tropisetron did not significantly affect the antidepressant-like effect of tropisetron. We concluded that the antidepressant-like effects of tropisetron on MS mice are partially mediated through the adenylyl cyclase pathway.
Collapse
|
27
|
Borgonetti V, Les F, López V, Galeotti N. Attenuation of Anxiety-Like Behavior by Helichrysum stoechas (L.) Moench Methanolic Extract through Up-Regulation of ERK Signaling Pathways in Noradrenergic Neurons. Pharmaceuticals (Basel) 2020; 13:ph13120472. [PMID: 33348565 PMCID: PMC7766703 DOI: 10.3390/ph13120472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023] Open
Abstract
The long-term use of anxiolytic and antidepressant drugs can cause a plethora of side effects and the use of complementary and alternative medicine, which is generally considered safer than conventional medicine, is consistently increasing. Helichrysum stoechas (L.) Moench methanolic extract (HSE) has shown MAO-A inhibitory properties in previous studies. With the aim of obtaining innovative and safer therapies for mood disorders, this study investigated the potential activity of HSE in the management of anxiety- and depression-related symptoms. HSE showed dose-dependent (30-100 mg/kg p.o.) anxiolytic-like activity in the light dark box and marble burying tests, without any antidepressant-like activity, as shown by the results of the tail suspension test. Additionally, HSE did not have any effect on the modulation of pain, which highlights its selectivity in the control of anxiety-related behavior. At active doses, HSE did not produce any sedative effect or result in impaired motor coordination and memory functions. Western blotting experiments showed the ability of HSE to counteract the reduction in the phosphorylation of ERK44/42, to restore brain-derived neurotrophic factor (BDNF) expression and to return cyclic AMP response element binding (CREB) levels to basal levels in noradrenergic hippocampal neurons of mice exposed to an anxiety-related environment, which indicates a protective role against anxiety behavior. These results suggest that oral administration of HSE might represent an interesting opportunity for the management of anxiety disorders.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Zaragoza, Spain;
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
- Correspondence: (V.L.); (N.G.)
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
- Correspondence: (V.L.); (N.G.)
| |
Collapse
|
28
|
Amaghnouje A, Mechchate H, Es-safi I, Boukhira S, S. Aliqahtani A, M. Noman O, A. Nasr F, Conte R, Calarco A, Bousta D. Subacute Assessment of the Toxicity and Antidepressant-Like Effects of Origanum Majorana L. Polyphenols in Swiss Albino Mice. Molecules 2020; 25:molecules25235653. [PMID: 33266220 PMCID: PMC7730305 DOI: 10.3390/molecules25235653] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 01/20/2023] Open
Abstract
Origanum majorana L. is a plant commonly used in folk medicine to treat depression and several neurological disorders. This study aims to evaluate the antidepressant-like effect of the Origanum majorana L. polyphenols (OMP) obtained from the aerial parts using two different depression model tests: The forced swimming test (FST) and the tail suspension test (TST) in Swiss albino mice. The experiments were performed on days 1, 7, 14, and 21 with daily administration of different treatments. Two different doses were chosen for this study (50 and 100 mg/kg), and paroxetine was used as a positive control. Immobility as a consequence of the depression state was significantly reduced following the treatment with OMP, indicating an antidepressant effect. A subacute toxicity study was also performed following the Organization for Economic Co-operation and Development (OECD) Guidelines (407), showing no sign of toxicity for the studied doses. The phytochemical screening revealed the presence of 12 components, all belonging to polyphenols: Arbutin, rosmarinic acid, ursolic acid, quercetin-3-O-glucoside, quercetin-7-O-glucuronic acid, luteolin-7-O-glucoside, kaempferol-3-0-glucuronic acid, Kaempferol-3-0-pentose, caffeic acid, catechin, quercetin, and rutin. These findings suggest that O. majorana has interesting antidepressant-like properties, which deserve further investigation.
Collapse
Affiliation(s)
- Amal Amaghnouje
- Laboratory of Biotechnology, Environment, Agrifood, and Health (LBEAS), University of Sidi Mohamed Ben Abdellah, Faculty of Sciences, University Sidi Mohammed Ben Abdellah, BP 1796-ATLAS Fes, Morocco; (A.A.); (I.E.-s.); (S.B.); (D.B.)
| | - Hamza Mechchate
- Laboratory of Biotechnology, Environment, Agrifood, and Health (LBEAS), University of Sidi Mohamed Ben Abdellah, Faculty of Sciences, University Sidi Mohammed Ben Abdellah, BP 1796-ATLAS Fes, Morocco; (A.A.); (I.E.-s.); (S.B.); (D.B.)
- Correspondence: ; Tel.: +212-6020-83601
| | - Imane Es-safi
- Laboratory of Biotechnology, Environment, Agrifood, and Health (LBEAS), University of Sidi Mohamed Ben Abdellah, Faculty of Sciences, University Sidi Mohammed Ben Abdellah, BP 1796-ATLAS Fes, Morocco; (A.A.); (I.E.-s.); (S.B.); (D.B.)
| | - Smahane Boukhira
- Laboratory of Biotechnology, Environment, Agrifood, and Health (LBEAS), University of Sidi Mohamed Ben Abdellah, Faculty of Sciences, University Sidi Mohammed Ben Abdellah, BP 1796-ATLAS Fes, Morocco; (A.A.); (I.E.-s.); (S.B.); (D.B.)
| | - Ali S. Aliqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.S.A.); (O.M.N.); (F.A.N.)
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.S.A.); (O.M.N.); (F.A.N.)
| | - Fahd A. Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.S.A.); (O.M.N.); (F.A.N.)
| | - Raffaele Conte
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (A.C.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, Via Pietro Castellino 111, 80131 Naples, Italy; (R.C.); (A.C.)
| | - Dalila Bousta
- Laboratory of Biotechnology, Environment, Agrifood, and Health (LBEAS), University of Sidi Mohamed Ben Abdellah, Faculty of Sciences, University Sidi Mohammed Ben Abdellah, BP 1796-ATLAS Fes, Morocco; (A.A.); (I.E.-s.); (S.B.); (D.B.)
| |
Collapse
|
29
|
Berk A, Yılmaz İ, Abacıoğlu N, Kaymaz MB, Karaaslan MG, Kuyumcu Savan E. Antidepressant effect of Gentiana olivieri Griseb. in male rats exposed to chronic mild stress. Libyan J Med 2020; 15:1725991. [PMID: 32048914 PMCID: PMC7034455 DOI: 10.1080/19932820.2020.1725991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: The flowering parts of Gentiana olivieri, known as ‘Afat’ in the southeastern Anatolia region of Turkey, are used as a tonic, an appetizer, and for the treatment of several mental disorders, including depression. The purpose of this study is to investigate the antidepressant effect of G. olivieri ethanol extract (GOEE) in a chronic mild stress-induced rat model, which was used to mimic a depressive state in humans, and to compare the effect with that of imipramine. Methods: Male Sprague-Dawley rats were randomly divided into six groups: control, stress, treated with imipramine (positive control) and treated with GOEE at three different (200, 500, 1000 mg/kg) doses groups. The rats in all groups, except the control group, were exposed to chronic mild stress. At the end of the 3-week experimental period, biochemical and behavioral parameters were examined. Results: The results showed that treatment with GOEE or imipramine significantly improved rats’ sucrose consumption which was diminished by chronic mild stress, restored serum levels of corticosterone and proinflammatory cytokines (interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α)), prevented the increase of liver index of rats. Moreover, in the hippocampus tissue, decreased serotonin and noradrenaline levels were significantly increased by treatment with GOEE or imipramine, and antioxidant parameters (thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), and glutathione (GSH)) were significantly improved by treatment with GOEE though not with imipramine. Conclusion: The data demonstrate that G. olivieri may exert its antidepressant activity by improving monoaminergic system disorders, and by favorably affecting the antioxidant, inflammatory and the endocrine mechanisms.
Collapse
Affiliation(s)
- Ahmet Berk
- Department of Pharmacy, Elazığ Fethi Sekin City Hospital, Elazığ, Turkey
| | - İsmet Yılmaz
- Department of Pharmacology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Nurettin Abacıoğlu
- Department of Pharmacology, Faculty of Pharmacy, Near East University, Mersin, Turkey
| | | | | | - Ebru Kuyumcu Savan
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, İnönü University, Malatya, Turkey
| |
Collapse
|
30
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of rosmarinic acid on nervous system disorders: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1779-1795. [PMID: 32725282 DOI: 10.1007/s00210-020-01935-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Nowadays, the worldwide interest is growing to use medicinal plants and their active constituents to develop new potent medicines with fewer side effects. Precise dietary compounds have prospective beneficial applications for various neurodegenerative ailments. Rosmarinic acid is a polyphenol and is detectable most primarily in many Lamiaceae families, for instance, Rosmarinus officinalis also called rosemary. This review prepared a broad and updated literature review on rosmarinic acid elucidating its biological activities on some nervous system disorders. Rosmarinic acid has significant antinociceptive, neuroprotective, and neuroregenerative effects. In this regard, we classified and discussed our findings in different nervous system disorders including Alzheimer's disease, epilepsy, depression, Huntington's disease, familial amyotrophic lateral sclerosis, Parkinson's disease, cerebral ischemia/reperfusion injury, spinal cord injury, stress, anxiety, and pain.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Lorigooini Z, Nasiri Boroujeni S, Balali-Dehkordi S, Ebrahimi L, Bijad E, Rahimi-Madiseh M, Amini-Khoei H. Possible involvement of NMDA receptor in the anxiolytic-like effect of caffeic acid in mice model of maternal separation stress. Heliyon 2020; 6:e04833. [PMID: 32944669 PMCID: PMC7481568 DOI: 10.1016/j.heliyon.2020.e04833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/18/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background and aim Anxiety disorders are one of the most common psychiatric disorders worldwide. Common anti-anxiety medications are associated with several side effects. Caffeic acid (CA) is a phenolic compound with several pharmacological effects. The aim of this study was to investigate the anxiolytic-like effect of CA in maternally separated (MS) mice focusing on the possible involvement of the NMDA receptor. Materials and methods In this study, we used the MS paradigm (as a valid animal model of anxiety) in male mice and examined their anxiety-like behavior in postnatal day (PND) 45. The animals were divided into 12 experimental groups. Mice treated with CA alone and in combination with the NMDA receptor agonist/antagonist and then using open field (OFT) and elevated plus maze (EPM) anxiety-like behavior was assessed. Finally, the expression of NMDA receptor subtypes was assessed in the hippocampus using RT- PCR. Results Finding showed that CA exerted anxiolytic –like effects in the OFT and EPM tests. We showed that administration of effective dose of NMDA significantly reversed the anxiolytic-like effect of effective dose of CA and co-administration of ketamine (a NMDA receptor antagonist) significantly potentiated the effect of sub-effective dose of CA. Furthermore, ketamine enhanced the CA-reducing effect on NMDA receptors in the MS mice. Conclusion Our finding demonstrated that, probably at least, NMDA receptors are involved in the anxiety-like properties of CA in MS mice.
Collapse
Affiliation(s)
- Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shakiba Nasiri Boroujeni
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shima Balali-Dehkordi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Leila Ebrahimi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Elham Bijad
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rahimi-Madiseh
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
32
|
Deguchi Y, Ito M. Caffeic acid and rosmarinic acid contents in genus Perilla. J Nat Med 2020; 74:834-839. [PMID: 32488608 DOI: 10.1007/s11418-020-01418-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/24/2020] [Indexed: 10/24/2022]
Abstract
Caffeic acid and rosmarinic acid are common components of Labiatae plants, such as shiso (Perilla frutescens Britton var. crispa W. Deane) and Boraginaceae plants. These compounds have various pharmacological activities, such as anti-inflammatory, anti-anxiety, and anti-depressive activities, but the content of these compounds in perilla has not been studied in detail. This study investigated the caffeic acid and rosmarinic acid contents of several pure strains in genus Perilla. Perilla plants cultivated under a certain set of conditions had different caffeic acid and rosmarinic acid contents. For example, their contents were higher in P. setoyensis ("Setoegoma"), suggesting that the genetic background of the species greatly affects caffeic acid and rosmarinic acid contents. Several strains of P. frutescens var. crispa were cultivated at the Experimental Station for Medicinal Plants, Graduate School of Pharmaceutical Sciences, Kyoto University and differences in their caffeic acid and rosmarinic acid contents were also observed. The total content of anthocyanins, which are closely related to the leaf color of perilla, was measured as cyanidin-3-glucoside equivalents, and a weak positive correlation was observed between the content of rosmarinic acid, and the total content of total anthocyanins. Furthermore, the results suggest that luminosity and photon flux density of light during cultivation can affect rosmarinic acid content.
Collapse
Affiliation(s)
- Yuya Deguchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Michiho Ito
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshidashimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
33
|
Lavender and dodder combined herbal syrup versus citalopram in major depressive disorder with anxious distress: A double-blind randomized trial. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 18:409-415. [PMID: 32739466 DOI: 10.1016/j.joim.2020.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/15/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) accompanied by anxious distress is a chronic and disabling disorder. Its conventional drug therapies often have low patient compliance due to drug-related side effects. In Persian medicine, lavender-dodder syrup is one formula often recommended for such disorders. OBJECTIVE This study compares the effects of lavender-dodder syrup to the standard drug, citalopram, for treating MDD with anxious distress. DESIGN, SETTING, PARTICIPANTS AND INTERVENTION This six-week, double-blind, randomized, clinical trial was carried out in a psychiatric outpatient clinic. During the six-week intervention period, patients in citalopram group received citalopram tablets 20 mg/d plus 5 mL placebo syrup every 12 h; patients in group B received placebo tablets once daily plus 5 mL of lavender-dodder herbal syrup every 12 h. MAIN OUTCOME MEASURES Primary outcome measures, depression and anxiety, were evaluated using the Hamilton Depression/Anxiety Rating Scales, and were scored at the beginning of the study and at weeks three and six. Secondary outcome measures including response to treatment and remission rates were also compared between the two groups. RESULTS Fifty-six participants with MDD and anxious distress were randomly assigned to two groups. Mean depression scores significantly decreased in citalopram and herbal groups at weeks three and six (time effect: P < 0.001), although the observed changes were not significantly different between the groups (intervention effect: P = 0.61). Mean anxiety scores were not significantly different between the two groups at week three (P = 0.75). However, at the end of week six, the observed decrease was significantly higher in the herbal syrup group than the citalopram group (intervention effect: P = 0.007). CONCLUSION The herbal syrup is an effective and tolerable supplement for treating MDD with anxious distress. TRIAL REGISTRATION NUMBER IRCT2016102430459N1 on Iranian Registry of Clinical Trials.
Collapse
|
34
|
Kayashima T, Nagao K, Umino M, Kaikiri H, Shibata S, Matsubara K. Anti-stress effects of rosemary ( Rosmarinus officinalis L.) leaf extract on intestinal goblet cells and immobility of forced-swimming test in BALB/c mice. Biosci Biotechnol Biochem 2020; 84:2385-2389. [PMID: 32741270 DOI: 10.1080/09168451.2020.1800445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We investigated the anti-stress effect of rosemary (Rosmarinus officinalis L.) leaf extract (RLE) on restraint-stressed mice and found that RLE alleviated decreases in the number of intestinal goblet cells and amount of hepatic triglycerides. It also decreased the immobility time in the forced-swimming test and activation of microglia in the brain, suggesting that RLE has beneficial effects on stress-induced dysfunctions.
Collapse
Affiliation(s)
- Tomoko Kayashima
- Department of School Education Course, Faculty of Education, Saga University , Saga, Japan
| | - Koji Nagao
- Department of Biological Resource Science, Applied Biochemistry and Food Science Course, Faculty of Agriculture, Saga University , Saga, Japan
| | - Mituki Umino
- Department of Human Life Sciences Education, Graduate School of Education, Hiroshima University , Hiroshima, Japan
| | - Hiroko Kaikiri
- Department of Community Human Life, Hiroshima Bunka Gakuen Two-Year College , Hiroshima, Japan
| | - Sachi Shibata
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University , Hiroshima, Japan
| | - Kiminori Matsubara
- Department of Human Life Sciences Education, Graduate School of Education, Hiroshima University , Hiroshima, Japan.,Division of Human Life Sciences Education, Graduate School of Humanities and Social Sciences, Hiroshima University , Hiroshima, Japan
| |
Collapse
|
35
|
Zhou N, Gu X, Zhuang T, Xu Y, Yang L, Zhou M. Gut Microbiota: A Pivotal Hub for Polyphenols as Antidepressants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6007-6020. [PMID: 32394713 DOI: 10.1021/acs.jafc.0c01461] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyphenols, present in a broad range of plants, have been thought to be responsible for many beneficial health effects, such as an antidepressant. Despite that polyphenols can be absorbed in the small intestine directly, most of them have low bioavailability and reach the large intestine without any modifications due to their complex structures. The interaction between microbial communities and polyphenols in the intestine is important for the latter to exert antidepressant effects. Gut microbiota can improve the bioavailability of polyphenols; in turn, polyphenols can maintain the intestinal barrier as well as the community of the gut microbiota in normal status. Furthermore, gut microbita catabolize polyphenols to more active, better-absorbed metabolites, further ameliorating depression through the microbial-gut-brain (MGB) axis. Based on this evidence, the review illustrates the potential role of gut microbiota in the processes of polyphenols or their metabolites acting as antidepressants and further envisions the gut microbiota as therapeutic targets for depression.
Collapse
Affiliation(s)
- Nian Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyi Gu
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tongxi Zhuang
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
36
|
Dereli FTG, Ilhan M, Akkol EK. New Drug Discovery from Medicinal Plants and Phytoconstituents for Depressive Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:92-102. [PMID: 30426905 DOI: 10.2174/1871527317666181114141129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/01/2018] [Accepted: 11/11/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND & OBJECTIVE Depression, a risk factor for several serious diseases, is a highly prevalent and life-threatening psychiatric disorder. It can affect the individual's position in life and reduce the living standards. The research on the use of medicinal plants in treating this disease has increased enormously because of the possible low rehabilitation rate and side effects of available synthetic drugs, such as sexual dysfunction, nausea, fatigue, insomnia, hypersomnia, and weight gain. CONCLUSION Therefore, this review aimed to draw attention to the antidepressant effects of culinary herbs and traditional medicinal plants and their active components, thereby promoting their use in the development of more potent antidepressants with improved side effect profile.
Collapse
Affiliation(s)
| | - Mert Ilhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey.,Department of Pharmacognosy, Faculty of Pharmacy, Yuzuncu Yil University, Tusba 65080, Van, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey
| |
Collapse
|
37
|
Ghazizadeh J, Hamedeyazdan S, Torbati M, Farajdokht F, Fakhari A, Mahmoudi J, Araj-Khodaei M, Sadigh-Eteghad S. Melissa officinalis L. hydro-alcoholic extract inhibits anxiety and depression through prevention of central oxidative stress and apoptosis. Exp Physiol 2020; 105:707-720. [PMID: 32003913 DOI: 10.1113/ep088254] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2023]
Abstract
NEW FINDINGS What is the central question of this study? How does an extract of Melissa officinalis L. ameliorate anxiety- and depressive-like behaviour of mice? What is the main finding and its importance? An extract of Melissa officinalis L. possessed anxiolytic and anti-depressant effects, which could mainly be mediated through its antioxidant and anti-apoptotic properties. ABSTRACT This study evaluated the effects of a hydro-alcoholic extract of Melissa officinalis (HAEMO) on anxiety- and depressive-like behaviours, oxidative stress and apoptosis markers in restraint stress-exposed mice. In order to induce a depression-like model, mice were subjected to restraint stress (3 h day-1 for 14 days) and received normal saline or HAEMO (50, 75 and 150 mg kg-1 day-1 ) for 14 days. The administered doses of HAEMO were designated based on the concentration of one of the main phenolic compounds present in the extract, rosmarinic acid (2.55 mg kg-1 at lowest dose); other phytochemical analyses including assays for antioxidant activity, total phenols and flavonoids were also carried out. The behavioural changes in an open field task, elevated plus maze, tail suspension and forced swimming tests were evaluated. Also, malondialdehyde (MDA) levels and enzyme activities of superoxide dismutase and glutathione peroxidase, and total antioxidant capacity were assessed in the prefrontal cortex and hippocampus. Moreover, levels of Bcl-2, Bax and caspase 3 in the brain as well as serum concentration of corticosterone were evaluated. HAEMO (75 and 150 mg kg-1 ) significantly reversed anxiety- and depressive-like behaviours. Also, HAEMO reduced MDA levels, enhanced enzymatic antioxidant activities and restored serum levels of corticosterone. An immunoblotting analysis also demonstrated that HAEMO decreased levels of pro-apoptotic markers and increased anti-apoptotic protein levels in the prefrontal cortex and hippocampus of restraint stress-exposed mice. Our findings suggested that HAEMO reduced inflammation and had anxiolytic and antidepressant effects in mice.
Collapse
Affiliation(s)
- Javid Ghazizadeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Persian Medicine, Faculty of Persian medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hamedeyazdan
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Department of Persian Medicine, Faculty of Persian medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
38
|
Chávez-Morales Y, Jiménez-Ferrer E, Martínez-Hernández GB, Tortoriello J, Román-Ramos R, Zamilpa A, Herrera-Ruiz M. Effect of Standardized Fractions and Tiliroside from Leaves of Tilia americana on Depression Tests in Mice. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:1931-1946. [PMID: 32184859 PMCID: PMC7059060 DOI: 10.22037/ijpr.2019.1100883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Depression affects more than 300 million people worldwide, represents one of the leading causes of disability worldwide. Depression treatment is based on the use of tricyclic antidepressants, selective serotonin reuptake inhibitors. These drugs, although clinically effective, have also been shown to have delayed onset activity and produce significant adverse side effects. Medicinal plants are presented as a source of study in the search for therapies. This study was aimed to assess the antidepressant effect (on forced swimming test -FST- and tail suspension test -TST-) of different fractions and tiliroside from Tilia americana. The organic fractions (FAC1-1, FAC1-2) and aqueous fractions (FAqC2-1, FAqC2-3) were obtained by column chromatography and the HPLC analysis allowed the standardization based on the concentration (mg/g) of several compounds: FAqC2-1 with tiliroside 20, quercitrin 41.7, and quercetin glucoside 73.8; FAqC2-3 with tiliroside 2.4, quercitrin 16.6 and 7-O-luteolin glucoside 35.9; FAC1-1 caffeic acid was quantified with 7.87 ; FAC1-2 with tiliroside 24.7 and quercitrin 19.8. Each fraction was tested in ICR mice at different dose in the FST and TST, as well as in the open field test (OFT); tiliroside was isolated and tested in such assays (at 0.05, 0.1, 0.5, and 1.0 mg/kg). All fractions were active, the better was FAC1-2, and induced a dose-dependent effect on FST with an ED50= 2.59 mg/kg and Emax = 175.4 sec; with a sedative effect in OFT. Tiliroside with like-antidepressant activity, showed a dose-response behavior (ED50= 0.04 mg/kg and Emax = 121.42 sec for FST; ED50= 0.014 mg/kg and Emax = 78.28 sec for TST).
Collapse
Affiliation(s)
- Yadid Chávez-Morales
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, 62790 Xochitepec, Morelos, México.,Doctorado en Ciencias Biológicas y de la Salud, División de Ciencias Biológicas y de la Salud, Universidad.,Autónoma Metropolitana (UAM), Iztapalapa, San Rafael Atlixco No.186, Col. Vicentina 09340, Iztapalapa, México D.F., México
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, 62790 Xochitepec, Morelos, México
| | - Gabriela Belen Martínez-Hernández
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, 62790 Xochitepec, Morelos, México.,Doctorado en Ciencias Biológicas y de la Salud, División de Ciencias Biológicas y de la Salud, Universidad.,Autónoma Metropolitana (UAM), Iztapalapa, San Rafael Atlixco No.186, Col. Vicentina 09340, Iztapalapa, México D.F., México
| | - Jaime Tortoriello
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, 62790 Xochitepec, Morelos, México
| | - Rubén Román-Ramos
- Autónoma Metropolitana (UAM), Iztapalapa, San Rafael Atlixco No.186, Col. Vicentina 09340, Iztapalapa, México D.F., México
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, 62790 Xochitepec, Morelos, México
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Argentina 1, 62790 Xochitepec, Morelos, México
| |
Collapse
|
39
|
Usefulness of a Kampo Medicine on Stress-Induced Delayed Gastric Emptying in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3797219. [PMID: 32089720 PMCID: PMC7013301 DOI: 10.1155/2020/3797219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/26/2019] [Indexed: 01/10/2023]
Abstract
Anxiety and depression often occur with gastrointestinal symptoms. Although the Japanese traditional medicine (Kampo medicine) bukuryoingohangekobokuto (BGH) is approved for treating anxiety, neurotic gastritis, and heartburn, its effect on gastrointestinal motility remains poorly known. This study aimed to examine the effect of BGH on delayed gastric emptying in stress model mice and clarified its action mechanism. Seven-week-old C57BL/6 male mice were acclimated for a week and fasted overnight. Stress hormone, corticotropin-releasing factor (CRF), was intracerebroventricularly injected to mice, and solid nutrient meal (ground chow and distilled water) was orally administered 1 hour after. Gastric contents were collected to evaluate gastric emptying rates by measuring its dry weight. Injection of CRF (0.3 or 1.0 μg/mouse) significantly delayed the 2-hour gastric emptying in mice. BGH (1.0 g/kg), which was administered 30 minutes before the CRF injection, significantly ameliorated the delayed gastric emptying induced by CRF (0.3 μg/mouse). BGH (0.5, 1.0 g/kg) significantly enhanced the 1-hour gastric emptying and slightly increased the 2-hour gastric emptying in mice without CRF injection. In vitro functional assays showed that components of BGH antagonized or inhibited CRF type-2, dopamine D2/D3, neuropeptide Y Y2 receptors, or acetylcholinesterase. In conclusion, the components of BGH may exert synergistic effects on improving gastric emptying via various targets. BGH is considered to be potentially useful for treating gastrointestinal dysmotility with psychological symptoms.
Collapse
|
40
|
Haslinger K, Prather KLJ. Heterologous caffeic acid biosynthesis in Escherichia coli is affected by choice of tyrosine ammonia lyase and redox partners for bacterial Cytochrome P450. Microb Cell Fact 2020; 19:26. [PMID: 32046741 PMCID: PMC7011507 DOI: 10.1186/s12934-020-01300-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/05/2020] [Indexed: 01/03/2023] Open
Abstract
Background Caffeic acid is industrially recognized for its antioxidant activity and therefore its potential to be used as an anti-inflammatory, anticancer, antiviral, antidiabetic and antidepressive agent. It is traditionally isolated from lignified plant material under energy-intensive and harsh chemical extraction conditions. However, over the last decade bottom-up biosynthesis approaches in microbial cell factories have been established, that have the potential to allow for a more tailored and sustainable production. One of these approaches has been implemented in Escherichia coli and only requires a two-step conversion of supplemented l-tyrosine by the actions of a tyrosine ammonia lyase and a bacterial Cytochrome P450 monooxygenase. Although the feeding of intermediates demonstrated the great potential of this combination of heterologous enzymes compared to others, no de novo synthesis of caffeic acid from glucose has been achieved utilizing the bacterial Cytochrome P450 thus far. Results The herein described work aimed at improving the efficiency of this two-step conversion in order to establish de novo caffeic acid formation from glucose. We implemented alternative tyrosine ammonia lyases that were reported to display superior substrate binding affinity and selectivity, and increased the efficiency of the Cytochrome P450 by altering the electron-donating redox system. With this strategy we were able to achieve final titers of more than 300 µM or 47 mg/L caffeic acid over 96 h in an otherwise wild type E. coli MG1655(DE3) strain with glucose as the only carbon source. We observed that the choice and gene dose of the redox system strongly influenced the Cytochrome P450 catalysis. In addition, we were successful in applying a tethering strategy that rendered even a virtually unproductive Cytochrome P450/redox system combination productive. Conclusions The caffeic acid titer achieved in this study is about 10% higher than titers reported for other heterologous caffeic acid pathways in wildtype E. coli without l-tyrosine supplementation. The tethering strategy applied to the Cytochrome P450 appears to be particularly useful for non-natural Cytochrome P450/redox partner combinations and could be useful for other recombinant pathways utilizing bacterial Cytochromes P450.
Collapse
Affiliation(s)
- Kristina Haslinger
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, USA.
| |
Collapse
|
41
|
Monteiro ÁB, Kelly de Souza Rodrigues C, Petícia do Nascimento E, Sales VDS, de Araújo Delmondes G, Nogueira da Costa MH, Pereira de Oliveira VA, Pereira de Morais L, Boligon AA, Barbosa R, Martins da Costa JG, Alencar de Menezes IR, Bezerra Felipe CF, Kerntopf MR. Anxiolytic and antidepressant-like effects of Annona coriacea (Mart.) and caffeic acid in mice. Food Chem Toxicol 2020; 136:111049. [DOI: 10.1016/j.fct.2019.111049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 10/25/2022]
|
42
|
Mudgal J, Basu Mallik S, Nampoothiri M, Kinra M, Hall S, Grant GD, Anoopkumar-Dukie S, Davey AK, Rao CM, Arora D. Effect of coffee constituents, caffeine and caffeic acid on anxiety and lipopolysaccharide-induced sickness behavior in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
43
|
Analysis of Polyphenolic Composition of a Herbal Medicinal Product-Peppermint Tincture. Molecules 2019; 25:molecules25010069. [PMID: 31878211 PMCID: PMC6983185 DOI: 10.3390/molecules25010069] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 01/25/2023] Open
Abstract
The pharmacological activity of peppermint leaf (Menthae piperitae folium) for medical use is mainly attributed to the presence of essential oil, which, according to the European Pharmacopoeia (Ph. Eur.), should constitute not less than 12 mL/kg of raw material. The content of polyphenols in peppermint-based preparations, except peppermint leaf dry extract, has not yet been considered as an essential parameter in the pharmacopeial assessment of peppermint quality. This study concerns the evaluation of the presence of representatives of polyphenolic compounds in 23 commercial peppermint tinctures (ethanolic extracts) purchased in pharmacies in Poland. The non-volatile polyphenolic fraction was investigated, and the presence of flavonoids and phenolic acids was quantified. High performance liquid chromatography coupled with a diode-array detector (HPLC-DAD) and an electrospray ionization mass spectrometer (U(H)PLC-ESI-MS) were used in the experiment. The study showed that eriocitrin, luteolin-7-O-rutinoside, and rosmarinic acid were the main polyphenolic components of the peppermint tinctures, as previously reported for peppermint leaf. Despite this, the research shows the extremely diverse content of the mentioned compounds in analyzed commercial medicinal products. In light of these results, it seems that the pharmacopeial assessment for the peppermint leaf (Ph. Eur.) and peppermint tincture (Polish Pharmacopoeia (FP)) requires correction and supplementation.
Collapse
|
44
|
Antidepressant Potential of Cinnamic Acids: Mechanisms of Action and Perspectives in Drug Development. Molecules 2019; 24:molecules24244469. [PMID: 31817569 PMCID: PMC6943791 DOI: 10.3390/molecules24244469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 01/12/2023] Open
Abstract
Depression is a health problem that compromises the quality of life of the world's population. It has different levels of severity and a symptomatic profile that affects social life and performance in work activities, as well as a high number of deaths in certain age groups. In the search for new therapeutic options for the treatment of this behavioral disorder, the present review describes studies on antidepressant activity of cinnamic acids, which are natural products found in medicinal plants and foods. The description of the animal models used and the mechanisms of action of these compounds are discussed.
Collapse
|
45
|
Westfall S, Pasinetti GM. The Gut Microbiota Links Dietary Polyphenols With Management of Psychiatric Mood Disorders. Front Neurosci 2019; 13:1196. [PMID: 31749681 PMCID: PMC6848798 DOI: 10.3389/fnins.2019.01196] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
The pathophysiology of depression is multifactorial yet generally aggravated by stress and its associated physiological consequences. To effectively treat these diverse risk factors, a broad acting strategy is required and is has been suggested that gut-brain-axis signaling may play a pinnacle role in promoting resilience to several of these stress-induced changes including pathogenic load, inflammation, HPA-axis activation, oxidative stress and neurotransmitter imbalances. The gut microbiota also manages the bioaccessibility of phenolic metabolites from dietary polyphenols whose multiple beneficial properties have known therapeutic efficacy against depression. Although several potential therapeutic mechanisms of dietary polyphenols toward establishing cognitive resilience to neuropsychiatric disorders have been established, only a handful of studies have systematically identified how the interaction of the gut microbiota with dietary polyphenols can synergistically alleviate the biological signatures of depression. The current review investigates several of these potential mechanisms and how synbiotics, that combine probiotics with dietary polyphenols, may provide a novel therapeutic strategy for depression. In particular, synbiotics have the potential to alleviate neuroinflammation by modulating microglial and inflammasome activation, reduce oxidative stress and balance serotonin metabolism therefore simultaneously targeting several of the major pathological risk factors of depression. Overall, synbiotics may act as a novel therapeutic paradigm for neuropsychiatric disorders and further understanding the fundamental mechanisms of gut-brain-axis signaling will allow full utilization of the gut microbiota's as a therapeutic tool.
Collapse
Affiliation(s)
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
46
|
Antidepressant and Anxiolytic Effect of Echium amoenum in Restraint Stress Model: The Role of Neuroinflammation in the Prefrontal Cortex and Hippocampus. IRANIAN RED CRESCENT MEDICAL JOURNAL 2019. [DOI: 10.5812/ircmj.95438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Antioxidant Effects of Satureja hortensis L. Attenuate the Anxiogenic Effect of Cisplatin in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8307196. [PMID: 31467638 PMCID: PMC6701305 DOI: 10.1155/2019/8307196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/13/2019] [Accepted: 05/26/2019] [Indexed: 12/24/2022]
Abstract
Numerous adverse effects of cisplatin-based therapy are usually accompanied by enhanced oxidative damage and cell apoptosis in various tissues. Even neurotoxic manifestations of cisplatin administration, such as the anxiogenic effect, appear along with the increased oxidative stress and apoptotic indicators in certain brain regions. Thirty-five Wistar albino male rats were divided into seven groups: control, cisplatin (received a single dose of cisplatin: 7.5 mg/kg), three groups with oral administration of Satureja hortensis L. methanolic extract (SH) (low: 50 mg/kg, middle: 100 mg/kg, and high dose: 200 mg/kg) along with cisplatin application, a group with the extract in high dose alone, and a silymarin group (cisplatin and silymarin: 100 mg/kg), in order to evaluate the antioxidant effects of SH on cisplatin-induced increase in the anxiety level. After completing 10-day pretreatments, behavioral testing was performed in the open field and the elevated plus maze, followed by an investigation of oxidative stress and apoptosis parameters in hippocampal tissue samples. Cisplatin administration resulted in anxiogenic-like behavior, increased lipid peroxidation, and proapoptotic markers accompanied by the decline in antioxidant and antiapoptotic defense. The administration of extract alone did not significantly alter any of the estimated parameters. When applied along with cisplatin, SH in a dose of 100 mg/kg induced the significant anxiolytic effect with concomitant recovery of antioxidant and antiapoptotic activity indicators, while both lower and higher doses of the extract failed to improve the adverse effects of cisplatin administration. The beneficial effects of the middle dose of SH were equivalent to the same dose of silymarin, as a “golden standard.” Our results indicate that the antioxidant supplementation with SH in an optimal dose significantly improved the oxidative status and it had antiapoptotic effect in the rat hippocampus disturbed by cisplatin administration, which was accompanied with attenuation of cisplatin-induced anxiogenic effect.
Collapse
|
48
|
Dhyani A, Chopra R, Garg M. A Review on Nutritional Value, Functional Properties and Pharmacological Application of Perilla (Perilla Frutescens L.). ACTA ACUST UNITED AC 2019. [DOI: 10.13005/bpj/1685] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Perilla frutescens is an annual herb belonging to the mint family (Lamiaceae). It is majorly produced in countries like China, Japan, India, Thailand and Korea. Recently, Perilla plant is gaining more attention because of its medicinal benefits and phytochemical contents. The major phytochemical compounds reported in this species are phenolic compounds (Rosmarinic acid, caffeic acid, ferulic acid), flavonoids (luteolin, apigenin), Phytosterols, Tocopherols, Policosanols and Fatty acid. Perilla seed oil is also a rich source of essential fatty acid such as α-linolenic acid (54-64%) and linoleic acid (14%). Perilla seeds and its oils have been widely used in traditional nutritional and medicinal formulations. Biological analysis of Perilla seeds revealed that it showed anticancer, ant-diabetic, antiasthma, antimicrobial, anti-inflammatory, antioxidant and cardioprotective effect. The aim of this review is to provide an update on the nutritional composition, phytochemical profile and pharmacological research of Perilla seed.
Collapse
Affiliation(s)
- Akriti Dhyani
- Department of Foods and Nutrition, Institute of Home Economics, University of Delhi, F-4 Hauz Khas Enclave, New Delhi, 110016, India
| | - Rajni Chopra
- Department of Foods and Nutrition, Institute of Home Economics, University of Delhi, F-4 Hauz Khas Enclave, New Delhi, 110016, India
| | - Meenakshi Garg
- Department of Food Technology, Bhaskaracharya College of Applied Sciences, University of Delhi, Dwarka, New Delhi, 110075, India
| |
Collapse
|
49
|
Elufioye TO, Habtemariam S. Hepatoprotective effects of rosmarinic acid: Insight into its mechanisms of action. Biomed Pharmacother 2019; 112:108600. [PMID: 30780110 DOI: 10.1016/j.biopha.2019.108600] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/11/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
Liver diseases such as hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma are one of the major health challenges in the world and many conditions such as inadequate nutrition, viral infection, ethanol and drug abuse, xenobiotic exposure, and metabolic diseases have been implicated in the development and progression of liver diseases. Several factors including lipid peroxidation, production of reactive oxygen species (ROS), peroxynitrite formation, complement factors and proinflammatory mediators, such as cytokines and chemokines, are involved in hepatic diseases. Rosmarinic acid (RA) is a natural phenolic compound found mainly in the family Lamiaceae consisting of several medicinal plants, herbs and spices. Several biological activities have been reported for RA and these include antioxidant properties as a ROS scavenger and lipid peroxidation inhibitor, anti-inflammatory, neuroprotective and antiangiogenic among others. This review is aimed at discussing the effects of RA on the liver, highlighting its hepatoprotective potential and the underlying mechanisms.
Collapse
Affiliation(s)
- Taiwo O Elufioye
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Nigeria.
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Chatham, Maritime Kent, ME4 4TB, UK
| |
Collapse
|
50
|
Fachel FNS, Schuh RS, Veras KS, Bassani VL, Koester LS, Henriques AT, Braganhol E, Teixeira HF. An overview of the neuroprotective potential of rosmarinic acid and its association with nanotechnology-based delivery systems: A novel approach to treating neurodegenerative disorders. Neurochem Int 2019; 122:47-58. [PMID: 30439384 DOI: 10.1016/j.neuint.2018.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/01/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022]
Abstract
Neurodegenerative disorders (ND) are characterized by slow and progressive neuronal dysfunction induced by the degeneration of neuronal cells in the central nervous system (CNS). Recently, the neuroprotective effects of natural compounds with anti-inflammatory and antioxidant activities has been clearly demonstrated. This appears to be an attractive therapeutic approach for ND, particularly regarding the use of polyphenols. In this review, we present an overview of the neuroprotective potential of rosmarinic acid (RA) and discuss the use of nanotechnology as a novel approach to treating ND. RA presents a variety of biological important activities, i.e. the modulation of pro-inflammatory cytokine expression, prevention of neurodegeneration and damage reduction. However, its poor bioavailability represents a limitation in terms of pharmacodynamics. In this sense, nanotechnology-based carriers could allow for the administration of higher but still safe amounts of RA, aiming for CNS delivery. Nasal administration could be a pleasant route for delivery to the CNS, as this represents a direct route to the CNS. With these advantages, RA-loaded nanotechnology-based therapy through the nasal route could be promising approach for the treatment of ND.
Collapse
Affiliation(s)
- Flávia Nathiely Silveira Fachel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roselena Silvestri Schuh
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kleyton Santos Veras
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Valquíria Linck Bassani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Scherer Koester
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amelia Teresinha Henriques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Helder Ferreira Teixeira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|