1
|
Blednov YA, Shawlot W, Homanics GE, Osterndorff-Kahanek EA, Mason S, Mayfield J, Smalley JL, Moss SJ, Messing RO. The PDE4 inhibitor apremilast modulates ethanol responses in Gabrb1-S409A knock-in mice via PKA-dependent and independent mechanisms. Neuropharmacology 2024; 257:110035. [PMID: 38876310 PMCID: PMC11387004 DOI: 10.1016/j.neuropharm.2024.110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
We previously showed that the PDE4 inhibitor apremilast reduces ethanol consumption in mice by protein kinase A (PKA) and GABAergic mechanisms. Preventing PKA phosphorylation of GABAA β3 subunits partially blocked apremilast-mediated decreases in drinking. Here, we produced Gabrb1-S409A mice to render GABAA β1 subunits resistant to PKA-mediated phosphorylation. Mass spectrometry confirmed the presence of the S409A mutation and lack of changes in β1 subunit expression or phosphorylation at other residues. β1-S409A male and female mice did not differ from wild-type C57BL/6J mice in expression of Gabrb1, Gabrb2, or Gabrb3 subunits or in behavioral characteristics. Apremilast prolonged recovery from ethanol ataxia to a greater extent in Gabrb1-S409A mice but prolonged recovery from zolpidem and propofol to a similar extent in both genotypes. Apremilast shortened recovery from diazepam ataxia in wild-type but prolonged recovery in Gabrb1-S409A mice. In wild-type mice, the PKA inhibitor H89 prevented apremilast modulation of ataxia by ethanol and diazepam, but not by zolpidem. In Gabrb1-S409A mice, inhibiting PKA or EPAC2 (exchange protein directly activated by cAMP) partially reversed apremilast potentiation of ethanol, diazepam, and zolpidem ataxia. Apremilast prevented acute tolerance to ethanol ataxia in both genotypes, but there were no genotype differences in ethanol consumption before or after apremilast. In contrast to results in Gabrb3-S408A/S409A mice, PKA phosphorylation of β1-containing GABAA receptors is not required for apremilast's effects on acute tolerance or on ethanol consumption but is required for its ability to decrease diazepam intoxication. Besides PKA we identified EPAC2 as an additional cAMP-dependent mechanism by which apremilast regulates responses to GABAergic drugs.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - William Shawlot
- Center for Biomedical Research Support, Mouse Genetic Engineering Facility, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Gregg E Homanics
- Departments of Anesthesiology & Perioperative Medicine, Neurobiology, and Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | | | - Sonia Mason
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Joshua L Smalley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Karpuz Ağören B, Küpeli Akkol E, Çelik I, Sobarzo-Sánchez E. Sedative and anxiolytic effects of Capparis sicula Duhamel: in vivo and in silico approaches with phytochemical profiling. Front Pharmacol 2024; 15:1443173. [PMID: 39263570 PMCID: PMC11387179 DOI: 10.3389/fphar.2024.1443173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024] Open
Abstract
The World Health Organization reports that 30% of adults worldwide suffer from insomnia, while 10% of people worldwide suffer with various forms of anxiety. The significant negative effects of conventional medications used to treat anxiety and insomnia, such as abuse, addiction, amnesia, and cognitive and sexual dysfunction, have led to an increased preference for naturally derived substances with fewer side effects. Accordingly, in this study, the sedative and anxiolytic effects of n-hexane, ethyl acetate (EtOAc), methanol (MeOH) and water extracts of the aerial parts of Capparis sicula Duhamel., which is used for sedative purposes in folk medicine, were evaluated. To evaluate the sedative and anxiolytic effects of each extract, bioassay systems were used including traction and hole-board tests. The MeOH extract of C. sicula was the most active extract on in vivo traction and hole-board tests compared to Diazepam. From the MeOH extract, major components were isolated, and their structures were identified as three flavonoid glycosides [rutin (1), quercetin-3-O-glucoside (2), and quercetin 3-O-rhamnoside (3)] using spectral techniques. The most abundant component was determined to be rutin, comprising 8 mg/100 mg dry extract in MeOH extract and 76.7 mg/100 mg dry fraction in fraction C using HPLC. The molecular docking studies evaluated the interaction of isolated flavonoid glycosides with the interaction energies and protein-ligand interaction details of the anxiety-related receptors GABAA and GABAB. For the GABAA receptor, quercetin-3-O-glucoside demonstrated the highest docking score. Quercetin-3-O-rhamnoside and rutin also show promising interactions, particularly with the GABAB receptor, highlighting their potential as modulators of these receptors. In conclusion, the use of C. sicula for sedative purposes in folk medicine has been confirmed for the first time by in vivo studies, and its possible active compounds and sedative-anxiolytic mechanism have been determined through phytochemical and in silico studies.
Collapse
Affiliation(s)
- Büşra Karpuz Ağören
- Department of Pharmacognosy, Faculty of Pharmacy, Başkent University, Ankara, Türkiye
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Ismail Çelik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago, Spain
| |
Collapse
|
3
|
Horie I, Muroi Y, Ishii T. Noradrenergic Regulation of the Medial Prefrontal Cortex Mediates Stress Coping in Postpartum Female Mice. Mol Neurobiol 2024:10.1007/s12035-024-04240-2. [PMID: 38829510 DOI: 10.1007/s12035-024-04240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
The prevalence of depression in women increases during the postpartum period. We previously reported that subchronic exposure to social stress decreased passive coping in postpartum female mice. This study aimed to investigate whether noradrenaline regulation might regulate coping styles in mice. We first determined whether a different type of stress, subchronic physical stress, decreases passive coping in postpartum females. Postpartum female, virgin female, and male mice were exposed to subchronic restraint stress (restraint stress for 4 h for 5 consecutive days). Subchronic restraint stress decreased passive coping in postpartum females but not in virgin females and males in the forced swim and tail suspension tests. We next examined the neuronal mechanism by which subchronic stress decreases passive coping in postpartum female mice. Neuronal activity and expression of noradrenergic receptors in the medial prefrontal cortex (mPFC) were analyzed using immunohistochemistry and reverse transcription-quantitative polymerase chain reaction, respectively. The mPFC was manipulated using chemogenetics, knockdown, or an α2A adrenergic receptor (AR) antagonist. Immunohistochemistry revealed that subchronic restraint stress increased glutamatergic neuron activation in the mPFC via forced swim stress and decreased α2A AR expression in postpartum females. Chemogenetic activation of glutamatergic neurons in the mPFC, knockdown of α2AAR in the mPFC, and the α2A AR receptor antagonist atipamezole treatment decreased passive coping in postpartum females. Subchronic restraint stress decreased passive coping in postpartum females by increasing glutamatergic neuron activity in the mPFC through α2A AR attenuation. The noradrenergic regulation of the mPFC may be a new target for treating postpartum depression.
Collapse
Affiliation(s)
- Ikuko Horie
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, National University Cooperation Hokkaido Higher Education and Research, Hokkaido, 080-8555, Japan
| | - Yoshikage Muroi
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, National University Cooperation Hokkaido Higher Education and Research, Hokkaido, 080-8555, Japan.
| | - Toshiaki Ishii
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, National University Cooperation Hokkaido Higher Education and Research, Hokkaido, 080-8555, Japan
| |
Collapse
|
4
|
Takahashi K, Tsuji M, Nakagawasai O, Miyagawa K, Kurokawa K, Mochida-Saito A, Iwasa M, Iwasa H, Suzuki S, Takeda H, Tadano T. Anxiolytic effects of Enterococcus faecalis 2001 on a mouse model of colitis. Sci Rep 2024; 14:11519. [PMID: 38769131 PMCID: PMC11106339 DOI: 10.1038/s41598-024-62309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
Ulcerative colitis (UC) is a refractory inflammatory bowel disease, which is known to cause psychiatric disorders such as anxiety and depression at a high rate in addition to peripheral inflammatory symptoms. However, the pathogenesis of these psychiatric disorders remains mostly unknown. While prior research revealed that the Enterococcus faecalis 2001 (EF-2001) suppressed UC-like symptoms and accompanying depressive-like behaviors, observed in a UC model using dextran sulfate sodium (DSS), whether it has an anxiolytic effect remains unclear. Therefore, we examined whether EF-2001 attenuates DSS-induced anxiety-like behaviors. Treatment with 2% DSS for seven days induced UC-like symptoms and anxiety-like behavior through the hole-board test, increased serum lipopolysaccharide (LPS) and corticosterone concentration, and p-glucocorticoid receptor (GR) in the prefrontal cortex (PFC), and decreased N-methyl-D-aspartate receptor subunit (NR) 2A and NR2B expression levels in the PFC. Interestingly, these changes were reversed by EF-2001 administration. Further, EF-2001 administration enhanced CAMKII/CREB/BDNF-Drebrin pathways in the PFC of DSS-treated mice, and labeling of p-GR, p-CAMKII, and p-CREB showed colocalization with neurons. EF-2001 attenuated anxiety-like behavior by reducing serum LPS and corticosterone levels linked to the improvement of UC symptoms and by facilitating the CAMKII/CREB/BDNF-Drebrin pathways in the PFC. Our findings suggest a close relationship between UC and anxiety.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan.
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-Ku, Sendai, Miyagi, 981-8558, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi, 324-8501, Japan
| | - Masahiro Iwasa
- Nihon Berm Co., Ltd., 16-12, Nihonbashi-Kodenmacho, Chuo-Ku, Tokyo, 103-0001, Japan
| | - Hiroyuki Iwasa
- Nihon Berm Co., Ltd., 16-12, Nihonbashi-Kodenmacho, Chuo-Ku, Tokyo, 103-0001, Japan
| | - Shigeo Suzuki
- Nihon Berm Co., Ltd., 16-12, Nihonbashi-Kodenmacho, Chuo-Ku, Tokyo, 103-0001, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Takeshi Tadano
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-Ku, Sendai, Miyagi, 981-8558, Japan
- Department of Environment and Preventive Medicine, Graduate School of Medicine Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| |
Collapse
|
5
|
Reza ASMA, Raihan R, Azam S, Shahanewz M, Nasrin MS, Siddique MAB, Uddin MN, Dey AK, Sadik MG, Alam AK. Experimental and pharmacoinformatic approaches unveil the neuropharmacological and analgesic potential of chloroform fraction of Roktoshirinchi (Achyranthes ferruginea Roxb.). JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117769. [PMID: 38219886 DOI: 10.1016/j.jep.2024.117769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Achyranthes ferruginea (A. ferruginea) Roxb. is a common plant used in traditional medicine in Asia and Africa. It has a variety of local names, including "Gulmanci" in Nigeria, "Dangar" in Pakistan, "Thola" in Ethiopia, and "Roktoshirinchi" in Bangladesh. It is edible and has several ethnomedical uses for a wide range of illnesses, including hysteria, dropsy, constipation, piles, boils, asthma, and shigellosis. However, the neuropharmacological and analgesic potential of A. ferruginea remains uninvestigated. AIM OF THE STUDY To assess the neuropharmacological and analgesic potential of A. ferruginea through a multifaceted approach encompassing both experimental and computational models. MATERIALS AND METHODS Methanol was used to extract the leaves of A. ferruginea. It was then fractionated with low to high polar solvents (n-hexane, chloroform, ethyl acetate, and water) to get different fractions, including chloroform fraction (CLF). The study selected CLF at different doses and conducted advanced chemical element and proximate analyses, as well as phytochemical profiling using GC-MS. Toxicological studies were done at 300 μg per rat per day for 14 days. Cholinesterase inhibitory potential was checked using an in-vitro colorimetric assay. Acetic acid-induced writhing (AAWT) and formalin-induced licking tests (FILT) were used to assess anti-nociceptive effects. The forced swim test (FST), tail suspension test (TST), elevated plus maze (EPM), hole board test (HBT), and light and dark box test (LDB) were among the behavioral tests used to assess depression and anxiolytic activity. Network pharmacology-based analysis was performed on selected compounds using the search tool for interacting chemicals-5 (STITCH 5), Swiss target prediction tool, and search tool for the retrieval of interacting genes and proteins (STRING) database to link their role with genes involved in neurological disorders through gene ontology and reactome analysis. RESULTS Qualitative chemical element analysis revealed the presence of 15 elements, including Na, K, Ca, Mg, P, and Zn. The moisture content, ash value, and organic matter were found to be 11.12, 11.03, and 88.97%, respectively. GC-MS data revealed that the CLF possesses 25 phytoconstituents. Toxicological studies suggested the CLF has no effects on normal growth, hematological and biochemical parameters, or cellular organs after 14 days at 300 μg per rat. The CLF markedly reduced the activity of both acetylcholinesterase and butyrylcholinesterase (IC50: 56.22 and 13.22 μg/mL, respectively). Promising dose-dependent analgesic activity (p < 0.05) was observed in chemically-induced pain models. The TST and FST showed a dose-dependent substantial reduction in immobility time due to the CLF. Treatment with CLF notably increased the number of open arm entries and time spent in the EPM test at doses of 200 and 400 mg/kg b.w. The CLF showed significant anxiolytic activity at 200 mg/kg b.w. in the HBT test, whereas a similar activity was observed at 400 mg/kg b.w. in the EPM test. A notable increase in the amount of time spent in the light compartment was observed in the LDB test by mice treated with CLF, suggesting an anxiolytic effect. A network pharmacology study demonstrated the relationship between the phytochemicals and a number of targets, such as PPARA, PPARG, CHRM1, and HTR2, which are connected to the shown bioactivities. CONCLUSIONS This study demonstrated the safety of A. ferruginea and its efficacy in attenuating cholinesterase inhibitory activity, central and peripheral pain, anxiety, and depression, warranting further exploration of its therapeutic potential.
Collapse
Affiliation(s)
- A S M Ali Reza
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Riaj Raihan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Saidul Azam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Mohammed Shahanewz
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Mst Samima Nasrin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh.
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Md Nazim Uddin
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh.
| | - Anik Kumar Dey
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Md Golam Sadik
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Ahm Khurshid Alam
- Department of Pharmacy, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
6
|
Munawwar R, Sarfaraz S, Ikram R, Zehra T, Anser H, Ali H. Anxiolytic and Antidepressant Effect of Phaseolus vulgaris on Animal Models. SCIENTIFICA 2024; 2024:5710969. [PMID: 38690099 PMCID: PMC11060873 DOI: 10.1155/2024/5710969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024]
Abstract
An experimental study was conducted using rodents at different doses to evaluate the effect of Phaseolus vulgaris (red beans) on cage crossing, head dip, open field, elevated plus maze, and light and dark apparatus for anxiety and forced swim test for depression. The corticosterone level and histopathological evaluation was also done to correlate the antidepressive impact of the red beans. The study also identified the components responsible for the effect using GCMS. Based on the findings, red beans could be a potential non-pharmacological therapy for mild to moderate depressive patients. The anxiety model was conducted on mice weighing 20-25 gms. Group I was taken as control, group II as 500 mg/kg and group III as administered 1000 mg/kg. The tests were performed on 0th, 7th, 15th, 30th, 45th, and 60th day. The depression model research was conducted on albino rats weighing between 180 and 200 g, divided into four groups: a control group, a 500 mg/kg Phaseolus vulgaris group, a 1000 mg/kg Phaseolus vulgaris group, and a standard group treated with fluoxetine. The forced swimming test was performed on days 0, 7, 15, 30, 45, and 60, after which histopathological evaluations were conducted and blood samples were taken to assess corticosterone levels. GCMS was used to identify the constituents present in red beans, while optical spectroscopy was used to detect minerals and ions. Results showed that both doses of Phaseolus vulgaris possess anxiolytic effect and increased the struggling time of rats in depression model significantly, with the 1000 mg/kg dose showing more significant results than the 500 mg/kg dose. The GCMS results identified the presence of erucic acid, which causes an increase in α-amylase, thus reducing depression. Optical spectroscopy also showed that red beans contain zinc, which may increase BDNF and help in treating depression.
Collapse
Affiliation(s)
- Rabia Munawwar
- Department of Pharmacology, Faculty of Pharmacy, Jinnah Sindh Medical University, Rafiqui H.J, Iqbal Shaheed Rd 75510, Karachi, Pakistan
| | - Sana Sarfaraz
- Department of Pharmacology, Faculty of Pharmacy, University of Karachi, Main University Rd 75270, Karachi, NC-24, Deh Dih, Korangi Creek 74900, Karachi, Pakistan
| | - Rahila Ikram
- Dean of Salim Habib University, Karachi, Pakistan
| | - Talat Zehra
- Department of Pathology, Faculty of Medicine, Jinnah Sindh Medical University, Rafiqui H.J, Iqbal Shaheed Rd 75510, Karachi, Pakistan
| | - Humaira Anser
- Department of Pharmacology, Faculty of Pharmacy, Jinnah Sindh Medical University, Rafiqui H.J, Iqbal Shaheed Rd 75510, Karachi, Pakistan
| | - Huma Ali
- Principal of Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Rafiqui H.J, Iqbal Shaheed Rd 75510, Karachi, Pakistan
| |
Collapse
|
7
|
Lark AR, Nass SR, Hahn YK, Gao B, Milne GL, Knapp PE, Hauser KF. HIV-1 Tat and morphine interactions dynamically shift striatal monoamine levels and exploratory behaviors over time. J Neurochem 2024; 168:185-204. [PMID: 38308495 PMCID: PMC10922901 DOI: 10.1111/jnc.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
Despite the advent of combination anti-retroviral therapy (cART), nearly half of people infected with HIV treated with cART still exhibit HIV-associated neurocognitive disorders (HAND). HAND can be worsened by co-morbid opioid use disorder. The basal ganglia are particularly vulnerable to HIV-1 and exhibit higher viral loads and more severe pathology, which can be exacerbated by co-exposure to opioids. Evidence suggests that dopaminergic neurotransmission is disrupted by HIV exposure, however, little is known about whether co-exposure to opioids may alter neurotransmitter levels in the striatum and if this in turn influences behavior. Therefore, we assayed motor, anxiety-like, novelty-seeking, exploratory, and social behaviors, and levels of monoamines and their metabolites following 2 weeks and 2 months of Tat and/or morphine exposure in transgenic mice. Morphine decreased dopamine levels, but significantly elevated norepinephrine, the dopamine metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the serotonin metabolite 5-hydroxyindoleacetic acid, which typically correlated with increased locomotor behavior. The combination of Tat and morphine altered dopamine, DOPAC, and HVA concentrations differently depending on the neurotransmitter/metabolite and duration of exposure but did not affect the numbers of tyrosine hydroxylase-positive neurons in the mesencephalon. Tat exposure increased the latency to interact with novel conspecifics, but not other novel objects, suggesting the viral protein inhibits exploratory behavior initiation in a context-dependent manner. By contrast, and consistent with prior findings that opioid misuse can increase novelty-seeking behavior, morphine exposure increased the time spent exploring a novel environment. Finally, Tat and morphine interacted to affect locomotor activity in a time-dependent manner, while grip strength and rotarod performance were unaffected. Together, our results provide novel insight into the unique effects of HIV-1 Tat and morphine on monoamine neurochemistry that may underlie their divergent effects on motor and exploratory behavior.
Collapse
Affiliation(s)
| | | | | | - Benlian Gao
- Neurochemistry Core, Vanderbilt Brain Institute, Vanderbilt University
| | - Ginger L. Milne
- Neurochemistry Core, Vanderbilt Brain Institute, Vanderbilt University
| | - Pamela E. Knapp
- Department of Pharmacology & Toxicology
- Department of Anatomy and Neurobiology
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University
| | - Kurt F. Hauser
- Department of Pharmacology & Toxicology
- Department of Anatomy and Neurobiology
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University
| |
Collapse
|
8
|
Wang H, Bullert AJ, Li X, Stevens H, Klingelhutz AJ, Ankrum JA, Adamcakova-Dodd A, Thorne PS, Lehmler HJ. Use of a polymeric implant system to assess the neurotoxicity of subacute exposure to 2,2',5,5'-tetrachlorobiphenyl-4-ol, a human metabolite of PCB 52, in male adolescent rats. Toxicology 2023; 500:153677. [PMID: 37995827 PMCID: PMC10757425 DOI: 10.1016/j.tox.2023.153677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that ubiquitously exist in the environment. PCB exposure has been linked to cancer and multi-system toxicity, including endocrine disruption, immune inhibition, and reproductive and neurotoxicity. 2,2',5,5'-Tetrachlorobiphenyl (PCB 52) is one of the most frequently detected congeners in the environment and human blood. The hydroxylated metabolites of PCB 52 may also be neurotoxic, especially for children whose brains are still developing. However, it is challenging to discern the contribution of these metabolites to PCB neurotoxicity because the metabolism of PCB is species-dependent. In this study, we evaluated the subacute neurotoxicity of a human-relevant metabolite, 2,2',5,5'-tetrachlorobiphenyl-4-ol (4-52), on male adolescent Sprague Dawley rats, via a novel polymeric implant drug delivery system grafted subcutaneously, at total loading concentrations ranging from 0%, 1%, 5%, and 10% of the implant (w/w) for 28 days. Y-maze, hole board test, open field test, and elevated plus maze were performed on exposure days 24-28 to assess their locomotor activity, and exploratory and anxiety-like behavior. 4-52 and other possible hydroxylated metabolites in serum and vital tissues were quantified using gas chromatography with tandem mass spectrometry (GC-MS/MS). Our results demonstrate the sustained release of 4-52 from the polymeric implants into the systemic circulation in serum and tissues. Dihydroxylated and dechlorinated metabolites were detected in serum and tissues, depending on the dose and tissue type. No statistically significant changes were observed in the neurobehavioral tasks across all exposure groups. The results demonstrate that subcutaneous polymeric implants provide a straightforward method to expose rats to phenolic PCB metabolites to study neurotoxic outcomes, e.g., in memory, anxiety, and exploratory behaviors.
Collapse
Affiliation(s)
- Hui Wang
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA
| | - Amanda J Bullert
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA
| | - Hanna Stevens
- Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA; Department of Psychiatry, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA, USA
| | | | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, the University of Iowa, Iowa City, IA, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
9
|
Casarrubea M, Di Giovanni G, Aiello S, Crescimanno G. The hole-board apparatus in the study of anxiety. Physiol Behav 2023; 271:114346. [PMID: 37690695 DOI: 10.1016/j.physbeh.2023.114346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
Anxiety disorders pose a significant challenge in contemporary society, and their impact in terms of social and economic burden is overwhelming. Behavioral research conducted on animal subjects is crucial for comprehending these disorders and, from a translational standpoint, for introducing innovative therapeutic approaches. In this context, the Hole-Board apparatus has emerged as a widely utilized test for studying anxiety-related behaviors in rodents. Although a substantial body of literature underscores the utility and reliability of the Hole-Board in anxiety research, recent decades have witnessed a range of studies that have led to uncertainties and misinterpretations regarding the validity of this behavioral assay. The objective of this review is twofold: firstly, to underscore the utility and reliability of the Hole-Board assay, and concurrently, to examine the underlying factors contributing to potential misconceptions surrounding its utilization in the study of anxiety and anxiety-related behaviors. We will present results from both conventional quantitative analyses and multivariate approaches, while referencing a comprehensive collection of studies conducted using the Hole-Board.
Collapse
Affiliation(s)
- Maurizio Casarrubea
- Laboratory of Behavioural Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section "Giuseppe Pagano", University of Palermo, Corso Tukory n.129, Palermo 90134, Italy.
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Stefania Aiello
- Laboratory of Behavioural Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section "Giuseppe Pagano", University of Palermo, Corso Tukory n.129, Palermo 90134, Italy
| | - Giuseppe Crescimanno
- Laboratory of Behavioural Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section "Giuseppe Pagano", University of Palermo, Corso Tukory n.129, Palermo 90134, Italy
| |
Collapse
|
10
|
Godoy R, Macedo AB, Gervazio KY, Ribeiro LR, Lima JLF, Salvadori MGSS. Effects of ortho-eugenol on anxiety, working memory and oxidative stress in mice. BRAZ J BIOL 2023; 83:e271785. [PMID: 37610945 DOI: 10.1590/1519-6984.271785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/21/2023] [Indexed: 08/25/2023] Open
Abstract
Ortho-eugenol is a synthetic derivative from eugenol, the major compound of clove essential oil, which has demonstrated antidepressant and antinociceptive effects in pioneering studies. Additionally, its effects appear to be dependent on the noradrenergic and dopaminergic systems. Depression and anxiety disorders are known to share a great overlap in their pathophysiology, and many drugs are effective in the treatment of both diseases. Furthermore, high levels of anxiety are related to working memory deficits and increased oxidative stress. Thus, in this study we investigated the effects of acute treatment of ortho-eugenol, at 50, 75 and 100 mg/kg, on anxiety, working memory and oxidative stress in male Swiss mice. Our results show that the 100 mg/kg dose increased the number of head-dips and reduced the latency in the hole-board test. The 50 mg/kg dose reduced malondialdehyde levels in the prefrontal cortex and the number of Y-maze entries compared to the MK-801-induced hyperlocomotion group. All doses reduced nitrite levels in the hippocampus. It was also possible to assess a statistical correlation between the reduction of oxidative stress and hyperlocomotion after the administration of ortho-eugenol. However, acute treatment was not able to prevent working memory deficits. Therefore, the present study shows that ortho-eugenol has an anxiolytic and antioxidant effect, and was able to prevent substance-induced hyperlocomotion. Our results contribute to the elucidation of the pharmacological profile of ortho-eugenol, as well as to direct further studies that seek to investigate its possible clinical applications.
Collapse
Affiliation(s)
- R Godoy
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
| | - A B Macedo
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
| | - K Y Gervazio
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Bioativos Naturais e Sintéticos - PgPNSB, João Pessoa, PB, Brasil
| | - L R Ribeiro
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
| | - J L F Lima
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Bioativos Naturais e Sintéticos - PgPNSB, João Pessoa, PB, Brasil
| | - M G S S Salvadori
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Bioativos Naturais e Sintéticos - PgPNSB, João Pessoa, PB, Brasil
| |
Collapse
|
11
|
Kimm S, Kim JJ, Choi JS. The central amygdala modulates distinctive conflict-like behaviors in a naturalistic foraging task. Front Behav Neurosci 2023; 17:1212884. [PMID: 37600757 PMCID: PMC10433198 DOI: 10.3389/fnbeh.2023.1212884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Conflict situations elicit a diverse range of behaviors that extend beyond the simplistic approach or avoidance dichotomy. However, many conflict-related studies have primarily focused on approach suppression, neglecting the complexity of these behaviors. In our study, we exposed rats to a semi-naturalistic foraging task, presenting them with a trade-off between a food reward and a predatory threat posed by a robotic agent. We observed that rats displayed two conflict-like behaviors (CLBs)-diagonal approach and stretched posture-when facing a robotic predator guarding a food pellet. After electrolytic lesions to the central amygdala (CeA), both conflict behaviors were significantly reduced, accompanied by a decrease in avoidance behavior (hiding) and an increase in approach behavior (frequency of interactions with the robot). A significant negative correlation between avoidance and approach behaviors emerged after the CeA lesion; however, our data suggest that CLBs are not tightly coupled with either approach or avoidance behaviors, showing no significant correlation to those behaviors. Our findings indicate that the CeA plays a crucial role in modulating conflict behaviors, competing with approach suppression in risky situations.
Collapse
Affiliation(s)
- Sunwhi Kimm
- School of Psychology, Korea University, Seoul, Republic of Korea
| | - Jeansok J. Kim
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - June-Seek Choi
- School of Psychology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Bygrave AM, Sengupta A, Jackert EP, Ahmed M, Adenuga B, Nelson E, Goldschmidt HL, Johnson RC, Zhong H, Yeh FL, Sheng M, Huganir RL. Btbd11 supports cell-type-specific synaptic function. Cell Rep 2023; 42:112591. [PMID: 37261953 PMCID: PMC10592477 DOI: 10.1016/j.celrep.2023.112591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Synapses in the brain exhibit cell-type-specific differences in basal synaptic transmission and plasticity. Here, we evaluated cell-type-specific specializations in the composition of glutamatergic synapses, identifying Btbd11 as an inhibitory interneuron-specific, synapse-enriched protein. Btbd11 is highly conserved across species and binds to core postsynaptic proteins, including Psd-95. Intriguingly, we show that Btbd11 can undergo liquid-liquid phase separation when expressed with Psd-95, supporting the idea that the glutamatergic postsynaptic density in synapses in inhibitory interneurons exists in a phase-separated state. Knockout of Btbd11 decreased glutamatergic signaling onto parvalbumin-positive interneurons. Further, both in vitro and in vivo, Btbd11 knockout disrupts network activity. At the behavioral level, Btbd11 knockout from interneurons alters exploratory behavior, measures of anxiety, and sensitizes mice to pharmacologically induced hyperactivity following NMDA receptor antagonist challenge. Our findings identify a cell-type-specific mechanism that supports glutamatergic synapse function in inhibitory interneurons-with implications for circuit function and animal behavior.
Collapse
Affiliation(s)
- Alexei M Bygrave
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ayesha Sengupta
- National Institute on Drug Abuse, Bayview Boulevard, Baltimore, MD 21224, USA
| | - Ella P Jackert
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mehroz Ahmed
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Beloved Adenuga
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erik Nelson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hana L Goldschmidt
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard C Johnson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Felix L Yeh
- Department of Neuroscience, Genentech, Inc, South San Francisco, CA 94080, USA
| | - Morgan Sheng
- Department of Neuroscience, Genentech, Inc, South San Francisco, CA 94080, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Odland AU, Sandahl R, Andreasen JT. Chronic corticosterone improves perseverative behavior in mice during sequential reversal learning. Behav Brain Res 2023; 450:114479. [PMID: 37169127 DOI: 10.1016/j.bbr.2023.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Stressful life events can both trigger development of psychiatric disorders and promote positive behavioral changes in response to adversities. The relationship between stress and cognitive flexibility is complex, and conflicting effects of stress manifest in both humans and laboratory animals. OBJECTIVE To mirror the clinical situation where stressful life events impair mental health or promote behavioral change, we examined the post-exposure effects of stress on cognitive flexibility in mice. METHODS We tested female C57BL/6JOlaHsd mice in the touchscreen-based sequential reversal learning test. Corticosterone (CORT) was used as a model of stress and was administered in the drinking water for two weeks before reversal learning. Control animals received drinking water without CORT. Behaviors in supplementary tests were included to exclude non-specific confounding effects of CORT and improve interpretation of the results. RESULTS CORT-treated mice were similar to controls on all touchscreen parameters before reversal. During the low accuracy phase of reversal learning, CORT reduced perseveration index, a measure of perseverative responding, but did not affect acquisition of the new reward contingency. This effect was not related to non-specific deficits in chamber activity. CORT increased anxiety-like behavior in the elevated zero maze test and repetitive digging in the marble burying test, reduced locomotor activity, but did not affect spontaneous alternation behavior. CONCLUSION CORT improved cognitive flexibility in the reversal learning test by extinguishing prepotent responses that were no longer rewarded, an effect possibly related to a stress-mediated increase in sensitivity to negative feedback that should be confirmed in a larger study.
Collapse
Affiliation(s)
- Anna U Odland
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Rune Sandahl
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
14
|
Javaid S, Alqahtani F, Ashraf W, Anjum SMM, Rasool MF, Ahmad T, Alasmari F, Alasmari AF, Alqarni SA, Imran I. Tiagabine suppresses pentylenetetrazole-induced seizures in mice and improves behavioral and cognitive parameters by modulating BDNF/TrkB expression and neuroinflammatory markers. Biomed Pharmacother 2023; 160:114406. [PMID: 36791567 DOI: 10.1016/j.biopha.2023.114406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Tiagabine (Tia), a new-generation antiseizure drug that mimics the GABAergic signaling by inhibiting GABA transporter type-1, is the least studied molecule in chronic epilepsy models with comorbid neurobehavioral and neuroinflammatory parameters. Therefore, the current study investigated the effects of Tia in a real-time manner on electroencephalographic (EEG) activity, behavioral manifestations and mRNA expression in pentylenetetrazole (PTZ)-kindled mice. Male BALB/c mice were treated with tiagabine (0.5, 1 and 2 mg/kg) for 21 days with simultaneous PTZ (40 mg/kg) injection every other day for a total of 11 injections and monitored for seizure progression with synchronized validation through EEG recordings from cortical electrodes. The post-kindling protection from anxiety and memory deficit was verified by a battery of behavioral experiments. Isolated brains were evaluated for oxidative alterations and real-time changes in mRNA expression for BDNF/TrkB, GAT-1 and GAT-3 as well as neuroinflammatory markers. Experimental results revealed that Tia at the dose of 2 mg/kg maximally inhibited the development of full bloom seizure and reduced epileptic spike discharges from the cortex. Furthermore, Tia dose-dependently exerted the anxiolytic effects and protected from PTZ-evoked cognitive impairment. Tia reduced lipid peroxidation and increased superoxide dismutase and glutathione levels in the brain via augmentation of GABAergic modulation. PTZ-induced upregulated BDNF/TrkB signaling and pro-inflammatory cytokines were mitigated by Tia with upregulation of GAT-1 and GAT-3 transporters in whole brains. In conclusion, the observed effects of Tia might have resulted from reduced oxidative stress, BDNF/TrkB modulation and mitigated neuroinflammatory markers expression leading to reduced epileptogenesis and improved epilepsy-related neuropsychiatric effects.
Collapse
Affiliation(s)
- Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Syed Muhammad Muneeb Anjum
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore 75270, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tanveer Ahmad
- Institut pour l'Avancée des Biosciences, Centre de Recherche UGA / INSERM U1209 / CNRS 5309, Université Grenoble Alpes, France
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh Abdullah Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
15
|
Neuropharmacological Effects in Animal Models and HPLC-Phytochemical Profiling of Byrsonima crassifolia (L.) Kunth Bark Extracts. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020764. [PMID: 36677821 PMCID: PMC9867209 DOI: 10.3390/molecules28020764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
B. crassifolia is a species that grows in various areas of Latin America. It was known to be useful for the treatment of different human ailments. The present work evaluated the neuropharmacological and analgesic effects of hydroalcoholic and dichloromethane extracts of B. crassifolia. The effect on the central nervous system (CNS) of both extracts obtained from bark, administered by the intraperitoneal route in mice, was evaluated by different tests: spontaneous motor activity, hole-board, motor coordination, pentobarbital induced hypnosis, and rectal temperature. Analgesic activity was evaluated using a hot plate test. Phytochemical analysis was performed by high-performance liquid chromatography (HPLC) using reversed-phase and gradient of elution. The hydroalcoholic extract (dose 0.5 g dry plant/kg weigh) administration caused an important reduction of the head-dipping response in the hole board test. A decrease in spontaneous motor activity test and a disturbance of motor coordination in the rotarod test was observed. The hydroalcoholic extract produced a significant prolongation of pentobarbital induced sleeping time. This extract prevented hot plate test induced nociception. The phytochemical analysis revealed the presence of catechin, epicatechin, and procyanidin B12. Therefore, this study revealed that the hydroalcoholic extract of B. crassifolia possesses analgesic and sedative CNS activity.
Collapse
|
16
|
Glazova NY, Manchenko DM, Vilensky DA, Sebentsova EA, Andreeva LA, Kamensky AA, Dergunova LV, Limborska SA, Myasoedov NF, Levitskaya NG. Effects of Semax in the Rat Models of Acute Stress. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
17
|
Locus Coeruleus-Noradrenergic Neurons Regulate Stress Coping During Subchronic Exposure to Social Threats: A Characteristic Feature in Postpartum Female Mice. Cell Mol Neurobiol 2022:10.1007/s10571-022-01314-4. [PMID: 36577871 DOI: 10.1007/s10571-022-01314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022]
Abstract
Stress-coping strategies have been implicated in depression. The control of stress coping may improve the symptom and higher prevalence of depression during the postpartum period in women. However, the neuronal mechanisms underlying stress coping remain to be fully elucidated in postpartum women. In this study, we examined how locus coeruleus-noradrenergic (LC-NA) neurons, which have been associated with both stress coping and depression, regulate changes in coping style induced by subchronic exposure to unfamiliar male mice as a social threat in postpartum female mice. In contrast to virgin females, dams exposed to unfamiliar males daily for four consecutive days showed reduced immobility duration in the forced swim test, indicating that exposure to unfamiliar males decreased passive stress coping in dams. Exposure to unfamiliar males also decreased sucrose palatability in the sucrose preference test and suppressed the crouching behavior in the maternal care test but did not affect anxiety-like behavior in the hole-board test in dams. In fiber photometry analyses, LC-NA neurons showed differential activity between dams and virgin females in response to unfamiliar males. Chemogenetic inhibition of LC-NA neurons during exposure to unfamiliar males prevented the social threat-induced decrease in immobility duration in the forced swim test in dams. Furthermore, inhibition or activation of LC-NA neurons exacerbated crouching behavior in dams. These results indicate that LC-NA neurons regulate the social threat-induced decrease in passive stress coping and relieve social threat-induced inhibition of maternal care in postpartum female mice.
Collapse
|
18
|
Ullah MI, Anwar R, Kamran S, Gul B, Elhady SS, Youssef FS. Evaluation of the Anxiolytic and Anti-Epileptogenic Potential of Lactuca Serriola Seed Using Pentylenetetrazol-Induced Kindling in Mice and Metabolic Profiling of Its Bioactive Extract. Antioxidants (Basel) 2022; 11:2232. [PMID: 36421417 PMCID: PMC9686728 DOI: 10.3390/antiox11112232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2023] Open
Abstract
This study aimed to assess the potential of Lactuca serriola (Asteraceae) seed n-hexane, chloroform, methanol, and aqueous extracts as anticonvulsant, sedative, anticonvulsant and antiepileptic agents in Swiss albino mice. Different doses of each extract were evaluated for the anxiolytic potential using the hole-board, the elevated plus maze and the light/dark test. A phenobarbitone-induced sleep test was employed for the evaluation of sedative potential. Acute anticonvulsant activity was evaluated by picrotoxin and strychnine-induced convulsion models. All extracts significantly reduced the number of head dips where n-hexane extract (400 mg/kg) showed 96.34% reduction in the tendency of head dipping when compared with the control. Mice treated with extracts preferred elevated plus maze open arms and were shown to lack open arms evasion, especially n-hexane extract (400 mg/kg)-which showed 456.14%-increased the duration of open arm stay with the respective control group. By reducing sleep latency and greatly lengthening sleep duration, L. serriola enhanced the effects of barbiturate-induced sleep. A significant increase in convulsion latency and decrease in convulsions induced by picrotoxin and strychnine duration was observed in all extract-treated groups. All the extracts exhibited anti-epileptogenic potential as the seizure score in pentylenetetrazol (PTZ)-induced kindling in mice was reduced significantly. Maximum protection was afforded by chloroform extract that reduced the seizure score by 79.93% compared with the PTZ group. Chloroform executed antioxidant effect by elevating super oxide dismutase (SOD) by 126%, catalase (CAT) by 83.53%, total glutathione (tGSH) by 149%, and reducing malondialdhyde (MDA) levels by 36.49% in the brain tissues that is further consolidated by histopathological examination. Metabolic profiling of the most active chloroform extract using Gas chromatography coupled with mass showed the presence of 16 compounds. This anti-epileptic activity was further confirmed via in silico molecular modelling studies in the active site Gamma-aminobutyric acid aminotransferase (GABA-AT) where all of the tested metabolites illustrated a potent inhibitory potential towards GABA-AT with hexadecanoic acid, 15-methyl-, methyl ester followed by octadecanoic acid, methyl ester showed the best fitting. The results indicated the possible anxiolytic and anti-epileptogenic potential of the plant and further consolidated the ethnopharmacological use of L. serriola seeds.
Collapse
Affiliation(s)
- Muhammad Ihsan Ullah
- Punjab University College of Pharmacy, University of the Punjab, Lahore 54000, Pakistan
| | - Rukhsana Anwar
- Punjab University College of Pharmacy, University of the Punjab, Lahore 54000, Pakistan
| | - Shahzad Kamran
- Punjab University College of Pharmacy, University of the Punjab, Lahore 54000, Pakistan
| | - Bazgha Gul
- Punjab University College of Pharmacy, University of the Punjab, Lahore 54000, Pakistan
- Institute of Pharmacy, Lahore College for Women University, Lahore 54000, Pakistan
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, Cairo 11566, Egypt
| |
Collapse
|
19
|
Ahumada LH, Morato S, Lamprea MR. Acute stress increases behaviors that optimize safety and decreases the exploration of aversive areas. LEARNING AND MOTIVATION 2022. [DOI: 10.1016/j.lmot.2022.101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Wallace TL, Martin WJ, Arnsten AF. Kappa opioid receptor antagonism protects working memory performance from mild stress exposure in Rhesus macaques. Neurobiol Stress 2022; 21:100493. [DOI: 10.1016/j.ynstr.2022.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
|
21
|
Ushio S, Wada Y, Nakamura M, Matsumoto D, Hoshika K, Shiromizu S, Iwata N, Esumi S, Kajizono M, Kitamura Y, Sendo T. Anxiolytic-like effects of hochuekkito in lipopolysaccharide-treated mice involve interleukin-6 inhibition. Front Pharmacol 2022; 13:890048. [PMID: 36034871 PMCID: PMC9411515 DOI: 10.3389/fphar.2022.890048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Hochuekkito (HET) is a Kampo medicine used to treat postoperative and post-illness general malaise and decreased motivation. HET is known to regulate immunity and modulate inflammation. However, the precise mechanism and effects of HET on inflammation-induced central nervous system disorders remain unclear. This study aimed to assess the effect of HET on inflammation-induced anxiety-like behavior and the mechanism underlying anxiety-like behavior induced by lipopolysaccharide (LPS). Institute of Cancer Research mice were treated with LPS (300 μg/kg, intraperitoneally), a bacterial endotoxin, to induce systemic inflammation. The mice were administered HET (1.0 g/kg, orally) once a day for 2 weeks before LPS treatment. The light-dark box test and the hole-board test were performed 24 h after the LPS injection to evaluate the effects of HET on anxiety-like behaviors. Serum samples were obtained at 2, 5, and 24 h after LPS injection, and interleukin-6 (IL-6) levels in serum were measured. Human and mouse macrophage cells (THP-1 and RAW264.7 cells, respectively) were used to investigate the effect of HET on LPS-induced IL-6 secretion. The repeated administration of HET prevented anxiety-like behavior and decreased serum IL-6 levels in LPS-treated mice. HET significantly suppressed LPS-induced IL-6 secretion in RAW264.7 and THP-1 cells. Similarly, glycyrrhizin, one of the chemical constituents of HET, suppressed LPS-induced anxiety-like behaviors. Our study revealed that HET ameliorated LPS-induced anxiety-like behavior and inhibited IL-6 release in vivo and in vitro. Therefore, we postulate that HET may be useful against inflammation-induced anxiety-like behavior.
Collapse
Affiliation(s)
- Soichiro Ushio
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Yudai Wada
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mizuki Nakamura
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daiki Matsumoto
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kota Hoshika
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shoya Shiromizu
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Naohiro Iwata
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Satoru Esumi
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Makoto Kajizono
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| | - Yoshihisa Kitamura
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
- Department of Pharmacotherapy, School of Pharmacy, Shujitsu University, Okayama, Japan
- *Correspondence: Yoshihisa Kitamura,
| | - Toshiaki Sendo
- Department of Pharmacy, Okayama University Hospital, Okayama, Japan
| |
Collapse
|
22
|
Shah MS, Tayab MA, Rahman A, Hasan MN, Talukder MSH, Uddin AK, Jabed M, Chy MNU, Paul A, Rahman MM, Bin Emran T, Seidel V. Anxiolytic, antidepressant and antioxidant activity of the methanol extract of Canarium resiniferum leaves. J Tradit Complement Med 2022; 12:567-574. [PMID: 36325239 PMCID: PMC9618395 DOI: 10.1016/j.jtcme.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/04/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
Background and aim This study evaluated the anxiolytic, antidepressant, and antioxidant activity of the methanol extract of Canarium resiniferum (MECR) leaves, and determined the total phenolic and flavonoid contents in this extract. Experimental procedure The anxiolytic effect of MECR (100, 200, 400 mg/kg, p. o.) was tested in mice using the elevated plus-maze (EPM) test, the hole-board test (HBT), and the light-dark box (LDB) test. Its antidepressant effect was evaluated in the tail suspension (TST) and the forced swim (FST) tests. The total phenolic (TPC) and flavonoid (TFC) content was measured using standard colorimetric assays. Antioxidant activity was determined using the DPPH radical scavenging and ferric reducing antioxidant power (FRAP) assays. Results and conclusion MECR, at all doses, showed dose-dependent anxiolytic activity. At 400 mg/kg, it significantly increased the time spent and number of entries in the open arms (EPM test), the number of head-dips (HBT), and the time spent into the light compartment (LDB) test compared to the control. In the TST and FST, MECR dose-dependently reduced the duration of immobility compared to untreated animals. This was significant for all doses except for 100 mg/kg in the FST model. MECR showed high TPC and TFC (90.94 ± 0.75 mg GAE/g and 51.54 ± 0.78 mg QE/g of dried extract, respectively) and displayed potent activity in the DPPH radical scavenging (IC50 = 177.82 μg/mL) and FRAP assays. These findings indicate that C. resiniferum has the potential to alleviate anxiety and depression disorders, which merits further exploration. MECR leaves (400 mg/kg) showed significant anxiolytic activity in mice. MECR (200,400 mg/kg) displayed significant antidepressant activity in mice. MECR displayed high total phenolic/flavonoid contents and antioxidant activity.
Collapse
Affiliation(s)
- Md Shahin Shah
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
- Drug Discovery, GUSTO A Research Group, Chittagong, 4203, Bangladesh
| | - Mohammed Abu Tayab
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Anisur Rahman
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Muhammad Nazmul Hasan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | | | - A.M. Kafil Uddin
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Md Jabed
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Md Nazim Uddin Chy
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
- Drug Discovery, GUSTO A Research Group, Chittagong, 4203, Bangladesh
| | - Arkajyoti Paul
- Drug Discovery, GUSTO A Research Group, Chittagong, 4203, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
| | - Md Masudur Rahman
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
- Corresponding author.
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Corresponding author. Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Corresponding author.
| |
Collapse
|
23
|
Miller L, Bodemeier Loayza Careaga M, Handa RJ, Wu TJ. The Effects of Chronic Variable Stress and Photoperiod Alteration on the Hypothalamic-Pituitary-Adrenal Axis Response and Behavior of Mice. Neuroscience 2022; 496:105-118. [PMID: 35700818 DOI: 10.1016/j.neuroscience.2022.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis mediates the physiological response to stressors and also synchronizes different physiological systems to environmental cues. Changes in day length (i.e., photoperiod) as well as chronic exposure to stressors are known to impact the HPA axis activity regulating the levels of glucocorticoid hormones. Over-exposure to inappropriate levels of glucocorticoids has been implicated in increased disease risk. In the present study, we examined the impact of chronic stress, using a chronic variable stress (CVS) paradigm, in combination with changes in photoperiod on physiological and behavioral measures, as well as on the reactivity and regulation of the HPA axis, in male and female mice. Six weeks of CVS, regardless of the photoperiod condition, decreased the body weight and attenuated the HPA axis reactivity to an acute stressor in both sexes. The attenuated HPA axis reactivity observed in stressed animals was related to reduced Pro-opiomelanocortin (POMC) mRNA levels in the pituitary of females. The gene expression analyses of key regulators of the HPA axis also indicated a sex-dependent effect with opposite patterns in the pituitary and adrenal glands. CVS effects on behavior were limited and related to an anxiety-like phenotype in both sexes, regardless of photoperiod condition. Our findings highlight sex-specific differences in the HPA axis and also sex-dependent effects of CVS on physiological parameters.
Collapse
Affiliation(s)
- Lauren Miller
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Mariella Bodemeier Loayza Careaga
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - T John Wu
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
24
|
Ventral hippocampal NMDA receptors mediate the effects of nicotine on stress-induced anxiety/exploratory behaviors in rats. Neurosci Lett 2022; 780:136649. [DOI: 10.1016/j.neulet.2022.136649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/19/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
|
25
|
Lalonde R, Strazielle C. The Hole-Board Test in Mutant Mice. Behav Genet 2022; 52:158-169. [PMID: 35482162 DOI: 10.1007/s10519-022-10102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/01/2022] [Indexed: 11/02/2022]
Abstract
First described by Boissier and Simon in (Ther Recreat J 17:1225-1232, 1962), the hole-board has become a recognized test of anxiety and spatial memory. Benzodiazepines acting at the GABAA-BZD site increase hole-pokes in rats and mice, indicating a loss in behavioral inhibition concordant with the behavior of mutant mice deficient in the GABA transporter. Hole-poking also depends on arousal mechanisms dependent on dopaminergic transmission, as indicated by drug and null mutant studies. In addition, the behavior is modified in natural and null mutants affecting the cerebellum as well as null mutants affecting neuropeptides, growth factors, cell adhesion, and inflammation. Further research is required to determine convergences between genetic and pharmacological effects.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France. .,CHRU Nancy, Vandœuvre-les-Nancy, France.
| |
Collapse
|
26
|
Sakalem ME, Tabach R, de Oliveira M, Carlini EA. Behavioral Pharmacology of Five Uncommon Passiflora Species Indicates Sedative and Anxiolytic-like Potential. Cent Nerv Syst Agents Med Chem 2022; 22:125-138. [PMID: 35473529 DOI: 10.2174/1871524922666220426102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/06/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND There are over 500 species in the Passiflora genus, and while some of them are very well known in folk medicine for their anxiolytic effects, very little is known for the other genus representants, which could also present medicinal effects. OBJECTIVE In this study, we performed an interspecific pharmacological comparison of five little investigated Passiflora species, all native to Brazil: P. bahiensis, P. coccinea, P. quadrangularis, P. sidaefolia, and P. vitifolia. METHOD Extracts were administered to mice before behavioral testing, which included a general pharmacological screening and anxiolytic-like effect investigation. RESULTS Three of the species [P. coccinea, P. quadrangularis, and P. sidaefolia] induced a decrease in locomotor activity of mice; P. coccinea also reduced the latency to sleep. Importantly, none of the species interfered with motor coordination. Oral administration evoked no severe signs of toxicity even at higher doses. Regarding the anxiolytic-like profile, P. sidaefolia reduced the anxious-like behavior in the Holeboard test in a similar way to the positive control, Passiflora incarnata, while not affecting total motricity. CONCLUSION These results indicate that P. coccinea, P. quadrangularis, and P. sidaefolia reduced the general activity of mice and confer a calmative/sedative potential to these three species, which must be further elucidated by future investigations.
Collapse
Affiliation(s)
- Marna Eliana Sakalem
- Department of Psychobiology, Universidade Federal de Sao Paulo [UNIFESP], Sao Paulo, SP, Brazil
| | - Ricardo Tabach
- Department of Psychobiology, Universidade Federal de Sao Paulo [UNIFESP], Sao Paulo, SP, Brazil.,Universidade Santo Amaro, Sao Paulo, SP, Brazil
| | - Miriane de Oliveira
- Botucatu Medical School, Sao Paulo State University [UNESP], Botucatu, SP, Brazil
| | - Elisaldo Araújo Carlini
- Department of Psychobiology, Universidade Federal de Sao Paulo [UNIFESP], Sao Paulo, SP, Brazil
| |
Collapse
|
27
|
Deciphering the Pharmacological Potentials of Methanol Extract of Sterculia foetida Seeds Using Experimental and Computational Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3403086. [PMID: 35502174 PMCID: PMC9056218 DOI: 10.1155/2022/3403086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022]
Abstract
The edible herb Sterculia foetida L. has potential nutraceutical and medicinal effects. The present study is performed to assess the possible antidiabetic, neuropharmacological, and antidiarrheal activity of the methanolic extract of S. foetida seeds (MESF) through in vitro, in vivo, and in silico approaches. When compared to standard acarbose, the results of the antidiabetic study provided strong proof that the glucose level in the MESF was gradually decreased by inhibiting the function of α-amylase enzymes. The sedative potential of MESF (200 and 400 mg/kg) was determined by employing open field, hole cross, and thiopental sodium-induced sleeping time tests, which revealed significant reductions in locomotor performance and increased sleep duration following MESF treatment. In addition, mice treated with MESF exhibited superior exploration during elevated plus maze and hole board tests. MESF also showed good antidiarrheal activity in castor oil-induced diarrhea and intestinal motility tests. Previously isolated compounds (captan, 1-azuleneethanol, acetate, and tetraconazole) exhibited good binding affinity in docking studies and drug-likeliness properties in absorption, distribution, metabolism, excretion/toxicity (ADME/T), and toxicological studies. Collectively, these results indicate the bioactivity of S. foetida, which represents a potential candidate in the food and pharmaceutical industries.
Collapse
|
28
|
Hartley N, McLachlan CS. Aromas Influencing the GABAergic System. Molecules 2022; 27:molecules27082414. [PMID: 35458615 PMCID: PMC9026314 DOI: 10.3390/molecules27082414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Aromas have a powerful influence in our everyday life and are known to exhibit an array of pharmacological properties, including anxiolytic, anti-stress, relaxing, and sedative effects. Numerous animal and human studies support the use of aromas and their constituents to reduce anxiety-related symptoms and/or behaviours. Although the exact mechanism of how these aromas exert their anxiolytic effects is not fully understood, the GABAergic system is thought to be primarily involved. The fragrance emitted from a number of plant essential oils has shown promise in recent studies in modulating GABAergic neurotransmission, with GABAA receptors being the primary therapeutic target. This review will explore the anxiolytic and sedative properties of aromas found in common beverages, such as coffee, tea, and whisky as well aromas found in food, spices, volatile organic compounds, and popular botanicals and their constituents. In doing so, this review will focus on these aromas and their influence on the GABAergic system and provide greater insight into viable anxiety treatment options.
Collapse
Affiliation(s)
- Neville Hartley
- Department of Naturopathy and Western Herbal Medicine, Health Faculty, Fortitude Valley Campus, Torrens University Australia, Brisbane, QLD 4006, Australia
- Correspondence:
| | - Craig S. McLachlan
- Centre for Healthy Futures, Health Faculty, Surry Hills Campus, Torrens University Australia, Sydney, NSW 2010, Australia;
| |
Collapse
|
29
|
Lopuch AJ, Swinehart BD, Widener EL, Holley ZL, Bland KM, Handwerk CJ, Brett CA, Cook HN, Kalinowski AR, Rodriguez HV, Song MI, Vidal GS. Integrin β3 in forebrain Emx1-expressing cells regulates repetitive self-grooming and sociability in mice. BMC Neurosci 2022; 23:12. [PMID: 35247972 PMCID: PMC8897866 DOI: 10.1186/s12868-022-00691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is characterized by repetitive behaviors, deficits in communication, and overall impaired social interaction. Of all the integrin subunit mutations, mutations in integrin β3 (Itgb3) may be the most closely associated with ASD. Integrin β3 is required for normal structural plasticity of dendrites and synapses specifically in excitatory cortical and hippocampal circuitry. However, the behavioral consequences of Itgb3 function in the forebrain have not been assessed. We tested the hypothesis that behaviors that are typically abnormal in ASD-such as self-grooming and sociability behaviors-are disrupted with conditional Itgb3 loss of function in forebrain circuitry in male and female mice. METHODS We generated male and female conditional knockouts (cKO) and conditional heterozygotes (cHET) of Itgb3 in excitatory neurons and glia that were derived from Emx1-expressing forebrain cells during development. We used several different assays to determine whether male and female cKO and cHET mice have repetitive self-grooming behaviors, anxiety-like behaviors, abnormal locomotion, compulsive-like behaviors, or abnormal social behaviors, when compared to male and female wildtype (WT) mice. RESULTS Our findings indicate that only self-grooming and sociability are altered in cKO, but not cHET or WT mice, suggesting that Itgb3 is specifically required in forebrain Emx1-expressing cells for normal repetitive self-grooming and social behaviors. Furthermore, in cKO (but not cHET or WT), we observed an interaction effect for sex and self-grooming environment and an interaction effect for sex and sociability test chamber. LIMITATIONS While this study demonstrated a role for forebrain Itgb3 in specific repetitive and social behaviors, it was unable to determine whether forebrain Itgb3 is required for a preference for social novelty, whether cHET are haploinsufficient with respect to repetitive self-grooming and social behaviors, or the nature of the interaction effect for sex and environment/chamber in affected behaviors of cKO. CONCLUSIONS Together, these findings strengthen the idea that Itgb3 has a specific role in shaping forebrain circuitry that is relevant to endophenotypes of autism spectrum disorder.
Collapse
Affiliation(s)
- Andrew J Lopuch
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Brian D Swinehart
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Eden L Widener
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Z Logan Holley
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Katherine M Bland
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Christopher J Handwerk
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Cooper A Brett
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Hollyn N Cook
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Anna R Kalinowski
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Hilda V Rodriguez
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - M Irene Song
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - George S Vidal
- Department of Biology, James Madison University, 951 Carrier Drive, Harrisonburg, VA, 22807, USA.
| |
Collapse
|
30
|
Ethnopharmacological-Based Validation of Polyalthia suberosa Leaf Extract in Neurological, Hyperalgesic, and Hyperactive Gut Disorders Using Animal Models. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1345006. [PMID: 35222665 PMCID: PMC8872661 DOI: 10.1155/2022/1345006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/24/2021] [Accepted: 01/29/2022] [Indexed: 01/02/2023]
Abstract
Polyalthia suberosa (Roxb.) is a plant used to cure coughs, dysentery, fevers, joint aches, rheumatic pain, inflammation, and a variety of skin diseases. The aim of the study was to evaluate the ethyl acetate extract of Polyalthia suberosa (P. suberosa) leaves and their effects on mice for neuropharmacological, analgesic, and antidiarrheal activities. For neurological studies, the hole cross, hole board, open field, and thiopental sodium-induced sleep duration measurement methodologies were used. The castor oil-induced diarrhea inhibition test was used to assess antidiarrheal action, and the acetic acid-induced writhing inhibition test was used to determine analgesic effectiveness. The extract was given in doses of 250 and 500 mg kg−1 body weight. As a standard drug, diazepam at a dosage of 3 mg kg−1 was used. The extract was also given to groups, and sleep time was measured and recorded. The onset of the anxiolytic effect of the extract at both doses was found to be significant (p < 0.001), and sleep time increased to 273 minutes. For assessing analgesic activity, the extract along with standard diclofenac was administered and found to be 55.02 percent and 64.33 percent, respectively, for the extracts, and diclofenac was found to be 67.44 percent (p < 0.001). For antidiarrheal activity, it was compared with the standard drug, loperamide. The decrease for plant extracts was 50.07 percent and 70.06 percent at 250 mg kg−1 and 500 mg kg−1, respectively, whereas it was 85.01 percent for loperamide (3 mg kg−1) (p < 0.00). In this study, it was found that ethyl acetate extract of Polyalthia suberosa leaves had strong CNS depressant, analgesic, and antidiarrheal activities, which indicates that it may be used in contemporary medicine.
Collapse
|
31
|
Kimijima H, Miyagawa K, Kurokawa K, Mochida-Saito A, Takahashi K, Takeda H, Tsuji M. Trichostatin A, a histone deacetylase inhibitor, alleviates the emotional abnormality induced by maladaptation to stress in mice. Neurosci Lett 2022; 766:136340. [PMID: 34774702 DOI: 10.1016/j.neulet.2021.136340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
Recent reports have implied that aberrant biochemical processes in the brain are frequently accompanied by subtle shifts in the cellular epigenetic profile that might underlie the pathogenic progression of psychiatric disorders. The aim of the present study was to examine the effect of trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, on the emotional abnormality induced by maladaptation to stress in mice. Mice were exposed to repeated restraint stress for 240 min/day for 14 days. We applied dosing schedules. In one schedule, from the 3rd day of stress exposure, mice were treated with TSA (1650 μM/4 μL, i.c.v.) immediately after the daily exposure to restraint stress. In the other schedule, from the 1st day of stress exposure, mice were treated with TSA 2 h before exposure to restraint stress. After the final exposure to restraint stress, the emotionality of mice was evaluated using the hole-board test. Mice that were exposed to restraint stress for 240 min/day for 14 days showed a decrease in head-dipping behavior. This decreased emotionality observed in stress-maladaptive mice was significantly recovered by chronic treatment with TSA 2 h before daily exposure to restraint stress, which confirmed the development of stress adaptation. On the other hand, no such stress adaptation was observed under chronic treatment with TSA immediately after daily stress exposure. A biochemical study showed that tryptophan hydroxylase, the rate-limiting enzyme in serotonin (5-HT) synthesis, was increased in midbrain containing raphe nuclei obtained from stress-adapted mice that were chronically treated with TSA 2 h before daily stress exposure. These findings suggest that an HDAC inhibitor may have a beneficial effect on stress adaptation by affecting 5-HT neural function in the brain and alleviate the emotional abnormality under conditions of excessive stress.
Collapse
Affiliation(s)
- Hidenao Kimijima
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka 831-8501, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
| |
Collapse
|
32
|
Ahmadu PU, Victor E, Ameh FS. Studies on some neuropharmacological properties of Nevirapine in mice. IBRO Neurosci Rep 2021; 12:12-19. [PMID: 34935003 DOI: 10.1016/j.ibneur.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
Nevirapine (NVP) is non-nucleoside reverse transcriptase inhibitor and an anti-retroviral drug (ARV) with the highest BBB penetrating ability. Its specific pharmacologic effects on central nervous system (CNS) are not well known. The objective of the study was to investigate some CNS effects of Nevirapine. Oral acute toxicity test (Lorke, 1983) was used to estimate the LD50. Exploratory or sedative effects were tested using open field test(OFT), Hole-board test (HBT), diazepam-induced sleeping time test, and ketamine-induced sleeping time test. Five groups of mice were used (5 mice /group). The negative control group received vehicle (distilled water) (10 mL /kg) while groups II, III, and IV received NVP- 15.625 mg/kg, 31.25 mg/kg, 62.5 mg/kg body weight respectively while group V received 0.25 mg/kg of diazepam intraperitoneal. Groups I to IV were treated orally. The oral LD50 was determined to be 2154. 07 mg/kg. NVP, in a dose dependent fashion, increased the number of line-crossing in the OFT. Also, NVP in a dose-dependent fashion, significantly reduced the duration of diazepam-induced sleeping time as well as delayed onset. NVP significantly potentiated ketamine-induced sleeping time duration. Nevirapine possess excitatory effects possibly through antagonism of GABA receptors. Nevirapine causes wakefulness (shortening of sleep) possibly via antagonism of GABAergic neurotransmission.
Collapse
Affiliation(s)
- Peter Uchogu Ahmadu
- Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development, Federal Ministry of Health, P.M.B 21, Garki, Abuja, Nigeria
| | - Ejigah Victor
- Department of Pharmaceutics, College of Pharmacy, Howard University, Washington, DC, USA
| | - Fidelis Solomon Ameh
- Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development, Federal Ministry of Health, P.M.B 21, Garki, Abuja, Nigeria
| |
Collapse
|
33
|
Antioxidative role of palm grass rhizome ameliorates anxiety and depression in experimental rodents and computer-aided model. Heliyon 2021; 7:e08199. [PMID: 34729435 PMCID: PMC8546422 DOI: 10.1016/j.heliyon.2021.e08199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 10/14/2021] [Indexed: 01/22/2023] Open
Abstract
Palm grass (Curculigo recurvata) is an ethnomedicinally important herb reported to have significant medicinal values. The present study aimed to evaluate the antidepressant and anxiolytic activities of a methanol extract of C. recurvata rhizome (Me-RCR) through different approaches. The antidepressant and anxiolytic properties of Me-RCR were assessed by using elevated plus maze (EPM), hole-board (HBT), tail suspension (TST), and forced swimming (FST) tests in Swiss Albino mice. The in-depth antioxidative potential of Me-RCR was also evaluated through DPPH radical scavenging activity, ferric-reducing power capacity, total phenolic, flavonoid, flavonol, and antioxidant content analysis. Computational investigations were performed using computer-aided methods for screening the anxiolytic, antidepressant, and antioxidative activities of the selected lead molecules. Treatment with Me-RCR (200 and 400 mg/kg, b.w.) notably increased the number of open arm entries and the time spent in the EPM test. In the HBT, Me-RCR exhibited significant anxiolytic activity at a dose of 200 mg/kg, whereas similar activity was observed at 400 mg/kg in the EPM test. Me-RCR significantly decreased the immobility time in a dose-dependent manner in both TST and FST. The IC50 for DPPH and reducing power capacity assay were found to be 18.56 and 193 μg/mL, respectively. Promising outcomes were noted for the determination of total phenolics, flavonoids, flavonols, and antioxidant capacity. In the case of computer-aided studies, nyasicoside showed promising binding energy for antidepressant and anxiolytic activities, whereas isocurculigine demonstrated promising effects as an antioxidant. Overall, these findings suggest that Me-RCR could be a favourable therapeutic candidate for the treatment of mental and psychiatric disorders, as well as a good source of antioxidants.
Collapse
|
34
|
Moazzem Hossen S, Akramul Hoque Tanim M, Shahadat Hossain M, Ahmed Sami S, Uddin Emon N. Deciphering the CNS anti-depressant, antioxidant and cytotoxic profiling of methanol and aqueous extracts of Trametes versicolor and molecular interactions of its phenolic compounds. Saudi J Biol Sci 2021; 28:6375-6383. [PMID: 34764755 PMCID: PMC8568997 DOI: 10.1016/j.sjbs.2021.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/12/2021] [Accepted: 07/04/2021] [Indexed: 12/30/2022] Open
Abstract
The present study sought to evaluate the central nervous system (CNS) depressant, antioxidant, and cytotoxicity activity of methanol and aqueous extract of Trametes versicolor (METV and AETV). The CNS activity was assessed by the open field, hole-cross, forced swimming, thiopental sodium-induced sleeping time, hole-board, and rotarod tests in Swiss albino mice. For both extracts, a substantial decrease in locomotion was observed in open field and hole-cross tests. In addition, the molecular docking study has been implemented through Maestro V11.1. The higher dose of METV (400 mg/kg) and the lower dose of AETV (200 mg/kg) exhibited a significant decrease in immobility time in forced swimming test and increased prolongation of sleep in thiopental sodium-induced sleeping time test, respectively. In contrast, a moderate finding was observed for the hole-board and rotarod tests. Additionally, a significant DPPH scavenging assay and a high toxicity effect in brine shrimp lethality assay were observed. Besides, five phenolic compounds, namely baicalin, quercetin, catechin, p-hydroxybenzoic acid, and quinic acid, were used for the molecular docking study, whereas catechin demonstrated the highest binding affinity towards the targets. The findings conclude that the T. versicolor could be an alternative source for CNS anti-depressant and antioxidant activity.
Collapse
Affiliation(s)
- S.M. Moazzem Hossen
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong 4331, Bangladesh
| | | | - Mohammad Shahadat Hossain
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Nazim Uddin Emon
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| |
Collapse
|
35
|
Activation of 5-HT 1A receptor reduces abnormal emotionality in stress-maladaptive mice by alleviating decreased myelin protein in the ventral hippocampus. Neurochem Int 2021; 151:105213. [PMID: 34673172 DOI: 10.1016/j.neuint.2021.105213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/03/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
We previously reported that abnormal emotionality in stress-maladaptive mice was ameliorated by chronic treatment with flesinoxan, a 5-HT1A receptor agonist. Furthermore, the maintenance of hippocampal myelination appeared to contribute to the development of stress adaptation in mice. However, the effects of 5-HT1A receptor activation on myelination under the stress-maladaptive situations and the underlying mechanisms remain unknown. In the present study, we examined using flesinoxan whether activation of 5-HT1A receptor can reduce an abnormal emotional response by acting on oligodendrocytes to preserve myelin proteins in stress-maladaptive mice. Mice were exposed to repeated restraint stress for 4 h/day for 14 days as a stress-maladaptive model. Flesinoxan was given intraperitoneally immediately after the daily exposure to restraint stress. After the final exposure to restraint stress, the emotionality of mice was evaluated by the hole-board test. The expression levels of brain-derived neurotrophic factor (BDNF), phosphorylated-extracellular signal-regulated kinase (p-ERK), phosphorylated-cAMP response element-binding protein (p-CREB), myelin-associated glycoprotein (MAG), myelin basic protein (MBP) and oligodendrocyte transcription factor 2 (olig2) in the hippocampus was assessed by western blotting. Hippocampal oligodendrogenesis were examined by immunohistochemistry. Chronic treatment with flesinoxan suppressed the decrease in head-dipping behaviors in stress-maladaptive mice in the hole-board test. Under this condition, the decreases in MAG and MBP in the hippocampus recovered with increase in BDNF, p-ERK, p-CREB, and olig2. Furthermore, hippocampal oligodendrogenesis in stress-maladaptive mice was promoted by chronic treatment with flesinoxan. These findings suggest that 5-HT1A receptor activation may promote oligodendrogenesis and myelination via an ERK/CREB/BDNF signaling pathway in the hippocampus and reduces abnormal emotionality due to maladaptation to excessive stress.
Collapse
|
36
|
King G, Veros KM, MacLaren DAA, Leigh MPK, Spernyak JA, Clark SD. Human wildtype tau expression in cholinergic pedunculopontine tegmental neurons is sufficient to produce PSP-like behavioural deficits and neuropathology. Eur J Neurosci 2021; 54:7688-7709. [PMID: 34668254 DOI: 10.1111/ejn.15496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022]
Abstract
Progressive Supranuclear Palsy (PSP) is the most common atypical parkinsonism and exhibits hallmark symptomology including motor function impairment and dysexecutive dementia. In contrast to Parkinson's disease, the underlying pathology displays aggregation of the protein tau, which is also seen in disorders such as Alzheimer's disease. Currently, there are no pharmacological treatments for PSP, and drug discovery efforts are hindered by the lack of an animal model specific to PSP. Based on previous results and clinical pathology, it was hypothesized that viral deposition of tau in cholinergic neurons within the hindbrain would produce a tauopathy along neural connections to produce PSP-like symptomology and pathology. By using a combination of ChAT-CRE rats and CRE-dependent AAV vectors, wildtype human tau (the PSP-relevant 1N4R isoform; hTau) was expressed in hindbrain cholinergic neurons. Compared to control subjects (GFP), rats with tau expression displayed deficits in a variety of behavioural paradigms: acoustic startle reflex, marble burying, horizontal ladder and hindlimb motor reflex. Postmortem, the hTau rats had significantly reduced number of cholinergic pedunculopontine tegmentum and dopaminergic substantia nigra neurons, as well as abnormal tau deposits. This preclinical model has multiple points of convergence with the clinical features of PSP, some of which distinguish between PSP and Parkinson's disease.
Collapse
Affiliation(s)
- Gabriella King
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | - Kaliana M Veros
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| | | | | | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
37
|
Khafaga AF, El-Kazaz SE, Noreldin AE. Boswellia serrata suppress fipronil-induced neuronal necrosis and neurobehavioral alterations via promoted inhibition of oxidative/inflammatory/apoptotic pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147384. [PMID: 33933775 DOI: 10.1016/j.scitotenv.2021.147384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 05/21/2023]
Abstract
Boswellic acid (BA) is a pentacyclic terpenoid derived from the gum-resin of Boswellia serrate. It is known for its strong antioxidant, anti-inflammatory, and anticancer properties. It has improved spatial learning and provides neuroprotection against trimethyltin-induced memory impairment. The aim of this study is to evaluate the possible neuroprotective activity of B. serrata extract (BSE) containing BA against fipronil (FPN)-induced neurobehavioral toxicity in Wister male albino rats. Sixty male rats were allocated equally into six groups. The first group served as control; the second and third groups received BSE at two different oral doses (250 or 500 mg/kg body weight [BW], respectively). The fourth group was orally intoxicated with FPN (20 mg/kg BW), whereas the fifth and sixth groups served as preventive groups and co-treated with FPN (20 mg/kg BW) and BSE (250 or 500 mg/kg BW, respectively). The experiment was conducted over 8 weeks period. Results revealed that co-treatment with BSE led to significant (p > 0.05) dose-dependent reduction in malondialdehyde (MDA), nitric oxide (NO), interleukin-6 (IL6), tumor necrosis factors-alpha (TNF-α), nuclear factor Kappa-B (NF-κB), Cyclooxegenase-2 (COX-2), prostaglandin E2 (PGE2), serotonin, and acetylcholine (ACh). Conversely, significant (p > 0.05) up regulation of catalase (CAT), glutathione peroxidase (GSH-Px), gamma-aminobutyric acid (GABA), and acetylcholine esterase (AChE) has reported in BSE-co-treated groups. In addition, significant (p > 0.05) promotion in neurobehaviours, histopathologic imaging of the cerebral, cerebellar, and hippocampal regions, and immunohistochemical expression of caspase-3 and glial fibrillary acidic protein (GFAP) were also reported in the BSE-treated groups in a dose-dependent manner. In conclusion, BSE (500 mg/kg BW) is a natural, promising neuroprotective agent that can mitigate FPN-induced neurobehavioral toxicity via the suppression of oxidative, inflammatory, and apoptotic pathways and relieve neuronal necrosis and astrogliosis.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Sara E El-Kazaz
- Animals and Poultry Behavior and Management, Department of Animal Husbandry and Animal Wealth development, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22516, Egypt.
| |
Collapse
|
38
|
Evaluation of anxiolytic, sedative, and antioxidant activities of Vitex peduncularis Wall. leaves and investigation of possible lead compounds through molecular docking study. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-020-00461-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Kajimoto K, Hisada C, Ochi S, Yoshikawa E, Suzuki A, Tsugane H, Zhang J, Iinuma M, Kubo KY, Azuma K. Maternal chewing improves prenatal stress-induced cognitive deficit and anxiety-like behavior associated with alterations of the apoptotic response and serotonin pathway in mouse offspring. Arch Oral Biol 2021; 130:105245. [PMID: 34438320 DOI: 10.1016/j.archoralbio.2021.105245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To examine whether maternal chewing affects prenatal stress-induced behavioral alternations associated with the changes in apoptosis-related proteins and serotonin pathway of the mouse offspring. DESIGN Pregnant mice were assigned to control, stress, and stress/chewing groups. Stress mice were placed in restraint tubes, from gestational day 12 until parturition. Stress/chewing mice were given a wooden stick for chewing during stress period. Morris water maze and hole-board tests were applied for behavioral alterations in one-month-old male pups. Hippocampal mRNA expression of B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X protein (Bax) was analyzed by quantitative real-time PCR. Serotonin and tryptophan hydroxylase expression level in the dorsal raphe nucleus was investigated immunohistochemically. RESULTS Prenatal stress impaired the spatial learning, induced anxiety-like behavior, increased the ratio of hippocampal Bax/Bcl-2 expression, and decreased the expression of serotonin and tryptophan hydroxylase in dorsal raphe nucleus of the offspring. Maternal chewing ameliorated prenatal stress-induced cognitive impairment, anxiety-like behavior, and attenuated the increased ratio of hippocampal Bax/Bcl-2 expression, and the downregulated serotonin signaling in dorsal raphe nucleus of the offspring. CONCLUSIONS Our results indicate that maternal chewing could improve prenatal stress-related anxiety-like behavior and cognitive impairment in mouse offspring, at least in part by affecting hippocampal apoptotic response and central serotonin pathway.
Collapse
Affiliation(s)
- Kyoko Kajimoto
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Chie Hisada
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Suzuko Ochi
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Eri Yoshikawa
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Ayumi Suzuki
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Hiroko Tsugane
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Jiahe Zhang
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Mitsuo Iinuma
- Department of Pediatric Dentistry, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Kin-Ya Kubo
- Faculty of Human Life and Environmental Science, Nagoya Women's Univrsity, 3-40 Shijo-machi, Mizuho-ku, Nagoya 467-8610, Japan
| | - Kagaku Azuma
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| |
Collapse
|
40
|
Matsumoto D, Ushio S, Wada Y, Noda Y, Esumi S, Izushi Y, Kitamura Y, Sendo T. Bumetanide prevents diazepam-modified anxiety-like behavior in lipopolysaccharide-treated mice. Eur J Pharmacol 2021; 904:174195. [PMID: 34004209 DOI: 10.1016/j.ejphar.2021.174195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Benzodiazepine receptor agonists are widely prescribed therapeutic agents that alter gamma-aminobutyric acid (GABA)A receptor activity and have anxiolytic effects. Post-operative use of benzodiazepines is a risk factor of delirium. Inflammatory conditions alter the anxiolytic effects of benzodiazepine. We investigated the effect of diazepam, a typical benzodiazepine anxiolytic, on changes in the emotional behavior of mice in a hole-board test after lipopolysaccharide (LPS) treatment. Diazepam dose-dependently increased the number of head-dips at doses that did not alter locomotor activity; however, diazepam dose-dependently significantly decreased the number of head-dips at doses that did not alter locomotor activity in LPS-treated mice. Flumazenil, a benzodiazepine receptor antagonist, normalized the decrease in head-dipping behavior caused by diazepam treatment in normal and LPS-treated mice. The decrease of the head-dipping effect caused by diazepam was attenuated by minocycline in LPS-treated mice. We further found that the decrease in head-dipping behavior caused by diazepam was blocked by bumetanide, a Na+-K+-2Cl- cotransporter isoform 1 (NKCC1) antagonist, in LPS-treated mice. These findings suggest that diazepam induces the anxiety-like behavior under inflammation conditions, and may cause the GABAA receptor dysfunction associated with the chloride plasticity mediated by NKCC1, which contributes to benzodiazepine-induced delirium after surgery.
Collapse
Affiliation(s)
- Daiki Matsumoto
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Soichiro Ushio
- Department of Pharmacy, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yudai Wada
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Yukiko Noda
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Satoru Esumi
- Department of Pharmacy, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yasuhisa Izushi
- Department of Pharmacotherapy, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Yoshihisa Kitamura
- Department of Pharmacy, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan; Department of Pharmacotherapy, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan.
| | - Toshiaki Sendo
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan; Department of Pharmacy, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
41
|
Effects of Different Anxiety Levels on the Behavioral Patternings Investigated through T-pattern Analysis in Wistar Rats Tested in the Hole-Board Apparatus. Brain Sci 2021; 11:brainsci11060714. [PMID: 34072001 PMCID: PMC8226990 DOI: 10.3390/brainsci11060714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/10/2023] Open
Abstract
The Hole-Board is an ethologically based tool for investigating the anxiety-related behavior of rats following manipulation of the central anxiety level. The present paper aims to assess behavioral patterning following pharmacological manipulation of emotional assets in Wistar rats tested in this experimental apparatus. For this purpose, the behavior of three groups of rats injected with saline, diazepam or FG7142 was evaluated using conventional quantitative and multivariate T-pattern analyses. The results demonstrate that quantitative analyses of individual components of the behavior, disjointed from the comprehensive behavioral structure, are of narrow utility in the understanding of the subject’s emotional condition. Among the components of the behavioral repertoire in rodents tested in the Hole-Board, Edge-Sniff and Head-Dip represent the most significant ones to rate anxiety level. They are characterized by a strong bivariate relationship and are also firmly part of the behavioral architecture, as revealed by the T-pattern analysis (TPA), a multivariate technique able to detect significant relationships among behavioral events over time. Edge-Sniff → Head-Dip sequences, in particular, are greatly influenced by the level of anxiety: barely detectable in control animals, they completely disappear in subjects with a reduced level of anxiety and are present in almost 25% of the total of T-patterns detected in subjects whose anxiety level increased.
Collapse
|
42
|
Illescas-Huerta E, Ramirez-Lugo L, Sierra RO, Quillfeldt JA, Sotres-Bayon F. Conflict Test Battery for Studying the Act of Facing Threats in Pursuit of Rewards. Front Neurosci 2021; 15:645769. [PMID: 34017234 PMCID: PMC8129192 DOI: 10.3389/fnins.2021.645769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/19/2021] [Indexed: 11/24/2022] Open
Abstract
Survival depends on the ability of animals to avoid threats and approach rewards. Traditionally, these two opposing motivational systems have been studied separately. In nature, however, they regularly compete for the control of behavior. When threat- and reward-eliciting stimuli (learned or unlearned) occur simultaneously, a motivational conflict emerges that challenges individuals to weigh available options and execute a single behavioral response (avoid or approach). Most previous animal models using approach/avoidance conflicts have often focused on the ability to avoid threats by forgoing or delaying the opportunity to obtain rewards. In contrast, behavioral tasks designed to capitalize on the ability to actively choose to execute approach behaviors despite threats are scarce. Thus, we developed a behavioral test battery composed of three conflict tasks to directly study rats confronting threats to obtain rewards guided by innate and conditioned cues. One conflict task involves crossing a potentially electrified grid to obtain food on the opposite end of a straight alley, the second task is based on the step-down threat avoidance paradigm, and the third one is a modified version of the open field test. We used diazepam to pharmacologically validate conflict behaviors in our tasks. We found that, regardless of whether competing stimuli were conditioned or innate, a low diazepam dose decreased risk assessment and facilitated taking action to obtain rewards in the face of threats during conflict, without affecting choice behavior when there was no conflict involved. Using this pharmacologically validated test battery of ethologically designed innate/learned conflict tasks could help understand the fundamental brain mechanisms underlying the ability to confront threats to achieve goals.
Collapse
Affiliation(s)
- Elizabeth Illescas-Huerta
- Cell Physiology Institute-Neuroscience, National Autonomous University of Mexico, Mexico City, Mexico
| | - Leticia Ramirez-Lugo
- Cell Physiology Institute-Neuroscience, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Jorge A Quillfeldt
- Department of Biophysics, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Francisco Sotres-Bayon
- Cell Physiology Institute-Neuroscience, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
43
|
Pyrzanowska J, Joniec-Maciejak I, Blecharz-Klin K, Piechal A, Mirowska-Guzel D, Fecka I, Widy-Tyszkiewicz E. Aspalathus linearis infusion affects hole-board test behaviour and amino acid concentration in the brain. Neurosci Lett 2021; 747:135680. [PMID: 33529651 DOI: 10.1016/j.neulet.2021.135680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 11/24/2022]
Abstract
Rooibos tea, brewed using Aspalathus linearis leaves, is a popular South African herbal infusion, but its everyday intake is not fully described in terms of the neuropsychopharmacological outcomes. The cell-protective activity of A. linearis is connected with the ability of reducing glycaemia, inflammation as well as oxidative stress. It was already shown that "fermented" rooibos herbal tea (FRHT), which is rich in phenolic compounds, improves the cognitive performance of rats in the water maze and impacts dopaminergic striatal transmission. The present research was taken to extend the knowledge about the feasible behavioural and neurochemical implications of sustained oral FRHT consumption. We hypothesized that it might affect brain amino acid content and thus induce behaviour and neuroprotection. FRHTs of different leaf to water ratios (1:100, 2:100 and 4:100), analysed by chromatographic methods as regards their flavonoid characteristics, were given to rats as only liquid for 3 months. Their behaviour was evaluated in the hole-board test (HBT). Brain amino acids concentration was analysed in the striatum, hippocampus and prefrontal cortex by HPLC-ECD. The rats drinking rooibos tea presented increased motor activity defined as time spent on moving in the HBT. Their exploration measured by head-dipping and rearing was enhanced. Longer time of the testing-box central zone occupation indicated to reduction in anxiety-related behaviour. Excitatory amino acids (aspartate and glutamate) content was decreased in the striatum of animals drinking the infusions whereas taurine level was increased both in the striatum and hippocampus. In conclusion we suggest that long-term FRHT intake affects exploration and anxiety-related behaviour of the rats as well as exerts biochemical outcomes in the brain that support the neuroprotective impact of rooibos tea.
Collapse
Affiliation(s)
- Justyna Pyrzanowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1b, 02-097, Warsaw, Poland.
| | - Ilona Joniec-Maciejak
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1b, 02-097, Warsaw, Poland
| | - Kamilla Blecharz-Klin
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1b, 02-097, Warsaw, Poland
| | - Agnieszka Piechal
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1b, 02-097, Warsaw, Poland
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1b, 02-097, Warsaw, Poland
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211, 50-556, Wroclaw, Poland
| | - Ewa Widy-Tyszkiewicz
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CePT, Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
44
|
Biswas S, Mondol D, Jodder P, Sana S, Saleh MA, Tarafdar AK, Islam F. Evaluation of neurobehavioral activities of ethanolic extract of Psidium guajava Linn leaves in mice model. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00188-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The complementary and alternative medicines have particular importance in treating various comorbid conditions including anxiety and depression which prevalence will be raised to the second highest risk of morbidity, triggering a noteworthy socioeconomic burden. Ethanolic extract of leaves of Psidium guajava Linn (EEPG) was investigated to evaluate the anxiolytic and anti-depressant activity into two different doses (200 mg/kg and 400 mg/kg of body weight) on Swiss Albino male mice utilizing experimental paradigms of anxiety and depression. The extract was also subjected to phytochemical screening.
Results
Phytochemicals screening showed the presence of numerous types of active constituents in extract, for example, flavonoids, alkaloids, terpenoids, and steroids. The experimental results revealed that in case of anxiolytic activity tests, a statistical significant (p < 0.05 vs group I) effect is observed in EPMT model, hole cross model, light and dark model in both doses, whereas in hole-board model, marble burying model tests, a statistical considerable effect is observed only at the dose of 400 mg/kg although at the dose of 200 mg/kg, anxiolytic effect is also expressed and in case of anti-depressant activity test, the statistical significant effect is observed only at the dose of 400 mg/kg. All the results are comparable with the effect of standard drugs used.
Conclusions
Taken together, the present research work evidences the anxiolytic and anti-depressant effects of EEPG, but further investigation needed to find out the underlying mechanism of action and to isolate and purify the specific components that are responsible for aforementioned activities.
Collapse
|
45
|
Emon NU, Alam S, Rudra S, Riya SR, Paul A, Hossen SMM, Kulsum U, Ganguly A. Antidepressant, anxiolytic, antipyretic, and thrombolytic profiling of methanol extract of the aerial part of Piper nigrum: In vivo, in vitro, and in silico approaches. Food Sci Nutr 2021; 9:833-846. [PMID: 33598167 PMCID: PMC7866625 DOI: 10.1002/fsn3.2047] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 12/20/2022] Open
Abstract
Piper nigrum L. also called black pepper is popular for its numerous uses. The present research is designed to investigate the pharmacological potential of methanol extract of Piper nigrum (MEPN). The antidepressant investigation was performed by using both in vivo forced swimming test (FST) and tail suspension test (TST) methods while the anxiolytic research by hole-board test (HBT) method. Again, the antipyretic analysis was conducted through yeast-induced pyrexia method, whereas clot lysis activity was employed by the thrombolytic method. Furthermore, in silico studies followed by molecular docking analysis of several secondary metabolites, pass prediction, and ADME/T were evaluated with AutoDock Vina, Discovery Studio 2020, UCSF Chimera software PASS online, and ADME/T online tools. The plant extract demonstrated dose-dependent potentiality in antidepressant, anxiolytic, antipyretic, and thrombolytic activities. Induction of MEPN produced a significant (p < .5, p < .001) increase of mobility in FST and TST, and increased the head dipping and decreased the latency of time (p < .01, p < .001) in HBT. MEPN 400 (mg/kg; b.w.; p.o.) lowered the rectal temperature of yeast-induced pyrexia substantially (p < .001). Besides, MEPN produced promising (p < .001) clot lysis activity. In the computational approach, among all the proteins, a docking score was found ranging from -1.0 to -7.90 kcal/mol. Besides, all the compounds were found safe in ADME/T study. The results of our scientific research validate the suitability of this plant as an alternative source of novel therapeutics.
Collapse
Affiliation(s)
- Nazim Uddin Emon
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| | - Safaet Alam
- Department of PharmacyState University of BangladeshDhakaBangladesh
| | - Sajib Rudra
- Department of BotanyUniversity ChittagongChittagongBangladesh
| | | | - Avi Paul
- Department of PharmacySouthern University BangladeshChittagongBangladesh
| | | | - Ummay Kulsum
- Department of PharmacyInternational Islamic University ChittagongChittagongBangladesh
| | - Amlan Ganguly
- Department of Clinical Pharmacy and PharmacologyUniversity of DhakaDhakaBangladesh
| |
Collapse
|
46
|
Lin YS, Peng WH, Shih MF, Cherng JY. Anxiolytic effect of an extract of Salvia miltiorrhiza Bunge (Danshen) in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113285. [PMID: 32827660 DOI: 10.1016/j.jep.2020.113285] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/12/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia miltiorrhiza Bunge (Danshen), a traditional Chinese medicine, has demonstrated in modern studies for its pharmacological activities in treatments of CNS disorders like insomnia, dysphoria. However, its application on anxiolytic effect from the ethanol extract of Salvia miltiorrhiza Bunge (SMEtOH) has not yet been reported. MATERIALS AND METHODS This study investigated the anxiolytic effect of the SMEtOH using the elevated plus-maze test (EPM) and the hole-board test (HBT) with diazepam and buspirone as positive controls. Also, the spontaneous locomotor activity of mice had been investigated in the open field. Further, we have illustrated the anxiolytic mechanisms of SMEtOH with its influencing upon GABAergic and/or serotonergic nervous systems via a method that SMEtOH was co-administered with flumazenil, a benzodiazepine (BZD) antagonist, or a drug (WAY-100635), a selective 5HT1A receptor antagonist. RESULTS In hole-board test, results presented that SMEtOH increased head-dip counts and duration time. On the other hand, a decrease in spontaneous locomotor activity was observed. In the EPM test, SMEtOH increased the percentage of open-arm entries and the percentage of time spent in open arms. However, when SMEtOH co-administered with flumazenil or WAY-100635, the anxiolytic effect of SMEtOH was significantly counteracted. CONCLUSION From these results, we can conclude that the anxiolytic mechanism of SMEtOH is exerted through an activation of the BZD and 5HT1A receptors.
Collapse
Affiliation(s)
- Yu-Shih Lin
- Department of Pharmacy, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan.
| | - Wen-Huang Peng
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan.
| | - Mei-Fen Shih
- Department of Pharmacy, Chia-Nan University of Pharmacy & Science, Tainan, Taiwan.
| | - Jong-Yuh Cherng
- Department of Chemistry and Biochemistry, Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, Taiwan.
| |
Collapse
|
47
|
Vobrubová B, Fraňková M, Štolhoferová I, Kaftanová B, Rudolfová V, Chomik A, Chumová P, Stejskal V, Palme R, Frynta D. Relationship between exploratory activity and adrenocortical activity in the black rat (Rattus rattus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:286-295. [PMID: 33411407 DOI: 10.1002/jez.2440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 11/05/2022]
Abstract
The relationship between physiological and behavioral stress markers is documented in several rodent species. However, there is no information regarding the role of adrenocortical activity in behavior of the black rat (Rattus rattus). Therefore, we hypothesize that the adrenocortical activity of black rats varies between individuals and is related to some of the behaviors in a novel environment. To test this hypothesis, we (i) validated a method for quantifying glucocorticoid metabolites from feces (fGCMs) with an enzyme immunoassay (EIA); (ii) examined variation and diurnal rhythms of feces and GCM production; and (iii) examined the relationship between GCM levels and exploratory behavioral traits. We fulfilled the first aim (i) by successfully performing an ACTH challenge test to validate the use of a 5α-pregnane-3β,11β,21-triol-20-one EIA for measuring fGCMs. Second (ii) we detected considerable consistent interindividual variability in production of both feces and glucocorticoids. The peak production of feces occurred in the first hour of the dark cycle, the peak of fGCMs occurred approximately 3 h later. Lastly, (iii) there was no clear relationship between behavior in the hole board test and GCMs. Grooming, a typical behavioral stress marker, was negatively associated with stress reactivity, while head-dipping in the hole-board test (traditionally considered an exploratory behavior independent of stress) was not correlated with the GCMs. This study offers a first look at GCMs in the black rat, successfully validates a method for their measurement and opens possibilities for future research of the relationship between glucocorticoids and exploratory behavior in this species.
Collapse
Affiliation(s)
- Barbora Vobrubová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia.,RP3 Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
| | - Marcela Fraňková
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague, Czechia
| | - Iveta Štolhoferová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia.,RP3 Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
| | - Barbora Kaftanová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia.,Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Veronika Rudolfová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia.,RP3 Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
| | - Aleksandra Chomik
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Petra Chumová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Václav Stejskal
- Division of Crop Protection and Plant Health, Crop Research Institute, Prague, Czechia
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia.,RP3 Applied Neuroscience and Neuroimaging, National Institute of Mental Health, Klecany, Czechia
| |
Collapse
|
48
|
Ishola IO, Katola FO, Adeyemi OO. Involvement of GABAergic and nitrergic systems in the anxiolytic and hypnotic effects of Curcuma longa: its interaction with anxiolytic-hypnotics. Drug Metab Pers Ther 2020; 0:dmdi-2020-0147. [PMID: 33780193 DOI: 10.1515/dmdi-2020-0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/23/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Concurrent use of herbs with drugs have become a major healthcare problem. Herb-drug interactions could lead to therapeutic failure or toxicity. Hence, this study seeks to evaluate the impact of combining Curcuma longa rhizome (CL) with selected anxiolytic and hypnotic drugs. METHODS CL (100, 200 or 400 mg/kg, p.o.) was administered to mice 1 h before subjecting the animals to elevated plus maze (EPM), hole board test (HBT), open field test (OFT) and rotarod test for anxiolytic-like effect as well as hexobarbitone-induced sleeping time (HIST) for hypnotic activity. The involvement of GABAergic and nitrergic systems in CL-induced anxiolytic and hypnotic actions were also evaluated. The effect of concurrent use of CL with midazolam, imipramine, nifedipine, propranolol and carbamazepine were evaluated in anxiolytic-hypnosis models. RESULTS The peak anxiolytic-like effect of CL was obtained at 400 mg/kg in the EPM and hole-board test without affecting muscle coordination in the rotarod test while the peak hypnosis-potentiation was observed at 100 mg/kg. CL-induced anxiolytic-hypnotic-like effects were reversed by the pretreatment of mice with flumazenil or NG-nitro-l-arginine. CONCLUSIONS Curcuma longa possesses anxiolytic and hypnotic effects through its interaction with GABAergic and nitrergic systems. Conversely, co-administration of C. longa with midazolam potentiate barbiturate-induced hypnosis.
Collapse
Affiliation(s)
- Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| | - Folashade O Katola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Olufunmilayo O Adeyemi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Lagos State, Nigeria
| |
Collapse
|
49
|
Chagas LA, Batista TH, Ribeiro ACAF, Ferrari MS, Vieira JS, Rojas VCT, Kalil-Cutti B, Elias LLK, Giusti-Paiva A, Vilela FC. Anxiety-like behavior and neuroendocrine changes in offspring resulting from gestational post-traumatic stress disorder. Behav Brain Res 2020; 399:113026. [PMID: 33248193 DOI: 10.1016/j.bbr.2020.113026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 12/28/2022]
Abstract
Exposure to stressful environmental events during the perinatal period can increase vulnerability to psychopathologies that cause neuroendocrine changes associated with deficits in emotional behavior that can appear early in life. Post-traumatic stress disorder (PTSD) is a frequent, chronic, and disabling disorder that negatively impacts the emotional, social, and cognitive behaviors of affected individuals. Thus, we induced PTSD in pregnant rats by applying inescapable footshocks and then investigated the behavioral parameters similar to anxiety in offspring at prepubertal age, in addition to the plasma levels of maternal and offspring corticosterone and expression of glucocorticoid receptors (GR) in the offspring's hippocampus. With the dams, maternal behavior, open field, and object recognition tests were performed. With the male and female offspring, we performed the following: quantification of ultrasonic vocalizations, elevated plus-maze test, evaluation of exploratory activity in the open field, and hole board test, as well as plasma corticosterone measurements and Western blotting for GR. Our results showed that gestational PTSD affected maternal behavior, led to anxiety-like symptoms, increased corticosterone levels, and increased GR expression in the offspring's hippocampus. Therefore, our data can contribute to the understanding of the onset of early (childhood and juvenile/pre-pubertal phases) anxiety owing to exposure to a traumatic event during the gestation period.
Collapse
Affiliation(s)
- Luana A Chagas
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Tatiane H Batista
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | | | - Mariela S Ferrari
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Jádina S Vieira
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Viviana C T Rojas
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Bruna Kalil-Cutti
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Lucila L K Elias
- Departmento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | | | - Fabiana C Vilela
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Brazil.
| |
Collapse
|
50
|
Evaluation of pharmacological potentials of the aerial part of Achyranthes aspera L.: in vivo, in vitro and in silico approaches. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00528-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|