1
|
Lim JS, Bae J, Lee S, Lee DY, Yao L, Cho N, Bach TT, Yun N, Park SJ, Cho YC. In Vitro Anti-Inflammatory Effects of Symplocos sumuntia Buch.-Ham. Ex D. Don Extract via Blockage of the NF-κB/JNK Signaling Pathways in LPS-Activated Microglial Cells. PLANTS (BASEL, SWITZERLAND) 2022; 11:3095. [PMID: 36432823 PMCID: PMC9693526 DOI: 10.3390/plants11223095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Symplocos sumuntia Buch.-Ham. ex D. Don (S. sumuntia) is a traditional medicinal herb used in Asia to treat various pathologies, including cough, stomachache, tonsillitis, hypertension, and hyperlipidemia. Although the anti-inflammatory activity of S. sumuntia has been reported, little is known about its anti-inflammatory activity and molecular mechanisms in microglial cells. Therefore, we investigated the inhibitory effects of S. sumuntia methanol extract (SSME) on the inflammatory responses in lipopolysaccharide (LPS)-treated BV2 cells. The SSME significantly inhibited the LPS-stimulated inducible nitric oxide synthase and cyclooxygenase-2 expression, as well as the production of nitric oxide (NO), a proinflammatory mediator. The production of proinflammatory cytokines, including interleukin (IL)-6, tumor necrosis factor-α, and IL-1β, was suppressed by the SSME in the LPS-induced BV2 cells. The mechanism underlying the anti-inflammatory effects of SSME involves the suppression of the LPS-stimulated phosphorylation of mitogen-activated protein kinases (MAPKs) such as JNK. Moreover, we showed that the LPS-stimulated nuclear translocation of the nuclear factor-κB (NF-κB)/p65 protein, followed by IκB degradation, was decreased by the SSME treatment. Collectively, these results showed that the SSME induced anti-inflammatory effects via the suppression of the MAPK signaling pathways, accompanied by changes in the NF-κB translocation into the nucleus. Therefore, SSME may be employed as a potential therapeutic candidate for various inflammatory diseases.
Collapse
Affiliation(s)
- Jae Sung Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Jaehoon Bae
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeonbuk 56212, Republic of Korea
| | - Seoyoung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Da Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
- Department of Research, Lab Technology System Co., Ltd., Daejeon 35365, Republic of Korea
| | - Lulu Yao
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Namki Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122000, Vietnam
| | - Narae Yun
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Su-Jin Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeonbuk 56212, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
| |
Collapse
|
2
|
Tamgue O, Chia JE, Brombacher F. Triptolide Modulates the Expression of Inflammation-Associated lncRNA-PACER and lincRNA-p21 in Mycobacterium tuberculosis-Infected Monocyte-Derived Macrophages. Front Pharmacol 2021; 12:618462. [PMID: 33912039 PMCID: PMC8071990 DOI: 10.3389/fphar.2021.618462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
Triptolide is a diterpene triepoxide, which performs its biological activities via mechanisms including induction of apoptosis, targeting of pro-inflammatory cytokines, and reshaping of the epigenetic landscape of target cells. However, the targeting of long non-coding RNAs (lncRNAs) by triptolide has not yet been investigated, despite their emerging roles as key epigenetic regulators of inflammation and immune cell function during Mycobacterium tuberculosis (Mtb) infection. Hence, we investigated whether triptolide targets inflammation-associated lncRNA-PACER and lincRNA-p21 and how this targeting associates with Mtb killing within monocyte-derived macrophages (MDMs).Using RT-qPCR, we found that triptolide induced the expression of lincRNA-p21 but inhibited the expression of lncRNA-PACER in resting MDMs in a dose- and time-dependent manner. Moreover, Mtb infection induced the expression of lincRNA-p21 and lncRNA-PACER, and exposure to triptolide before or after Mtb infection led to further increase of Mtb-induced expression of these lncRNAs in MDMs. We further found that contrary to lncRNA-PACER, triptolide time- and dose-dependently upregulated Ptgs-2, which is a proximal gene regulated by lncRNA-PACER. Also, low-concentration triptolide inhibited the expression of cytokine IL-6, a known target of lincRNA-p21. Mtb infection induced the expression of IL-6 and Ptgs-2, and triptolide treatment further increased IL-6 but decreased Ptgs-2 expression in Mtb-infected MDMs. The inverse relation between the expression of these lncRNAs and their target genes is concordant with the conception that these lncRNAs mediate, at least partially, the cytotoxic and/or anti-inflammatory activities of triptolide in both resting and activated MDMs. Using the CFU count method, we found that triptolide decreased the intracellular growth of Mtb HN878. The alamarBlue assay showed that this decreased Mtb HN878 growth was not as a result of direct targeting of Mtb HN878 by triptolide, but rather evoking MDMs’ intracellular killing mechanisms which we speculate could include triptolide-induced enhancement of MDMs’ effector killing functions mediated by lncRNA-PACER and lincRNA-p21. Altogether, these results provide proof of the modulation of lncRNA-PACER and lincRNA-p21 expression by triptolide, and a possible link between these lncRNAs, the enhancement of MDMs’ effector killing functions and the intracellular Mtb-killing activities of triptolide. These findings prompt for further investigation of the precise contribution of these lncRNAs to triptolide-induced activities in MDMs.
Collapse
Affiliation(s)
- Ousman Tamgue
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon.,International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Julius Ebua Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Orlowska E, Babak MV, Dömötör O, Enyedy EA, Rapta P, Zalibera M, Bučinský L, Malček M, Govind C, Karunakaran V, Farid YCS, McDonnell TE, Luneau D, Schaniel D, Ang WH, Arion VB. NO Releasing and Anticancer Properties of Octahedral Ruthenium–Nitrosyl Complexes with Equatorial 1H-Indazole Ligands. Inorg Chem 2018; 57:10702-10717. [DOI: 10.1021/acs.inorgchem.8b01341] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ewelina Orlowska
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Maria V. Babak
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore
| | - Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dom ter 7, H-6720 Szeged, Hungary
| | - Eva A. Enyedy
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dom ter 7, H-6720 Szeged, Hungary
| | - Peter Rapta
- Slovak University of Technology, Institute of Physical Chemistry and Chemical Physics, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Michal Zalibera
- Slovak University of Technology, Institute of Physical Chemistry and Chemical Physics, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Lukáš Bučinský
- Slovak University of Technology, Institute of Physical Chemistry and Chemical Physics, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Michal Malček
- Slovak University of Technology, Institute of Physical Chemistry and Chemical Physics, Radlinského 9, SK-81237 Bratislava, Slovakia
- LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Chinju Govind
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019 Kerala India
| | - Venugopal Karunakaran
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019 Kerala India
| | | | - Tara E. McDonnell
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Dominique Luneau
- Laboratoire des Multimatériaux et Interfaces (UMR5615), Université Claude Bernard Lyon 1, Campus de la Doua, 69622 Villeurbanne Cedex, France
| | | | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543 Singapore
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
4
|
Lee KC, Chang HH, Chung YH, Lee TY. Andrographolide acts as an anti-inflammatory agent in LPS-stimulated RAW264.7 macrophages by inhibiting STAT3-mediated suppression of the NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2011; 135:678-684. [PMID: 21497192 DOI: 10.1016/j.jep.2011.03.068] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/18/2011] [Accepted: 03/03/2011] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL SIGNIFICANCE Inflammation is involved in numerous diseases, such as chronic inflammatory disease and cancer. Many plant products exhibit useful biological activities, including antifungal, antibacterial, and anti-inflammatory actions. AIM OF STUDY However, our understanding of the anti-inflammatory effects of andrographolide is limited. MATERIALS AND METHODS We use lipopolysaccharide (LPS)-stimulated macrophages as a model of inflammation to investigate the anti-inflammatory effects of andrographolide, which contains polyphenolic structures. RESULTS We found that andrographolide exhibited a potent anti-inflammatory effect. In this study, we investigated the inhibitory effects of andrographolide on the induction of nitric oxide synthase (NOS) and cyclooxygenase-2 (COX-2) as well as their respective downstream products, NO and PGE2, in RAW264.7 cells treated with LPS. Treatment with andrographolide also reduced nuclear factor-κB (NF-κB) and activation protein-1 (AP-1) DNA-binding activity. Western blot analysis showed that andrographolide significantly inhibited the phosphorylation of signal transducer and activator of transcription-3 (STAT3) and the protein expression of CCAAT/enhancer-binding protein δ (C/EBPδ). We also found that andrographolide suppressed LPS-induced suppressor of cytokine signalling 1 and 3 (SOCS1 and 3) mRNA expression, which, in turn, inhibited apoptosis signalling and mitochondria membrane potential activation. Our results demonstrate that andrographolide downregulates inflammatory iNOS and COX-2 gene expression by inhibiting the activation of NF-κB and STAT3 by interfering with the expression of SOCS1 and SOCS3 signalling. CONCLUSION Therefore, andrographolide exerts a potent anti-inflammatory effect and could potentially be developed as a useful agent for the chemoprevention of cancer or inflammatory diseases.
Collapse
Affiliation(s)
- Ko-Chen Lee
- Graduate Institute of Clinical Medicine Science, Chang Gung University, Taoyuan, Taiwan
| | | | | | | |
Collapse
|
5
|
Chen M, Divangahi M, Gan H, Shin DSJ, Hong S, Lee DM, Serhan CN, Behar SM, Remold HG. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. ACTA ACUST UNITED AC 2008; 205:2791-801. [PMID: 18955568 PMCID: PMC2585850 DOI: 10.1084/jem.20080767] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Virulent Mycobacterium tuberculosis (Mtb) induces a maladaptive cytolytic death modality, necrosis, which is advantageous for the pathogen. We report that necrosis of macrophages infected with the virulent Mtb strains H37Rv and Erdmann depends on predominant LXA(4) production that is part of the antiinflammatory and inflammation-resolving action induced by Mtb. Infection of macrophages with the avirulent H37Ra triggers production of high levels of the prostanoid PGE(2), which promotes protection against mitochondrial inner membrane perturbation and necrosis. In contrast to H37Ra infection, PGE(2) production is significantly reduced in H37Rv-infected macrophages. PGE(2) acts by engaging the PGE(2) receptor EP2, which induces cyclic AMP production and protein kinase A activation. To verify a role for PGE(2) in control of bacterial growth, we show that infection of prostaglandin E synthase (PGES)(-/-) macrophages in vitro with H37Rv resulted in significantly higher bacterial burden compared with wild-type macrophages. More importantly, PGES(-/-) mice harbor significantly higher Mtb lung burden 5 wk after low-dose aerosol infection with virulent Mtb. These in vitro and in vivo data indicate that PGE(2) plays a critical role in inhibition of Mtb replication.
Collapse
Affiliation(s)
- Minjian Chen
- Department of Medicine, Division of Rheumatology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Role of mitogen-activated protein kinase cascades in inducible nitric oxide synthase expression by lipopolysaccharide in a rat Schwann cell line. Neurochem Res 2008; 34:430-7. [PMID: 18668365 DOI: 10.1007/s11064-008-9801-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 07/01/2008] [Indexed: 12/14/2022]
Abstract
It is well known that the mitogen-activated protein kinase (MAPK) signal transduction pathways is involved in the regulation of inducible nitric oxide synthase (iNOS) in many cellular systems. However, sufficient information describing the role of MAPKs on iNOS expression in rat Schwann cells (SCs) is lacking. Therefore the paper was sought to investigate the role of MAPK cascades in iNOS expression following treatment of lipopolysaccharide (LPS) in a rat Schwann cell line RSC 96. Reverse transcriptase-PCR analysis (RT-PCR) and immunocytochemical staining were performed to detect iNOS expression following LPS induction. Next RT-PCR and Western blot analysis were employed to study expression of iNOS after using inhibitors selective for ERK (PD98059), JNK/SAPK (SP600125) and p38 (SB202190). The production of nitric oxide (NO) was measured by nitrate reductase method. LPS could significantly induce the expression of iNOS located in the cytoplasm in RSC 96 with a concentration- and time-dependent manner. Administration of inhibitors individually and combinations of the three inhibitors at micromolar concentrations suppressed the expression of iNOS and the production of NO. Based on these observations, it is proposed that LPS may activate the rat Schwann cell line RSC 96 to express iNOS and release NO via the MAPK signal transduction pathways.
Collapse
|
7
|
Nikolic DM, Gong MC, Turk J, Post SR. Class A scavenger receptor-mediated macrophage adhesion requires coupling of calcium-independent phospholipase A(2) and 12/15-lipoxygenase to Rac and Cdc42 activation. J Biol Chem 2007; 282:33405-33411. [PMID: 17873277 PMCID: PMC2080787 DOI: 10.1074/jbc.m704133200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class A scavenger receptors (SR-A) participate in multiple macrophage functions including adhesion to modified extracellular matrix proteins present in various inflammatory disorders such as atherosclerosis and diabetes. By mediating macrophage adhesion to modified proteins and increasing macrophage retention, SR-A may contribute to the inflammatory process. Eicosanoids produced after phospholipase A(2) (PLA(2))-catalyzed release of arachidonic acid (AA) are important regulators of macrophage function and inflammatory responses. The potential roles of AA release and metabolism in SR-A-mediated macrophage adhesion were determined using macrophages adherent to modified protein. SR-A-dependent macrophage adhesion was abolished by selectively inhibiting calcium-independent PLA(2) (iPLA(2)) activity and absent in macrophages isolated from iPLA(2) beta(-/-) mice. Our results further demonstrate that 12/15-lipoxygenase (12/15-LOX)-derived, but not cyclooxygenase- or cytochrome P450-dependent epoxygenase-derived AA metabolites, are specifically required for SR-A-dependent adhesion. Because of their role in regulating actin polymerization and cell adhesion, Rac and Cdc42 activation were also examined and shown to be increased via an iPLA(2)- and LOX-dependent pathway. Together, our results identify a novel role for iPLA(2)-catalyzed AA release and its metabolism by 12/15-LOX in coupling SR-A-mediated macrophage adhesion to Rac and Cdc42 activation.
Collapse
Affiliation(s)
- Dejan M Nikolic
- Departments of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, 40536
| | - Ming C Gong
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Steven R Post
- Departments of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, 40536.
| |
Collapse
|
8
|
Ramana KV, Reddy ABM, Tammali R, Srivastava SK. Aldose reductase mediates endotoxin-induced production of nitric oxide and cytotoxicity in murine macrophages. Free Radic Biol Med 2007; 42:1290-302. [PMID: 17382209 PMCID: PMC1885210 DOI: 10.1016/j.freeradbiomed.2007.01.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 01/17/2007] [Accepted: 01/18/2007] [Indexed: 01/13/2023]
Abstract
Aldose reductase (AR) is a ubiquitously expressed protein with pleiotrophic roles as an efficient catalyst for the reduction of toxic lipid aldehydes and mediator of hyperglycemia, cytokine, and growth factor-induced redox-sensitive signals that cause secondary diabetic complications. Although AR inhibition has been shown to be protective against oxidative stress signals, the role of AR in regulating nitric oxide (NO) synthesis and NO-mediated apoptosis has not been elucidated to date. We therefore investigated the role of AR in regulating lipopolysaccharide (LPS)-induced NO synthesis and apoptosis in RAW 264.7 macrophages. Inhibition or RNA interference ablation of AR suppressed LPS-stimulated production of NO and overexpression of iNOS mRNA. Inhibition or ablation of AR also prevented the LPS-induced apoptosis, cell cycle arrest, activation of caspase-3, p38-MAPK, JNK, NF-kappaB, and AP1. In addition, AR inhibition prevented the LPS-induced down-regulation of Bcl-xl and up-regulation of Bax and Bak in macrophages. L-Arginine increased and L-NAME decreased the severity of cell death caused by LPS and AR inhibitors prevented it. Furthermore, inhibition of AR prevents cell death caused by HNE and GS-HNE, but not GS-DHN. Our findings for the first time suggest that AR-catalyzed lipid aldehyde-glutathione conjugates regulate the LPS-induced production of inflammatory marker NO and cytotoxicity in RAW 264.7 cells. Inhibition or ablation of AR activity may be a potential therapeutic target in endotoximia and other inflammatory diseases.
Collapse
Affiliation(s)
- Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | |
Collapse
|
9
|
Ferrante MC, Bilancione M, Raso GM, Esposito E, Iacono A, Zaccaroni A, Meli R. Expression of COX-2 and hsp72 in peritoneal macrophages after an acute ochratoxin A treatment in mice. Life Sci 2006; 79:1242-7. [PMID: 16643956 DOI: 10.1016/j.lfs.2006.03.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 03/22/2006] [Accepted: 03/27/2006] [Indexed: 01/22/2023]
Abstract
Ochratoxin A (OTA) is a secondary fungal metabolite produced by Aspergillus and Penicillium strains that elicits a broad spectrum of toxicological effects in animals and man. A single oral OTA administration (10 mg/kg) in mice induced after 24 h oxidative damage and polymorphonuclear leukocyte (PMN) infiltration in parenchymal organs. In fact, OTA treatment increased lipid peroxidation (via malondialdehyde formation) in kidney and liver and PMN accumulation in duodenum, as shown by myeloperoxidase activity. Following in vivo OTA treatment an increase of cyclooxygenase-2 and of heat shock protein 72 expression was evidenced in peritoneal macrophage lysates by Western blot. That OTA modulates these proteins involved in the inflammatory process indicates that the mycotoxin is able to activate immune cells. This study suggests that the oxidative stress, the neutrophil accumulation in parenchymal tissues and the modulation of inflammatory parameters in peritoneal macrophages induced by OTA are involved in its toxicity, and represent early events related to several aspects of OTA mycotoxicosis.
Collapse
Affiliation(s)
- Maria Carmela Ferrante
- Department of Pathology and Animal Health, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Bellows CF, Alder A, Wludyka P, Jaffe BM. Modulation of macrophage nitric oxide production by prostaglandin D2. J Surg Res 2005; 132:92-7. [PMID: 16289592 DOI: 10.1016/j.jss.2005.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 07/28/2005] [Accepted: 08/16/2005] [Indexed: 11/24/2022]
Abstract
BACKGROUND Nitric oxide and prostaglandins readily become activated in response to inflammatory events. The overproduction of nitric oxide is detrimental to the host. The present study was conducted to examine whether prostaglandin D(2) (PGD(2)) modulates nitric oxide production in macrophages in response to an inflammatory stimulus. METHODS Cultures of RAW 264.7 murine macrophages were exposed to Escherichia coli lipopolysaccharide (LPS, 0.01 and 1.0 microg/ml) before and after exposure to PGD(2) (0.01 to 10 nmol). After 24-h incubation, supernatants were collected and nitrite was quantitated by Greiss reaction as a measure of nitric oxide synthesis. Inducible nitric oxide synthase (iNOS) protein was measured by Western blot analysis. RESULTS Macrophages exposed to 0.01 and 1.0 microg/ml LPS produced 8.3 +/- 0.2 and 15.0 +/- 1.4 nmol/1.1 x 10(6) cells/24 h of nitrite, respectively. The simultaneous addition of PGD(2) with LPS inhibited nitrite production in a dose-dependent fashion and suppressed iNOS protein expression. A strong time effect was also exhibited when macrophages were incubated with PGD(2) 1 hour before as compared to 7 hours after the addition of LPS (0.01 or 1.0 microg/ml), indicating that the earlier the time PGD(2) was added to the culture media, the greater the inhibition. Prostaglandin D(2) had the capacity to block nitrite synthesis even when added as much as 7 hours after an LPS challenge. Blocking endogenous prostaglandins, using indomethacin (10 microM), suppressed nitrite production. CONCLUSION Exogenous PGD(2) caused dose- and time-dependent decreases in LPS-stimulated nitrite production by RAW 264.7 macrophages by hindering iNOS protein expression. Conversely, the endogenous prostaglandins released by these same cells in response to an LPS challenge stimulated nitrite production, which may consequently dampen the inhibitory actions of exogenous PGD(2).
Collapse
Affiliation(s)
- Charles F Bellows
- Department of Surgery, SL22, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
11
|
Li MH, Jang JH, Surh YJ. Nitric oxide induces apoptosis via AP-1-driven upregulation of COX-2 in rat pheochromocytoma cells. Free Radic Biol Med 2005; 39:890-9. [PMID: 16140209 DOI: 10.1016/j.freeradbiomed.2005.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 05/05/2005] [Accepted: 05/05/2005] [Indexed: 10/25/2022]
Abstract
Cyclooxygenase-2 (COX-2), the rate-limiting enzyme in prostaglandin synthesis, is induced in many cells by numerous inflammatory mediators, including nitric oxide (NO). Upregulation of COX-2 expression has been implicated in the pathophysiology of neuronal cell death. In the present study, we have found that the NO-induced upregulation of COX-2 via activation of activator protein-1 (AP-1) signaling leads to apoptotic cell death. Cultured rat pheochromocytoma (PC12) cells treated with sodium nitroprusside (SNP), a NO-releasing compound, exhibited marked induction of COX-2 expression, which was associated with apoptotic cell death as evidenced by internucleosomal DNA fragmentation, cleavage of poly(ADP-ribose) polymerase, activation of caspase-3, accumulation of p53, increased Bax/Bcl-XL ratio, and dissipation of mitochondrial membrane potential. In addition to the upregulation of COX-2 expression, SNP treatment led to activation of AP-1. Pretreatment of PC12 cells with c-fos antisense oligonucleotide abolished the NO-induced increase in DNA binding of AP-1 and upregulation of COX-2 expression. Furthermore, pretreatment with a selective COX-2 inhibitor (SC58635) rescued the PC12 cells from the apoptotic cell death induced by NO. Similar results were obtained when the NO-induced upregulation of COX-2 expression was blocked by the siRNA interference. These results suggest that excessive NO production during inflammation induces apoptosis in PC12 cells through AP-1-mediated upregulation of COX-2 expression.
Collapse
Affiliation(s)
- Mei-Hua Li
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-ku, Seoul 151-742, South Korea
| | | | | |
Collapse
|
12
|
Napolitano DR, Mineo JR, de Souza MA, de Paula JE, Espindola LS, Espindola FS. Down-modulation of nitric oxide production in murine macrophages treated with crude plant extracts from the Brazilian Cerrado. JOURNAL OF ETHNOPHARMACOLOGY 2005; 99:37-41. [PMID: 15848017 DOI: 10.1016/j.jep.2005.01.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 01/24/2005] [Accepted: 01/24/2005] [Indexed: 05/24/2023]
Abstract
Several plant species from the Cerrado biome in Brazil are popularly used as herbal medicines for its reputed analgesic, anti-acid, anti-microbial, anti-inflammatory and anti-tumoral properties, among others. It has been reported that some plant extracts interfere in the production of nitric oxide (NO), an important inflammatory mediator. In the present study, we investigated the effect of hexanic and ethanolic extracts from three plant species on NO production by LPS/IFN-gamma-activated J774 macrophages based on traditional use. The cytotoxic effect of the crude extracts was determined by the thiazolyl blue test (MTT) to measure cell viability. Serjania lethalis stem extracts and Cupania vernalis leaf extracts significantly inhibited NO production, while extracts from Casearia sylvestris var. lingua were inactive or showed low activity on NO production, or were very cytotoxic. The ethanolic stem bark and leaf extracts of Serjania lethalis and Cupania vernalis, respectively, almost completely inhibited the production of NO by J774 macrophages. It can be concluded that the selected extracts are potential sources of active compounds that might be used as anti-inflammatory agents.
Collapse
Affiliation(s)
- D R Napolitano
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Wang WW, Smith DLH, Zucker SD. Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats. Hepatology 2004; 40:424-33. [PMID: 15368447 DOI: 10.1002/hep.20334] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The inducible isoform of heme oxygenase (HO), HO-1, has been shown to play an important role in attenuating tissue injury. Because HO-1 catalyzes the rate-limiting step in bilirubin synthesis, we examined the hypothesis that bilirubin is a key mediator of HO-1 cytoprotection, employing a rat model of endotoxemia. Bilirubin treatment resulted in improved survival and attenuated liver injury in response to lipopolysaccharide infusion. Serum levels of NO and tumor necrosis factor alpha, key mediators of endotoxemia, and hepatic inducible nitric oxide synthase (iNOS) expression were significantly lower in bilirubin-treated rodents versus control animals. Both intraperitoneal and local administration of bilirubin also was found to ameliorate hindpaw inflammation induced by the injection of lambda-carrageenan. Consistent with in vivo results, bilirubin significantly inhibited iNOS expression and suppressed NO production in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages. In contrast, bilirubin treatment induced a threefold increase in LPS-mediated prostaglandin synthesis in the absence of significant changes in cyclooxygenase expression or activity, suggesting that bilirubin enhances substrate availability for eicosanoid synthesis. Bilirubin had no effect on LPS-mediated activation of nuclear factor kappaB or p38 mitogen-activated protein kinase, consistent with a nuclear factor kappaB-independent mechanism of action. Taken together, these data support a cytoprotective role for bilirubin that is mediated, at least in part, through the inhibition of iNOS expression and, potentially, through stimulation of local prostaglandin E2 production. In conclusion, our findings suggest a role for bilirubin in mollifying tissue injury in response to inflammatory stimuli and support the possibility that the phenomenon of "jaundice of sepsis" represents an adaptive physiological response to endotoxemia. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/suppmat/index.html).
Collapse
Affiliation(s)
- Weizheng W Wang
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, OH 45267-0595, USA
| | | | | |
Collapse
|
14
|
Jafari M, Rabbani A. Studies on the mechanism of caffeine action in alveolar macrophages: caffeine elevates cyclic adenosine monophosphate level and prostaglandin synthesis. Metabolism 2004; 53:687-92. [PMID: 15164313 DOI: 10.1016/j.metabol.2003.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have previously reported that the effects of caffeine on alveolar macrophages are dose-dependent; thus, at low concentrations caffeine prevents apoptosis and at moderate concentrations, the cells proceed into apoptosis. In the current study, the mechanism of caffeine action via prostaglandin synthesis and cyclic adenosine monophosphate (cAMP) was investigated using moderate concentrations of caffeine. The results show that the combination of caffeine with indomethacin, an inhibitor of prostaglandin synthesis, mediated caffeine's effect by increasing cellular viability and lowering superoxide anion production and DNA fragmentation. However, addition of exogenous prostaglandin E2 (PGE2) to the culture in the presence of caffeine had the opposite effect, in which the viability was decreased and anion superoxide production was increased. Incubation of macrophages with exogenous dibutyryl cAMP showed nearly similar effects to caffeine. At low concentrations (<50 micromol/L), higher viability and lower superoxide production pattern were evident and at higher concentrations (>50 micromol/L) the cells proceeded into apoptosis. Therefore, it is suggested that caffeine exerts its effects on macrophages by altering cAMP level and prostaglandin synthesis.
Collapse
Affiliation(s)
- Mahvash Jafari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | |
Collapse
|
15
|
Jans DM, Martinet W, Fillet M, Kockx MM, Merville MP, Bult H, Herman AG, De Meyer GRY. Effect of Non-Steroidal Anti-Inflammatory Drugs on Amyloid-β Formation and Macrophage Activation after Platelet Phagocytosis. J Cardiovasc Pharmacol 2004; 43:462-70. [PMID: 15076232 DOI: 10.1097/00005344-200403000-00019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recently, we showed that platelet phagocytosis occurs in human atherosclerotic plaques and leads to foam cell formation. Platelet phagocytosis, resulting in macrophage activation and iNOS induction, was associated with the formation of amyloid-beta peptide (Abeta) via proteolytic cleavage of platelet-derived amyloid precursor protein (APP), possibly by secretases. To test the involvement of gamma-secretase in this process, we used indomethacin, ibuprofen, and sulindac sulfide, non-steroidal anti-inflammatory drugs (NSAIDs) known to alter the gamma-secretase cleaving site of APP, on their ability to inhibit macrophage activation evoked by platelet phagocytosis. J774 macrophages were incubated with human platelets or lipopolysaccharide (LPS) with or without NSAIDs. Nitrite was quantified as a measure for inducible nitric oxide synthase (iNOS) activity. Indomethacin, ibuprofen, sulindac sulfide, and meloxicam concentration-dependently reduced nitrite production by macrophages incubated with platelets, but did not alter LPS-induced iNOS activity or platelet uptake. However, acetylsalicylic acid and naproxen, two NSAIDs without effect on the gamma-secretase cleaving site of APP, did not affect nitrite production in either platelet- or LPS-stimulated macrophages. Surface-enhanced laser desorption/ionization time-of-flight mass-spectrometry demonstrated time-dependent formation of Abeta-containing peptides after platelet phagocytosis, which could be inhibited by indomethacin. In conclusion, these results point to the involvement of gamma-secretase in macrophage activation following platelet phagocytosis.
Collapse
Affiliation(s)
- Dominique M Jans
- Division of Pharmacology, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ma W, Eisenach JC. Cyclooxygenase 2 in infiltrating inflammatory cells in injured nerve is universally up-regulated following various types of peripheral nerve injury. Neuroscience 2004; 121:691-704. [PMID: 14568029 DOI: 10.1016/s0306-4522(03)00495-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We previously reported the up-regulation of cyclooxygenase 2 (COX2) in injured sciatic nerve of rats with partial sciatic nerve ligation (PSNL) and the reversal of PSNL-elicited tactile allodynia by local injection of the COX inhibitor ketorolac [Eur J Neurosci 15 (2002) 1037]. We further asked whether COX2 up-regulation in injured nerve is a universal phenomenon following various types of nerve injury. In the current study, we observed that abundant COX2 immunoreactive (IR) cell profiles appeared in injured nerves of rats following spinal nerve ligation (SNL), chronic constriction injury (CCI) and complete sciatic nerve transection. Most COX2-IR cells were identified as infiltrating macrophages. Partial injury induced greater COX2 up-regulation than complete injury. COX2 up-regulation reached a peak at 2-4 weeks, evidently declined by 3 months and disappeared by 7 months postlesion. These findings suggest that up-regulation of COX2 in injured nerve is a common event during the initial several months after nerve injury. We observed that local ketorolac-elicited anti-allodynia was closely associated with the abundance of COX2-IR cells in injured nerve, varying with the type of injury and time after injury. The anti-allodynia lasted the longest when local ketorolac was given 2-4 weeks after PSNL, CCI and SNL. The duration of local ketorolac's anti-allodynia was the longest in CCI rats, which also exhibited the most abundant COX2 up-regulation. Local ketorolac's anti-allodynia lasted much shorter when given 2-3 months after lesion. Local ketorolac failed to induce anti-allodynia 7 months after lesion, a time when COX2-IR cells completely disappeared from the injured nerve except a few cells at the injury site. Our data strongly suggest that during the initial several months after nerve injury, peripherally over-produced prostaglandins play an important role in the maintenance of neuropathic pain.
Collapse
Affiliation(s)
- W Ma
- Pain Mechanism Laboratory, Department of Anesthesiology, and Center for the Study of Pharmacologic Plasticity in the Presence of Pain, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
17
|
Smith JJ, O'Brien-Ladner AR, Kaiser CR, Wesselius LJ. Effects of hypoxia and nitric oxide on ferritin content of alveolar cells. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2003; 141:309-17. [PMID: 12761474 DOI: 10.1016/s0022-2143(03)00008-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Concentrations of ferritin in alveolar cells and on the alveolar surface are increased in patients with a variety of respiratory disorders. Ferritin synthesis by cells is modulated by iron content but is also influenced by stimuli other than iron. In this study we sought to determine whether in vitro exposure to hypoxia- or nitric oxide (NO)-induced ferritin accumulation or release by human alveolar macrophages (AMs) or a lung cancer-derived epithelial cell line (A549). Changes in cell content of iron and ferritin (L- and H-types), as well as ferritin content of cell supernatants, were determined after in vitro exposure to hypoxia (1% or 10% O(2), 18 hours) or the NO donor S-nitroso-N-acetylpenicillamine (SNAP, 0.01-1.0 mmol/L, 18 hours). Exposure to 1% O(2) increased ferritin content in both cell types (>fourfold increase; P <.005) without changing iron content. Treatment with SNAP increased ferritin content of A549 cells in a dose-dependent manner, whereas treatment of AMs decreased cellular iron and ferritin content and increased supernate ferritin content. Pretreatment of cells with N-acetylcysteine (500 micromol/L) reduced hypoxia-induced ferritin accumulation in alveolar cells and completely inhibited NO-induced ferritin accumulation in A549 cells. These findings indicate that exposure to 1% O(2)can increase ferritin content in alveolar cells, whereas NO can increase ferritin content (A549 cells) or decrease ferritin content (AMs).
Collapse
Affiliation(s)
- Jacqueline J Smith
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, Carl T. Hayden Veterans Affairs Medical Center, Phoenix, Arizona, USA
| | | | | | | |
Collapse
|
18
|
Catelas I, Petit A, Zukor DJ, Antoniou J, Huk OL. TNF-alpha secretion and macrophage mortality induced by cobalt and chromium ions in vitro-qualitative analysis of apoptosis. Biomaterials 2003; 24:383-91. [PMID: 12423593 DOI: 10.1016/s0142-9612(02)00351-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Metal ion toxicity is a major cause for concern in metal-metal hip replacements. A previous study in our laboratory demonstrated that Co(2+) and Cr(3+) induce macrophage apoptosis in vitro at 24h, with the implication of a caspase-3 pathway. The aim of the present study was to look at the effect of a prolonged incubation time on macrophage response with regards to TNF-alpha secretion and macrophage mortality, more specifically apoptosis. J774 macrophages were exposed for up to 48 h to 0-10 ppm Co(2+) and 0-500 ppm Cr(3+). ELISA results demonstrated that Co(2+ )and Cr(3+) induced a concentration- and time-dependent increase of TNF-alpha secretion, but a decrease at the highest concentrations of Cr(3+) (350-500 ppm). This decrease was most likely due to a high toxicity of Cr(3+) at such concentrations. Higher levels of TNF-alpha were observed with Co(2+) than Cr(3+), demonstrating a higher stimulatory effect of this ion. Trypan blue and flow cytometry results demonstrated that both Co(2+) and Cr(3+) ions induce macrophage mortality in a dose- and time-dependent manner. The number of cells decreased when ion concentrations increased, especially at 48 h. In parallel with the TNF-alpha results, Co(2+) was more toxic than Cr(3+) since the maximal effects were reached with lower concentrations (8-10 ppm vs. 350-500 ppm, respectively). DNA analysis demonstrated that both Co(2+) and Cr(3+) ions induce macrophage apoptosis, with a stronger signal at 24h than at 48 h, suggesting the presence of more necrosis after 48 h. PARP cleavage, another marker of apoptosis, was observed at both 24 and 48 h, with a maximum intensity at 48 h and with the highest concentrations of ions. In conclusion, this study demonstrates that both Co(2+) and Cr(3+) ions can induce the release of TNF-alpha and macrophage mortality in a dose- and time-dependent manner. More specifically, Co(2+) and Cr(3+) ions induced apoptosis after both 24 and 48 h incubation, although DNA analysis suggested the presence of necrosis at 48 h. The relative importance of apoptosis and necrosis in the induction of macrophage mortality by these metal ions remains to be investigated.
Collapse
Affiliation(s)
- Isabelle Catelas
- Department of Biomedical Engineering, McGill University, Duff Medical Building, 3775 University Street, Montreal, Quebec, Canada H3A 2B4
| | | | | | | | | |
Collapse
|
19
|
Abstract
Nitric oxide (NO) is a multi-faceted molecule with dichotomous regulatory roles in many areas of biology. The complexity of its biological effects is a consequence of its numerous potential interactions with other molecules such as reactive oxygen species (ROS), metal ions, and proteins. The effects of NO are modulated by both direct and indirect interactions that can be dose-dependent and cell-type specific. For example, in some cell types NO can promote apoptosis, whereas in other cells NO inhibits apoptosis. In hepatocytes, NO can inhibit the main mediators of cell death-caspase proteases. Moreover, low physiological concentrations of NO can inhibit apoptosis, but higher concentrations of NO may be toxic. High NO concentrations lead to the formation of toxic reaction products like dinitrogen trioxide or peroxynitrite that induce cell death, if not by apoptosis, then by necrosis. Long-term exposure to nitric oxide in certain conditions like chronic inflammatory states may predispose cells to tumorigenesis through DNA damage, inhibition of DNA repair, alteration in programmed cell death, or activation of proliferative signaling pathways. Understanding the regulatory mechanisms of NO in apoptosis and carcinogenesis will provide important clues to the diagnosis and treatment of tissue damage and cancer. In this article we have reviewed recent discoveries in the regulatory role of NO in specific cell types, mechanisms of pro-apoptotic and anti-apoptotic induction by NO, and insights into the effects of NO on tumor biology.
Collapse
Affiliation(s)
- P K Kim
- Department of Surgery Laboratories, University of Pittsburgh School of Medicine, PA 15213, USA.
| | | | | | | |
Collapse
|
20
|
Jain NK, Patil CS, Kulkarni SK, Singh A. Modulatory role of nitric oxide and cyclooxygenase enzyme pathway in LPS-mediated hyperalgesia. Inflammopharmacology 2001. [DOI: 10.1163/156856001320290633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Tu Y, Budelmann BU. Effects of nitric oxide donors on the afferent resting activity in the cephalopod statocyst. Brain Res 2000; 865:211-20. [PMID: 10821923 DOI: 10.1016/s0006-8993(00)02222-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of bath applications of the nitric oxide (NO) donors sodium nitroprusside (SNP), diethylamine sodium (DEA), 3-morpholinosydnonimine (SIN-1), and S-nitroso-N-acetyl-penicillamine (SNAP) on the resting activity (RA) of afferent crista fibers were studied in isolated statocysts of the cuttlefish Sepia officinalis. The NO donors had three different effects: inhibition, excitation, and excitation followed by an inhibition. The SNAP analog N-acetyl-DL-penicillamine (xSNAP; with no NO moiety) had no effect. When the preparation was pre-treated with the NO synthase inhibitor N(G)-nitric-L-arginine methyl ester HCl (L-NAME), the NO donors were still effective. When the preparation was pre-treated with the guanylate cyclase inhibitors methylene blue (M-BLU) or cystamine (CYS), NO donors had only excitatory effects, whereas their effects were inhibitory only when pre-treatment was with the adenylate cyclase inhibitors nicotinic acid (NIC-A), 2',3'-dideoxyadenosine (DDA), or MDL-12330A. When pre-treatment was with a guanylate and an adenylate cyclase inhibitor combined, NO donors had no effect; in that situation, the RA of the afferent fibers remained and the preparation still responded to bath applications of GABA. Selective experiments with statocysts from the squid Sepioteuthis lessoniana and the octopod Octopus vulgaris gave comparable results. These data indicate that in cephalopod statocysts an inhibitory NO-cGMP and an excitatory NO-cAMP signal transduction pathway exist, that these two pathways are the key pathways for the action of NO, and that they have only modulatory effects on, and are not essential for the generation of, the RA.
Collapse
Affiliation(s)
- Y Tu
- Marine Biomedical Institute, University of Texas Medical Branch, 301 University Boulevard, 77555-1163, Galveston, TX, USA
| | | |
Collapse
|
22
|
Zamora R, Vodovotz Y, Billiar TR. Inducible Nitric Oxide Synthase and Inflammatory Diseases. Mol Med 2000. [DOI: 10.1007/bf03401781] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
23
|
Huang ZF, Massey JB, Via DP. Differential regulation of cyclooxygenase-2 (COX-2) mRNA stability by interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) in human in vitro differentiated macrophages. Biochem Pharmacol 2000; 59:187-94. [PMID: 10810453 DOI: 10.1016/s0006-2952(99)00312-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cyclooxygenase-2 (COX-2) is a highly inducible gene in macrophages by pro-inflammatory cytokines. A major mechanism for cytokine-induced COX-2 expression is stabilization of COX-2 mRNA. In this study, we examined the induction of COX-2 expression by interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha) in human primary in vitro differentiated macrophages. IL-1 beta (5 ng/mL) or TNF-alpha (1 ng/mL) induced up to an approximately 40-fold increase of COX-2 mRNA in macrophages during a 2 to 2.5-hr incubation. Run-off experiments demonstrated that cytokine stimulation had only a mild effect on the COX-2 transcription rate (approximately 10-40% increase). The translation blocker cycloheximide (CHM) (10 mg/mL) superinduced COX-2 mRNA during 2 hr of incubation and further stabilized the COX-2 mRNA (T1/2 > 4 hr). The CHM-superinduced COX-2 mRNA was subject to a rapid degradation after removal of CHM (T1/2 < 1 hr). Both IL-1 beta and TNF-alpha stabilized cytokine-induced COX-2 mRNA (T1/2 > or = 2 hr). Maximal stabilization of COX-2 mRNA after a short-term stimulation required the continued presence of IL-1 beta in the medium. Long-term treatment of TNF-alpha destabilized the induced COX-2 mRNA. Cells simultaneously treated with both IL-1 beta and TNF-alpha had a reduced induction of COX-2, IL-1 beta, and IL-6 mRNA. In transcription-arrested cells, the translation blocker puromycin affected the TNF-alpha-induced stabilization and destabilization of COX-2 mRNA, but not the IL-1 beta-induced stabilization. The studies suggest that positive and negative regulation of mRNA stability may play a major role in cytokine-mediated COX-2 induction in human macrophages. TNF-alpha may play both pro-inflammatory and protective roles during inflammation by regulation of pro-inflammatory gene transcripts.
Collapse
Affiliation(s)
- Z F Huang
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|