1
|
Gonçalves FQ, Valada P, Matos M, Cunha RA, Tomé AR. Feedback facilitation by adenosine A 2A receptors of ATP release from mouse hippocampal nerve terminals. Purinergic Signal 2024; 20:247-255. [PMID: 36997740 PMCID: PMC11189372 DOI: 10.1007/s11302-023-09937-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/25/2023] [Indexed: 04/01/2023] Open
Abstract
The adenosine modulation system is mostly composed by inhibitory A1 receptors (A1R) and the less abundant facilitatory A2A receptors (A2AR), the latter selectively engaged at high frequency stimulation associated with synaptic plasticity processes in the hippocampus. A2AR are activated by adenosine originated from extracellular ATP through ecto-5'-nucleotidase or CD73-mediated catabolism. Using hippocampal synaptosomes, we now investigated how adenosine receptors modulate the synaptic release of ATP. The A2AR agonist CGS21680 (10-100 nM) enhanced the K+-evoked release of ATP, whereas both SCH58261 and the CD73 inhibitor α,β-methylene ADP (100 μM) decreased ATP release; all these effects were abolished in forebrain A2AR knockout mice. The A1R agonist CPA (10-100 nM) inhibited ATP release, whereas the A1R antagonist DPCPX (100 nM) was devoid of effects. The presence of SCH58261 potentiated CPA-mediated ATP release and uncovered a facilitatory effect of DPCPX. Overall, these findings indicate that ATP release is predominantly controlled by A2AR, which are involved in an apparent feedback loop of A2AR-mediated increased ATP release together with dampening of A1R-mediated inhibition. This study is a tribute to María Teresa Miras-Portugal.
Collapse
Affiliation(s)
- Francisco Q Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Pedro Valada
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Marco Matos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- FMUC - Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal.
| | - Angelo R Tomé
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal
| |
Collapse
|
2
|
Luo H, Cao R, Wang L, Zhu L. Protective effect of Cistanchis A on ethanol-induced damage in primary cultured mouse hepatocytes. Biomed Pharmacother 2016; 83:1071-1079. [DOI: 10.1016/j.biopha.2016.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022] Open
|
3
|
Adenosine A2A receptors modulate acute injury and neuroinflammation in brain ischemia. Mediators Inflamm 2014; 2014:805198. [PMID: 25165414 PMCID: PMC4138795 DOI: 10.1155/2014/805198] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/26/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023] Open
Abstract
The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.
Collapse
|
4
|
|
5
|
Adenosine A(1) and A(2A) receptors in mouse prefrontal cortex modulate acetylcholine release and behavioral arousal. J Neurosci 2009; 29:871-81. [PMID: 19158311 DOI: 10.1523/jneurosci.4111-08.2009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During prolonged intervals of wakefulness, brain adenosine levels rise within the basal forebrain and cortex. The view that adenosine promotes sleep is supported by the corollary that N-methylated xanthines such as caffeine increase brain and behavioral arousal by blocking adenosine receptors. The four subtypes of adenosine receptors are distributed heterogeneously throughout the brain, yet the neurotransmitter systems and brain regions through which adenosine receptor blockade causes arousal are incompletely understood. This study tested the hypothesis that adenosine A(1) and A(2A) receptors in the prefrontal cortex contribute to the regulation of behavioral and cortical arousal. Dependent measures included acetylcholine (ACh) release in the prefrontal cortex, cortical electroencephalographic (EEG) power, and time to waking after anesthesia. Sleep and wakefulness were also quantified after microinjecting an adenosine A(1) receptor antagonist into the prefrontal cortex. The results showed that adenosine A(1) and A(2A) receptors in the prefrontal cortex modulate cortical ACh release, behavioral arousal, EEG delta power, and sleep. Additional dual microdialysis studies revealed that ACh release in the pontine reticular formation is significantly altered by dialysis delivery of adenosine receptor agonists and antagonists to the prefrontal cortex. These data, and early brain transection studies demonstrating that the forebrain is not needed for sleep cycle generation, suggest that the prefrontal cortex modulates EEG and behavioral arousal via descending input to the pontine brainstem. The results provide novel evidence that adenosine A(1) receptors within the prefrontal cortex comprise part of a descending system that inhibits wakefulness.
Collapse
|
6
|
Vladychenskaya EA, Boldyrev AA. Effect of homocysteine on respiratory burst in neutrophils induced by chemotaxis factor fMLP. NEUROCHEM J+ 2009. [DOI: 10.1134/s1819712409010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Abstract
Adenosine, a catabolite of ATP, exerts numerous effects in the heart, including modulation of the cardiac response to stress, such as that which occurs during myocardial ischemia and reperfusion. Over the past 20 years, substantial evidence has accumulated that adenosine, administered either prior to ischemia or during reperfusion, reduces both reversible and irreversible myocardial injury. The latter effect results in a reduction of both necrosis or myocardial infarction (MI) and apoptosis. These effects appear to be mediated via the activation of one or more G-protein-coupled receptors (GPCRs), referred to as A(1), A(2A), A(2B) and A(3) adenosine receptor (AR) subtypes. Experimental studies in different species and models suggest that activation of the A(1) or A(3)ARs prior to ischemia is cardioprotective. Further experimental studies reveal that the administration of A(2A)AR agonists during reperfusion can also reduce MI, and recent reports suggest that A(2B)ARs may also play an important role in modulating myocardial reperfusion injury. Despite convincing experimental evidence for AR-mediated cardioprotection, there have been only a limited number of clinical trials examining the beneficial effects of adenosine or adenosine-based therapeutics in humans, and the results of these studies have been equivocal. This review summarizes our current knowledge of AR-mediated cardioprotection, and the roles of the four known ARs in experimental models of ischemia-reperfusion. The chapter concludes with an examination of the clinical trials to date assessing the safety and efficacy of adenosine as a cardioprotective agent during coronary thrombolysis in humans.
Collapse
Affiliation(s)
- John P Headrick
- Heart Foundation Research Centre, School of Medical Science, Griffith University, Southport, Queensland, 4217, Australia.
| | | |
Collapse
|
8
|
Cunha-Reis D, Ribeiro JA, Sebastião AM. A1 and A2A receptor activation by endogenous adenosine is required for VIP enhancement of K+-evoked [3H]-GABA release from rat hippocampal nerve terminals. Neurosci Lett 2008; 430:207-12. [DOI: 10.1016/j.neulet.2007.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 10/10/2007] [Accepted: 10/30/2007] [Indexed: 11/28/2022]
|
9
|
Adenosine receptor ligands protect against a combination of apoptotic and necrotic cell death in cerebellar granule neurons. Exp Brain Res 2007; 186:151-60. [PMID: 18040669 DOI: 10.1007/s00221-007-1218-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 11/07/2007] [Indexed: 12/20/2022]
Abstract
Agonists at A(1) receptors and antagonists at A(2A) receptors are known to be neuroprotective against excitotoxicity. We set out to clarify the mechanisms involved by studying interactions between adenosine receptor ligands and endogenous glutamate in cultures of rat cerebellar granule neurons (CGNs). Glutamate and the selective agonist N-methyl-D: -aspartate (NMDA), applied to CGNs at 9 div (days in vitro), both induced cell death in a concentration-dependent manner, which was attenuated by treatment with the NMDA receptor antagonists dizocilpine, D: -2-amino-5-phosphono-pentanoic acid (D: -AP5) or kynurenic acid (KYA), but not by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Glutamate toxicity was reduced in the presence of all of the following: cyclosporin A (CsA), a blocker of the membrane permeability transition pore, the caspase-3 inhibitor, benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethylketone (Z-DEVD-fmk), the poly (ADP-ribose) polymerase (PARP-1) inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ), and nicotinamide. This is indicative of involvement of both apoptotic and necrotic processes. The A(1) receptor agonist, N (6)-cyclopentyladenosine (CPA), and the A(2A) receptor antagonist 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazo-5-yl-amino]ethyl)phenol (ZM241385) afforded significant protection, while the A(1) receptor blocker 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and the A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxyamidoadenosine (CGS21680) had no effect. These results confirm that glutamate-induced neurotoxicity in CGNs is mainly via the NMDA receptor, but show that a form of cell death which exhibits aspects of both apoptosis and necrosis is involved. The protective activity of A(1) receptor activation or A(2A) receptor blockade occurs against this mixed profile of cell death, and appears not to involve the selective inhibition of classical apoptotic or necrotic cascades.
Collapse
|
10
|
Cunha-Reis D, Fontinha BM, Ribeiro JA, Sebastião AM. Tonic adenosine A1 and A2A receptor activation is required for the excitatory action of VIP on synaptic transmission in the CA1 area of the hippocampus. Neuropharmacology 2006; 52:313-20. [PMID: 17030044 DOI: 10.1016/j.neuropharm.2006.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 07/27/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
Adenosine can regulate synaptic transmission through modulation of the action of other neurotransmitters. The influence of adenosine on VIP enhancement of synaptic transmission in hippocampal slices was investigated. Facilitation of fEPSP slope by 1 nM VIP (23.3+/-1.3%) was turned into an inhibition (-12.1+/-3.4%) when extracellular endogenous adenosine was removed using adenosine deaminase (ADA, 1U/ml). Blockade of adenosine A(1) receptors with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 10 nM) or of A(2A) receptors with ZM241385 (20 nM) attenuated the effect of VIP. When both DPCPX and ZM241385 were present the effect of VIP was abolished. In the presence of ADA, selective A(1) receptor activation with N(6)-cyclopentyladenosine (CPA, 15 nM) or A(2A) receptor-activation with CGS21680 (10 nM) partially readmitted the excitatory effect of VIP on fEPSPs. In contrast, facilitation of PS amplitude by 1 nM VIP (19.1+/-1.2%) was attenuated in the presence of ADA or DPCPX but was not changed by ZM241385. CPA, in the presence of ADA, fully restored the effect of VIP on PS amplitude. In conclusion, VIP facilitation of synaptic transmission to hippocampal pyramidal cell dendrites is dependent on both A(1) and A(2A) receptor activation by endogenous adenosine. VIP effects on PS amplitude are only dependent on A(1) adenosine receptor activation. This differential sensitivity to adenosine modulation might be due to the different VIP circuits contributing to VIP effects on pyramidal cell dendrites and pyramidal cell bodies.
Collapse
Affiliation(s)
- D Cunha-Reis
- Institute of Pharmacology and Neurosciences, Faculty of Medicine and Institute of Molecular Medicine, University of Lisbon, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | | | | | | |
Collapse
|
11
|
Lasley RD, Kristo G, Keith BJ, Mentzer RM. The A2a/A2b receptor antagonist ZM-241385 blocks the cardioprotective effect of adenosine agonist pretreatment in in vivo rat myocardium. Am J Physiol Heart Circ Physiol 2006; 292:H426-31. [PMID: 16980350 DOI: 10.1152/ajpheart.00675.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is increasing evidence for interactions among adenosine receptor subtypes in the brain and heart. The purpose of this study was to determine whether the adenosine A(2a) receptor modulates the infarct size-reducing effect of preischemic administration of adenosine receptor agonists in intact rat myocardium. Adult male rats were submitted to in vivo regional myocardial ischemia (25 min) and 2 h reperfusion. Vehicle-treated rats were compared with rats pretreated with the A(1) agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA, 10 mug/kg), the nonselective agonist 5'-N-ethylcarboxamidoadenosine (NECA, 10 mug/kg), or the A(2a) agonist 2-[4-(2-carboxyethyl)phenethylamino]-5'-N-methylcarboxamidoadenosine (CGS-21680, 20 mug/kg). Additional CCPA- and NECA-treated rats were pretreated with the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 mug/kg), the A(2a)/A(2b) antagonist 4-(-2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a} {1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM-241385, 1.5 mg/kg) or the A(3) antagonist 3-propyl-6-ethyl-5[(ethylthio)carbonyl]-2-phenyl-4-propyl-3-pyridine carboxylate (MRS-1523, 2 mg/kg). CCPA and NECA reduced myocardial infarct size by 50% and 35%, respectively, versus vehicle, but CGS-21680 had no effect. DPCPX blunted the bradycardia associated with CCPA and NECA, whereas ZM-241385 attenuated their hypotensive effects. Both DPCPX and ZM-241385 blocked the protective effects of CCPA and NECA. The A(3) antagonist did not alter the hemodynamic effects of CCPA or NECA, nor did it alter adenosine agonist cardioprotection. None of the antagonists alone altered myocardial infarct size. These findings suggest that although preischemic administration of an A(2a) receptor agonist does not induce cardioprotection, antagonism of the A(2a) and/or the A(2b) receptor blocks the cardioprotection associated with adenosine agonist pretreatment.
Collapse
Affiliation(s)
- Robert D Lasley
- Dept. of Physiology, Wayne State Univ. School of Medicine, 1107 Elliman Bldg., 421 E. Canfield, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
12
|
Cunha GMA, Canas PM, Oliveira CR, Cunha RA. Increased density and synapto-protective effect of adenosine A2A receptors upon sub-chronic restraint stress. Neuroscience 2006; 141:1775-81. [PMID: 16797134 DOI: 10.1016/j.neuroscience.2006.05.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 05/10/2006] [Accepted: 05/10/2006] [Indexed: 12/20/2022]
Abstract
Stress initially causes adaptive changes in the brain and can lead to neurodegeneration if continuously present. Noxious brain conditions trigger the release of adenosine that can control brain function and neurodegeneration through inhibitory A(1) and facilitatory A(2A) receptors. We tested the effect of restraint stress on the density of adenosine receptors and their effect on the outcome of stress, focusing in a known affected region, the hippocampus. Sub-chronic restraint stress (6 h/day for 7 days) caused a parallel decrease of the density of A(1) receptors (15-20%) and an increase (near 250%) of A(2A) receptor density in rat hippocampal nerve terminals. This indicates that sub-chronic stress unbalances adenosine receptors, up-regulating A(2A) and down-regulating A(1) receptors. Sub-chronic stress did not cause hippocampal neurodegeneration but decreased the immunoreactivity (immunohistochemistry and Western blot) of a synaptic marker, synaptophysin. The blockade of A(2A) receptors with 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (0.05 mg/kg, daily i.p. injection) attenuated the loss of synaptophysin immunoreactivity observed in the hippocampus of rats subjected to sub-chronic restraint stress. This ability of A(2A) receptor antagonists to prevent the earliest stress-induced synaptic modifications provides a neurochemical and morphological correlate for the interest of A(2A) receptor antagonists to attenuate the burden of chronic stress.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Blotting, Western/methods
- Dose-Response Relationship, Drug
- Gene Expression Regulation/physiology
- Hippocampus/metabolism
- Hippocampus/pathology
- Immunohistochemistry/methods
- Male
- Neuroprotective Agents/pharmacology
- Protein Binding/drug effects
- Protein Binding/physiology
- Pyrimidines/pharmacology
- Rats
- Rats, Wistar
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/metabolism
- Restraint, Physical/methods
- Stress, Psychological/etiology
- Stress, Psychological/metabolism
- Stress, Psychological/pathology
- Stress, Psychological/physiopathology
- Synapses/metabolism
- Synaptophysin/metabolism
- Triazoles/pharmacology
- Tritium/pharmacokinetics
- Xanthines/pharmacokinetics
Collapse
Affiliation(s)
- G M A Cunha
- Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | | |
Collapse
|
13
|
Hleihel W, Lafoux A, Ouaini N, Divet A, Huchet-Cadiou C. Adenosine affects the release of Ca2+from the sarcoplasmic reticulum via A2Areceptors in ferret skinned cardiac fibres. Exp Physiol 2006; 91:681-91. [PMID: 16581872 DOI: 10.1113/expphysiol.2006.033175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, it was shown that adenosine potentiates caffeine-induced Ca2+ release. It was then proposed that the enhancement of the caffeine-induced Ca2+ release might occur by a direct effect on the ryanodine Ca2+ release channel or on other Ca2+ regulation mechanisms. Furthermore, A2A receptors may be functional on the ferret cardiac sarcoplasmic reticulum. Using chemically skinned fibres, experiments were conducted on ferret cardiac muscle to find out whether adenosine and the A1 and A2A adenosine receptor agonists (CCPA and CGS 21680) and antagonists (DPCPX and ZM 241385) affected caffeine-induced Ca2+ release and the Ca2+ sensitivity of contractile proteins. Changes in the caffeine-induced contracture brought about by adenosine and by adenosine-receptor agonists and antagonists were recorded in saponin-skinned fibres (50 microg ml(-1)). Tension-pCa relationships were then obtained by exposing Triton X-100-skinned fibres (1% v/v) sequentially to solutions of decreasing pCa. Adenosine (1-100 nm) and the specific A2A receptor agonist CGS 21680 (1-50 nm) produced a concentration-dependant potentiation of the caffeine-induced Ca2+ release from saponin-skinned fibres. The data plotted versus adenosine and CGS 21680 concentrations displayed sigmoid relationships (Hill relationship), with potentiation of Ca2+ release by 22.2 +/- 1.6 (n = 6) and 10.9 +/- 0.4% (n = 6), respectively. In addition, the potentiation of caffeine-induced Ca2+ release by adenosine (50 nm; 15.3 +/- 1.0%; n = 6) and by CGS 21680 (50 nm; 11.2 +/- 0.4%; n = 6) was reduced by the specific A2A receptor antagonist ZM 241385 (50 nm) to 8.0 +/- 1.4 (n = 4) and 5.4 +/- 1.2% (n = 4), respectively. The A1 receptor agonist CCPA (1-50 nm) and antagonist DPCPX (50 nm) had no significant effects on caffeine responses. In Triton X-100-skinned fibres, the maximal Ca(2+)-activated tension of the contractile proteins (41.3 +/- 4.1 mN mm(-2); n = 8), the Hill coefficient (nH = 2.2 +/- 0.1; n = 8) and the pCa50 (6.15 +/- 0.05; n = 8) were not significantly modified by adenosine (100 nm) or by CGS 21680 (50 nm).
Collapse
Affiliation(s)
- W Hleihel
- Faculté de Médecine, Université Saint Esprit de Kaslik, BP 446 Jounieh, Lebanon.
| | | | | | | | | |
Collapse
|
14
|
Coelho JE, Rebola N, Fragata I, Ribeiro JA, de Mendonça A, Cunha RA. Hypoxia-induced desensitization and internalization of adenosine A1 receptors in the rat hippocampus. Neuroscience 2006; 138:1195-203. [PMID: 16442739 DOI: 10.1016/j.neuroscience.2005.12.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/21/2005] [Accepted: 12/02/2005] [Indexed: 12/20/2022]
Abstract
Activation of A1 adenosine receptors is important for both the neuromodulatory and neuroprotective effects of adenosine. However, short periods of global ischemia decrease A1 adenosine receptor density in the brain and it is not known if a parallel loss of functional efficiency of A1 adenosine receptors occurs. We now tested if hypoxia leads to changes in the density and efficiency of A1 adenosine receptors to inhibit excitatory synaptic transmission in rat hippocampal slices. In control conditions, the adenosine analog 2-chloroadenosine, inhibited field excitatory post-synaptic potentials with an EC50 of 0.23 microM. After hypoxia (95% N2 and 5% CO2, for 60 min) and reoxygenation (30 min), the EC50 increased to 0.73 microM. This EC50 shift was prevented by the presence of the A1 adenosine receptor antagonist 8-phenyltheophyline, but not by the A(2A)R antagonist 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine, during the hypoxic period. This decreased efficiency of A1 adenosine receptors was not paralleled by a global change of A1 adenosine receptor density or affinity (as evaluated by the binding parameters obtained in nerve terminal membranes). However, the density of biotinylated A1 adenosine receptors at the plasma membrane of nerve terminals was reduced by 30% upon hypoxia/reoxygenation, in a manner prevented by the A1 adenosine receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine and mimicked by prolonged (60 min) supra-maximal activation of A1 adenosine receptors with 2-chloroadenosine (10 microM). These results indicate that hypoxia leads to a rapid (<90 min) homologous desensitization of A1 adenosine receptor-mediated inhibition of synaptic transmission that is likely due to an internalization of A1 adenosine receptors in nerve terminals.
Collapse
Affiliation(s)
- J E Coelho
- Laboratory of Neurosciences, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
15
|
Reid EA, Kristo G, Yoshimura Y, Ballard-Croft C, Keith BJ, Mentzer RM, Lasley RD. In vivo adenosine receptor preconditioning reduces myocardial infarct size via subcellular ERK signaling. Am J Physiol Heart Circ Physiol 2005; 288:H2253-9. [PMID: 15653762 DOI: 10.1152/ajpheart.01009.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The protective effects of adenosine receptor acute preconditioning (PC) are well known; however, the signaling mechanism mediating this effect has not been determined in in vivo models. The purpose of this study was to determine the role of the extracellular signal-regulated kinase (ERK) pathway in mediating adenosine PC in in vivo rat myocardium. Open-chest rats were submitted to 25 min of coronary artery occlusion and 2 h of reperfusion. ERK activation was assessed by measuring total and dually phosphorylated p44/42 ERK isoforms in nuclear and/or myofilament, mitochondrial, cytosolic, and membrane fractions. Adenosine receptor PC with the A1/A2a agonist 1S-[1a,2b,3b,4a(S*)]-4-[7-[[2-(3-chloro-2-thienyl)-1-methylpropyl]amino]-3H-imidazo[4,5-b]pyridyl-3-yl]cyclopentane carboxamide (AMP-579) reduced infarct size from 49 +/- 3% to 29 +/- 3%, an effect that was blocked by the mitogen-activated protein kinase-ERK inhibitor U-0126. ERK isoforms were present in all fractions, with the greatest expression in the cytosolic fraction and the least in the mitochondrial fraction. AMP-579 treatment increased preischemic p44/42 ERK phosphorylation in all fractions 2.7- to 6.9-fold. Reperfusion increased ERK isoform activation in all fractions, but there were no differences between control and AMP-579 hearts. Preischemic increases in phospo-p44/p42 ERK with AMP-579 were blunted by U-0126, although only in mitochondrial and membrane compartments. The PC effects of AMP-579 on infarct size and ERK were blunted by both the A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine and, surprisingly, the A2a antagonist ZM-241385. These results indicate that the unique adenosine receptor agonist AMP-579 exerts its beneficial effects in vivo via both A1 and A2a receptor modulation of subcellular ERK isoform signaling.
Collapse
Affiliation(s)
- Easton A Reid
- Department of Surgery, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Brooke RE, Deuchars J, Deuchars SA. Input-specific modulation of neurotransmitter release in the lateral horn of the spinal cord via adenosine receptors. J Neurosci 2004; 24:127-37. [PMID: 14715946 PMCID: PMC6729584 DOI: 10.1523/jneurosci.4591-03.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of adenosine A2A receptors (A2ARs) in the CNS produces a variety of neuromodulatory actions dependent on the region and preparation examined. In autonomic regions of the spinal cord, A1R activation decreases excitatory synaptic transmission, but the effects of A2AR stimulation are unknown. We sought to determine the location and function of the A2ARs in the thoracic spinal cord, focusing on the intermediolateral cell column (IML). A2AR immunoreactivity was observed throughout the gray matter, with particularly dense immunostaining in regions containing sympathetic preganglionic neurons (SPNs), namely, the IML and intercalated nucleus. Electron microscopy revealed A2AR immunoreactivity within presynaptic terminals and in postsynaptic structures in the IML. To study the functional relevance of these A2ARs, visualized whole-cell patch-clamp recordings were made from electrophysiologically identified SPNs and interneurons within the IML. The A2AR agonist c2-[p-(carboxyethyl)phenethylamino]-5'-N-ethylcarboxyamidoadenosine (CGS 21680) had no significant effect on EPSPs but increased the amplitude of IPSPs elicited by stimulation of the lateral funiculus. These effects were attributable to activation of presynaptic A2ARs because CGS 21680 application altered the paired pulse ratio. Furthermore, neurons in the IML that have IPSPs increased via A2AR activation also receive excitatory inputs that are inhibited by A1R activation. These data show that activating A2ARs increase inhibitory but not excitatory transmission onto neurons in the IML. Simultaneous activation of A1Rs and A2ARs therefore could facilitate inhibition of the postsynaptic neuron, leading to an overall reduction of sympathetic nervous activity.
Collapse
Affiliation(s)
- Ruth E Brooke
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9NQ, United Kingdom
| | | | | |
Collapse
|
17
|
Rebola N, Sebastião AM, de Mendonca A, Oliveira CR, Ribeiro JA, Cunha RA. Enhanced adenosine A2A receptor facilitation of synaptic transmission in the hippocampus of aged rats. J Neurophysiol 2003; 90:1295-303. [PMID: 12904509 DOI: 10.1152/jn.00896.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine either inhibits or facilitates synaptic transmission through A1 or A2A receptors, respectively. Since A2A receptor density increases in the limbic cortex of aged (24 mo) compared with young adult rats (2 mo), we tested if A2A receptor modulation of synaptic transmission was also increased in aged rats. The A2A receptor agonist, CGS21680 (10 nM), caused a larger facilitation of the field excitatory postsynaptic potential (fEPSP) slope in hippocampal slices of aged (38%) than in young rats (19%), an effect prevented by the A2A receptor antagonist, ZM241385 (20 nM). In contrast to young rats, where CGS21680 facilitation of fEPSPs is prevented by the protein kinase C inhibitor, chelerythrine (6 microM), but not by the protein kinase A inhibitor, H-89 (1 microM), the CGS21680-induced facilitation of fEPSP slope in aged rats was prevented by H-89 (1 microM) but not by chelerythrine (6 microM). Also, in contrast to the beta-receptor agonist, isoproterenol (30 microM), CGS21680 (100-1,000 nM) enhanced cAMP levels in hippocampal nerve terminals of aged but not young rats. Finally, we observed a significant increase of both the binding density of [3H]CGS 21680 and the [3H]ZM241385 as well as of the anti-A2A receptor immunoreactivity in hippocampal nerve terminal membranes from aged compared with young rats. This shows that A2A receptor-mediated facilitation of hippocampal synaptic transmission is larger in aged than young rats due to increased A2A receptor density in nerve terminals and to the modified transducing system operated by A2A receptors, from a protein kinase C mediated control of A1 receptors into a direct protein kinase A dependent facilitation of synaptic transmission.
Collapse
Affiliation(s)
- Nelson Rebola
- Center for Neurosciences of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
18
|
Rebola N, Oliveira CR, Cunha RA. Transducing system operated by adenosine A(2A) receptors to facilitate acetylcholine release in the rat hippocampus. Eur J Pharmacol 2002; 454:31-8. [PMID: 12409002 DOI: 10.1016/s0014-2999(02)02475-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although molecular biology studies indicate the presence of adenosine A(2A) receptors in the rat hippocampus, the pharmacological characterization of adenosine A(2A) receptor binding and of its putative facilitatory effects has revealed features essentially different from these found for adenosine A(2A) receptors in most preparations. We now confirmed that activation of adenosine A(2A) receptors with 2-[4-(2-p-carboxyethyl)phenylamino]-5'-N-ethylcarboxamidoadenosine (CGS 21680, 1-30 nM) or 2-hexynyl-5'-N-ethylcarboxamidoadenosine (HENECA, 3-100 nM) facilitated the veratridine-evoked [3H]acetylcholine release from hippocampal synaptosomes with a maximal effect of 14+/-2% and 16+/-2%, respectively. These effects were prevented by the adenosine A(2A) receptor antagonists, 4-(2-[7-amino-2-[2-furyl][1,2,4]-triazolo[2,3a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM 241385, 20 nM) and 5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261, 20 nM), but not by the adenosine A(1) receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 20 nM). Adenosine A(2A) receptors may activate adenylate cyclase and protein kinase A since CGS 21680 (10 nM) facilitation of [3H]acetylcholine release was occluded by 8-bromo-cAMP (0.5 mM) and forskolin (10 microM) and prevented by H-89 (1 microM), but unaffected by phorbol-12,13-didecanoate (250 nM) or bisindolylmaleimide I (1 microM). The existence of adenosine A(2A) receptors in hippocampal nerve terminals was further confirmed by a Western blot immunoreactivity qualitatively identical to that found in the striatum. This constitutes the first pharmacological identification of canonical adenosine A(2A) receptors coupling to the expected cAMP/protein kinase A pathway in the hippocampus with the expected immunoreactivity.
Collapse
Affiliation(s)
- Nelson Rebola
- Center for Neurosciences of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | |
Collapse
|
19
|
Díaz-Hernández M, Pereira MF, Pintor J, Cunha RA, Ribeiro JA, Miras-Portugal MT. Modulation of the rat hippocampal dinucleotide receptor by adenosine receptor activation. J Pharmacol Exp Ther 2002; 301:441-50. [PMID: 11961042 DOI: 10.1124/jpet.301.2.441] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diadenosine pentaphosphate (Ap(5)A) and ATP stimulate an intracellular free calcium concentration ([Ca(2+)](I)) increase in rat hippocampal synaptosomes via different receptors as demonstrated by the lack of cross-desensitization between Ap(5)A and ATP responses. The ATP response was inhibited by P2 receptor antagonists and not by the dinucleotide receptor antagonist, diinosine pentaphosphate (Ip(5)I). In contrast, the Ap(5)A response was inhibited by Ip(5)I but not by P2 receptor antagonists. Studies in single hippocampal synaptic terminals showed that 31% of them responded to Ap(5)A by a [Ca(2+)](i) increase. Adenosine receptors (A(1), A(2A), and A(3)) were also present in isolated terminals as demonstrated by immunohistochemistry. The activation of A(1) or A(2A) receptors by specific agonists changed the sigmoid concentration-response curve for Ap(5)A (EC(50) = 33.5 +/- 4.5 microM) into biphasic curves. When the high-affinity adenosine receptors A(1) or A(2A) were activated, the Ap(5)A dose-response curves showed a high-affinity component with EC(50) values of 41.1 +/- 1.9 pM and 99.9 +/- 10.2 nM, respectively. The low-affinity component showed EC(50) values of 17.1 +/- 0.8 and 21.6 +/- 1.4 microM for A(1) and A(2A) receptor activation, respectively. However, the adenosine A(3) receptor activation induced a right shift of the dinucleotide concentration-response curve, showing an EC(50) value of 331.4 +/- 54.6 microM. In addition, in the presence of the A(2A) agonist, the Ap(5)A calcium influx responses were increased up to 300% of the control values. These results clearly demonstrate that the activation of presynaptic adenosine receptors is able to modulate the dinucleotide response in hippocampal nerve terminals.
Collapse
Affiliation(s)
- Miguel Díaz-Hernández
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
20
|
Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci 2002. [PMID: 11880527 DOI: 10.1523/jneurosci.22-05-01967.2002] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to evaluate whether, and by means of which mechanisms, the adenosine A2A receptor antagonist SCH 58261 [5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine] exerted neuroprotective effects in a rat model of Huntington's disease. In a first set of experiments, SCH 58261 (0.01 and 1 mg/kg) was administered intraperitoneally to Wistar rats 20 min before the bilateral striatal injection of quinolinic acid (QA) (300 nmol/1 microl). SCH 58261 (0.01 but not 1 mg/kg, i.p.) did reduce significantly the effects of QA on motor activity, electroencephalographic changes, and striatal gliosis. Because QA acts by both increasing glutamate outflow and directly stimulating NMDA receptors, a second set of experiments was performed to evaluate whether SCH 58261 acted by preventing the presynaptic and/or the postsynaptic effects of QA. In microdialysis experiments in naive rats, striatal perfusion with QA (5 mm) enhanced glutamate levels by approximately 500%. Such an effect of QA was completely antagonized by pretreatment with SCH 58261 (0.01 but not 1 mg/kg, i.p.). In primary striatal cultures, bath application of QA (900 microm) significantly increased intracellular calcium levels, an effect prevented by the NMDA receptor antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate]. In this model, bath application of SCH 58261 (15-200 nm) tended to potentiate QA-induced calcium increase. We conclude the following: (1) the adenosine A2A receptor antagonist SCH 58261 has neuroprotective effects, although only at low doses, in an excitotoxic rat model of HD, and (2) the inhibition of QA-evoked glutamate outflow seems to be the major mechanism underlying the neuroprotective effects of SCH 58261.
Collapse
|
21
|
Noto T, Inoue H, Mochida H, Kikkawa K. Role of adenosine and P2 receptors in the penile tumescence in anesthetized dogs. Eur J Pharmacol 2001; 425:51-5. [PMID: 11672574 DOI: 10.1016/s0014-2999(01)01167-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We studied the role of adenosine and P2 receptors in the pelvic nerve stimulation-induced penile tumescence in anesthetized dogs. A local intracavernous injection of adenosine induced the tumescence, which was abolished by intracavernous 8-(p-sulfophenyl)theophylline (8-SPT), an unspecific adenosine receptor antagonist, and by 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl amino]ethyl)phenol (ZM241385), an adenosine A(2A) receptor antagonist. ATP also induced the tumescence, which was diminished by 8-SPT, but not by reactive blue-2, a P2 receptor antagonist. Neither intracavernous beta, gamma-meATP nor ADP(beta)S, P2X and P2Y receptor agonists, induced tumescence. N(G)-nitro-L-arginine (L-NAME), a nitric oxide synthase inhibitor, and T-1032, a phosphodiesterase type V inhibitor, had no effects on the tumescence induced by adenosine. 8-SPT and reactive blue-2 had no effects on the tumescence induced by pelvic nerve stimulation. These results show that although exogenous adenosine and ATP induce tumescence, neither the adenosine nor the P2 receptor is involved in the tumescence induced by pelvic nerve stimulation in anesthetized dogs.
Collapse
Affiliation(s)
- T Noto
- Discovery Research Laboratory, Tanabe Seiyaku Co., Ltd., 2-2-50, Kawagishi, Toda, Saitama 335-8505, Japan.
| | | | | | | |
Collapse
|
22
|
|
23
|
Cunha RA. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 2001; 38:107-25. [PMID: 11137880 DOI: 10.1016/s0197-0186(00)00034-6] [Citation(s) in RCA: 462] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adenosine exerts two parallel modulatory roles in the CNS, acting as a homeostatic modulator and also as a neuromodulator at the synaptic level. We will present evidence to suggest that these two different modulatory roles are fulfilled by extracellular adenosine originated from different metabolic sources, and involve receptors with different sub-cellular localisation. It is widely accepted that adenosine is an inhibitory modulator in the CNS, a notion that stems from the preponderant role of inhibitory adenosine A(1) receptors in defining the homeostatic modulatory role of adenosine. However, we will review recent data that suggests that the synaptically localised neuromodulatory role of adenosine depend on a balanced activation of inhibitory A(1) receptors and mostly facilitatory A(2A) receptors. This balanced activation of A(1) and A(2A) adenosine receptors depends not only on the transient levels of extracellular adenosine, but also on the direct interaction between A(1) and A(2A) receptors, which control each other's action.
Collapse
Affiliation(s)
- R A Cunha
- Laboratory of Neurosciences, Faculty of Medicine, University of Lisbon, Portugal.
| |
Collapse
|
24
|
Sato K, Matsuki N, Ohno Y, Nakazawa K. Extracellular ATP reduces optically monitored electrical signals in hippocampal slices through metabolism to adenosine. Eur J Pharmacol 2000; 399:123-9. [PMID: 10884511 DOI: 10.1016/s0014-2999(00)00338-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Electrical signals in rat hippocampal slices were optically monitored using a voltage-sensitive dye to determine whether extracellular ATP exhibits direct effects through its own receptors or indirect effects after its hydrolysis to adenosine. The dentate gyrus was stimulated and electrical signals in the CA1 and the CA3 region were analyzed. The signals were divided into two components: a transient component peaking within 10 ms (fast component) and a subsequent sustained component (slow component). ATP (10 to 100 microM) inhibited both the fast and the slow components in the CA1 region by about 30% and 70%, respectively. ADP, AMP and adenosine also inhibited the fast and the slow components. The inhibition by ATP was antagonized by aminophylline and other adenosine receptor antagonists, and by alpha,beta-methylene ADP, an inhibitor of 5'-nucleotidases. These results suggest that extracellular ATP inhibits neuronal electrical signals in hippocampal slices after its metabolism to adenosine.
Collapse
Affiliation(s)
- K Sato
- Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, 158-8501, Tokyo, Japan
| | | | | | | |
Collapse
|