1
|
Onimus O, Valjent E, Fisone G, Gangarossa G. Haloperidol-Induced Immediate Early Genes in Striatopallidal Neurons Requires the Converging Action of cAMP/PKA/DARPP-32 and mTOR Pathways. Int J Mol Sci 2022; 23:ijms231911637. [PMID: 36232936 PMCID: PMC9569967 DOI: 10.3390/ijms231911637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Antipsychotics share the common pharmacological feature of antagonizing the dopamine 2 receptor (D2R), which is abundant in the striatum and involved in both the therapeutic and side effects of this drug’s class. The pharmacological blockade of striatal D2R, by disinhibiting the D2R-containing medium-sized spiny neurons (MSNs), leads to a plethora of molecular, cellular and behavioral adaptations, which are central in the action of antipsychotics. Here, we focused on the cell type-specific (D2R-MSNs) regulation of some striatal immediate early genes (IEGs), such as cFos, Arc and Zif268. Taking advantage of transgenic mouse models, pharmacological approaches and immunofluorescence analyses, we found that haloperidol-induced IEGs in the striatum required the synergistic activation of A2a (adenosine) and NMDA (glutamate) receptors. At the intracellular signaling level, we found that the PKA/DARPP-32 and mTOR pathways synergistically cooperate to control the induction of IEGs by haloperidol. By confirming and further expanding previous observations, our results provide novel insights into the regulatory mechanisms underlying the molecular/cellular action of antipsychotics in the striatum.
Collapse
Affiliation(s)
- Oriane Onimus
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
- Correspondence:
| |
Collapse
|
2
|
Cunha AS, Matheus FC, Moretti M, Sampaio TB, Poli A, Santos DB, Colle D, Cunha MP, Blum-Silva CH, Sandjo LP, Reginatto FH, Rodrigues ALS, Farina M, Prediger RD. Agmatine attenuates reserpine-induced oral dyskinesia in mice: Role of oxidative stress, nitric oxide and glutamate NMDA receptors. Behav Brain Res 2016; 312:64-76. [DOI: 10.1016/j.bbr.2016.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 11/29/2022]
|
3
|
Stayte S, Vissel B. Advances in non-dopaminergic treatments for Parkinson's disease. Front Neurosci 2014; 8:113. [PMID: 24904259 PMCID: PMC4033125 DOI: 10.3389/fnins.2014.00113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 04/30/2014] [Indexed: 01/05/2023] Open
Abstract
Since the 1960's treatments for Parkinson's disease (PD) have traditionally been directed to restore or replace dopamine, with L-Dopa being the gold standard. However, chronic L-Dopa use is associated with debilitating dyskinesias, limiting its effectiveness. This has resulted in extensive efforts to develop new therapies that work in ways other than restoring or replacing dopamine. Here we describe newly emerging non-dopaminergic therapeutic strategies for PD, including drugs targeting adenosine, glutamate, adrenergic, and serotonin receptors, as well as GLP-1 agonists, calcium channel blockers, iron chelators, anti-inflammatories, neurotrophic factors, and gene therapies. We provide a detailed account of their success in animal models and their translation to human clinical trials. We then consider how advances in understanding the mechanisms of PD, genetics, the possibility that PD may consist of multiple disease states, understanding of the etiology of PD in non-dopaminergic regions as well as advances in clinical trial design will be essential for ongoing advances. We conclude that despite the challenges ahead, patients have much cause for optimism that novel therapeutics that offer better disease management and/or which slow disease progression are inevitable.
Collapse
Affiliation(s)
- Sandy Stayte
- Neuroscience Department, Neurodegenerative Disorders Laboratory, Garvan Institute of Medical Research, Sydney NSW, Australia ; Faculty of Medicine, University of New South Wales, Sydney NSW, Australia
| | - Bryce Vissel
- Neuroscience Department, Neurodegenerative Disorders Laboratory, Garvan Institute of Medical Research, Sydney NSW, Australia ; Faculty of Medicine, University of New South Wales, Sydney NSW, Australia
| |
Collapse
|
4
|
Laricchiuta D, Musella A, Rossi S, Centonze D. Behavioral and electrophysiological effects of endocannabinoid and dopaminergic systems on salient stimuli. Front Behav Neurosci 2014; 8:183. [PMID: 24904335 PMCID: PMC4032909 DOI: 10.3389/fnbeh.2014.00183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/04/2014] [Indexed: 01/23/2023] Open
Abstract
Rewarding effects have been related to enhanced dopamine (DA) release in corticolimbic and basal ganglia structures. The DAergic and endocannabinoid interaction in the responses to reward is described. This study investigated the link between endocannabinoid and DAergic transmission in the processes that are related to response to two types of reward, palatable food and novelty. Mice treated with drugs acting on endocannabinoid system (ECS) (URB597, AM251) or DAergic system (haloperidol) were submitted to approach-avoidance conflict tasks with palatable food or novelty. In the same mice, the cannabinoid type-1 (CB1)-mediated GABAergic transmission in medium spiny neurons of the dorsomedial striatum was analyzed. The endocannabinoid potentiation by URB597 magnified approach behavior for reward (food and novelty) and in parallel inhibited dorsostriatal GABAergic neurotransmission. The decreased activity of CB1 receptor by AM251 (alone or with URB597) or of DAergic D2 receptor by haloperidol had inhibitory effects toward the reward and did not permit the inhibition of dorsostriatal GABAergic transmission. When haloperidol was coadministered with URB597, a restoration effect on reward and reward-dependent motor activity was observed, only if the reward was the palatable food. In parallel, the coadministration led to restoring inhibition of CB1-mediated GABAergic transmission. Thus, in the presence of simultaneous ECS activation and inhibition of DAergic system the response to reward appears to be a stimulus-dependent manner.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Psicologia, Facoltà di Medicina e Psicologia, Università "Sapienza" di Roma Rome, Italy
| | - Alessandra Musella
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Neuroscienze, Università Tor Vergata Rome, Italy
| | - Silvia Rossi
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Neuroscienze, Università Tor Vergata Rome, Italy
| | - Diego Centonze
- IRCCS Fondazione Santa Lucia Rome, Italy ; Dipartimento di Neuroscienze, Università Tor Vergata Rome, Italy
| |
Collapse
|
5
|
Mierzejewski P, Kolaczkowski M, Nowak N, Korkosz A, Scinska A, Sienkiewicz-Jarosz H, Samochowiec J, Kostowski W, Bienkowski P. Pharmacological characteristics of zolpidem-induced catalepsy in the rat. Neurosci Lett 2013; 556:99-103. [PMID: 24135337 DOI: 10.1016/j.neulet.2013.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/26/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
Abstract
Zolpidem is a non-benzodiazepine hypnotic drug acting preferentially at α1-containing GABAA receptors expressed in various parts of the brain, including the basal ganglia. The aim of the present study was to provide preliminary characteristics of zolpidem-induced catalepsy in Wistar rats. Zolpidem (2.5-10.0mg/kg), but not diazepam and midazolam, produced dose-dependent cataleptic responses in the bar test, which were similar to those produced by a reference antipsychotic drug, haloperidol. Zolpidem-induced catalepsy was abolished by a benzodiazepine site antagonist, flumazenil (5.0mg/kg), D2/3 receptor agonist, quinpirole (1.0mg/kg), and a non-competitive NMDA receptor antagonist, MK-801 (0.1mg/kg), but not by a non-selective opioid receptor antagonist, naltrexone (3.0mg/kg). The present results indicate that systemic injections of zolpidem may produce short-lasting, neuroleptic-like catalepsy in the rat.
Collapse
Affiliation(s)
- Pawel Mierzejewski
- Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Franco V, Turner RS. Testing the contributions of striatal dopamine loss to the genesis of parkinsonian signs. Neurobiol Dis 2012; 47:114-25. [PMID: 22498034 PMCID: PMC3358361 DOI: 10.1016/j.nbd.2012.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/01/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022] Open
Abstract
The diverse and independently-varying signs of Parkinson's disease (PD) are often attributed to one simple mechanism: degeneration of the dopaminergic innervation of the posterolateral striatum. However, growing recognition of the dopamine (DA) loss and other pathology in extra-striatal brain regions has led to uncertainty whether loss of DA in the striatum is sufficient to cause parkinsonian signs. We tested this hypothesis by infusing cis-flupenthixol (cis-flu; a broad-spectrum D1/D2 receptor antagonist) into different regions of the macaque putamen (3 hemispheres of 2 monkeys) while the animal performed a visually-cued choice reaction time task in which visual cues indicated the arm to reach with and the peripheral target to contact to obtain food reward. Following reward delivery, the animal was required to self-initiate release of the peripheral target and return of the chosen hand to its home position (i.e., without the benefit of external sensory cues or immediate rewards). Infusions of cis-flu at 15 of 26 sites induced prolongations of reaction time (9 of 15 cases), movement duration (6 cases), and/or dwell time of the hand at the peripheral target (8 cases). Dwell times were affected more severely (+95%) than visually-triggered reaction times or movement durations (+25% and +15%, respectively). Specifically, the animal's hand often 'froze' at the peripheral target for up to 25-s, similar to the akinetic freezing episodes observed in PD patients. Across injections, slowing of self-initiation did not correlate in severity with prolongations of visually-triggered reaction time or movement duration, although the latter two were correlated with each other. Episodes of slowed self-initiation appeared primarily in the arm contralateral to the injected hemisphere and were not associated with increased muscle co-contraction or global alterations in behavioral state (i.e., inattention or reduced motivation), consistent with the idea that these episodes reflected a fundamental impairment of movement initiation. We found no evidence for an anatomic topography within the putamen for the effects elicited. We conclude that acute focal blockade of DA transmission in the putamen is sufficient to induce marked akinesia-like impairments. Furthermore, different classes of impairments can be induced independently, suggesting that specific parkinsonian signs have unique pathophysiologic substrates.
Collapse
Affiliation(s)
- Vanessa Franco
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261-0001, USA
| | - Robert S. Turner
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261-0001, USA
- Department of Neurobiology and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261-0001, USA
| |
Collapse
|
7
|
The role of NMDA and AMPA/Kainate receptors in the consolidation of catalepsy sensitization. Behav Brain Res 2011; 218:194-9. [DOI: 10.1016/j.bbr.2010.11.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/25/2010] [Accepted: 11/28/2010] [Indexed: 11/22/2022]
|
8
|
|
9
|
Johnson KA, Conn PJ, Niswender CM. Glutamate receptors as therapeutic targets for Parkinson's disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2009; 8:475-91. [PMID: 19702565 DOI: 10.2174/187152709789824606] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 07/23/2009] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor symptoms including tremor and bradykinesia. The primary pathophysiology underlying PD is the degeneration of dopaminergic neurons of the substantia nigra pars compacta. Loss of these neurons causes pathological changes in neurotransmission in the basal ganglia motor circuit. The ability of ionotropic and metabotropic glutamate receptors to modulate neurotransmission throughout the basal ganglia suggests that these receptors may be targets for reversing the effects of altered neurotransmission in PD. Studies in animal models suggest that modulating the activity of these receptors may alleviate the primary motor symptoms of PD as well as side effects induced by dopamine replacement therapy. Moreover, glutamate receptor ligands may slow disease progression by delaying progressive dopamine neuron degeneration. Antagonists of NMDA receptors have shown promise in reversing motor symptoms, levodopa-induced dyskinesias, and neurodegeneration in preclinical PD models. The effects of drugs targeting AMPA receptors are more complex; while antagonists of these receptors exhibit utility in the treatment of levodopa-induced dyskinesias, AMPA receptor potentiators show promise for neuroprotection. Pharmacological modulation of metabotropic glutamate receptors (mGluRs) may hold even more promise for PD treatment due to the ability of mGluRs to fine-tune neurotransmission. Antagonists of mGluR5, as well as activators of group II mGluRs and mGluR4, have shown promise in several animal models of PD. These drugs reverse motor deficits in addition to providing protection against neurodegeneration. Glutamate receptors therefore represent exciting targets for the development of novel pharmacological therapies for PD.
Collapse
Affiliation(s)
- Kari A Johnson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
10
|
Sano K, Mishima K, Koushi E, Orito K, Egashira N, Irie K, Takasaki K, Katsurabayashi S, Iwasaki K, Uchida N, Egawa T, Kitamura Y, Nishimura R, Fujiwara M. Delta 9-tetrahydrocannabinol-induced catalepsy-like immobilization is mediated by decreased 5-HT neurotransmission in the nucleus accumbens due to the action of glutamate-containing neurons. Neuroscience 2007; 151:320-8. [PMID: 18083311 DOI: 10.1016/j.neuroscience.2007.10.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 10/26/2007] [Accepted: 11/01/2007] [Indexed: 11/30/2022]
Abstract
Delta(9)-tetrahydrocannabinol (THC) has been reported to induce catalepsy-like immobilization, but the mechanism underlying this effect remains unclear. In the present study, in order to fully understand the neural circuits involved, we determined the brain sites involved in the immobilization effect in rats. THC dose-dependently induced catalepsy-like immobilization. THC-induced catalepsy-like immobilization is mechanistically different from that induced by haloperidol (HPD), because unlike HPD-induced catalepsy, animals with THC-induced catalepsy became normal again following sound and air-puff stimuli. THC-induced catalepsy was reversed by SR141716, a selective cannabinoid CB(1) receptor antagonist. Moreover, THC-induced catalepsy was abolished by lesions in the nucleus accumbens (NAc) and central amygdala (ACE) regions. On the other hand, HPD-induced catalepsy was suppressed by lesions in the caudate putamen (CP), substantia nigra (SN), globus pallidus (GP), ACE and lateral hypothalamus (LH) regions. Bilateral microinjection of THC into the NAc region induced catalepsy-like immobilization. This THC-induced catalepsy was inhibited by serotonergic drugs such as 5-hydroxy-L-tryptophan (5-HTP), a 5-HT precursor, and 5-methoxy-N,N-dimethyltryptamine (5-MeODMT), a 5-HT receptor agonist, as well as by anti-glutamatergic drugs such as MK-801 and amantadine, an N-methyl-d-aspartate (NMDA) receptor antagonist. THC significantly decreased 5-HT and glutamate release in the NAc, as shown by in vivo microdialysis. SR141716 reversed and MK-801 inhibited this decrease in 5-HT and glutamate release. These findings suggest that the THC-induced catalepsy is mechanistically different from HPD-induced catalepsy and that the catalepsy-like immobilization induced by THC is mediated by decreased 5-HT neurotransmission in the nucleus accumbens due to the action of glutamate-containing neurons.
Collapse
Affiliation(s)
- K Sano
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Nanakuma 8-19-1, Fukuoka City, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sander SE, Richter A. Effects of intrastriatal injections of glutamate receptor antagonists on the severity of paroxysmal dystonia in the dtsz mutant. Eur J Pharmacol 2007; 563:102-8. [PMID: 17349621 DOI: 10.1016/j.ejphar.2007.01.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 01/17/2007] [Accepted: 01/23/2007] [Indexed: 11/28/2022]
Abstract
Imbalances of the glutamatergic system are implicated in the pathophysiology of various basal ganglia disorders, but few is known about their role in dystonia, a common neurological syndrome in which involuntary muscle co-contractions lead to twisting movements and abnormal postures. Previous systemic administrations of glutamate receptor antagonists in dtsz hamsters, an animal model of primary paroxysmal dystonia, exerted antidystonic effects and electrophysiological experiments pointed to an enhanced corticostriatal glutamatergic activity. In order to examine the pathophysiological relevance of these findings, we performed striatal microinjections of the alpha-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropanoic acid (AMPA) receptor antagonist 2,3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX) and the N-methyl-D-aspartate (NMDA) receptor antagonists D(-)-2-amino-5-phosphopentanoic acid (AP-5), (R)-(+)-3-amino-1-hydroxypyrrolidin-2-one (HA-966) and dizocilpine (MK-801). The striatal application of NBQX reduced the severity and increased the latency to onset of dystonia significantly only at a dosage of 0.08 microg per hemisphere, lower (0.03 microg) and higher dosages (0.16 microg and 0.32 microg) failed to exert comparable effects on the severity. None of the striatal injected NMDA receptor antagonists influenced the severity of the dystonic attacks in the mutant hamster. The combined application of NBQX (0.08 microg) with AP-5 (1.0 microg) failed to exert synergistic antidystonic effects, but the beneficial effect on the severity of dystonia of the single application of NBQX was reproduced. Therefore, corticostriatal glutamatergic overactivity mediated by AMPA receptors, but not by NMDA receptors, is possibly important for the manifestation of dystonic attacks in the dtsz hamster mutant.
Collapse
Affiliation(s)
- Svenja Esther Sander
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany.
| | | |
Collapse
|
12
|
Pollack AE, St Martin JL, MacPherson AT. Role of NMDA and AMPA glutamate receptors in the induction and the expression of dopamine-mediated sensitization in 6-hydroxydopamine-lesioned rats. Synapse 2005; 56:45-53. [PMID: 15700284 DOI: 10.1002/syn.20125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rats with unilateral 6-hydroxydopamine (6-OHDA) lesions exhibit behavioral sensitization following repeated treatment with dopamine agonists, a phenomenon called "priming." Priming has two distinct phases: induction and expression. Priming induction using three injections with D1/D2 agonist apomorphine (0.5 mg/kg) or D1 agonist SKF38393 (10 mg/kg) allows priming expression, robust contralateral rotational behavior and striatal Fos expression, following a challenge with the D2 agonist quinpirole (0.25 mg/kg). We examined the roles of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors on dopamine agonist priming. Administration of the NMDA antagonist (+)5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine maleate (MK801) (0.5 mg/kg) blocked apomorphine-priming of quinpirole-mediated responses, while MK801 dose-dependently attenuated SKF38393-priming of quinpirole-mediated striatal Fos expression and had no effect on SKF38393-priming of quinpirole-mediated rotational behavior. In contrast, administration of the AMPA antagonist 2,3-dihydroxy-6-nitro-7sulfamoyl-benzo[f]quinoxaline (NBQX) (5 or 10 mg/kg) potentiated apomorphine- and SKF38393-priming of quinpirole-mediated striatal Fos expression, but had no effect on their priming of quinpirole-mediated rotational behavior. In SKF38393-primed 6-OHDA rats, administration of MK801 (0.5 mg/kg) blocked the expression of quinpirole-mediated responses, while administration of NBQX (10 mg/kg) or the noncompetitive AMPA antagonist 4-(8-methyl-9H-1,3-dioxolo[4,5-h][2,3]benzodiazepin-5-yl)-benzenamine dihydrochloride (GYKI52466) (5 or 15 mg/kg) had no effect. These results suggest that NMDA and AMPA glutamate receptors have differing roles in dopamine agonist priming-with NMDA receptors required for D1/D2 priming induction and D2-mediated priming expression, and AMPA receptors inhibiting priming induction of D2-mediated immediate early gene expression in the striatum, but not affecting priming induction of D2-mediated rotational behavior or the expression of D2-mediated responses.
Collapse
Affiliation(s)
- Alexia E Pollack
- Department of Biology, University of Massachusetts-Boston, Massachusetts 02125, USA.
| | | | | |
Collapse
|
13
|
Marino MJ, Valenti O, Conn PJ. Glutamate receptors and Parkinson's disease: opportunities for intervention. Drugs Aging 2004; 20:377-97. [PMID: 12696997 DOI: 10.2165/00002512-200320050-00006] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Parkinson's disease is a debilitating neurodegenerative movement disorder that is the result of a degeneration of dopaminergic neurons in the substantia nigra pars compacta. The resulting loss of striatal dopaminergic tone is believed to underlie a series of changes in the circuitry of the basal ganglia that ultimately lead to severe motor disturbances due to excessive basal ganglia outflow. Glutamate plays a central role in the disruption of normal basal ganglia function, and it has been hypothesised that agents acting to restore normal glutamatergic function may provide therapeutic interventions that bypass the severe motor side effects associated with current dopamine replacement strategies. Analysis of the effects of glutamate receptor ligands in the basal ganglia circuit suggests that both ionotropic and metabotropic glutamate receptors could have antiparkinsonian actions. In particular, NMDA receptor antagonists that selectively target the NR2B subunit and antagonists of the metabotropic glutamate receptor mGluR5 appear to hold promise and deserve future attention.
Collapse
Affiliation(s)
- Michael J Marino
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486-0004, USA
| | | | | |
Collapse
|
14
|
Cobb WS, Abercrombie ED. Relative involvement of globus pallidus and subthalamic nucleus in the regulation of somatodendritic dopamine release in substantia nigra is dopamine-dependent. Neuroscience 2003; 119:777-86. [PMID: 12809698 DOI: 10.1016/s0306-4522(03)00071-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previously, we have shown that GABA(A) receptors and glutamate receptors in substantia nigra play distinct roles in the regulation of somatodendritic dopamine release. GABAergic input to substantia nigra was found to be the primary determinant of the level of spontaneous somatodendritic dopamine release. In contrast, acute blockade of dopamine receptors by systemic haloperidol administration produced an increase in somatodendritic dopamine release in substantia nigra that was found to be dependent exclusively upon activation of nigral glutamate receptors. The focus of the present study was to identify anatomical structures that may participate in the differential regulation of somatodendritic dopamine release by GABA and glutamate under these two conditions. To this end, we pharmacologically inhibited the activity of either globus pallidus or subthalamic nucleus using microinfusion of the GABA(A) receptor agonist muscimol. The effects of these manipulations on spontaneous efflux of somatodendritic dopamine and on increases in this measure produced by systemic haloperidol administration were determined in ipsilateral substantia nigra using in vivo microdialysis. As observed previously, administration of haloperidol (0.5 mg/kg, i.p.) significantly increased extracellular dopamine in substantia nigra. Microinfusion of muscimol (400 ng/200 nl) into globus pallidus also produced a significant increase in somatodendritic dopamine efflux. When haloperidol was administered systemically in conjunction with microinfusion of muscimol into globus pallidus, an increase in nigral dopamine efflux was observed that was significantly greater than that which was produced singly by muscimol microinfusion into globus pallidus or by systemic haloperidol administration. The additive nature of the increases in somatodendritic dopamine release produced by these two manipulations indicates that independent neural circuitries may be involved. Inactivation of subthalamic nucleus by microinfusion of muscimol (200 ng/100 nl) had no effect on spontaneous somatodendritic dopamine efflux. Muscimol application into subthalamic nucleus, however, completely abolished the stimulatory effect of systemic haloperidol on dendritic dopamine efflux in substantia nigra. The present data extend our previous findings by demonstrating: 1) an important involvement of globus pallidus efferents in the GABAergic regulation of somatodendritic dopamine efflux in substantia nigra under normal conditions and, 2) an emergent predominant role of subthalamic nucleus efferents in the glutamate-dependent increase in somatodendritic dopamine efflux observed after systemic haloperidol administration. Thus, the relative influence of globus pallidus and subthalamic nucleus in the determination of the level of somatodendritic dopamine release in substantia nigra qualitatively varies as a function of dopamine receptor blockade. These findings are relevant to current models of basal ganglia function under both normal and pathological conditions, e.g. Parkinson's disease.
Collapse
Affiliation(s)
- W S Cobb
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ, 07102, USA
| | | |
Collapse
|
15
|
Konradi C, Heckers S. Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 2003; 97:153-79. [PMID: 12559388 PMCID: PMC4203361 DOI: 10.1016/s0163-7258(02)00328-5] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The glutamate system is involved in many aspects of neuronal synaptic strength and function during development and throughout life. Synapse formation in early brain development, synapse maintenance, and synaptic plasticity are all influenced by the glutamate system. The number of neurons and the number of their connections are determined by the activity of the glutamate system and its receptors. Malfunctions of the glutamate system affect neuroplasticity and can cause neuronal toxicity. In schizophrenia, many glutamate-regulated processes seem to be perturbed. Abnormal neuronal development, abnormal synaptic plasticity, and neurodegeneration have been proposed to be causal or contributing factors in schizophrenia. Interestingly, it seems that the glutamate system is dysregulated and that N-methyl-D-aspartate receptors operate at reduced activity. Here we discuss how the molecular aspects of glutamate malfunction can explain some of the neuropathology observed in schizophrenia, and how the available treatment intervenes through the glutamate system.
Collapse
Affiliation(s)
- Christine Konradi
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
16
|
Ross BM, Brooks RJ, Lee M, Kalasinsky KS, Vorce SP, Seeman M, Fletcher PJ, Turenne SD. Cyclooxygenase inhibitor modulation of dopamine-related behaviours. Eur J Pharmacol 2002; 450:141-51. [PMID: 12206852 DOI: 10.1016/s0014-2999(02)02104-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The sequential action of phospholipase A(2) and cyclooxygenase leads to the production of prostaglandins in the brain, an event hypothesised to cause dopaminergic stimulation. To investigate this further, we examined the effect of the nonselective cyclooxygenase inhibitors indomethacin and piroxicam on several indices of dopaminergic function in adult male rats. Both drugs inhibited catalepsy induced by the dopamine D1-like receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine (SCH23390), the dopamine D2-like receptor antagonist raclopride and by haloperidol, findings in agreement with a dopaminergic effect of cyclooxygenase inhibitors. However, neither cyclooxygenase inhibitor had an effect upon disruption of prepulse inhibition of the auditory startle reflex by amphetamine or on the rate of amphetamine self-administration. Both drugs reduced amphetamine-stimulated locomotor activity. Our data indicate that the mechanism by which cyclooxygenase inhibitors alter motor behaviour is unlikely to be due to a simple direct action at the dopaminergic synapse. Their apparent ability to antagonise hypoactivity without generalised dopaminergic stimulation suggests that other, possibly multiple, neurotransmitter systems may be involved.
Collapse
Affiliation(s)
- Brian M Ross
- Highland Psychiatric Research Foundation, UHI Millennium Institute, The Greenhouse, Beechwood Business Park North, Inverness, Scotland IV2 3ED, UK.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dutra RC, Andreazza AP, Andreatini R, Tufik S, Vital MABF. Behavioral effects of MK-801 on reserpine-treated mice. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:487-95. [PMID: 11999899 DOI: 10.1016/s0278-5846(01)00295-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of dizocilpine (MK-801), a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, were studied on dopamine-related behaviors induced by reserpine treatments. This study focuses on behavioral syndromes that may used as models for Parkinson's disease, or tardive dyskinesia, and its response after glutamatergic blockage. Reserpine (1 mg/kg), administered once every other day for 4 days, produced increases in orofacial dyskinesia, tongue protrusion and vacuous chewing in mice, which are signs indicative of tardive dyskinesia. Reserpine also produced tremor and catalepsy, which are signs suggestive of Parkinson's disease. MK-801 (0.1 mg/kg), administered 30 min before the observation test, prevented the vacuous chewing movements, tongue protrusions and catalepsy induced by reserpine. However, MK-801 injection produced a significant increase of tremor in reserpine-treated mice. Reserpine (1 mg/kg), administered 90 min before the test and followed by apomophine injection (0.1 mg/kg) 5 min before the test, did not produce oral dyskinesia in mice. On the other hand, reserpine induced increases in tremor and catalepsy compared to control mice. MK-801 (0.1 mg/kg) administration attenuated the catalepsy and tremor induced by reserpine. Pretreatment with reserpine (1 mg/kg) 24 h before the observation test produced increases in vacuous chewing movements and tongue protrusion, as well as increases in tremor and catalepsy, whereas MK-801 (0.1 mg/kg) injection 90 min before the test reversed the effects of reserpine. These results show that reserpine produces different and abnormal movements, which are related to dose and schedule employed and can be considered as parkinsonian-like and tardive dsykinesia signs. The glutamatergic blockage produced by NMDA can restore these signs, such as vacuous chewing movements, tongue protrusions, catalepsy and tremor according to the employed model.
Collapse
Affiliation(s)
- Renata C Dutra
- Laboratório de Fisiologia e Farmacologia do SNC-Centro Politécnico, Department of Pharmacology, Federal University of Paraná, Curitiba, Brazil
| | | | | | | | | |
Collapse
|
18
|
Tanabe M, Kaneko T. NMDA receptors in the spinal cord exert excitatory influences on spinal motor output in rats. JAPANESE JOURNAL OF PHARMACOLOGY 2001; 87:343-6. [PMID: 11829155 DOI: 10.1254/jjp.87.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The role of NMDA receptors in the regulation of spinal motor output was studied in rats. Muscle tension of the hind limbs of decerebrate animals and spinal reflex potentials in anesthetized animals were recorded. Intrathecal injection as well as systemic or intra-4th ventricular injection of (+)-5-methyl-10-11-dihydro-5H-dibenzo[a,d]cyclohepta-5-10-imine maleate (MK-801) reduced muscle tension. Systemic MK-801 did not alter monosynaptic reflexes either in intact or spinal rats, but attenuated polysynaptic reflexes in spinal rats. Thus spinal NMDA receptors participate in spinal motor output in the presence of some specific factors such as descending facilitation and preceding segmental depolarization, which remove the Mg2+ blocking.
Collapse
MESH Headings
- Animals
- Dizocilpine Maleate/pharmacology
- Dose-Response Relationship, Drug
- Evoked Potentials, Motor/physiology
- Excitatory Amino Acid Antagonists/pharmacology
- Hindlimb/physiology
- Injections, Intravenous
- Injections, Intraventricular
- Injections, Spinal
- Male
- Motor Neurons/drug effects
- Motor Neurons/physiology
- Muscle Contraction/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/innervation
- Muscle, Skeletal/physiology
- Rats
- Rats, Wistar
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Reflex, Monosynaptic/drug effects
- Spinal Cord/drug effects
- Spinal Cord/physiology
- Spinal Nerve Roots/physiology
Collapse
Affiliation(s)
- M Tanabe
- Pharmacology and Molecular Biology Research Laboratories, Sankyo Co, Ltd, Tokyo, Japan.
| | | |
Collapse
|
19
|
Pollack AE, Haisley EC. NMDA glutamate receptor stimulation is required for the expression of D2 dopamine mediated responses in apomorphine primed 6-hydroxydopamine lesioned rats. Brain Res 2001; 897:213-6. [PMID: 11282380 DOI: 10.1016/s0006-8993(01)02086-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Three priming injections with the D1/D2 dopamine agonist apomorphine permits a challenge with the D2 agonist quinpirole to elicit robust contralateral rotation and ipsilateral striatal Fos expression in 6-hydroxydopamine lesioned rats. Pretreatment with NMDA glutamate antagonists MK-801 or CPP dose-dependently attenuates these quinpirole-mediated responses. These findings suggest that concomitant NMDA receptor stimulation is required for the expression of D2-mediated responses in apomorphine primed dopamine-depleted rats.
Collapse
Affiliation(s)
- A E Pollack
- Department of Psychology, Brown University, Providence, RI 02912, USA.
| | | |
Collapse
|
20
|
Abstract
Treatment with conventional antipsychotic drugs (APDs) is accompanied by extrapyramidal side effects (EPS), which are thought to be due to striatal dopamine D(2) receptor blockade. In contrast, treatment with atypical APDs is marked by a low incidence or absence of EPS. The reduced motor side effect liability of atypical APDs has been attributed to a high serotonin 5-HT(2A) receptor affinity coupled with a relatively low D(2) affinity. Despite the high density of 5-HT(2A) binding sites in the striatum, there are few detectable 5-HT(2A) mRNA-expressing neurons in the striatum. This suggests that most striatal 5-HT(2A) receptors are heteroceptors located on afferent axons. A combined retrograde tracer-immunohistochemistry method was used to determine the sites of origin of striatal 5-HT(2A)-like immunoreactive axons. 5-HT(2A)-like immunoreactive neurons in both the cortex and globus pallidus were retrogradely labeled from the striatum; very few nigrostriatal or thalamostriatal neurons expressed 5-HT(2A)-like immunoreactivity. Within the striatum, parvalbumin-containing interneurons displayed 5-HT(2A) immunolabeling; these neurons are the targets of cortical and pallidal projections. Our data indicate that cortico- and pallido-striatal neurons are the major source of 5-HT(2A) receptor binding in the striatum, and suggest that cortico- and pallido-striatal neurons are strategically positioned to reduce the motor side effects that accompany striatal D(2) receptor blockade or are seen in parkinsonism.
Collapse
Affiliation(s)
- M Bubser
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37212, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
The present study deals with the functional interaction of antipsychotic drugs and NMDA receptors. We show that both the conventional antipsychotic drug haloperidol and the atypical antipsychotic drug clozapine mediate gene expression via intracellular regulation of NMDA receptors, albeit to different extents. Data obtained in primary striatal culture demonstrate that the intraneuronal signal transduction pathway activated by haloperidol, the cAMP pathway, leads to phosphorylation of the NR1 subtype of the NMDA receptor at (897)Ser. Haloperidol treatment is likewise shown to increase (897)Ser-NR1 phosphorylation in rats in vivo. Mutation of (896)Ser and (897)Ser to alanine, which prevents phosphorylation at both sites, inhibits cAMP-mediated gene expression. We conclude that antipsychotic drugs have the ability to modulate NMDA receptor function by an intraneuronal signal transduction mechanism. This facilitation of NMDA activity is necessary for antipsychotic drug-mediated gene expression and may contribute to the therapeutic benefits as well as side effects of antipsychotic drug treatment.
Collapse
|
22
|
Pollack AE, Bird JL, Lambert EB, Florin ZP, Castellar VL. Role of NMDA glutamate receptors in regulating D2 dopamine-dependent Fos induction in the rat striatopallidal pathway. Brain Res 1999; 818:543-7. [PMID: 10082844 DOI: 10.1016/s0006-8993(98)01297-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute administration of reserpine induces Fos expression in striatopallidal neurons, an effect blocked by pretreatment with the D2 dopamine agonist quinpirole. Pretreatment with the NMDA antagonists (+)MK-801 or CPP attenuated reserpine-mediated striatal Fos induction whereas pretreatment with ketamine or the inactive isomer (-)MK-801 did not. These results support a role of NMDA glutamate receptors in regulating the activity of the striatopallidal pathway.
Collapse
Affiliation(s)
- A E Pollack
- Department of Psychology, Box 1853, Brown University, Providence, RI 02912, USA.
| | | | | | | | | |
Collapse
|
23
|
Abstract
The role of dopamine in the subthalamic nucleus to control motor behaviour was investigated in rats using bilateral microinfusions of the dopamine D1 receptor antagonist SCH23390 and the dopamine D2 receptor antagonist S(-)-sulpiride. Selective blockade of subthalamic D1 receptors, but not of D2 receptors, produced catalepsy. These findings suggest that dopamine D1 receptors within the subthalamic nucleus play a prominent role in the regulation of motor functions. Furthermore, the data point to the possibility that a reduced dopaminergic tone at subthalamic dopamine D1 receptors might contribute to akinesia in Parkinson's disease.
Collapse
Affiliation(s)
- W Hauber
- Department of Animal Physiology, University of Stuttgart, Germany
| |
Collapse
|
24
|
Miwa H, Nishi K, Fuwa T, Mizuno Y. Postural effects of unilateral blockade of glutamatergic neurotransmission in the subthalamic nucleus on haloperidol-induced akinesia in rats. Neurosci Lett 1998; 252:167-70. [PMID: 9739987 DOI: 10.1016/s0304-3940(98)00559-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The present study examined the postural effects of the local application of glutamatergic antagonists unilaterally into the subthalamic nucleus (STN), on haloperidol-induced akinesia in rats. After intracerebral injections of MK-801, a selective antagonist of N-methyl-D-aspartate (NMDA) receptor, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) disodium, a selective alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor antagonist, or vehicle, unilaterally into the STN, haloperidol was administered systemically and the elicited behaviors were assessed quantitatively. In rats which received injections of MK-801 or CNQX, but not vehicle, unilaterally into the STN, the administration of haloperidol induced contraversive dystonic posturing. The severity of the deviated posturing was dose-dependent. The present findings revealed that the overactivity of the STN under conditions of dopamine blockade is suppressed by interruptions of glutamatergic inputs, mediated via both NMDA or AMPA receptors, to the STN. Therefore, the present study may provide functional evidence in support of a recently proposed hypothesis, that not only disinhibition from the inhibitory globus pallidus efferents but also excitatory glutamatergic inputs to the STN actually contribute to the overactivity of the STN under dopamine-depleted conditions.
Collapse
Affiliation(s)
- H Miwa
- Department of Neurology, Tokyo Metropolitan Institute for Neuroscience, Fuchu-city, Japan.
| | | | | | | |
Collapse
|
25
|
Ozer H, Ekinci AC, Starr MS. Dopamine D1- and D2-dependent catalepsy in the rat requires functional NMDA receptors in the corpus striatum, nucleus accumbens and substantia nigra pars reticulata. Brain Res 1997; 777:51-9. [PMID: 9449412 DOI: 10.1016/s0006-8993(97)00706-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study investigated the anticataleptic activity of MK-801 versus the D1 antagonist SCH 23390 and the D2 antagonist raclopride, using the horizontal bar test in the rat. MK-801, 0.2 mg/kg i.p., strongly opposed the cataleptogenic actions of SCH 23390 and raclopride administered systemically (1 and 3 mg/kg i.p., respectively), or directly into the corpus striatum (CS) or nucleus accumbens (NAc; 1 and 10 microg, respectively). Conversely, intraCS and intraNAc pretreatment with MK-801 (10 microg) markedly attenuated the cataleptic response to a systemic injection of SCH 23390 or raclopride. In the latter experiments the anticataleptic effect of MK-801 was pronounced and sustained (> 2 h), except with intraCS MK-801 versus raclopride, where it was initially profound but only short-lived (15 min). Stereotaxic injection of MK-801 (1 microg) into the substantia nigra pars reticulata (SNr) prevented catalepsy developing to either dopamine D1 or D2 receptor antagonism. These results indicate there must be unimpeded glutamate neurotransmission in the CS and NAc before catalepsy can develop fully to D1 and D2 dopamine receptor blockade in these structures. The weaker glutamate-D2 interaction in the CS than in the NAc may be related to differences in the N-methyl-D-aspartate receptor subpopulations in these nuclei. Finally, the ability of intranigral MK-801 to diminish both D1- and D2-dependent catalepsy suggests the SNr acts as a common output pathway for the expression of both forms of catalepsy in the rat.
Collapse
Affiliation(s)
- H Ozer
- Department of Pharmacology, Faculty of Pharmacy, University of Istanbul, Beyazrt Istanbul, Turkey
| | | | | |
Collapse
|