1
|
Barrionuevo EM, Peralta E, Manzur De Nardi A, Monat J, Fallico MJ, Llanos MA, Gavernet L, Mustafá ER, Martin P, Talevi A. In Silico Screening Identification of Fatty Acids and Fatty Acid Derivatives with Antiseizure Activity: In Vitro and In Vivo Validation. Pharmaceutics 2024; 16:996. [PMID: 39204342 PMCID: PMC11357650 DOI: 10.3390/pharmaceutics16080996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
High fat diets have been used as complementary treatments for seizure disorders for more than a century. Moreover, many fatty acids and derivatives, including the broad-spectrum antiseizure medication valproic acid, have been explored and used as pharmacological agents to treat epilepsy. In this work, we have explored the anticonvulsant potential of a large library of fatty acids and fatty acid derivatives, the LIPID MAPS Structure Database, using structure-based virtual screening to assess their ability to block the voltage-gated sodium channel 1.2 (NaV1.2), a validated target for antiseizure medications. Four of the resulting in silico hits were submitted for experimental confirmation using in vitro patch clamp experiments, and their protective role was evaluated in an acute mice seizure model, the Maximal Electroshock seizure model. These four compounds were found to protect mice against seizures. Two of them exhibited blocking effects on NaV1.2, CaV2.2, and CaV3.1.
Collapse
Affiliation(s)
- Emilia Mercedes Barrionuevo
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), Blvd. 120 1489, La Plata 1900, Argentina
- Argentinean National Council of Scientific and Technical Research (CONICET), CCT La Plata, La Plata 1900, Argentina
| | - Estefanía Peralta
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), Blvd. 120 1489, La Plata 1900, Argentina
- Argentinean National Council of Scientific and Technical Research (CONICET), CCT La Plata, La Plata 1900, Argentina
| | - Agustín Manzur De Nardi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata–CICPBA–CONICET, Boulevard 120 no. 1489, La Plata 1900, Argentina
| | - Juliana Monat
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata–CICPBA–CONICET, Boulevard 120 no. 1489, La Plata 1900, Argentina
| | - Maximiliano José Fallico
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), Blvd. 120 1489, La Plata 1900, Argentina
- Argentinean National Council of Scientific and Technical Research (CONICET), CCT La Plata, La Plata 1900, Argentina
| | - Manuel Augusto Llanos
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), Blvd. 120 1489, La Plata 1900, Argentina
- Argentinean National Council of Scientific and Technical Research (CONICET), CCT La Plata, La Plata 1900, Argentina
| | - Luciana Gavernet
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), Blvd. 120 1489, La Plata 1900, Argentina
- Argentinean National Council of Scientific and Technical Research (CONICET), CCT La Plata, La Plata 1900, Argentina
| | - Emilio Román Mustafá
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata 1900, Argentina
| | - Pedro Martin
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata–CICPBA–CONICET, Boulevard 120 no. 1489, La Plata 1900, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), Blvd. 120 1489, La Plata 1900, Argentina
- Argentinean National Council of Scientific and Technical Research (CONICET), CCT La Plata, La Plata 1900, Argentina
| |
Collapse
|
2
|
Hemida M, Rosendahl S, Jokinen TS, Moore R, Vuori KA, Anturaniemi J, Hielm-Björkman A. Assessing the association between supplemented puppyhood dietary fat sources and owner-reported epilepsy in adulthood, among Finnish companion dogs. Front Vet Sci 2023; 10:1227437. [PMID: 37781290 PMCID: PMC10540444 DOI: 10.3389/fvets.2023.1227437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Epilepsy is a serious and common neurological condition in dogs, despite the wide number of antiepileptic drugs available, in approximately one third of the patients, epilepsy remains unsatisfactorily controlled. We aim to analyze whether feeding dietary fat sources during puppyhood was associated with canine epilepsy in adulthood. Methods A nested case-control study was compiled from the validated DogRisk food frequency questionnaire (DogRisk FFQ). DogRisk FFQ collected feeding, disease, and background data about the dog. The study sample consisted of 108 owner-reported epileptic cases and 397 non-epileptic controls. Each case was matched with up to four controls for the key confounding factors of sex, breed, and age. We analyzed associations between feeding as a puppy and owner-reported epilepsy as an adult dog using Cox regression. We tested 55 different food variables. Results We found that feeding fish fat from dietary sources at least once a week during puppyhood was inversely associated with epilepsy in later life in the unadjusted analysis [OR 0.46 (95% CI 0.25-0.83), p=0.01], while when adjusting for keeping conditions and dog characteristics the association was [OR 0.45 (95% CI 0.23-0.88), p=0.02]. When adjusted for keeping conditions, dog characteristics, and other feeding factors, the association was of similar magnitude but not significance [OR 0.56 (95% CI 0.27-1.15), p=0.12]. Discussion The study indicates possible protective associations of feeding the dog with dietary sources of fish fat against epilepsy, although the result could be confounded by other feeding factors. Findings are compatible with current knowledge regarding the role of omega-3 fatty acids and ketogenic diet, a low carbohydrate, high fat diet as supportive treatments of epilepsy. As our findings are based on observations, we suggest the possibility of causality but do not prove it. Dietary intervention studies should now be conducted to confirm our findings.
Collapse
Affiliation(s)
- Manal Hemida
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Sarah Rosendahl
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja S. Jokinen
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Robin Moore
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kristiina A. Vuori
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Anturaniemi
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Hielm-Björkman
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Martami F, Holton KF. Targeting Glutamate Neurotoxicity through Dietary Manipulation: Potential Treatment for Migraine. Nutrients 2023; 15:3952. [PMID: 37764736 PMCID: PMC10537717 DOI: 10.3390/nu15183952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Glutamate, the main excitatory neurotransmitter in the central nervous system, is implicated in both the initiation of migraine as well as central sensitization, which increases the frequency of migraine attacks. Excessive levels of glutamate can lead to excitotoxicity in the nervous system which can disrupt normal neurotransmission and contribute to neuronal injury or death. Glutamate-mediated excitotoxicity also leads to neuroinflammation, oxidative stress, blood-brain barrier permeability, and cerebral vasodilation, all of which are associated with migraine pathophysiology. Experimental evidence has shown the protective effects of several nutrients against excitotoxicity. The current review focuses on the mechanisms behind glutamate's involvement in migraines as well as a discussion on how specific nutrients are able to work towards restoring glutamate homeostasis. Understanding glutamate's role in migraine is of vital importance for understanding why migraine is commonly comorbid with widespread pain conditions and for informing future research directions.
Collapse
Affiliation(s)
- Fahimeh Martami
- Department of Health Studies, American University, Washington, DC 20016, USA;
| | - Kathleen F. Holton
- Department of Health Studies, American University, Washington, DC 20016, USA;
- Department of Neuroscience, American University, Washington, DC 20016, USA
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| |
Collapse
|
4
|
Liang Z, Lou Y, Li Z, Liu S. Causal relationship between human blood omega-3 fatty acids and the risk of epilepsy: A two-sample Mendelian randomization study. Front Neurol 2023; 14:1130439. [PMID: 36970527 PMCID: PMC10034028 DOI: 10.3389/fneur.2023.1130439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
BackgroundThough omega-3 fatty acids reduce seizures in several animal models, considerable controversy exists regarding the association between omega-3 fatty acids and epilepsy in human.ObjectiveTo assess whether genetically determined human blood omega-3 fatty acids are causally associated with the risk of epilepsy outcomes.MethodsWe conducted a two-sample Mendelian randomization (MR) analysis by applying summary statistics of genome-wide association study datasets of both exposure and outcomes. Single nucleotide polymorphisms significantly associated with blood omega-3 fatty acids levels were selected as instrumental variables to estimate the causal effects on epilepsy. Five MR analysis methods were conducted to analyze the final results. The inverse-variance weighted (IVW) method was used as the primary outcome. The other MR analysis methods (MR-Egger, weighted median, simple mode, and weighted mode) were conducted as the complement to IVW. Sensitivity analyses were also conducted to evaluate heterogeneity and pleiotropy.ResultsGenetically predicted the increase of human blood omega-3 fatty acids levels was associated with a higher risk of epilepsy (OR = 1.160, 95%CI = 1.051–1.279, P = 0.003).ConclusionsThis study revealed a causal relationship between blood omega-3 fatty acids and the risk of epilepsy, thus providing novel insights into the development mechanism of epilepsy.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yingyue Lou
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| | - Zijian Li
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Songyan Liu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
- *Correspondence: Songyan Liu
| |
Collapse
|
5
|
Senn L, Costa AM, Avallone R, Socała K, Wlaź P, Biagini G. Is the peroxisome proliferator-activated receptor gamma a putative target for epilepsy treatment? Current evidence and future perspectives. Pharmacol Ther 2023; 241:108316. [PMID: 36436690 DOI: 10.1016/j.pharmthera.2022.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ), which belongs to the family of nuclear receptors, has been mainly studied as an important factor in metabolic disorders. However, in recent years the potential role of PPARγ in different neurological diseases has been increasingly investigated. Especially, in the search of therapeutic targets for patients with epilepsy the question of the involvement of PPARγ in seizure control has been raised. Epilepsy is a chronic neurological disorder causing a major impact on the psychological, social, and economic conditions of patients and their families, besides the problems of the disease itself. Considering that the world prevalence of epilepsy ranges between 0.5% - 1.0%, this condition is the fourth for importance among the other neurological disorders, following migraine, stroke, and dementia. Among others, temporal lobe epilepsy (TLE) is the most common form of epilepsy in adult patients. About 65% of individuals who receive antiseizure medications (ASMs) experience seizure independence. For those in whom seizures still recur, investigating PPARγ could lead to the development of novel ASMs. This review focuses on the most important findings from recent investigations about the potential intracellular PPARγ-dependent processes behind different compounds that exhibited anti-seizure effects. Additionally, recent clinical investigations are discussed along with the promising results found for PPARγ agonists and the ketogenic diet (KD) in various rodent models of epilepsy.
Collapse
Affiliation(s)
- Lara Senn
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; PhD School of Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anna-Maria Costa
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| |
Collapse
|
6
|
Sohouli MH, Razmpoosh E, Zarrati M, Jaberzadeh S. The effect of omega-3 fatty acid supplementation on seizure frequency in individuals with epilepsy: a systematic review and meta-analysis. Nutr Neurosci 2021; 25:2421-2430. [PMID: 34328397 DOI: 10.1080/1028415x.2021.1959100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although there is ample evidence for the effect of omega-3 supplementation on seizure frequency in individuals with epilepsy, the results are inconsistent. Therefore, we conducted this systematic review and meta-analysis to elucidate the potential effect of omega-3 supplementation in the adult and pediatric population. METHODS Clinical trials articles were searched in electronic databases (Web of Science, Scopus, PubMed/Medline, Embase, and Google Scholar database up to October 2020). No language limitation was imposed in the literature search. Moreover, gray literature search was done via searching the references of identified review papers to find more potentially relevant articles. RESULTS In order, the duration of the intervention and dosage of omega-3 fatty acid supplement of the included studies ranged from 12 to 42 weeks and 1000-2880 mg/day. Pooled results from the random-effects model indicated that seizure frequency following supplementation of omega-3 fatty acid decreased significantly (WMD: -6.15, 95% CI: -7.78, -4.53, P < 0.001). Furthermore, the results of the subgroup analysis revealed that seizure frequency was more alleviated in studies that used a daily dose of 1500 mg or less of omega-3 fatty acids as well as studies that had an intervention duration of more than 16 weeks. More importantly, our findings also showed that the effect of omega-3 intervention was greater in adults than in children with epilepsy. CONCLUSION The current meta-analysis on available trials suggested that omega-3 supplementation resulted in beneficial effects on seizure frequency in adult and children with epilepsy.
Collapse
Affiliation(s)
- Mohammad Hassan Sohouli
- Department of Clinical Nutrition and Dietetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Razmpoosh
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Zarrati
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shapour Jaberzadeh
- Non-Invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Gonzalez-Riano C, Tapia-González S, Perea G, González-Arias C, DeFelipe J, Barbas C. Metabolic Changes in Brain Slices over Time: a Multiplatform Metabolomics Approach. Mol Neurobiol 2021; 58:3224-3237. [PMID: 33651263 DOI: 10.1007/s12035-020-02264-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/15/2020] [Indexed: 01/01/2023]
Abstract
Brain slice preparations are widely used for research in neuroscience. However, a high-quality preparation is essential and there is no consensus regarding stable parameters that can be used to define the status of the brain slice preparation after its collection at different time points. Thus, it is critical to fully characterize the experimental conditions for ex vivo studies using brain slices for electrophysiological recording. In this study, we used a multiplatform (LC-MS and GC-MS) untargeted metabolomics-based approach to shed light on the metabolome and lipidome changes taking place at different time intervals during the brain slice preparation process. We have found significant modifications in the levels of 300 compounds, including several lipid classes and their derivatives, as well as metabolites involved in the GABAergic pathway and the TCA cycle. All these preparation-dependent changes in the brain biochemistry related to the time interval should be taken into consideration for future studies to facilitate non-biased interpretations of the experimental results.
Collapse
Affiliation(s)
- Carolina Gonzalez-Riano
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Silvia Tapia-González
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Gertrudis Perea
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
| | | | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain.
| |
Collapse
|
8
|
Moreira JD, Siqueira LV, Müller AP, Porciúncula LO, Vinadé L, Souza DO. Dietary omega-3 fatty acids prevent neonatal seizure-induced early alterations in the hippocampal glutamatergic system and memory deficits in adulthood. Nutr Neurosci 2020; 25:1066-1077. [PMID: 33107813 DOI: 10.1080/1028415x.2020.1837569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We investigated the influence of dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) on glutamatergic system modulation after a single episode of neonatal seizures and their possible effects on seizure-induced long-lasting behavioral deficits. METHODS Male Wistar rats receiving an omega-3 diet (n-3) or an n-3 deficient diet (D) from the prenatal period were subjected to a kainate-induced seizure model at P7. Glutamate transporter activity and immunocontents (GLT-1 and GLAST) were assessed in the hippocampus at 12, 24, and 48 h after the seizure episode. Fluorescence intensity for glial cells (GFAP) and neurons (NeuN) was assessed 24 h after seizure in the hippocampus. Behavioral analysis (elevated-plus maze and inhibitory avoidance memory task) was performed at 60 days of age. RESULTS The D group showed a decrease in glutamate uptake 24 h after seizure. In this group only, the GLT1 content increased at 12 h, followed by a decrease at 24 h. GLAST increased up to 24 h after seizure. GFAP fluorescence was higher, and NeuN fluorescence decreased, in the D group independent of seizures. In adulthood, the D group presented memory deficits independent of seizures, but short-term memory (1.5 h after a training session) was abolished in the D group treated with kainate. SIGNIFICANCE N-3 PUFA positively influenced the glutamatergic system during seizure and prevented seizure-related memory deficits in adulthood.
Collapse
Affiliation(s)
- Júlia D Moreira
- Postgraduate Program in Nutrition, Translational Nutrition Neuroscience Working Group, Health Science Centre, Universidade Federal de Santa Catarina, Santa Catarina, Brazil
| | - Letícia Vicari Siqueira
- Postgraduate Program in Biological Science - Biochemistry, Basic Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre P Müller
- Postgraduate Program in Pharmacology, Health Science Centre, Universidade Federal de Santa Catarina, Brazil
| | - Lisiane O Porciúncula
- Postgraduate Program in Biological Science - Biochemistry, Basic Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lúcia Vinadé
- Master Graduation Program in Biological Sciences (Programa de Pós-Graduação em Ciências Biológicas), Universidade Federal do Pampa - UNIPAMPA, Campus São Gabriel, São Gabriel, Brazil
| | - Diogo O Souza
- Postgraduate Program in Biological Science - Biochemistry, Basic Health Science Institute, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
9
|
Abstract
Increased intake of omega-6 rich plant oils such as soybean and corn oil over the past few decades has inadvertently tripled the amount of n-6 linoleic acid (LA, 18:2n-6) in the diet. Although LA is nutritionally “essential”, very little is known about how it affects the brain when present in excess. This review provides an overview on the metabolism of LA by the brain and the effects of excess dietary LA intake on brain function. Pre-clinical evidence suggests that excess dietary LA increases the brain’s vulnerability to inflammation and likely acts via its oxidized metabolites. In humans, excess maternal LA intake has been linked to atypical neurodevelopment, but underlying mechanisms are unknown. It is concluded that excess dietary LA may adversely affect the brain. The potential neuroprotective role of reducing dietary LA merits clinical evaluation in future studies.
Collapse
|
10
|
Nathan J, Bailur S, Datay K, Sharma S, Khedekar Kale D. A Switch to Polyunsaturated Fatty Acid Based Ketogenic Diet Improves Seizure Control in Patients with Drug-resistant Epilepsy on the Mixed Fat Ketogenic Diet: A Retrospective Open Label Trial. Cureus 2019; 11:e6399. [PMID: 31886101 PMCID: PMC6919946 DOI: 10.7759/cureus.6399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Introduction The ketogenic diet (KD) is used for drug-resistant epilepsy. However, some patients find only a modest benefit, which may plateau over time. Evidence from several animal and human studies suggests that polyunsaturated fatty acids (PUFAs) may be a beneficial form of treatment for these patients. This retrospective study was conducted to evaluate whether a switch from classic mixed fats KD (MFKD) to a natural polyunsaturated fatty acid KD (PUFA-KD) would improve seizure control. Methods The study evaluated the medical paper record forms of patients who had at least one seizure per week despite the use of MFKD. These patients were started on PUFA-KD and grouped according to the oils preferred. We analyzed the effect on seizure control, tolerability, blood lipids, and adverse effects and whether the type of seizures, age of seizure onset, age at which KD was started, and the ratio of omega 6: omega 3 (n6:n3) fatty acids had any effect on seizure control. Results Data from fifty patients (aged 10 months to 35 years) were analyzed. At the end of six and 12 months on the PUFA-KD, 12% (6) and 16% (8) were seizure-free and 82% (41) and 88% (44) had a >50% reduction in seizures, respectively. The mean seizure control at 12 months was highest in patients with mixed seizures followed by those with generalized seizures and lowest for those with focal seizures. Seizure control at 12 months was inversely correlated to the age of onset of epilepsy and age at initiation of KD. This improvement was independent of the type of PUFAs and the ratio of n6:n3 used. The PUFA-KD was generally well tolerated. Blood lipid levels significantly improved. Conclusion Changing to PUFA-KD improved seizure control in patients who did not respond satisfactorily to MFKD.
Collapse
Affiliation(s)
| | - Sonal Bailur
- Clinical Nutrition & Dietetics, Dr. Nathan Sanjiv Clinic, Mumbai, IND
| | | | | | | |
Collapse
|
11
|
Nouri M, Farajdokht F, Torbati M, Ranjbar F, Hamedyazdan S, Araj-khodaei M, Sadigh-Eteghad S. A Close Look at Echium amoenum Processing, Neuroactive Components, and Effects on Neuropsychiatric Disorders. Galen Med J 2019; 8:e1559. [PMID: 34466529 PMCID: PMC8343809 DOI: 10.31661/gmj.v8i0.1559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/21/2019] [Accepted: 08/12/2019] [Indexed: 11/21/2022] Open
Abstract
Pharmacological researches in the area of herbal medicine have considerably increased over the last two centuries. Echium amoenum (known as Gol-e-Gavzaban in Persian) is a medicinal plant that has been widely used in Iranian folk medicine. In this review, databases including PubMed, Scopus, and Google Scholar were searched up. Data collecting was completed by January 2019 and available scientific reports regarding the processing methods, main chemical constituents, and effects of E. amoenum on different neuropsychiatric disorders are summarized. Thirteen five studies met the inclusion criteria. According to results, the important phytochemicals of the plant was phenolic compounds, fatty acids, rosmarinic acid, anthocyanidins, and flavonoids. Also, experimental and clinical studies demonstrated the effectiveness of E. amoenum in the treatment of several neuropsychiatric disorders such as anxiety, depression, ischemic stroke, seizure, Alzheimer's disease, and pain. Many of these effects are, at least in part, due to its rosmarinic acid or polyphenolic compounds such as flavonoids and natural pigments such as anthocyanins. Also, fatty acids such as gamma-linolenic acid play critical role in neuroactive properties of this herb. Among these effects, only the antidepressant and anxiolytic properties of the plant extract have been examined both experimentally and clinically. There was some controversy over its toxicity effects. It seems that E. amoenum protects neurons via attenuation of oxidative stress and inflammation as well as blocking of apoptosis in the nervous system. However, more studies are necessary for assessing exact mechanisms of action in neuropsychiatric disorders, finding of bioactive ingredients, and processing methods of this plant.
Collapse
Affiliation(s)
- Mohammad Nouri
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ranjbar
- Psychiatry Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hamedyazdan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-khodaei
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Aging Research Institute, Tabriz University of Medical Science, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Medina-Ceja L, Villalpando-Vargas F, Girón de la Cruz GI, Lara-Vazquez AM, Flores-Mancilla L, Salazar-Sánchez JC, Morales-Villagrán A. Effect of Chronic Krill Oil Supplement on Seizures Induced by Pentylenetetrazole in the Hippocampus of Adult Rats with Previous Febrile Seizures. J Food Sci 2019; 84:1703-1711. [PMID: 31218711 DOI: 10.1111/1750-3841.14679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 04/19/2019] [Accepted: 05/05/2019] [Indexed: 11/28/2022]
Abstract
We evaluated the effect of krill oil (KO) supplement on seizures induced by pentylenetetrazole (PTZ) in animals with previous febrile seizures (FSs) induced by hyperthermia to determine its effectiveness in seizure susceptibility and as an anticonvulsant. Male Wistar rats with FS separated into water (W, 1 mL), palm oil (PO, 300 mg/kg, total volume 1 mL), or KO (300 mg/kg, total volume 1 mL) groups. All drugs were administered chronically via the intragastric route. Electrical activity was recorded by intracranial EEG simultaneously with convulsive behavior. All animals' brains were processed by immunofluorescence against GFAP, NeuN, and connexins (Cx); cellular quantification was performed in hippocampus and pyramidal or granular layer thickness was evaluated with cresyl violet (CV) staining. The results showed a significant delay in convulsive behavior and a slight increased survival time after PTZ administration in the group treated with KO compared with PO and W groups. The epileptiform activity showed high amplitude and frequency, with no significant differences between groups, nor were there differences in the number and duration of discharge trains. KO and PO increased the number of astrocytes and the number of neurons compared with the W group. KO and PO decreased the expression of Cx36 without affecting Cx43 expression or the thickness of layers. Based on these data, we consider it important to perform more experiments to determine the anticonvulsant role of KO, taking into account the partial effect found in this study. KO could be used as a coadjuvant of traditional anticonvulsive treatments. PRACTICAL APPLICATION: In this study was evaluated the anticonvulsive effect of a chronic krill oil (KO) supplement in animals with seizures. Results showed that KO had partial anticonvulsive effects measured by EEG activity and convulsive behavior analysis. These data justify further research that looks at KO supplementation as a prospective coadjuvant of pharmacologic management of seizure disorder.
Collapse
Affiliation(s)
- Laura Medina-Ceja
- Laboratory of Neurophysiology, Dept. of Cellular and Molecular Biology, CUCBA, Univ. of Guadalajara, Jalisco, México
| | - Fridha Villalpando-Vargas
- Laboratory of Neurophysiology, Dept. of Cellular and Molecular Biology, CUCBA, Univ. of Guadalajara, Jalisco, México
| | - Gloria I Girón de la Cruz
- Laboratory of Neurophysiology, Dept. of Cellular and Molecular Biology, CUCBA, Univ. of Guadalajara, Jalisco, México
| | - Adriana M Lara-Vazquez
- Laboratory of Neurophysiology, Dept. of Cellular and Molecular Biology, CUCBA, Univ. of Guadalajara, Jalisco, México
| | - Leopoldo Flores-Mancilla
- Laboratory of Neurophysiology and Behavior, Human Medicine and Health Science Academic Unit, Autonomous Univ. of Zacatecas, Zacatecas, México
| | - Juan C Salazar-Sánchez
- Laboratory of Neurophysiology, Dept. of Cellular and Molecular Biology, CUCBA, Univ. of Guadalajara, Jalisco, México
| | | |
Collapse
|
13
|
Radlicz C, Chambers A, Olis E, Kuebler D. The addition of a lipid-rich dietary supplement eliminates seizure-like activity and paralysis in the drosophila bang sensitive mutants. Epilepsy Res 2019; 155:106153. [PMID: 31260938 DOI: 10.1016/j.eplepsyres.2019.106153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the effect that a diet supplemented with KetoCal 4:1, a commercially available dietary formula consisting of a 4:1 ratio of fats to carbohydrates plus proteins, had on the seizure-like activity (SLA) and paralysis normally exhibited by the Drosophila Bang-sensitive (BS) paralytic mutants following mechanical shock. METHODS Given that dietary changes are known to reduce seizures in humans and animal models, three BS mutants, easily-shocked (eas), bang-senseless (parabss), and technical knockout (tko), were fed a standard cornmeal/yeast/sugar diet supplemented with 10% KetoCal 4:1 (KetoCal-sup diet). Newly eclosed BS flies were fed this diet for 3-7 days and the effect this had on SLA, paralysis, locomotor activity, triglyceride levels, and glucose levels was examined. RESULTS All three genotypes displayed significant reductions in SLA and BS sensitivity following mechanical shock. After only 3 days on the diet, 95% of tko flies no longer exhibited SLA or paralysis, and near complete suppression of the BS phenotype was seen by day 7. In the case of eas, there was a 78% reduction of SLA after 3 days on the diet and SLA was completely suppressed by day 7. The parabss flies showed a similar but less robust reduction of SLA on the diet as there was only a 68% reduction of SLA and paralysis following 7 days on the diet. The diet did not suppress activity globally as tko flies had increased basal locomotor activity on the diet while the parabss and eas flies showed no significant change in basal activity. The KetoCal-sup diet did not significantly alter the triglyceride levels or the total glucose levels in the BS mutants. In addition, the SLA and BS suppression was maintained even when the BS mutants were transitioned back to a standard fly diet. CONCLUSIONS The SLA and paralysis associated with the Drosophila BS phenotype can be effectively suppressed by transient exposure to a KetoCal-sup diet. This suppression was not dependent upon long term maintenance of the diet and it was not associated with alterations in total glucose or triglyceride levels in these flies.
Collapse
Affiliation(s)
- Chris Radlicz
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States
| | - Andrew Chambers
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States
| | - Emily Olis
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States
| | - Daniel Kuebler
- Department of Biology, Franciscan University of Steubenville, Steubenville, OH, United States.
| |
Collapse
|
14
|
Functional Nutrients for Epilepsy. Nutrients 2019; 11:nu11061309. [PMID: 31185666 PMCID: PMC6628163 DOI: 10.3390/nu11061309] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is a common neurological disorder of which seizures are a core symptom. Approximately one third of epileptic patients are resistant to antiepileptic drugs and therefore require alternative therapeutic options. Dietary and nutritional supplements can in some cases replace drugs, but with the exception of ketogenic diets, there are no officially recommended dietary considerations for patients with epilepsy. In this review we summarize a selection of nutritional suggestions that have proved beneficial in treating different types of epilepsy. We describe the types of seizures and epilepsy and follow this with an introduction to basic molecular mechanisms. We then examine several functional nutrients for which there is clinical evidence of therapeutic efficacy in reducing seizures or epilepsy-associated sudden death. We also discuss experimental results that demonstrate possible molecular mechanisms elicited by the administration of various nutrients. The availability of multiple dietary and nutritional candidates that show favorable outcomes in animals implies that assessing the clinical potential of these substances will improve translational medicine, ultimately benefitting epilepsy patients.
Collapse
|
15
|
Ibrahim FAS, Ghebremeskel K, Abdel-Rahman ME, Ahmed AAM, Mohmed IM, Osman G, Elseed M, Hamed A, Rabinowicz AL, Salih MAM, Elbashir MI, Daak AA. The differential effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on seizure frequency in patients with drug-resistant epilepsy - A randomized, double-blind, placebo-controlled trial. Epilepsy Behav 2018; 87:32-38. [PMID: 30170260 DOI: 10.1016/j.yebeh.2018.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/14/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The omega-3 (n-3) fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are known to play an important role in maintenance and modulation of neuronal functions. There is evidence that omega-3 fatty acids may have anticonvulsant effects. The effect of DHA and EPA on seizure rate in patients with drug-resistant epilepsy (DRE) was investigated. METHODS A double-blind, randomized, placebo-controlled clinical trial included ninety-nine (n = 99) subjects with DRE, aged 5-16 years (n = 85) and 17-45 years (n = 14). After randomization, subjects were given two, four, or six capsules per day of DHA (417.8 mg DHA and 50.8 mg EPA/capsule, n = 33), EPA (385.6 mg EPA and 81.2 mg DHA/capsule, n = 33), or placebo (high oleic acid sunflower oil, n = 33) for one year. The primary endpoint was the effect of treatment on rate of seizure. Random-effects negative binomial regression models were fitted to model the patients' total count of seizures per month. The treatment effects on seizure incidence rate ratio (IRR) were tested after controlling for the covariate effects of gender, age, rate of seizure per week at enrollment, type of seizure, and number of antiepileptic drug (AED) combinations used at enrollment. RESULTS Fifty-nine subjects (n = 59) completed the study (59.6%). The average number of seizures per month were 9.7 ± 1.2 in the EPA group, 11.7 ± 1.5 in the DHA group, and 16.6 ± 1.5 in the placebo group. Age, gender, and seizure-type adjusted seizure IRRs of the EPA and DHA groups compared with the placebo group were 0.61 (CI = 0.42-0.88, p = 0.008, 42% reduction) and 0.67 (CI = 0.46-1.0, p = 0.04, 39% reduction), respectively. There was no difference in IRR between the EPA and DHA groups (p = 0.56). Both treatment groups had a significantly higher number of seizure-free days compared with the placebo group (p < 0.05). SIGNIFICANCE This study demonstrates that EPA and DHA are effective in reducing seizure frequency in patients with DRE.
Collapse
Affiliation(s)
| | - Kebreab Ghebremeskel
- Lipidomics and Nutrition Research Centre, London Metropolitan University, London, UK
| | - Manar E Abdel-Rahman
- College of Health Sciences, Department of Public Health, Qatar University, Qatar
| | - Amar A M Ahmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Inaam M Mohmed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ghada Osman
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ahlam Hamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Adrian L Rabinowicz
- Sancilio Pharmaceuticals Company, FL, USA; Center of Molecular Biology and Biotechnology (CMBB), Florida Atlantic University (FAU), USA
| | | | | | - Ahmed A Daak
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan; Lipidomics and Nutrition Research Centre, London Metropolitan University, London, UK; Sancilio Pharmaceuticals Company, FL, USA; Center of Molecular Biology and Biotechnology (CMBB), Florida Atlantic University (FAU), USA.
| |
Collapse
|
16
|
Kanzler MA, Van Dyke AM, He Y, Hewett JA, Hewett SJ. Mice lacking L-12/15-lipoxygenase show increased mortality during kindling despite demonstrating resistance to epileptogenesis. Epilepsia Open 2018; 3:255-263. [PMID: 29881804 PMCID: PMC5983117 DOI: 10.1002/epi4.12221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2018] [Indexed: 01/15/2023] Open
Abstract
Objective Studies have addressed the potential involvement of L-12/15-lipoxygenases (LOs), a polyunsaturated fatty acid metabolizing enzyme, in experimental models of acute stroke and chronic neurodegeneration; however, none to our knowledge has explored its role in epilepsy development. Thus, this study characterizes the cell-specific expression of L-12/15 -LO in the brain and examines its contribution to epileptogenesis. Methods L-12/15-LO messenger RNA (mRNA) and protein expression and activity were characterized via polymerase chain reaction (PCR), immunocytochemistry and enzyme-linked immunosorbent assay (ELISA), respectively. To assess its role in epileptogenesis, L-12/15 -LO-deficient mice and their wild-type littermates were treated with pentylenetetrazole (PTZ, ip) every other day for up to 43 days (kindling paradigm). The innate seizure threshold was assessed by the acute PTZ-induced seizure response of naive mice. Results L-12/15 -LO mRNA is expressed in hippocampal and cortical tissue from wild-type C57BL/6 mice. In addition, it is physically and functionally expressed by microglia, neurons, and brain microvessel endothelial cells, but not by astrocytes. Mice deficient in L-12/15 -LO were resistant to PTZ-induced kindling and demonstrated an elevated innate seizure threshold. Despite this, a significant increase in seizure-related mortality was observed during the kindling paradigm in L-12/15 -LO nulls relative to their wild-type littermates. Significance The present study is the first to detail the role of L-12/15-LO in the epileptogenic process. The results suggest that constitutive L-12/15-LO expression contributes to a lower innate set point for PTZ acute seizure generation, translating to higher rates of kindling acquisition. Nevertheless, increased seizure-related deaths in mice lacking activity of L-12/15-LO suggests that its products may influence endogenous mechanisms involved in termination of seizure activity.
Collapse
Affiliation(s)
- Matthew A Kanzler
- Department of Biology Program in Neuroscience Syracuse University Syracuse New York U.S.A
| | - Adam M Van Dyke
- Department of Neuroscience University of Connecticut Health Center Farmington Connecticut U.S.A
| | - Yan He
- Department of Biology Program in Neuroscience Syracuse University Syracuse New York U.S.A
| | - James A Hewett
- Department of Biology Program in Neuroscience Syracuse University Syracuse New York U.S.A
| | - Sandra J Hewett
- Department of Biology Program in Neuroscience Syracuse University Syracuse New York U.S.A
| |
Collapse
|
17
|
Dallérac G, Moulard J, Benoist JF, Rouach S, Auvin S, Guilbot A, Lenoir L, Rouach N. Non-ketogenic combination of nutritional strategies provides robust protection against seizures. Sci Rep 2017; 7:5496. [PMID: 28710408 PMCID: PMC5511156 DOI: 10.1038/s41598-017-05542-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 05/31/2017] [Indexed: 12/27/2022] Open
Abstract
Epilepsy is a neurological condition that affects 1% of the world population. Conventional treatments of epilepsy use drugs targeting neuronal excitability, inhibitory or excitatory transmission. Yet, one third of patients presents an intractable form of epilepsy and fails to respond to pharmacological anti-epileptic strategies. The ketogenic diet is a well-established non-pharmacological treatment that has been proven to be effective in reducing seizure frequency in the pharmaco-resistant patients. This dietary solution is however extremely restrictive and can be associated with complications caused by the high [fat]:[carbohydrate + protein] ratio. Recent advances suggest that the traditional 4:1 ratio of the ketogenic diet is not a requisite for its therapeutic effect. We show here that combining nutritional strategies targeting specific amino-acids, carbohydrates and fatty acids with a low [fat]:[proteins + carbohydrates] ratio also reduces excitatory drive and protects against seizures to the same extent as the ketogenic diet. Similarly, the morphological and molecular correlates of temporal lobe seizures were reduced in animals fed with the combined diet. These results provide evidence that low-fat dietary strategies more palatable than the ketogenic diet could be useful in epilepsy.
Collapse
Affiliation(s)
- Glenn Dallérac
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, 75005, France.
| | - Julien Moulard
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, 75005, France
| | | | - Stefan Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, 75005, France
| | - Stéphane Auvin
- AP-HP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, Paris, France
| | - Angèle Guilbot
- PILEJE Laboratoire, 37 quai de Grenelle, 75015, Paris, France
| | - Loïc Lenoir
- PILEJE Laboratoire, 37 quai de Grenelle, 75015, Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR 7241, INSERM U1050, Labex Memolife, PSL Research University, Paris, 75005, France.
| |
Collapse
|
18
|
Hennebelle M, Zhang Z, Metherel AH, Kitson AP, Otoki Y, Richardson CE, Yang J, Lee KSS, Hammock BD, Zhang L, Bazinet RP, Taha AY. Linoleic acid participates in the response to ischemic brain injury through oxidized metabolites that regulate neurotransmission. Sci Rep 2017; 7:4342. [PMID: 28659576 PMCID: PMC5489485 DOI: 10.1038/s41598-017-02914-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
Linoleic acid (LA; 18:2 n-6), the most abundant polyunsaturated fatty acid in the US diet, is a precursor to oxidized metabolites that have unknown roles in the brain. Here, we show that oxidized LA-derived metabolites accumulate in several rat brain regions during CO2-induced ischemia and that LA-derived 13-hydroxyoctadecadienoic acid, but not LA, increase somatic paired-pulse facilitation in rat hippocampus by 80%, suggesting bioactivity. This study provides new evidence that LA participates in the response to ischemia-induced brain injury through oxidized metabolites that regulate neurotransmission. Targeting this pathway may be therapeutically relevant for ischemia-related conditions such as stroke.
Collapse
Affiliation(s)
- Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Zhichao Zhang
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Adam H Metherel
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada
| | - Alex P Kitson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada
| | - Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
- Food and Biodynamic Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Christine E Richardson
- Department of Nutrition, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Jun Yang
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences and Comprehensive Cancer Center, Medical Center, University of California, Davis, CA, USA
| | - Kin Sing Stephen Lee
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences and Comprehensive Cancer Center, Medical Center, University of California, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, College of Agriculture and Environmental Sciences and Comprehensive Cancer Center, Medical Center, University of California, Davis, CA, USA
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, ON, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, ON, Canada
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
19
|
Vulnerability to omega-3 deprivation in a mouse model of NMDA receptor hypofunction. NPJ SCHIZOPHRENIA 2017; 3:12. [PMID: 28560258 PMCID: PMC5441542 DOI: 10.1038/s41537-017-0014-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/10/2017] [Accepted: 02/21/2017] [Indexed: 01/24/2023]
Abstract
Several studies have found decreased levels of ω-3 polyunsaturated fatty acids in the brain and blood of schizophrenia patients. Furthermore, dietary ω-3 supplements may improve schizophrenia symptoms and delay the onset of first-episode psychosis. We used an animal model of NMDA receptor hypofunction, NR1KD mice, to understand whether changes in glutamate neurotransmission could lead to changes in brain and serum fatty acids. We further asked whether dietary manipulations of ω-3, either depletion or supplementation, would affect schizophrenia-relevant behaviors of NR1KD mice. We discovered that NR1KD mice have elevated brain levels of ω-6 fatty acids regardless of their diet. While ω-3 supplementation did not improve any of the NR1KD behavioral abnormalities, ω-3 depletion exacerbated their deficits in executive function. Omega-3 depletion also caused extreme mortality among male mutant mice, with 75% mortality rate by 12 weeks of age. Our studies show that alterations in NMDAR function alter serum and brain lipid composition and make the brain more vulnerable to dietary ω-3 deprivation. Depletion of omega-3 fatty acids in a mouse model of schizophrenia with altered glutamate transmission has a lethal effect in males. Previous studies have suggested that omega-3 supplements may improve the symptoms of schizophrenia. Amy Ramsey and colleagues at the University of Toronto, Canada, show in an established genetic mouse model of the disease that omega-3 dietary supplementation increased brain omega-3 levels, but did not have any beneficial effects on features that mirror symptoms of patients with schizophrenia such as increased locomotor activity or reduced social behavior. Interestingly, omega-3 dietary depletion worsened the cognitive performance and drastically increased the mortality rate of male mutant mice. The mechanisms responsible for these effects remain to be determined, but the findings highlight a potentially serious vulnerability of patients to dietary omega-3 deficits.
Collapse
|
20
|
Moreno C, de la Cruz A, Valenzuela C. In-Depth Study of the Interaction, Sensitivity, and Gating Modulation by PUFAs on K + Channels; Interaction and New Targets. Front Physiol 2016; 7:578. [PMID: 27933000 PMCID: PMC5121229 DOI: 10.3389/fphys.2016.00578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/11/2016] [Indexed: 02/05/2023] Open
Abstract
Voltage gated potassium channels (KV) are membrane proteins that allow selective flow of K+ ions in a voltage-dependent manner. These channels play an important role in several excitable cells as neurons, cardiomyocytes, and vascular smooth muscle. Over the last 20 years, it has been shown that omega-3 polyunsaturated fatty acids (PUFAs) enhance or decrease the activity of several cardiac KV channels. PUFAs-dependent modulation of potassium ion channels has been reported to be cardioprotective. However, the precise cellular mechanism underlying the cardiovascular benefits remained unclear in part because new PUFAs targets and signaling pathways continue being discovered. In this review, we will focus on recent data available concerning the following aspects of the KV channel modulation by PUFAs: (i) the exact residues involved in PUFAs-KV channels interaction; (ii) the structural PUFAs determinants important for their effects on KV channels; (iii) the mechanism of the gating modulation of KV channels and, finally, (iv) the PUFAs modulation of a few new targets present in smooth muscle cells (SMC), KCa1.1, K2P, and KATP channels, involved in vascular relaxation.
Collapse
Affiliation(s)
- Cristina Moreno
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre Maastricht, Netherlands
| | - Alicia de la Cruz
- Departamento de Modelos Experimentales de Enfermedades Humanas, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC - Universidad Autónoma de Madrid Madrid, Spain
| | - Carmen Valenzuela
- Departamento de Modelos Experimentales de Enfermedades Humanas, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC - Universidad Autónoma de Madrid Madrid, Spain
| |
Collapse
|
21
|
DeGiorgio CM, Taha AY. Omega-3 fatty acids (ῳ-3 fatty acids) in epilepsy: animal models and human clinical trials. Expert Rev Neurother 2016; 16:1141-5. [DOI: 10.1080/14737175.2016.1226135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Sarmento Vasconcelos V, Macedo CR, de Souza Pedrosa A, Pereira Gomes Morais E, Porfírio GJM, Torloni MR. Polyunsaturated fatty acid supplementation for drug-resistant epilepsy. Cochrane Database Syst Rev 2016; 2016:CD011014. [PMID: 27536971 PMCID: PMC10510041 DOI: 10.1002/14651858.cd011014.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND An estimated 1% to 3% of all individuals will receive a diagnosis of epilepsy during their lives, which corresponds to approximately 50 million affected people worldwide. The real prevalence is possibly higher because epilepsy is underreported in developing countries. Although most will achieve adequate control of their disease though the use of medication, approximately 25% to 30% of all those with epilepsy are refractory to pharmacological treatment and will continue to have seizures despite the use of two or more agents in adequate dosages. Over the last decade, researchers have tested the use of polyunsaturated fatty acid (PUFA) supplements for the treatment of refractory epilepsy, with inconsistent results. There have also been some concerns about the use of omega-3 PUFA compounds because they reduce platelet aggregation and could, in theory, cause bleeding. OBJECTIVES To assess the effectiveness and tolerability of omega-3 polyunsaturated fatty acids (eicosapentaenoic acid-EPA and docosahexanoic acid-DHA) in the control of seizures in people with refractory epilepsy. SEARCH METHODS We searched the Cochrane Epilepsy Group Specialised Register (from inception up to November 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (2015, issue 11), MEDLINE (1948 to November 2015), EMBASE (1980 to November 2015), SCOPUS (1823 to November 2015); LILACS (Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde) (1982 to November 2015); ClinicalTrials.gov; World Health Organization (WHO) International Clinical Trials Registry Platform (November 2015). No language restrictions were imposed. We contacted study authors for additional and unpublished information and screened the reference lists of retrieved citations for potentially eligible studies not identified through the electronic search. SELECTION CRITERIA All randomised and quasi-randomised studies using PUFAs for the treatment of drug-resistant epilepsy. DATA COLLECTION AND ANALYSIS Two review authors were involved in study selection, data extraction and quality assessment of the included trials. The following outcomes were assessed: seizure freedom, seizure reduction, improvement in quality of life, potential adverse effects, gastrointestinal effects, drop-out rates and changes in plasma lipid profile. Primary analyses were by intention to treat. MAIN RESULTS Eight studies were identified as potentially relevant; three fulfilled the selection criteria and were included in the review. Two placebo-controlled, double blind trials involving adult participants were conducted in developed countries, while one placebo-controlled, single blind trial involving children was conducted in a developing country (Egypt). Bromfield 2008 randomised 27 American adults to receive 2.2 g/day of omega-3 PUFAs (EPA:DHA in a 3:2 ratio) or placebo. Yuen 2005 randomised 58 people in the UK to approximately 1.7 g/day omega-3 PUFAs (1g EPA and 0.7g DHA) or placebo. Reda 2015 randomised 70 Egyptian children to receive 3 ml/day of 1200 mg fish oil (providing 0.24 g DHA and 0.36 g EPA) or placebo. The three studies recruited a total of 155 subjects (85 adults and 70 children); 78 of them (43 adults and 35 children) were randomised to PUFAs and 77 (42 adults and 35 children) to placebo. All participants were followed for up to 12 weeks. Seizure freedom was reported by only one study, with a high risk of bias, involving exclusively children. The risk estimate for this outcome was significantly higher in the children receiving PUFA compared to the control group (risk ratio (RR) 20.00, 95% confidence interval (CI) 2.84 to 140.99, 1 study, 70 children). Similarly, PUFA supplementation was associated with a significant difference in the proportion of children with at least 50% reduction in seizure frequency (RR 33.00 95% CI 4.77 to 228.15, 1 study with a high risk of bias, 70 children). However, this effect was not observed when the data from two studies including adult participants were pooled (RR 0.57, 95% CI 0.19 to 1.75, I² 0%, 2 studies, 78 participants, low-quality evidence). One of our three primary outcomes (adverse effects related to bleeding) was not assessed in any of the studies included in this review. There were no significant differences between the PUFA and control groups in relation to gastrointestinal effects (RR 0.78, 95% CI 0.32 to 1.89, 2 studies, 85 participants, low-quality evidence).Supplementation with PUFA did not produce significant differences in mean frequency of seizures, quality of life or other side effects. AUTHORS' CONCLUSIONS In view of the limited number of studies and small sample sizes, there is not enough evidence to support the use of PUFA supplementation in people with refractory epilepsy. More trials are needed to assess the benefits of PUFA supplementation in the treatment of drug-resistant epilepsy.
Collapse
Affiliation(s)
- Vivian Sarmento Vasconcelos
- Universidade Estadual de Ciências da Saúde de Alagoas ‐ UNCISALRua Doutor Jorge de Lima, 113Trapiche da BarraMaceióAlagoasBrazil57010‐300
| | - Cristiane R Macedo
- Centro de Estudos de Saúde Baseada em Evidências e Avaliação Tecnológica em SaúdeBrazilian Cochrane CentreRua Borges Lagoa, 564 cj 63São PauloSPBrazil04038‐000
| | - Alexsandra de Souza Pedrosa
- Universidade Estadual de Ciências da Saúde de Alagoas ‐ UNCISALRua Doutor Jorge de Lima, 113Trapiche da BarraMaceióAlagoasBrazil57010‐300
| | - Edna Pereira Gomes Morais
- Universidade Estadual de Ciências da Saúde de Alagoas ‐ UNCISALRua Doutor Jorge de Lima, 113Trapiche da BarraMaceióAlagoasBrazil57010‐300
| | - Gustavo JM Porfírio
- Brazilian Cochrane CentreCentro de Estudos em Medicina Baseada em Evidências e Avaliação Tecnológica em SaúdeRua Borges Lagoa, 564 cj 63São PauloSPBrazil04038‐000
| | - Maria R Torloni
- Centro de Estudos de Saúde Baseada em Evidências e Avaliação Tecnológica em SaúdeBrazilian Cochrane CentreRua Borges Lagoa, 564 cj 63São PauloSPBrazil04038‐000
| | | |
Collapse
|
23
|
Dustin SM, Stafstrom CE. Ketogenic Diet, but Not Polyunsaturated Fatty Acid Diet, Reduces Spontaneous Seizures in Juvenile Rats with Kainic Acid-induced Epilepsy. J Epilepsy Res 2016; 6:1-7. [PMID: 27390673 PMCID: PMC4933675 DOI: 10.14581/jer.16001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/10/2016] [Indexed: 01/01/2023] Open
Abstract
Background and Purpose: The high-fat, low-carbohydrate ketogenic diet (KD) is effective in many cases of drug-resistant epilepsy, particularly in children. In the classic KD, fats consist primarily of long-chain saturated triglycerides. Polyunsaturated fatty acids (PUFAs), especially the n-3 type, decrease neuronal excitability and provide neuroprotection; pilot human studies have raised the possibility of using PUFAs to control seizures in patients. Methods: To determine the relative roles of the KD and PUFAs in an animal model, we induced epilepsy in juvenile rats (P29–35) using intraperitoneal kainic acid (KA). KA caused status epilepticus in all rats. Two days after KA, rats were randomized to one of 4 dietary groups: Control diet; PUFA diet; KD; or KD plus PUFA. All diets were administered isocalorically at 90% of the rat recommended daily calorie requirement. Spontaneous recurrent seizures (SRS) were assessed for 3 months after diet randomization. Results: Rats receiving the KD or KD-PUFA diet had significantly fewer SRS than those receiving the Control diet or PUFA diet. The PUFA diet did not reduce SRS compared to the Control diet. Conclusions: In the KA epilepsy model, the KD protects against SRS occurrence but dietary enhancement with PUFA does not afford additional protection against spontaneous seizures.
Collapse
Affiliation(s)
- Simone M Dustin
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Madison, USA
| | - Carl E Stafstrom
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, Madison, USA
| |
Collapse
|
24
|
Vadakkan KI. Rapid chain generation of interpostsynaptic functional LINKs can trigger seizure generation: Evidence for potential interconnections from pathology to behavior. Epilepsy Behav 2016; 59:28-41. [PMID: 27085478 DOI: 10.1016/j.yebeh.2016.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 11/28/2022]
Abstract
The experimental finding that a paroxysmal depolarizing shift (PDS), an electrophysiological correlate of seizure activity, is a giant excitatory postsynaptic potential (EPSP) necessitates a mechanism for spatially summating several EPSPs at the level of the postsynaptic terminals (dendritic spines). In this context, we will examine reversible interpostsynaptic functional LINKs (IPLs), a proposed mechanism for inducing first-person virtual internal sensations of higher brain functions concurrent with triggering behavioral motor activity for possible pathological changes that may contribute to seizures. Pathological conditions can trigger a rapid chain generation and propagation of different forms of IPLs leading to seizure generation. A large number of observations made at different levels during both ictal and interictal periods are explained by this mechanism, including the tonic and clonic motor activity, different types of hallucinations, loss of consciousness, gradual worsening of cognitive abilities, a relationship with kindling (which uses an augmented stimulation protocol than that used for inducing long-term potentiation (LTP), which is an electrophysiological correlate of behavioral makers of internal sensation of memory), effect of a ketogenic diet on seizure prevention, dendritic spine loss in seizure disorders, neurodegenerative changes, and associated behavioral changes. The interconnectable nature of these findings is explained as loss of function states of a proposed normal functioning of the nervous system.
Collapse
|
25
|
High serum levels of proinflammatory markers during epileptogenesis. Can omega-3 fatty acid administration reduce this process? Epilepsy Behav 2015; 51:300-5. [PMID: 26318793 DOI: 10.1016/j.yebeh.2015.07.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 01/10/2023]
Abstract
During the epileptogenic process, several events may occur, such as an important activation of the immune system in the central nervous system. The response to seizure activity results in an inflammation in the brain as well as in the periphery. Moreover, CRP and cytokines may be able to interact with numerous ligands in response to cardiac injury caused by sympathetic stimulation in ictal and postictal states. Based on this, we measured the serum levels of C-reactive protein (CRP) and cytokines during acute, silent, and chronic phases of rats submitted to the pilocarpine model of epilepsy. We have also analyzed the effect of a chronic treatment of these rats with omega-3 fatty acid in CRP and cytokine levels, during an epileptic focus generation. C-reactive protein and cytokines such as IL-1β, IL-6, and TNF-α presented high concentration in the blood of rats, even well after the occurrence of SE. We found reduced levels of CRP and all proinflammatory cytokines in the blood of animals with chronic seizures, treated with omega-3, when compared with those treated with vehicle solution. Taken together, our results strongly suggest that the omega-3 is an effective treatment to prevent SUDEP occurrence due to its capability to act as an anti-inflammatory compound, reducing the systemic inflammatory parameters altered by seizures.
Collapse
|
26
|
Trépanier MO, Kwong KM, Domenichiello AF, Chen CT, Bazinet RP, Burnham WM. Intravenous infusion of docosahexaenoic acid increases serum concentrations in a dose-dependent manner and increases seizure latency in the maximal PTZ model. Epilepsy Behav 2015; 50:71-6. [PMID: 26141815 DOI: 10.1016/j.yebeh.2015.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 12/18/2022]
Abstract
Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (n-3 PUFA) that has been shown to raise seizure thresholds in the maximal pentylenetetrazole model following acute subcutaneous (s.c.) administration in rats. Following s.c. administration, however, the dose-response relationship for DHA has shown an inverted U-pattern. The purposes of the present experiment were as follows: (1) to determine the pattern of serum unesterified concentrations resulting from the intravenous (i.v.) infusions of various doses of DHA, (2) to determine the time course of these concentrations following the discontinuation of the infusions, and (3) to determine whether seizure protection in the maximal PTZ model would correlate with serum unesterified DHA levels. Animals received 5-minute i.v. infusions of saline or 25, 50, 100, or 200mg/kg of DHA via a cannula inserted into one of the tail veins. Blood was collected during and after the infusions by means of a second cannula inserted into the other tail vein (Experiment 1). A separate group of animals received saline or 12.5-, 25-, 50-, 100-, or 200 mg/kg DHA i.v. via a cannula inserted into one of the tail veins and were then seizure-tested in the maximal PTZ model either during infusion or after the discontinuation of the infusions. Slow infusions of DHA increased serum unesterified DHA concentrations in a dose-dependent manner, with the 200-mg/kg dose increasing the concentration approximately 260-fold compared with saline-infused animals. Following discontinuation of the infusions, serum concentrations rapidly dropped toward baseline, with half-lives of approximately 40 and 11s for the 25-mg/kg dose and 100-mg/kg dose, respectively. In the seizure-tested animals, DHA significantly increased latency to seizure onset in a dose-dependent manner. Following the discontinuation of infusion, seizure latency rapidly decreased toward baseline. Overall, our study suggests that i.v. infusion of unesterified DHA results in transient anticonvulsant effects which parallel unesterified DHA serum concentrations.
Collapse
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kei-Man Kwong
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anthony F Domenichiello
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chuck T Chen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - W M Burnham
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
27
|
Blondeau N. The nutraceutical potential of omega-3 alpha-linolenic acid in reducing the consequences of stroke. Biochimie 2015; 120:49-55. [PMID: 26092420 DOI: 10.1016/j.biochi.2015.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023]
Abstract
Stroke is a worldwide major cause of mortality and morbidity. Preclinical studies have identified over 1000 molecules with brain-protective properties. More than 200 clinical trials have evaluated neuroprotective candidates for ischemic stroke yet, to date almost all failed, leading to a re-analysis of treatment strategies against stroke. An emerging view is to seek combinatory therapy, or discovering molecules able to stimulate multiple protective and regenerative mechanisms. A pertinent experimental approach to identify such candidates is the study of brain preconditioning, which refers to how the brain protects itself against ischemia and others stress-inducing stimuli. The recent discovery that nutrients like alpha-linolenic acid (ALA is an essential omega-3 polyunsaturated fatty acid required as part of our daily diet), may be an efficient brain preconditionner against stroke fosters the novel concept of brain preconditioning by nutraceuticals. This review stresses the underestimated role of nutrition in preventing and combating stroke. Although there is a consensus that increased consumption of salt, fatty foods and alcoholic beverages may promote pathologies like hypertension, obesity and alcoholism - all of which are well known risk factors of stroke - few risk factors are attributed to a deficiency in an essential nutrient in the diet. The ALA deficiency observed in the Western modern diets may itself constitute a risk factor. This review outlines how ALA supplementation by modification of the daily diet prevented mortality and cerebral damage in a rodent model of ischemic stroke. It also describes the pleiotropic ability of ALA to trigger responses that are multicellular, mechanistically diverse, resulting in neuronal protection, stimulation of neuroplasticity, and brain artery vasodilation. Overall, this review proposes a promising therapeutic opportunity by integrating a nutritional-based approach focusing on enriching the daily diet in ALA to prevent the devastating damage caused by stroke.
Collapse
Affiliation(s)
- Nicolas Blondeau
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, F-06560, France; CNRS, IPMC, Sophia Antipolis, F-06560, France.
| |
Collapse
|
28
|
Gavzan H, Sayyah M, Sardari S, Babapour V. Synergistic effect of docosahexaenoic acid on anticonvulsant activity of valproic acid and lamotrigine in animal seizure models. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1029-38. [DOI: 10.1007/s00210-015-1135-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 05/19/2015] [Indexed: 01/15/2023]
|
29
|
Flores-Mancilla LE, Hernández-González M, Guevara MA, Benavides-Haro DE, Martínez-Arteaga P. Long-term fish oil supplementation attenuates seizure activity in the amygdala induced by 3-mercaptopropionic acid in adult male rats. Epilepsy Behav 2014; 33:126-34. [PMID: 24657504 DOI: 10.1016/j.yebeh.2014.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 01/28/2023]
Abstract
Several studies have provided evidence of significant effects of omega-3 fatty acids on brain functionality, including seizures and disorders such as epilepsy. Fish oil (FO) is a marine product rich in unsaturated omega-3 fatty acids. Considering that the amygdala is one of the brain structures most sensitive to seizure generation, we aimed to evaluate the effect of long-term chronic FO supplementation (from embryonic conception to adulthood) on the severity of seizures and amygdaloid electroencephalographic activity (EEG) in a 3-mercaptopropionic acid (3-MPA)-induced seizure model using adult rats. Female Wistar rats were fed a commercial diet supplemented daily with FO (300mg/kg) from puberty through mating, gestation, delivery, and weaning of the pups. Only the male pups were then fed daily with a commercial diet supplemented with the same treatment as the dam up to the age of 150days postpartum, when they were bilaterally implanted in the amygdala to record behavior and EEG activity before, during, and after seizures induced by administering 3-MPA. Results were compared with those obtained from rats supplemented with palm oil (PO) and rats treated with a vehicle (CTRL). The male rats treated with FO showed longer latency to seizure onset, fewer convulsive episodes, and attenuated severity compared those in the PO and CTRL groups according to the Racine scale. Moreover, long-term FO supplementation was associated with a reduction of the absolute power (AP) of the fast frequencies (12-25Hz) in the amygdala during the seizure periods. These findings support the idea that chronic supplementation with omega-3 of marine origin may have antiseizure properties as other studies have suggested.
Collapse
Affiliation(s)
- L E Flores-Mancilla
- Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Ejido la Escondida, CP 98160 Zacatecas, Mexico.
| | - M Hernández-González
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Francisco de Quevedo No. 180, Col. Arcos Vallarta, CP 44130 Guadalajara, Jalisco, Mexico
| | - M A Guevara
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Francisco de Quevedo No. 180, Col. Arcos Vallarta, CP 44130 Guadalajara, Jalisco, Mexico
| | - D E Benavides-Haro
- Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Ejido la Escondida, CP 98160 Zacatecas, Mexico
| | - P Martínez-Arteaga
- Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, Ejido la Escondida, CP 98160 Zacatecas, Mexico
| |
Collapse
|
30
|
Trépanier MO, Lim J, Lai TKY, Cho HJ, Domenichiello AF, Chen CT, Taha AY, Bazinet RP, Burnham WM. Intraperitoneal administration of docosahexaenoic acid for 14days increases serum unesterified DHA and seizure latency in the maximal pentylenetetrazol model. Epilepsy Behav 2014; 33:138-43. [PMID: 24662925 DOI: 10.1016/j.yebeh.2014.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/04/2014] [Accepted: 02/19/2014] [Indexed: 12/16/2022]
Abstract
Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (n-3 PUFA) which has been shown to raise seizure thresholds following acute administration in rats. The aims of the present experiment were the following: 1) to test whether subchronic DHA administration raises seizure threshold in the maximal pentylenetetrazol (PTZ) model 24h following the last injection and 2) to determine whether the increase in seizure threshold is correlated with an increase in serum and/or brain DHA. Animals received daily intraperitoneal (i.p.) injections of 50mg/kg of DHA, DHA ethyl ester (DHA EE), or volume-matched vehicle (albumin/saline) for 14days. On day 15, one subset of animals was seizure tested in the maximal PTZ model (Experiment 1). In a separate (non-seizure tested) subset of animals, blood was collected, and brains were excised following high-energy, head-focused microwave fixation. Lipid analysis was performed on serum and brain (Experiment 2). For data analysis, the DHA and DHA EE groups were combined since they did not differ significantly from each other. In the maximal PTZ model, DHA significantly increased seizure latency by approximately 3-fold as compared to vehicle-injected animals. This increase in seizure latency was associated with an increase in serum unesterified DHA. Total brain DHA and brain unesterified DHA concentrations, however, did not differ significantly in the treatment and control groups. An increase in serum unesterified DHA concentration reflecting increased flux of DHA to the brain appears to explain changes in seizure threshold, independent of changes in brain DHA concentrations.
Collapse
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Joonbum Lim
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Terence K Y Lai
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hye Jin Cho
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anthony F Domenichiello
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chuck T Chen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ameer Y Taha
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - W M Burnham
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; University of Toronto Epilepsy Research Program, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
31
|
Sarmento Vasconcelos V, Macedo CR, Souza Pedrosa A, Pereira Gomes Morais E, Torloni MR. Polyunsaturated fatty acid supplementation for drug-resistant epilepsy. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2014. [DOI: 10.1002/14651858.cd011014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Taha AY, Zahid T, Epps T, Trepanier MO, Burnham W, Bazinet RP, Zhang L. Selective reduction of excitatory hippocampal sharp waves by docosahexaenoic acid and its methyl ester analog ex-vivo. Brain Res 2013; 1537:9-17. [DOI: 10.1016/j.brainres.2013.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/19/2022]
|
33
|
Taha AY, Trepanier MO, Ciobanu FA, Taha NM, Ahmed M, Zeng Q, Cheuk WI, Ip B, Filo E, Scott BW, Burnham WM, Bazinet RP. A minimum of 3 months of dietary fish oil supplementation is required to raise amygdaloid afterdischarge seizure thresholds in rats--implications for treating complex partial seizures. Epilepsy Behav 2013; 27:49-58. [PMID: 23376336 DOI: 10.1016/j.yebeh.2012.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 11/10/2012] [Accepted: 12/08/2012] [Indexed: 12/14/2022]
Abstract
Complex partial seizures, which typically originate in limbic structures such as the amygdala, are often resistant to antiseizure medications. Our goal was to investigate the effects of chronic dietary supplementation with n-3 polyunsaturated fatty acids (PUFAs) derived from fish oil on seizure thresholds in the amygdala, as well as on blood and brain PUFA levels. The acute effects of injected n-3 PUFAs--eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)--were also tested in the maximal pentylenetetrazol (PTZ) seizure model. In amygdala-implanted subjects, fish oil supplementation significantly increased amygdaloid afterdischarge thresholds, as compared with controls at 3, 5, and 7 months after the start of supplementation. Fish oil supplementation also increased serum EPA and DHA concentrations. DHA concentration in the pyriform-amygdala area increased in the fish-oil treated group by 17-34%, but this effect did not reach statistical significance (P=0.065). DHA significantly increased the latency to seizure onset in the PTZ seizure model, whereas EPA had no significant effect. These observations suggest that chronic dietary fish oil supplementation can raise focal amygdaloid seizure thresholds and that this effect is likely mediated by DHA rather than by EPA.
Collapse
Affiliation(s)
- Ameer Y Taha
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada M5S 1A8.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Scorza FA, Lopes AC, Cysneiros RM, Arida RM, Silva MRE. The promise of omega-3 against sudden unexpected death in epilepsy: until further notice, it remains innocent, until proven guilty. ARQUIVOS DE NEURO-PSIQUIATRIA 2012; 71:51-4. [DOI: 10.1590/s0004-282x2012005000014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/20/2012] [Indexed: 05/26/2023]
Abstract
The present paper highlighted the importance of the recommended levels of fish consumption or omega-3 supplementation in order to minimize the frequency of seizures in people with uncontrolled epilepsy and, especially, to reduce the occurrence of sudden unexpected death in epilepsy (SUDEP).
Collapse
|
35
|
Auvin S. Fatty acid oxidation and epilepsy. Epilepsy Res 2012; 100:224-8. [DOI: 10.1016/j.eplepsyres.2011.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 10/17/2022]
|
36
|
Trépanier MO, Taha AY, Mantha RL, Ciobanu FA, Zeng QH, Tchkhartichvili GM, Domenichiello AF, Bazinet RP, Burnham W. Increases in seizure latencies induced by subcutaneous docosahexaenoic acid are lost at higher doses. Epilepsy Res 2012; 99:225-32. [DOI: 10.1016/j.eplepsyres.2011.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 11/26/2022]
|
37
|
Sierra S, Alfaro JM, Sánchez S, Burgos JS. Administration of docosahexaenoic acid before birth and until aging decreases kainate-induced seizures in adult zebrafish. Brain Res Bull 2012; 88:467-70. [PMID: 22542883 DOI: 10.1016/j.brainresbull.2012.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/23/2012] [Accepted: 04/10/2012] [Indexed: 01/12/2023]
Abstract
Docosahexaeonic acid (DHA) is the final compound in the omega-3 polyunsaturated fatty acids (PUFA) synthetic pathway and the most abundant PUFA found in the brain. DHA plays an essential role in the development of the brain, and the intakes in pregnancy and early life affect growth and cognitive performance later in childhood. Recently, it has been proposed that dietary intake of DHA could be a non-pharmacological interventional strategy for the treatment of seizures in humans. However, to date, the experimental approaches to study the antiepileptic effect of DHA have been exclusively restricted to rodent models during short-to-medium periods of treatment. The purpose of the present study was to test the chronic anticonvulsivant effects of DHA supplementation in zebrafish from the pre-spawning stage to aging, taking advantage of our recently described kainate-induced seizure model using this animal. To that end, two groups of adult female zebrafish were fed with standard or 200mg/kg DHA-enriched diets during 1 month previous to the spawning, and offspring subdivided in two categories, and subsequently fed with standard or DHA diets, generating 4 groups of animals that were aged until 20 months. Afterward, KA was intraperitoneally administered and epileptic score determined. All the DHA-enriched groups presented antiepileptic effects compared to the control group, showing that DHA presents an anticonvulsant potential. Among the studied groups, zebrafish fed with DHA from the pre-spawning stage to aging presented the best antiepileptic profile. These results show a neuroprotective benefit in zebrafish fed with DHA-enriched diet before birth and during the whole life.
Collapse
Affiliation(s)
- Saleta Sierra
- Neuron Bio, BioPharma Division, Parque Tecnológico de Ciencias de la Salud, Edificio BIC, Av. Innovación 1, Armilla 18100, Granada, Spain
| | | | | | | |
Collapse
|
38
|
Curatolo N, Lecointe C, Bordet R, Vallée L, Galabert C, Gressens P, Auvin S. Oral administration of docosahexaenoic acid/eicosapentaeinoic acids is not anticonvulsant in rats: implications for translational research. Pediatr Res 2011; 70:584-8. [PMID: 21857379 DOI: 10.1203/pdr.0b013e31823277d9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Omega-3 and omega-6 poly-unsaturated fatty acids (PUFAs) are dietary fatty acids that are involved in a myriad of physiological processes in the brain. Although experimental data have shown that PUFAs have anticonvulsant properties, the outcomes of clinical trials have been controversial. Docosahexaenoic acid (DHA) is a PUFA which has been reported to exert anticonvulsant effects. Here we studied anticonvulsant potential of a mixture of enriched n-3 PUFA upon their oral administration in rats. We did not observe an anticonvulsant effect of n-3 PUFA in the i.v. pentylentetrazol threshold test. n-3 PUFA component was increased in the plasma of rats treated with the eicosapentaenoic acid (EPA)/DHA mix (275 mg/kg/d/400 mg/kg/d) due to the increase of both DHA and EPA. We also found modification of PUFA composition in the brain. Despite PUFA profiles modified both in plasma and in the brain, we did not find any anticonvulsant effect of orally administered DHA. Further studies are needed to define the type and the amount of fatty acids that would possess anticonvulsant properties. As the existing literature suggests that the route of administration of PUFA may be crucial, future studies should involve oral administration to provide relevant clinical information.
Collapse
|
39
|
Arsenault D, Julien C, Tremblay C, Calon F. DHA improves cognition and prevents dysfunction of entorhinal cortex neurons in 3xTg-AD mice. PLoS One 2011; 6:e17397. [PMID: 21383850 PMCID: PMC3044176 DOI: 10.1371/journal.pone.0017397] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 02/02/2011] [Indexed: 11/28/2022] Open
Abstract
Defects in neuronal activity of the entorhinal cortex (EC) are suspected to underlie the symptoms of Alzheimer's disease (AD). Whereas neuroprotective effects of docosahexaenoic acid (DHA) have been described, the effects of DHA on the physiology of EC neurons remain unexplored in animal models of AD. Here, we show that DHA consumption improved object recognition (↑12%), preventing deficits observed in old 3xTg-AD mice (↓12%). Moreover, 3xTg-AD mice displayed seizure-like akinetic episodes, not detected in NonTg littermates and partly prevented by DHA (↓50%). Patch-clamp recording revealed that 3xTg-AD EC neurons displayed (i) loss of cell capacitance (CC), suggesting reduced membrane surface area; (ii) increase of firing rate versus injected current (F-I) curve associated with modified action potentials, and (iii) overactivation of glutamatergic synapses, without changes in synaptophysin levels. DHA consumption increased CC (↑12%) and decreased F-I slopes (↓21%), thereby preventing the opposite alterations observed in 3xTg-AD mice. Our results indicate that cognitive performance and basic physiology of EC neurons depend on DHA intake in a mouse model of AD.
Collapse
Affiliation(s)
- Dany Arsenault
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada
- Centre de Recherche du CHUL (CHUQ) Québec, Québec, Québec, Canada
| | - Carl Julien
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada
- Centre de Recherche du CHUL (CHUQ) Québec, Québec, Québec, Canada
| | - Cyntia Tremblay
- Centre de Recherche du CHUL (CHUQ) Québec, Québec, Québec, Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada
- Centre de Recherche du CHUL (CHUQ) Québec, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
40
|
Balietti M, Casoli T, Di Stefano G, Giorgetti B, Aicardi G, Fattoretti P. Ketogenic diets: an historical antiepileptic therapy with promising potentialities for the aging brain. Ageing Res Rev 2010; 9:273-9. [PMID: 20188215 DOI: 10.1016/j.arr.2010.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 10/19/2022]
Abstract
Ketogenic diets (KDs), successfully used in the therapy of paediatric epilepsy for nearly a century, have recently shown beneficial effects also in cancer, obesity, diabetes, GLUT 1 deficiencies, hypoxia-ischemia, traumatic brain injuries, and neurodegeneration. The latter achievement designates aged individuals as optimal recipients, but concerns derive from possible age-dependent differences in KDs effectiveness. Indeed, the main factors influencing ketone bodies utilization by the brain (blood levels, transport mechanisms, catabolic enzymes) undergo developmental changes, although several reports indicate that KDs maintain some efficacy during adulthood and even during advanced aging. Encouraging results obtained in patients affected by age-related neurodegenerative diseases have prompted new interest on KDs' effect on the aging brain, also considering the poor efficacy of therapies currently used. However, recent morphological evidence in synapses of late-adult rats indicates that KDs consequences may be even opposite in different brain regions, likely depending on neuronal vulnerability to age. Thus, further studies are needed to design KDs specifically indicated for single neurodegenerative diseases, and to ameliorate the balance between beneficial and adverse effects in aged subjects. Here we review clinical and experimental data on KDs treatments, focusing on their possible use during pathological aging. Proposed mechanisms of action are also reported and discussed.
Collapse
|
41
|
Heinrichs SC. Dietary omega-3 fatty acid supplementation for optimizing neuronal structure and function. Mol Nutr Food Res 2010; 54:447-56. [PMID: 20112300 DOI: 10.1002/mnfr.200900201] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Direct actions of omega-3 polyunsaturated fatty acids (PUFAs) on neuronal composition, neurochemical signaling and cognitive function constitute a multidisciplinary rationale for classification of dietary lipids as "brain foods." The validity of this conclusion rests upon accumulated mechanistic evidence that omega-3 fatty acids actually regulate neurotransmission in the normal nervous system, principally by modulating membrane biophysical properties and presynaptic vesicular release of classical amino acid and amine neurotransmitters. The functional correlate of this hypothesis, that certain information processing and affective coping responses of the central nervous system are facilitated by bioavailability of omega-3 fatty acids, is tentatively supported by developmental and epidemiological evidence that dietary deficiency of omega-3 fatty acids results in diminished synaptic plasticity and impaired learning, memory and emotional coping performance later in life. The present review critically examines available evidence for the promotion in modern society of omega-3 fatty acids as adaptive neuromodulators capable of efficacy as dietary supplements and as potential prophylactic nutraceuticals for neurological and neuropsychiatric disorders.
Collapse
|
42
|
|
43
|
Taha AY, Jeffrey MA, Taha NMY, Bala S, Burnham WM. Acute administration of docosahexaenoic acid increases resistance to pentylenetetrazol-induced seizures in rats. Epilepsy Behav 2010; 17:336-43. [PMID: 20153982 DOI: 10.1016/j.yebeh.2010.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/02/2009] [Accepted: 01/03/2010] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Docosahexaenoic acid (DHA), an omega-3 fatty acid, has been reported to raise seizure thresholds. The purpose of the present study was to test the acute anticonvulsant effects of unesterified DHA in rats, using the maximal pentylenetetrazol (PTZ) seizure model, and also to examine DHA incorporation and distribution into blood serum total lipids and brain phospholipids and unesterified fatty acids. Sedation was measured to monitor for the potential toxicity of DHA. METHODS Male Wistar rats received subcutaneous injections of saline, oleic acid (OA), or DHA. An initial pilot study (Experiment 1) established 400mg/kg as an effective dose of DHA in the maximal PTZ seizure test. A subsequent time-response study, using 400mg/kg (Experiment 2), established 1 hour as an effective postinjection interval for administering DHA subcutaneously. A final study (Experiment 3) comprised two different groups. The first group ("seizure-tested rats") received saline, OA, or DHA (400mg/kg) subcutaneously, and were seizure tested in the maximal PTZ test 1 hour later to confirm the seizure latency measurements at that time. The second group ("assay rats") received identical subcutaneous injections of saline, OA, or DHA (400mg/kg). One hour postinjection, however, they were sacrificed for assay rather than being seizure tested. Assays involved the analysis of serum and brain DHA. Sedation was measured in both Experiment 3 groups during the 1-hour period prior to seizure testing or sacrifice. RESULTS As noted above, 400mg/kg proved to be an effective subcutaneous dose of DHA (Experiment 1), and 1 hour proved to be the most effective injection-test interval (Experiment 2). In Experiment 3, in the seizure-tested animals, subcutaneous administration of 400mg/kg of DHA significantly increased latency to PTZ seizure onset 1 hour postinjection relative to the saline- and OA-injected controls, which did not differ significantly from each other (P>0.05). In the assay animals, no significant effects of treatment on blood serum total lipids or on brain phospholipid or unesterified fatty acid profiles (P>0.05) were observed. There were also no differences in sedation among the three groups (P>0.05). CONCLUSION DHA increases resistance to PTZ-induced seizures without altering measures of sedation and, apparently, without changing DHA concentrations in serum or brain.
Collapse
Affiliation(s)
- Ameer Y Taha
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
44
|
Cysneiros RM, Ferrari D, Arida RM, Terra VC, de Almeida ACG, Cavalheiro EA, Scorza FA. Qualitative analysis of hippocampal plastic changes in rats with epilepsy supplemented with oral omega-3 fatty acids. Epilepsy Behav 2010; 17:33-8. [PMID: 19969506 DOI: 10.1016/j.yebeh.2009.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/10/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
Abstract
Studies have provided evidence of the important effects of omega-3 fatty acid on the brain in neurological conditions, including epilepsy. Previous data have indicated that omega-3 fatty acids lead to prevention of status epilepticus-associated neuropathological changes in the hippocampal formation of rats with epilepsy. Omega-3 fatty acid supplementation has resulted in extensive preservation of GABAergic cells in animals with epilepsy. This study investigated the interplay of these effects with neurogenesis and brain-derived neurotrophic factor (BDNF). The results clearly showed a positive effect of long-term omega-3 fatty acid supplementation on brain plasticity in animals with epilepsy. Enhanced hippocampal neurogenesis and BDNF levels and preservation of interneurons expressing parvalbumin were observed. Parvalbumin-positive cells were identified as surviving instead of newly formed cells. Additional investigations are needed to determine the electrophysiological properties of the newly formed cells and to clarify whether the effects of omega-3 fatty acids on brain plasticity are accompanied by functional gain in animals with epilepsy.
Collapse
Affiliation(s)
- Roberta M Cysneiros
- Programa de Pós-graduação em Distúrbios do Desenvolvimento da Universidade Presbiteriana Mackenzie, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Gilby K, Jans J, McIntyre D. Chronic omega-3 supplementation in seizure-prone versus seizure-resistant rat strains: a cautionary tale. Neuroscience 2009; 163:750-8. [DOI: 10.1016/j.neuroscience.2009.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/17/2009] [Accepted: 07/08/2009] [Indexed: 11/29/2022]
|
46
|
Porta N, Vallée L, Boutry E, Fontaine M, Dessein AF, Joriot S, Cuisset JM, Cuvellier JC, Auvin S. Comparison of seizure reduction and serum fatty acid levels after receiving the ketogenic and modified Atkins diet. Seizure 2009; 18:359-64. [DOI: 10.1016/j.seizure.2009.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/15/2008] [Accepted: 01/08/2009] [Indexed: 10/21/2022] Open
|
47
|
Porta N, Vallée L, Lecointe C, Bouchaert E, Staels B, Bordet R, Auvin S. Fenofibrate, a peroxisome proliferator-activated receptor-α agonist, exerts anticonvulsive properties. Epilepsia 2009; 50:943-8. [DOI: 10.1111/j.1528-1167.2008.01901.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Abstract
Literature on the anticonvulsant effects of the ketogenic diet (KD) in mouse seizure models is summarized. Recent data show that a KD balanced in vitamin, mineral, and antioxidant content is anticonvulsant in mice, confirming that the KD's effect in mice can be attributed to the composition of the diet and not other dietary factors. Given that the anticonvulsant mechanism of the KD is still unknown, the anticonvulsant profile of the diet in different seizure models may help to decipher this mechanism. The implications of the findings that the KD is anticonvulsant in electrical seizure models are indicated. Further, the potential involvement of polyunsaturated fatty acids (PUFA) in the KD's anticonvulsant mechanism is discussed.
Collapse
Affiliation(s)
- Karin Borges
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA.
| |
Collapse
|
49
|
|
50
|
Farmen A, Lossius M, Nakken K. Flerumettede fettsyrer og epilepsi. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2009; 129:26-8. [DOI: 10.4045/tidsskr.2009.34487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|