1
|
Fu C, Xiao Y, Zhou X, Sun Z. Insight into binding of endogenous neurosteroid ligands to the sigma-1 receptor. Nat Commun 2024; 15:5619. [PMID: 38965213 PMCID: PMC11224282 DOI: 10.1038/s41467-024-49894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
The sigma-1 receptor (σ1R) is a non-opioid membrane receptor, which responds to a diverse array of synthetic ligands to exert various pharmacological effects. Meanwhile, candidates for endogenous ligands of σ1R have also been identified. However, how endogenous ligands bind to σ1R remains unknown. Here, we present crystal structures of σ1R from Xenopus laevis (xlσ1R) bound to two endogenous neurosteroid ligands, progesterone (a putative antagonist) and dehydroepiandrosterone sulfate (DHEAS) (a putative agonist), at 2.15-3.09 Å resolutions. Both neurosteroids bind to a similar location in xlσ1R mainly through hydrophobic interactions, but surprisingly, with opposite binding orientations. DHEAS also forms hydrogen bonds with xlσ1R, whereas progesterone interacts indirectly with the receptor through water molecules near the binding site. Binding analyses are consistent with the xlσ1R-neurosteroid complex structures. Furthermore, molecular dynamics simulations and structural data reveal a potential water entry pathway. Our results provide insight into binding of two endogenous neurosteroid ligands to σ1R.
Collapse
Affiliation(s)
- Chunting Fu
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Xiao
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoming Zhou
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ziyi Sun
- Department of Integrated Traditional Chinese and Western Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Thejer BM, Infantino V, Santarsiero A, Pappalardo I, Abatematteo FS, Teakel S, Van Oosterum A, Mach RH, Denora N, Lee BC, Resta N, Bagnulo R, Niso M, Contino M, Montsch B, Heffeter P, Abate C, Cahill MA. Sigma-2 Receptor Ligand Binding Modulates Association between TSPO and TMEM97. Int J Mol Sci 2023; 24:ijms24076381. [PMID: 37047353 PMCID: PMC10093951 DOI: 10.3390/ijms24076381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
Sigma-2 receptor (S2R) is a S2R ligand-binding site historically associated with reportedly 21.5 kDa proteins that have been linked to several diseases, such as cancer, Alzheimer’s disease, and schizophrenia. The S2R is highly expressed in various tumors, where it correlates with the proliferative status of the malignant cells. Recently, S2R was reported to be the transmembrane protein TMEM97. Prior to that, we had been investigating the translocator protein (TSPO) as a potential 21.5 kDa S2R candidate protein with reported heme and sterol associations. Here, we investigate the contributions of TMEM97 and TSPO to S2R activity in MCF7 breast adenocarcinoma and MIA PaCa-2 (MP) pancreatic carcinoma cells. Additionally, the role of the reported S2R-interacting partner PGRMC1 was also elucidated. Proximity ligation assays and co-immunoprecipitation show a functional association between S2R and TSPO. Moreover, a close physical colocalization of TMEM97 and TSPO was found in MP cells. In MCF7 cells, co-immunoprecipitation only occurred with TMEM97 but not with PGRMC1, which was further confirmed by confocal microscopy experiments. Treatment with the TMEM97 ligand 20-(S)-hydroxycholesterol reduced co-immunoprecipitation of both TMEM97 and PGRMC1 in immune pellets of immunoprecipitated TSPO in MP cells. To the best of our knowledge, this is the first suggestion of a (functional) interaction between TSPO and TMEM97 that can be affected by S2R ligands.
Collapse
Affiliation(s)
- Bashar M. Thejer
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Research and Development Department, The Ministry of Higher Education and Scientific Research, Baghdad 10065, Iraq
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell’Ateneo lucano 10, 85100 Potenza, Italy
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell’Ateneo lucano 10, 85100 Potenza, Italy
| | - Ilaria Pappalardo
- Department of Science, University of Basilicata, Viale dell’Ateneo lucano 10, 85100 Potenza, Italy
| | - Francesca S. Abatematteo
- Department of Pharmacy-Drug Sciences, University of Bari ‘ALDO MORO’, Via Orabona 4, 70125 Bari, Italy
| | - Sarah Teakel
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Ashleigh Van Oosterum
- Life Sciences and Health, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- School of Medicine and Psychology, Australian National University, Florey Building, 54 Mills Road, Acton, ACT 2601, Australia
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nunzio Denora
- Department of Pharmacy-Drug Sciences, University of Bari ‘ALDO MORO’, Via Orabona 4, 70125 Bari, Italy
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea
| | - Nicoletta Resta
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (DIMePRe-J), Università degli Studi di Bari ‘ALDO MORO’, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Rosanna Bagnulo
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (DIMePRe-J), Università degli Studi di Bari ‘ALDO MORO’, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Mauro Niso
- Department of Pharmacy-Drug Sciences, University of Bari ‘ALDO MORO’, Via Orabona 4, 70125 Bari, Italy
| | - Marialessandra Contino
- Department of Pharmacy-Drug Sciences, University of Bari ‘ALDO MORO’, Via Orabona 4, 70125 Bari, Italy
| | - Bianca Montsch
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Carmen Abate
- Department of Pharmacy-Drug Sciences, University of Bari ‘ALDO MORO’, Via Orabona 4, 70125 Bari, Italy
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Cristallografia, Via Amendola, 70125 Bari, Italy
- Correspondence:
| | - Michael A. Cahill
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
3
|
Sałaciak K, Pytka K. Revisiting the sigma-1 receptor as a biological target to treat affective and cognitive disorders. Neurosci Biobehav Rev 2022; 132:1114-1136. [PMID: 34736882 PMCID: PMC8559442 DOI: 10.1016/j.neubiorev.2021.10.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
Depression and cognitive disorders are diseases with complex and not-fully understood etiology. Unfortunately, the COVID-19 pandemic dramatically increased the prevalence of both conditions. Since the current treatments are inadequate in many patients, there is a constant need for discovering new compounds, which will be more effective in ameliorating depressive symptoms and treating cognitive decline. Proteins attracting much attention as potential targets for drugs treating these conditions are sigma-1 receptors. Sigma-1 receptors are multi-functional proteins localized in endoplasmic reticulum membranes, which play a crucial role in cellular signal transduction by interacting with receptors, ion channels, lipids, and kinases. Changes in their functions and expression may lead to various diseases, including depression or memory impairments. Thus, sigma-1 receptor modulation might be useful in treating these central nervous system diseases. Importantly, two sigma-1 receptor ligands entered clinical trials, showing that this compound group possesses therapeutic potential. Therefore, based on preclinical studies, this review discusses whether the sigma-1 receptor could be a promising target for drugs treating affective and cognitive disorders.
Collapse
Affiliation(s)
- Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| |
Collapse
|
4
|
Abdullah CS, Aishwarya R, Alam S, Remex NS, Morshed M, Nitu S, Miriyala S, Panchatcharam M, Hartman B, King J, Alfrad Nobel Bhuiyan M, Traylor J, Kevil CG, Orr AW, Bhuiyan MS. The molecular role of Sigmar1 in regulating mitochondrial function through mitochondrial localization in cardiomyocytes. Mitochondrion 2022; 62:159-175. [PMID: 34902622 PMCID: PMC8790786 DOI: 10.1016/j.mito.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023]
Abstract
Sigmar1 is a widely expressed molecular chaperone protein in mammalian cell systems. Accumulating research demonstrated the cardioprotective roles of pharmacologic Sigmar1 activation by ligands in preclinical rodent models of cardiac injury. Extensive biochemical and immuno-electron microscopic research demonstrated Sigmar1's sub-cellular localization largely depends on cell and organ types. Despite comprehensive studies, Sigmar1's direct molecular role in cardiomyocytes remains elusive. In the present study, we determined Sigmar1's subcellular localization, transmembrane topology, and function using complementary microscopy, biochemical, and functional assays in cardiomyocytes. Quantum dots in transmission electron microscopy showed Sigmar1 labeled quantum dots on the mitochondrial membranes, lysosomes, and sarcoplasmic reticulum-mitochondrial interface. Subcellular fractionation of heart cell lysates confirmed Sigmar1's localization in purified mitochondria fraction and lysosome fraction. Immunocytochemistry confirmed Sigmar1 colocalization with mitochondrial proteins in isolated adult mouse cardiomyocytes. Sigmar1's mitochondrial localization was further confirmed by Sigmar1 colocalization with Mito-Tracker in isolated mouse heart mitochondria. A series of biochemical experiments, including alkaline extraction and proteinase K treatment of purified heart mitochondria, demonstrated Sigmar1 as an integral mitochondrial membrane protein. Sigmar1's structural requirement for mitochondrial localization was determined by expressing FLAG-tagged Sigmar1 fragments in cells. Full-length Sigmar1 and Sigmar1's C terminal-deletion fragments were able to localize to the mitochondrial membrane, whereas N-terminal deletion fragment was unable to incorporate into the mitochondria. Finally, functional assays using extracellular flux analyzer and high-resolution respirometry showed Sigmar1 siRNA knockdown significantly altered mitochondrial respiration in cardiomyocytes. Overall, we found that Sigmar1 localizes to mitochondrial membranes and is indispensable for maintaining mitochondrial respiratory homeostasis in cardiomyocytes.
Collapse
Affiliation(s)
- Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Shafiul Alam
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Sadia Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Manikandan Panchatcharam
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | | | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA.
| |
Collapse
|
5
|
Shi M, Chen F, Chen Z, Yang W, Yue S, Zhang J, Chen X. Sigma-1 Receptor: A Potential Therapeutic Target for Traumatic Brain Injury. Front Cell Neurosci 2021; 15:685201. [PMID: 34658788 PMCID: PMC8515188 DOI: 10.3389/fncel.2021.685201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
The sigma-1 receptor (Sig-1R) is a chaperone receptor that primarily resides at the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) and acts as a dynamic pluripotent modulator regulating cellular pathophysiological processes. Multiple pharmacological studies have confirmed the beneficial effects of Sig-1R activation on cellular calcium homeostasis, excitotoxicity modulation, reactive oxygen species (ROS) clearance, and the structural and functional stability of the ER, mitochondria, and MAM. The Sig-1R is expressed broadly in cells of the central nervous system (CNS) and has been reported to be involved in various neurological disorders. Traumatic brain injury (TBI)-induced secondary injury involves complex and interrelated pathophysiological processes such as cellular apoptosis, glutamate excitotoxicity, inflammatory responses, endoplasmic reticulum stress, oxidative stress, and mitochondrial dysfunction. Thus, given the pluripotent modulation of the Sig-1R in diverse neurological disorders, we hypothesized that the Sig-1R may affect a series of pathophysiology after TBI. This review summarizes the current knowledge of the Sig-1R, its mechanistic role in various pathophysiological processes of multiple CNS diseases, and its potential therapeutic role in TBI.
Collapse
Affiliation(s)
- Mingming Shi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Fanglian Chen
- Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Zhijuan Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuyuan Yue
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurosurgery, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China.,Department of Neurosurgery, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| |
Collapse
|
6
|
Nishiyama K, Suzuki H, Harasawa T, Suzuki N, Kurimoto E, Kawai T, Maruyama M, Komatsu H, Sakuma K, Shimizu Y, Shimojo M. FTBMT, a Novel and Selective GPR52 Agonist, Demonstrates Antipsychotic-Like and Procognitive Effects in Rodents, Revealing a Potential Therapeutic Agent for Schizophrenia. J Pharmacol Exp Ther 2017; 363:253-264. [PMID: 28851764 DOI: 10.1124/jpet.117.242925] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/23/2017] [Indexed: 01/23/2023] Open
Abstract
GPR52 is a Gs-coupled G protein-coupled receptor that is predominantly expressed in the striatum and nucleus accumbens (NAc) and was recently proposed as a potential therapeutic target for schizophrenia. In the current study, we investigated the in vitro and in vivo pharmacologic activities of a novel GPR52 agonist, 4-(3-(3-fluoro-5-(trifluoromethyl)benzyl)-5-methyl-1H-1,2,4-triazol-1-yl)-2-methylbenzamide (FTBMT). FTBMT functioned as a selective GPR52 agonist in vitro and in vivo, as demonstrated by the activation of Camp signaling in striatal neurons. FTBMT inhibited MK-801-induced hyperactivity, an animal model for acute psychosis, without causing catalepsy in mice. The c-fos expression also revealed that FTBMT preferentially induced neuronal activation in the shell of the Nac compared with the striatum, thereby supporting its antipsychotic-like activity with less catalepsy. Furthermore, FTBMT improved recognition memory in a novel object-recognition test and attenuated MK-801-induced working memory deficits in a radial arm maze test in rats. These recognitive effects were supported by the results of FTBMT-induced c-fos expression in the brain regions related to cognition, including the medial prefrontal cortex, entorhinal cortex, and hippocampus. Taken together, these findings suggest that FTBMT shows antipsychotic and recognitive properties without causing catalepsy in rodents. Given its unique pharmacologic profile, which differs from that of current antipsychotics, FTBMT may provide a new therapeutic option for the treatment of positive and cognitive symptoms of schizophrenia.
Collapse
Affiliation(s)
- Keiji Nishiyama
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hirobumi Suzuki
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Toshiya Harasawa
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Noriko Suzuki
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Emi Kurimoto
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Takayuki Kawai
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Minoru Maruyama
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hidetoshi Komatsu
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kensuke Sakuma
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yuji Shimizu
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masato Shimojo
- CNS Drug Discovery Unit, Research (K.N., H.S., T.H., N.S., E.K., T.K., M.M., H.K., Y.S., M.S.) and Regenerative Medicine Unit (K.S.), Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
7
|
Maurice T, Goguadze N. Role of σ 1 Receptors in Learning and Memory and Alzheimer's Disease-Type Dementia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 964:213-233. [PMID: 28315274 DOI: 10.1007/978-3-319-50174-1_15] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The present chapter will review the role of σ1 receptor in learning and memory and neuroprotection , against Alzheimer's type dementia. σ1 Receptor agonists have been tested in a variety of pharmacological and pathological models of learning impairments in rodents these last past 20 years. Their anti-amnesic effects have been explained by the wide-range modulatory role of σ1 receptors on Ca2+ mobilizations, neurotransmitter responses, and particularly glutamate and acetylcholine systems, and neurotrophic factors. Recent observations from genetic and pharmacological studies have shown that σ1 receptor can also be targeted in neurodegenerative diseases, and particularly Alzheimer's disease . Several compounds, acting partly through the σ1 receptor, have showed effective neuroprotection in transgenic mouse models of Alzheimer's disease . We will review the data and discuss the possible mechanisms of action, particularly focusing on oxidative stress and mitochondrial integrity, trophic factors and a novel hypothesis suggesting a functional interaction between the σ1 receptor and α7 nicotinic acetylcholine receptor. Finally, we will discuss the pharmacological peculiarities of non-selective σ1 receptor ligands, now developed as neuroprotectants in Alzheimer's disease , and positive modulators, recently described and that showed efficacy against learning and memory deficits.
Collapse
Affiliation(s)
- Tangui Maurice
- INSERM U1198, University of Montpellier, 34095, Montpellier, France.
| | - Nino Goguadze
- INSERM U1198, University of Montpellier, 34095, Montpellier, France
- Institute of Chemical Biology, Ilia State University, Tbilisi, 0162, GA, USA
| |
Collapse
|
8
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
9
|
Ramakrishnan NK, Schepers M, Luurtsema G, Nyakas CJ, Elsinga PH, Ishiwata K, Dierckx RAJO, van Waarde A. Cutamesine Overcomes REM Sleep Deprivation-Induced Memory Loss: Relationship to Sigma-1 Receptor Occupancy. Mol Imaging Biol 2015; 17:364-72. [PMID: 25449772 DOI: 10.1007/s11307-014-0808-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Rapid eye movement (REM) sleep deprivation (SD) decreases cerebral sigma-1 receptor expression and causes cognitive deficits. Sigma-1 agonists are cognitive enhancers. Here, we investigate the effect of cutamesine treatment in the REM SD model. PROCEDURES Sigma-1 receptor occupancy (RO) in the rat brain by cutamesine was determined using 1-[2-(3,4-dimethoxyphenethyl)]-4-(3-phenylpropyl)piperazine ([(11)C]SA4503) and positron emission tomography (PET), and tissue cutamesine levels were measured by ultra performance liquid chromatography (UPLC)-MS. RO was calculated from a Cunningham-Lassen plot, based on the total distribution volume of [(11)C]SA4503 determined by Logan graphical analysis. Cognitive performance was assessed using the passive avoidance (PA) test. RESULTS Cutamesine at a dose of 1.0 mg/kg reversed REM SD-induced cognitive deficit and occupied 92 % of the sigma-1 receptor population. A lower dose (0.3 mg/kg) occupied 88 % of the receptors but did not significantly improve cognition. CONCLUSION The anti-amnesic effect of cutamesine in this animal model may be related to longer exposure at a higher dose and/or drug binding to secondary targets.
Collapse
Affiliation(s)
- Nisha K Ramakrishnan
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Dopamine from cirrhotic liver contributes to the impaired learning and memory ability of hippocampus in minimal hepatic encephalopathy. Hepatol Int 2013. [PMID: 26201931 DOI: 10.1007/s12072-013-9431-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Defective learning/memory ability is a feature of MHE. However, the exact pathophysiological mechanisms leading to the impairment of learning/memory ability in MHE remain not clearly understood. Methods MHE rat modeling by intraperitoneal injection of TAA was successfully established using a Morris water maze, BAEP, and EEG tests. COMT inhibitor, a protein involved in the accumulation of dopamine (DA), was found to be up-regulated in cirrhotic livers in MHE by 2-DE/MS. Results The levels of DA in cirrhotic livers, serums and hippocampuses in the MHE group were more significantly increased than in the control group. In the hippocampuses of MHE rats, NMDA-induced formation of cGMP was reduced by 40 % as determined by in vivo brain microdialysis. Activation of sGC by NO was reduced by 38 %. The expression of NMDAR1, CaM, nNOS and sGC in the hippocampus in the MHE group were more significantly decreased than in controls. Chronic exposure of cultured hippocampus neurons to DA (50 μM) reduced by 53 % the NMDA-induced formation of cGMP. Activation of sGC by NO in these neurons was reduced by 44 %. Down-regulated NMDAR1, CaM, nNOS and sGC were also detected in neurons treated with dopamine, in contrast with the controls. Conclusions This study suggests that when the glutamate-NO-cGMP pathway in the hippocampus is inhibited by the elevation of DA from cirrhotic livers, this in turn may lead to the impairment of learning and memory ability of MHE.
Collapse
|
11
|
van Waarde A, Ramakrishnan NK, Rybczynska AA, Elsinga PH, Ishiwata K, Nijholt IM, Luiten PGM, Dierckx RA. The cholinergic system, sigma-1 receptors and cognition. Behav Brain Res 2011; 221:543-54. [PMID: 20060423 DOI: 10.1016/j.bbr.2009.12.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 12/26/2009] [Indexed: 12/31/2022]
Abstract
This article provides an overview of present knowledge regarding the relationship between the cholinergic system and sigma-1 receptors, and discusses potential applications of sigma-1 receptor agonists in the treatment of memory deficits and cognitive disorders. Sigma-1 receptors, initially considered as a subtype of the opioid family, are unique ligand-regulated molecular chaperones in the endoplasmatic reticulum playing a modulatory role in intracellular calcium signaling and in the activity of several neurotransmitter systems, particularly the cholinergic and glutamatergic pathways. Several central nervous system (CNS) drugs show high to moderate affinities for sigma-1 receptors, including acetylcholinesterase inhibitors (donepezil), antipsychotics (haloperidol, rimcazole), selective serotonin reuptake inhibitors (fluvoxamine, sertraline) and monoamine oxidase inhibitors (clorgyline). These compounds can influence cognitive functions both via their primary targets and by activating sigma-1 receptors in the CNS. Sigma-1 agonists show powerful anti-amnesic and neuroprotective effects in a large variety of animal models of cognitive dysfunction involving, among others (i) pharmacologic target blockade (with muscarinic or NMDA receptor antagonists or p-chloroamphetamine); (ii) selective lesioning of cholinergic neurons; (iii) CNS administration of β-amyloid peptides; (iv) aging-induced memory loss, both in normal and senescent-accelerated rodents; (v) neurodegeneration induced by toxic compounds (CO, trimethyltin, cocaine), and (vi) prenatal restraint stress.
Collapse
Affiliation(s)
- Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ploughman M, Windle V, MacLellan CL, White N, Doré JJ, Corbett D. Brain-derived neurotrophic factor contributes to recovery of skilled reaching after focal ischemia in rats. Stroke 2009; 40:1490-5. [PMID: 19164786 DOI: 10.1161/strokeaha.108.531806] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND PURPOSE Brain-derived neurotrophic factor (BDNF) is involved in neuronal survival, synaptic plasticity, learning and memory, and neuroplasticity. Further, exogenous treatment with BDNF or exposing animals to enrichment and exercise regimens, which also increase BDNF, enhances behavioral recovery after brain injury. Thus, the beneficial effects of rehabilitation in promoting recovery after stroke may also depend on BDNF. We tested this hypothesis by evaluating the contribution of BDNF to motor skill relearning after endothelin-1-induced middle cerebral artery occlusion in rats. METHODS Antisense BDNF oligonucleotide, which blocks the expression of BDNF (or saline vehicle) was infused into the contralateral lateral ventricle for 28 days after ischemia. Animals received either a graduated rehabilitation program, including running exercise and skilled reaching training, which simulates clinical practice, or no rehabilitation. Functional recovery was assessed with a battery of tests that measured skilled reaching, forelimb use asymmetry, and foraging ability. RESULTS Rehabilitation significantly improved skilled reaching ability in the staircase task. Antisense BDNF oligonucleotide effectively blocked BDNF mRNA, and negated the beneficial effects of rehabilitation on recovery of skilled reaching. Importantly, antisense BDNF oligonucleotide did not affect reaching with the unaffected limb, body weight, infarct size, or foraging ability, indicating the treatment was specific to relearning of motor skill after ischemia. CONCLUSIONS This study is the first to identify a critical role for BDNF in rehabilitation-induced recovery after stroke, and our results suggest that new treatments to enhance BDNF would constitute a promising therapy for promoting recovery of function after stroke.
Collapse
Affiliation(s)
- Michelle Ploughman
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Cognitive impairment is a core feature of schizophrenia as deficits are present in the majority of patients, frequently precede the onset of other positive symptoms, persist even with successful treatment of positive symptoms, and account for a significant portion of functional impairment in schizophrenia. While the atypical antipsychotics have produced incremental improvements in the cognitive function of patients with schizophrenia, overall treatment remains inadequate. In recent years, there has been an increased interest in developing novel strategies for treating the cognitive deficits in schizophrenia, focusing on ameliorating impairments in working memory, attention, and social cognition. Here we review various molecular targets that are actively being explored for potential drug discovery efforts in schizophrenia and cognition. These molecular targets include dopamine receptors in the prefrontal cortex, nicotinic and muscarinic acetylcholine receptors, the glutamatergic excitatory synapse, various serotonin receptors, and the gamma-aminobutyric acid (GABA) system.
Collapse
Affiliation(s)
- John A. Gray
- Department of Psychiatry, University of California, San Francisco, CA
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina School of Medicine, 8032 Burnett-Womack, CB # 7365, Chapel Hill, NC 27599-7365
| |
Collapse
|
14
|
Nagai T, Takuma K, Dohniwa M, Ibi D, Mizoguchi H, Kamei H, Nabeshima T, Yamada K. Repeated methamphetamine treatment impairs spatial working memory in rats: reversal by clozapine but not haloperidol. Psychopharmacology (Berl) 2007; 194:21-32. [PMID: 17514479 DOI: 10.1007/s00213-007-0820-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 04/30/2007] [Indexed: 11/28/2022]
Abstract
RATIONALE Although chronic use of methamphetamine (METH) leads to long-lasting cognitive dysfunction in humans, there are few reports about an animal model that reflects METH-induced impairment of working memory. OBJECTIVES In this study, we investigated the effect of repeated METH treatment on spatial working memory in rats. MATERIALS AND METHODS Rats were repeatedly administered METH (2 mg/kg) once a day for 7 days, and their memory function was assessed with a delayed spatial win-shift task in a radial arm maze. The task consisted of two phases, a training phase and a test phase, separated by a delay. RESULTS METH-treated animals showed an impairment of performance in the test phase when the delay time was increased from 5 to 30 min or longer. The effect of METH persisted for at least 14 days after the drug withdrawal. METH-induced impairment of working memory was reversed by clozapine (3 and 10 mg/kg, for 7 days), but not haloperidol (1 and 2 mg/kg, for 7 days). The improving effect of clozapine diminished 7 days after the withdrawal. Phosphorylated extracellular signal-regulated kinase1/2 (ERK1/2) levels were significantly increased in the hippocampus of saline-treated control rats from 5 to 60 min after the training phase. In contrast, hyperphosphorylation of ERK1/2 was abolished in the hippocampus of rats treated with METH. CONCLUSIONS These findings suggest that repeated METH treatment induces impairment of working memory, which is associated with a dysfunctional ERK1/2 pathway in the hippocampus. Furthermore, clozapine may be effective for the treatment of METH-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Taku Nagai
- Laboratory of Neuropsychopharmacology, Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Rodrigo R, Erceg S, Rodriguez-Diaz J, Saez-Valero J, Piedrafita B, Suarez I, Felipo V. Glutamate-induced activation of nitric oxide synthase is impaired in cerebral cortex in vivo in rats with chronic liver failure. J Neurochem 2007; 102:51-64. [PMID: 17286583 DOI: 10.1111/j.1471-4159.2006.04446.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It has been proposed that impairment of the glutamate-nitric oxide-cyclic guanosine monophosphate (cGMP) pathway in brain contributes to cognitive impairment in hepatic encephalopathy. The aims of this work were to assess whether the function of this pathway and of nitric oxide synthase (NOS) are altered in cerebral cortex in vivo in rats with chronic liver failure due to portacaval shunt (PCS) and whether these alterations are due to hyperammonemia. The glutamate-nitric oxide-cGMP pathway function and NOS activation by NMDA was analysed by in vivo microdialysis in cerebral cortex of PCS and control rats and in rats with hyperammonemia without liver failure. Similar studies were done in cortical slices from these rats and in cultured cortical neurons exposed to ammonia. Basal NOS activity, nitrites and cGMP are increased in cortex of rats with hyperammonemia or liver failure. These increases seem due to increased inducible nitric oxide synthase expression. NOS activation by NMDA is impaired in cerebral cortex in both animal models and in neurons exposed to ammonia. Chronic liver failure increases basal NOS activity, nitric oxide and cGMP but reduces activation of NOS induced by NMDA receptors activation. Hyperammonemia is responsible for both effects which will lead, independently, to alterations contributing to neurological alterations in hepatic encephalopathy.
Collapse
Affiliation(s)
- Regina Rodrigo
- Laboratory of Neurobiology, Centro de Investigacion Principe Felipe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Maurice T, Meunier J, Feng B, Ieni J, Monaghan DT. Interaction with sigma(1) protein, but not N-methyl-D-aspartate receptor, is involved in the pharmacological activity of donepezil. J Pharmacol Exp Ther 2006; 317:606-14. [PMID: 16397090 DOI: 10.1124/jpet.105.097394] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we examined the interaction of (+/-)-2,3-dihydro-5,6-dimethoxy-2-[[1-(phenylmethyl)-4-piperidinyl]-methyl]-1H-inden-1-one hydrochloride (donepezil), a potent cholinesterase inhibitor, with two additional therapeutically relevant targets, N-methyl-d-aspartate (NMDA) and sigma(1) receptors. Donepezil blocked the responses of recombinant NMDA receptors expressed in Xenopus oocytes. The blockade was voltage-dependent, suggesting a channel blocker mechanism of action, and was not competitive at either the l-glutamate or glycine binding sites. The low potency of donepezil (IC(50) = 0.7-3 mM) suggests that NMDA receptor blockade does not contribute to the therapeutic actions of donepezil. Of potential therapeutic relevance, donepezil binds to the sigma(1) receptor with high affinity (K(i) = 14.6 nM) in an in vitro preparation (Neurosci Lett 260:5-8, 1999). Thus, we sought to determine whether an interaction with the sigma(1) receptor may occur in vivo under physiologically relevant conditions by evaluating the sigma(1) receptor dependence effects of donepezil in behavioral tasks. Donepezil showed antidepressant-like activity in the mouse-forced swimming test as did the sigma(1) receptor agonist igmesine. This effect was not displayed by the other cholinesterase inhibitors, rivastigmine and tacrine. The donepezil and igmesine effects were blocked by preadministration of the sigma(1) receptor antagonist N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino) ethylamine (BD1047) and an in vivo antisense probe treatment. The memory-enhancing effect of donepezil was also investigated. All cholinesterase inhibitors attenuated dizocilpine-induced learning impairments. However, only the donepezil and igmesine effects were blocked by BD1047 or the antisense treatment. Therefore, donepezil behaved as an effective sigma(1) receptor agonist on these behavioral responses, and an interaction of the drug with the sigma(1) receptor must be considered in its pharmacological actions.
Collapse
Affiliation(s)
- Tangui Maurice
- Unité 710 de l'Institut National de la Santé et de la Recherche Médicale, Ecole Pratique des Hautes Etudes, Université de Montpellier II, Montpellier, France.
| | | | | | | | | |
Collapse
|
17
|
Monnet FP, Maurice T. The Sigma1 Protein as a Target for the Non-genomic Effects of Neuro(active)steroids: Molecular, Physiological, and Behavioral Aspects. J Pharmacol Sci 2006; 100:93-118. [PMID: 16474209 DOI: 10.1254/jphs.cr0050032] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Steroids synthesized in the periphery or de novo in the brain, so called 'neurosteroids', exert both genomic and nongenomic actions on neurotransmission systems. Through rapid modulatory effects on neurotransmitter receptors, they influence inhibitory and excitatory neurotransmission. In particular, progesterone derivatives like 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone) are positive allosteric modulators of the gamma-aminobutyric acid type A (GABA(A)) receptor and therefore act as inhibitory steroids, while pregnenolone sulphate (PREGS) and dehydroepiandrosterone sulphate (DHEAS) are negative modulators of the GABA(A) receptor and positive modulators of the N-methyl-D-aspartate (NMDA) receptor, therefore acting as excitatory neurosteroids. Some steroids also interact with atypical proteins, the sigma (sigma) receptors. Recent studies particularly demonstrated that the sigma1 receptor contributes effectively to their pharmacological actions. The present article will review the data demonstrating that the sigma1 receptor binds neurosteroids in physiological conditions. The physiological relevance of this interaction will be analyzed and the impact on physiopathological outcomes in memory and drug addiction will be illustrated. We will particularly highlight, first, the importance of the sigma1-receptor activation by PREGS and DHEAS which may contribute to their modulatory effect on calcium homeostasis and, second, the importance of the steroid tonus in the pharmacological development of selective sigma1 drugs.
Collapse
Affiliation(s)
- François P Monnet
- Unité 705 de l'Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 7157 du Centre National de la Recherche Scientifique, Université de Paris V et VII, Hôpital Lariboisière-Fernand Widal, Paris, France
| | | |
Collapse
|
18
|
Abstract
The current investigation was undertaken to explore further the interactions between ethanol and the phencyclidine analog dizocilpine maleate (MK-801) on behaviors in male and female rats. It was previously found that ethanol dependence conferred cross-tolerance to the behaviorally activating effects of dizocilpine. The current set of studies was designed to assay the interactions between dizocilpine and ethanol in ethanol-naive animals by measuring open field behaviors. I also tested interactions between dizocilpine and rimcazole, a sigma receptor antagonist. In agreement with previous reports, I found significant effects of dizocilpine on several open field behaviors. In general, female rats displayed a lower level of hyperlocomotion and higher level of stereotypies than did male rats. Co-administration of ethanol delayed time to peak hyperlocomotion in male rats. It reduced locomotion in female rats compared with findings for administration of dizocilpine alone. Co-administration of ethanol with dizocilpine increased stereotypies in both sexes. Administration of ethanol increased locomotion to a greater degree in female than in male rats. In contrast, co-administration of rimcazole with dizocilpine had little effect on hyperlocomotion in male rats while increasing levels in female rats. Rimcazole increased dizocilpine-induced stereotypies to a greater extent in male than in female rats. Results of receptor-binding studies revealed small differences for cerebral cortical sigma receptors between male and female rats. Dizocilpine was unable to compete for sigma receptor-binding sites. This is in contrast to phencyclidine, which acts at both N-methyl-D-aspartate (NMDA) and sigma receptors. These findings extend previous evidence of interactions between ethanol and dizocilpine, but highlight that responses vary by measure, sex, and length of ethanol exposure. In addition, findings from the current study uncovered sex-selective interactions between dizocilpine and a sigma receptor ligand, providing further evidence for complex actions and interactions of this noncompetitive NMDA receptor antagonist with multiple sites in brain.
Collapse
Affiliation(s)
- Leslie L Devaud
- Department of Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209-8334, USA.
| |
Collapse
|
19
|
Urani A, Romieu P, Roman FJ, Maurice T. Enhanced antidepressant effect of sigma(1) (sigma(1)) receptor agonists in beta(25-35)-amyloid peptide-treated mice. Behav Brain Res 2002; 134:239-47. [PMID: 12191810 DOI: 10.1016/s0166-4328(02)00033-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study examined the antidepressant efficacy of the selective sigma(1) receptor agonists igmesine or PRE-084 in mice injected intracerebroventricularly (i.c.v.) with beta(25-35)-amyloid peptide and submitted to the forced swim test. Beta(25-35) peptide-injected animals developed memory deficits after 8 days contrarily to controls injected with scrambled beta(25-35) peptide or vehicle solution. In the forced swim test, the i.c.v. treatment failed to affect the immobility duration, but the antidepressant effect of the sigma(1) agonists was facilitated in beta(25-35) animals. Igmesine reduced immobility duration at 30 versus 60 mg/kg in control groups. PRE-084 decreased immobility duration at 30 and 60 mg/kg only in beta(25-35) animals. Desipramine reduced the immobility duration similarly among groups and fluoxetine appeared less potent in beta(25-35) animals. The beta(25-35) animals exhibited decreased progesterone levels in the hippocampus (-47%). The behavioural efficacy of sigma(1) agonists is known to depend on neuro(active)steroids levels synthesised by glial cells and neurones, which are affected by the beta-amyloid toxicity. This behavioural study suggests that sigma(1) agonists, due to their enhanced efficacy, may allow to alleviate the depressive symptoms associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Alexandre Urani
- INSERM U.336, Behavioural Neuropharmacology group, Institut de Biologie, 4, bvd Henri IV, 34060 Montpellier, France
| | | | | | | |
Collapse
|
20
|
He J, Yamada K, Nakajima A, Kamei H, Nabeshima T. Learning and memory in two different reward tasks in a radial arm maze in rats. Behav Brain Res 2002; 134:139-48. [PMID: 12191800 DOI: 10.1016/s0166-4328(01)00460-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In an eight-arm radial maze, working and reference memory can be assessed simultaneously in the fixed position of reward task (FPRT) in which half of the arms are baited and their positions are fixed throughout the training trails. We characterized performance of rats in the variable position of reward task (VPRT), in which four out of eight arms were baited, but the positions were varied in every training trial. In the VPRT, the rats learned to choose all arms without any discrimination between baited and non-baited arms and the memory retention was time-dependent. The performance of rats in the FPRT was impaired by altering the spatial organization of the extramaze cues while it was not affected in the VPRT. The number of Fos-positive cells transiently increased in the cerebral cortex and hippocampus of both groups of animals during the training. Finally, bilateral lesions of the dorsal hippocampus resulted in an impairment of working memory in the FPRT and the performance of the rats in the VPRT. These results suggest that different strategies are used between the FPRT and VPRT but the hippocampus plays an important role in performance of rats trained for the VPRT as well as FPRT.
Collapse
Affiliation(s)
- Jue He
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan
| | | | | | | | | |
Collapse
|
21
|
Gould TJ, McCarthy MM, Keith RA. MK-801 disrupts acquisition of contextual fear conditioning but enhances memory consolidation of cued fear conditioning. Behav Pharmacol 2002; 13:287-94. [PMID: 12218509 DOI: 10.1097/00008877-200207000-00005] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of pre-training or post-training subcutaneous injections of multiple doses of the non-competitive NMDA-receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) on cued and contextual fear conditioning were examined in F344 rats. Pre-training injections of MK-801 (0.3 and 1.0 mg/kg) disrupted contextual fear conditioning but not cued fear conditioning. Post-training injections of MK-801 did not disrupt cued or contextual fear conditioning. In fact, the 0.3 mg/kg dose of MK-801 enhanced cued fear conditioning. Finally, rats were tested for MK-801-induced alterations in sensitivity to pain using the formalin test for nociception. MK-801 did not reduce sensitivity to pain. These results suggest that NMDA receptors are involved in acquisition of contextual fear conditioning but not in memory consolidation of the learned response.
Collapse
Affiliation(s)
- T J Gould
- CNS Discovery Department, AstraZeneca Pharmaceuticals, Wilmington, DE 19850-5437, USA.
| | | | | |
Collapse
|
22
|
Maurice T, Urani A, Phan VL, Romieu P. The interaction between neuroactive steroids and the sigma1 receptor function: behavioral consequences and therapeutic opportunities. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 37:116-32. [PMID: 11744080 DOI: 10.1016/s0165-0173(01)00112-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Steroids, synthesized in peripheral glands or centrally in the brain--the latter being named neurosteroids--exert an important role as modulators of the neuronal activity by interacting with different receptors or ion channels. In addition to the modulation of GABA(A), NMDA or cholinergic receptors, neuroactive steroids interact with an atypical intracellular receptor, the sigma(1) protein. This receptor has been cloned in several species, and highly selective synthetic ligands are available. At the cellular level, sigma1 agonists modulate intracellular calcium mobilization and extracellular calcium influx, NMDA-mediated responses, acetylcholine release, and alter monoaminergic systems. At the behavioral level, the sigma1 receptor is involved in learning and memory processes, the response to stress, depression, neuroprotection and pharmacodependence. Pregnenolone, dehydroepiandrosterone, and their sulfate esters behave as sigma1 agonists, while progesterone is a potent antagonist. This review will detail the physiopathological consequences of these interactions, focusing on recent results on memory and depression. The therapeutical interest of selective sigma1 receptor agonists in alleviating aging-related cognitive deficits will be discussed.
Collapse
Affiliation(s)
- T Maurice
- Behavioural Neuropharmacology Group, INSERM U. 336, Institut de Biologie, 4 Bvd Henri IV, 34060, Montpellier, France.
| | | | | | | |
Collapse
|
23
|
Kitaichi K, Chabot JG, Moebius FF, Flandorfer A, Glossmann H, Quirion R. Expression of the purported sigma(1) (sigma(1)) receptor in the mammalian brain and its possible relevance in deficits induced by antagonism of the NMDA receptor complex as revealed using an antisense strategy. J Chem Neuroanat 2000; 20:375-87. [PMID: 11207432 DOI: 10.1016/s0891-0618(00)00106-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sigma (sigma) receptors have generated a great deal of interest on the basis of their possible role in psychosis, neuroprotection and various other behaviors including learning processes. The existence of at least two classes of sigma receptor binding sites (sigma(1) and sigma(2)) is now well established. The recent cloning of the mouse, guinea pig and human sigma(1) receptors has allowed the study of the discrete distribution of the sigma(1) receptor mRNA in rodent and human brain tissues using in situ hybridization. Overall, the sites of expression of specific sigma(1) receptor mRNA signals were in accordance to the anatomical distribution of sigma(1) receptor protein first established by quantitative receptor autoradiography. Specific sigma(1) receptor hybridization signals were found to be widely, but discretely distributed, in mouse and guinea pig brain tissues. The highest levels of transcripts were seen in various cranial nerve nuclei. Lower, but still high hybridization signals were observed in mesencephalic structures such as the red nucleus, periaqueductal gray matter and substantia nigra, as well as in some diencephalic structures including such as the habenula and the arcuate, paraventricular and ventromedial hypothalamic nuclei. Superficial (I-II) and deeper (IV-VI) cortical laminae were moderately labeled in the mouse brain. Moderate levels of sigma(1) receptor mRNA were also found in the pyramidal cell layer and the dentate gyrus of the hippocampal formation. Other structures such as the thalamus and amygdaloid body also expressed the sigma(1) receptor mRNA although to a lesser extent. In murine peripheral tissues, strong hybridization signals were observed in the liver, white pulp of the spleen and the adrenal gland. In the postmortem human brain, moderate levels of sigma(1) receptor mRNA, distributed in a laminar fashion, were detected in the temporal cortex with the deeper laminae (IV-VI) being particularly enriched. In the hippocampal formation, the strongest hybridization signals were observed in the dentate gyrus while all other subfields of the human hippocampal formation expressed lower levels of the sigma(1) receptor mRNA. Antisense oligodeoxynucleotides against the purported sigma(1) receptor were used next to investigate the possible role of this receptor in dizocilpine (MK-801)/NMDA receptor blockade-induced amnesia. Following a continuous intracerebroventricular infusion of a specific sigma(1) receptor antisense into the third ventricle (0.4 nmol/h for 5 days), sigma(1)/[3H](+)pentazocine binding was significantly reduced in mouse brain membrane homogenates while a scrambled antisense control was without effect. Moreover, the sigma(1) receptor antisense treatments (5 nmol/injection, every 12 hx3 or 0.4 nmol/h for 5 days) attenuated (+)MK-801/NMDA receptor blockade-induced cognitive deficits in the treated mice while a scrambled antisense control had no effect. Taken together, these results demonstrate the widespread, but discrete, distribution of the sigma(1) receptor mRNA in the mammalian central nervous system. Moreover, antisense treatments against the purported sigma(1) receptor gene reduced specific sigma(1)/[3H](+)pentazocine binding and modulated cognitive behaviors associated with NMDA receptor blockade providing further evidence for the functional relevance of the cloned gene.
Collapse
MESH Headings
- Amnesia/physiopathology
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Antisense Elements (Genetics)
- Autoradiography
- Brain Chemistry/genetics
- Dizocilpine Maleate/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Gene Expression
- Guinea Pigs
- Humans
- In Situ Hybridization
- Male
- Mammals
- Mice
- Mice, Inbred Strains
- Pentazocine/metabolism
- Pentazocine/pharmacology
- RNA, Messenger/analysis
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, sigma/analysis
- Receptors, sigma/genetics
- Receptors, sigma/metabolism
- Tritium
Collapse
Affiliation(s)
- K Kitaichi
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, 6875 LaSalle Blvd, Verdun, Quebec, Canada H4H 1R3
| | | | | | | | | | | |
Collapse
|
24
|
Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J Neurosci 2000. [PMID: 10995859 DOI: 10.1523/jneurosci.20-18-07116.2000] [Citation(s) in RCA: 397] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates both short-term synaptic functions and activity-dependent synaptic plasticity such as long-term potentiation. In the present study, we investigated the role of BDNF in the spatial reference and working memory in a radial arm maze test. The radial arm maze training resulted in a significant increase in the BDNF mRNA expression in the hippocampus, although the expression in the frontal cortex did not change. When spatial learning was inhibited by treatment with 7-nitroindazole, an inhibitor of brain nitric oxide synthase, the increase in the hippocampal BDNF mRNA did not occur. To clarify the causal relation between BDNF mRNA expression and spatial memory formation, we examined the effects of antisense BDNF treatment on spatial learning and memory. A continuous intracerebroventricular infusion of antisense BDNF oligonucleotide resulted in an impairment of spatial learning, although the sense oligonucleotide had no effect. Treatment with antisense, but not sense, BDNF oligonucleotide was associated with a significant reduction of BDNF mRNA and protein levels in the hippocampus. Furthermore, treatment with antisense BDNF oligonucleotide in rats, which had previously acquired spatial memory by an extensive training, impaired both reference and working memory. There were no differences in locomotor activity, food consumption, and body weight between the antisense and sense oligonucleotide-treated rats. These results suggest that BDNF plays an important role not only in the formation, but also in the retention and/or recall, of spatial memory.
Collapse
|
25
|
Mamiya T, Noda Y, Noda A, Hiramatsu M, Karasawa K, Kameyama T, Furukawa S, Yamada K, Nabeshima T. Effects of sigma receptor agonists on the impairment of spontaneous alternation behavior and decrease of cyclic GMP level induced by nitric oxide synthase inhibitors in mice. Neuropharmacology 2000; 39:2391-8. [PMID: 10974323 DOI: 10.1016/s0028-3908(00)00078-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, we investigated the involvement of the interaction between sigma receptors and the nitric oxide/cyclic GMP pathway in short term memory in mice, assessed through spontaneous alternation behavior in a Y-maze. N(G)-Nitro-L-arginine methyl ester and 7-nitro indazole, both nitric oxide synthase inhibitors, impaired the spontaneous alternation behavior. These impairments were attenuated by (+) SKF 10,047 and (+) pentazocine, sigma(1) receptor agonists. Further, the sigma(1) receptor antagonist, NE-100, reversed the improvements made by sigma receptor agonists. Cyclic GMP levels and nitric oxide synthase activity in the hippocampus were reduced by treatment with N(G)-nitro-L-arginine methyl ester. The suppressive effects of N(G)-nitro-L-arginine methyl ester on the cyclic GMP levels were reversed by co-treatment with (+) SKF 10,047, but the decline in nitric oxide synthase activity was not. These results suggest that the nitric oxide/cyclic GMP pathway in the hippocampus is responsible for spontaneous alternation behavior in a Y-maze. Further, the ameliorating effects of (+) SKF 10,047 on the impairment of spontaneous alternation behavior may be mediated through activation of guanylate cyclase, but not nitric oxide synthase in the hippocampus of mice.
Collapse
Affiliation(s)
- T Mamiya
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, 466-8560, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zou LB, Yamada K, Sasa M, Nakata Y, Nabeshima T. Effects of sigma(1) receptor agonist SA4503 and neuroactive steroids on performance in a radial arm maze task in rats. Neuropharmacology 2000; 39:1617-27. [PMID: 10854906 DOI: 10.1016/s0028-3908(99)00228-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This study examined the effects of sigma(1) receptor agonist SA4503 and neuroactive steroids dehydroepiandrosterone sulfate (DHEAS), pregnenolone sulfate (PREGS) and progesterone (PROG) on spatial working and reference memory in a radial arm maze task in rats. The insertion of a 6-min delay between the 2nd and 3rd choices caused a specific decline in working memory, but had no effect on reference memory. This decline in working memory was improved by SA4503, but not by DHEAS, PREGS or PROG. A non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine significantly impaired both working and reference memory in the presence or absence of a delay. The dizocilpine-induced impairments in the presence of a 6-min delay were ameliorated by SA4503, DHEAS and PREGS, whereas PROG had no effect. The beneficial effects of SA4503, DHEAS and PREGS were antagonized by treatment with sigma(1) receptor antagonist N, N-dipropyl-2-(4-methoxy-3-(2-phenylethoxy)phenyl)-ethylamine hydrochloride (NE-100). Furthermore, PROG attenuated the ameliorating effects of SA4503, DHEAS and PREGS on dizocilpine-induced memory deficits. These results suggest that sigma(1) receptors play a significant role in short-term working memory. Furthermore, it is suggested that DHEAS and PREGS ameliorate dizocilpine-induced memory impairments by acting as sigma(1) receptor agonists, while PROG antagonizes their effects by acting as a sigma(1) receptor antagonist.
Collapse
Affiliation(s)
- L B Zou
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 466-8560, Nagoya, Japan
| | | | | | | | | |
Collapse
|
27
|
Maurice T, Phan VL, Urani A, Kamei H, Noda Y, Nabeshima T. Neuroactive neurosteroids as endogenous effectors for the sigma1 (sigma1) receptor: pharmacological evidence and therapeutic opportunities. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 81:125-55. [PMID: 10591471 DOI: 10.1254/jjp.81.125] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neuroactive neurosteroids, including progesterone, allopregnanolone, pregnenolone and dehydroepiandrosterone, represent steroid hormones synthesized de novo in the brain and acting locally on nervous cells. Neurosteroids modulate several neurotransmitter systems such as gamma-aminobutyric acid type A (GABA(A)), N-methyl-D-aspartate (NMDA) and acetylcholine receptors. As physiologic consequences, they are involved in neuronal plasticity, learning and memory processes, aggression and epilepsy, and they modulate the responses to stress, anxiety and depression. The sigma1-receptor protein was recently purified and its cDNA was cloned in several species. The amino-acid sequences are structurally unrelated to known mammalian proteins, but shared homology with a fungal sterol C8-C7 isomerase. The sigma1-receptor ligands exert a potent neuromodulation on excitatory neurotransmitter systems, including the glutamate and cholinergic systems. Consequently, selective sigma1 agonists show neuroprotective properties and beneficial effects in memory processes, stress and depression. The evidence of a direct interaction between neurosteroids and sigma1 receptors was first suggested by the ability of several steroids to inhibit the binding of sigma1-receptor radioligands in vitro and in vivo. A crossed pharmacology between neurosteroids and sigma1-receptor ligands was described in several physiological tests and behavioral responses. This review will detail the recent evidence for a common mechanism of action between neurosteroids and sigma1-receptor ligands and focus on the potential therapeutic interests of such interaction in the physiopathology of learning and memory impairments, stress, depression and neuroprotection.
Collapse
Affiliation(s)
- T Maurice
- INSERM U. 336, Behavioral Neuropharmacology Group, ENSCM, Montpellier, France
| | | | | | | | | | | |
Collapse
|
28
|
Zou LB, Yamada K, Sasa M, Nabeshima T. Two phases of behavioral plasticity in rats following unilateral excitotoxic lesion of the hippocampus. Neuroscience 1999; 92:819-26. [PMID: 10426524 DOI: 10.1016/s0306-4522(99)00029-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the effects of dizocilpine, a non-competitive N-methyl-D-aspartate receptor antagonist, on spatial reference and working memory in a radial arm maze task in rats with a unilateral hippocampal lesion. At a dose of 0.2 mg/kg to intact rats, dizocilpine significantly impaired both reference and working memory, and produced ataxia and impairment of food intake; at 0.1 mg/kg, dizocilpine had no effect on performance. Unilateral hippocampal lesion induced by quinolinic acid produced a marked working memory deficit concomitant with a slight but significant impairment of reference memory when mnemonic ability was examined one week after the lesion. The spatial memory deficits in the rats with a unilateral hippocampal lesion were ameliorated by repeated daily trainings over a 21-day period. Following recovery of the spatial memory deficits produced by the brain lesion (four weeks after the brain lesion), dizocilpine (0.1 mg/kg) significantly impaired both reference and working memory, without affecting general behavior or food intake in the brain-lesioned rats. An impairment of working memory, but not reference memory, by dizocilpine was observed six weeks after the brain lesion. However, the disrupting effect of dizocilpine at 0.1 mg/kg on spatial working memory had disappeared at eight weeks after the lesion. Ten weeks after the brain lesion, dizocilpine at 0.2 mg/kg was necessary to induce spatial memory impairment, which was accompanied by motor and food intake deficits, as in intact rats. In sham-operated rats, the dose-response effects of dizocilpine did not differ from those in intact rats at any time after the operation. These results suggest that two phases of behavioral plasticity take place, depending on demand, to compensate for brain dysfunction after the unilateral lesion of the hippocampus in rats.
Collapse
Affiliation(s)
- L B Zou
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University School of Medicine, Japan
| | | | | | | |
Collapse
|
29
|
Maurice T, Phan VL, Noda Y, Yamada K, Privat A, Nabeshima T. The attenuation of learning impairments induced after exposure to CO or trimethyltin in mice by sigma (sigma) receptor ligands involves both sigma1 and sigma2 sites. Br J Pharmacol 1999; 127:335-42. [PMID: 10385231 PMCID: PMC1566026 DOI: 10.1038/sj.bjp.0702553] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/1998] [Revised: 02/01/1999] [Accepted: 02/18/1999] [Indexed: 11/08/2022] Open
Abstract
1. Sigma (sigma) receptor ligands were previously reported to alleviate learning and memory impairments on several pharmacological and pathological rodent models of amnesia. Such effect was demonstrated as involving the sigma1 subtype of sigma receptor. 2. In this study, we characterized the pharmacological effect mediated by sigma ligands on two lesional models of amnesia in mice: (1) the hypoxia-related learning and memory impairment model induced by repeated exposure to carbon monoxide (CO) gas; and (2) the intoxication with trimethyltin (1 mg kg(-1)). 3. The selective sigma1 ligand PRE-084 (1 mg kg(-1)) or the non-selective sigma1/sigma2 compounds DTG (0.1 mg kg(-1)), BD1008 (3 mg kg(-1)), and haloperidol (0.1 mg kg(-1)) reversed significantly the spontaneous alternation deficits observed 7 days after exposure to CO or 14 days after intoxication with trimethyltin. 4. The selective sigma1 receptor antagonist NE-100 (1 mg kg(-1)) was ineffective by itself, but blocked completely the PRE-084 effects, partially the DTG effects, and did not affect the effects induced by BD1008 or haloperidol. 5. A similar pharmacological profile was observed in the step-down type passive avoidance test performed 8 days after exposure to CO. 6. These results show that, in contrast to the previously reported amnesia models, the impairments induced after exposure to CO or intoxication with trimethyltin could be alleviated not only by sigma1 receptor agonists but also by sigma2 agonists. The particular pattern of neurodegeneration observed in these lesional models may explain these differences.
Collapse
Affiliation(s)
- T Maurice
- INSERM U. 336, Développement, Plasticité et Vieillissement du Système Nerveux, ENSCM, Montpellier, France.
| | | | | | | | | | | |
Collapse
|
30
|
Neuroactive Neurosteroids as Endogenous Effectors for the Sigma1 (σ1) Receptor: Pharmacological Evidence and Therapeutic Opportunities. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0021-5198(19)30781-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|