1
|
Retamal JS, Grace MS, Dill LK, Ramirez-Garcia P, Peng S, Gondin AB, Bennetts F, Alvi S, Rajasekhar P, Almazi JG, Carbone SE, Bunnett NW, Davis TP, Veldhuis NA, Poole DP, McIntyre P. Serotonin-induced vascular permeability is mediated by transient receptor potential vanilloid 4 in the airways and upper gastrointestinal tract of mice. J Transl Med 2021; 101:851-864. [PMID: 33859334 PMCID: PMC8047529 DOI: 10.1038/s41374-021-00593-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 01/07/2023] Open
Abstract
Endothelial and epithelial cells form physical barriers that modulate the exchange of fluid and molecules. The integrity of these barriers can be influenced by signaling through G protein-coupled receptors (GPCRs) and ion channels. Serotonin (5-HT) is an important vasoactive mediator of tissue edema and inflammation. However, the mechanisms that drive 5-HT-induced plasma extravasation are poorly defined. The Transient Receptor Potential Vanilloid 4 (TRPV4) ion channel is an established enhancer of signaling by GPCRs that promote inflammation and endothelial barrier disruption. Here, we investigated the role of TRPV4 in 5-HT-induced plasma extravasation using pharmacological and genetic approaches. Activation of either TRPV4 or 5-HT receptors promoted significant plasma extravasation in the airway and upper gastrointestinal tract of mice. 5-HT-mediated extravasation was significantly reduced by pharmacological inhibition of the 5-HT2A receptor subtype, or with antagonism or deletion of TRPV4, consistent with functional interaction between 5-HT receptors and TRPV4. Inhibition of receptors for the neuropeptides substance P (SP) or calcitonin gene-related peptide (CGRP) diminished 5-HT-induced plasma extravasation. Supporting studies assessing treatment of HUVEC with 5-HT, CGRP, or SP was associated with ERK phosphorylation. Exposure to the TRPV4 activator GSK1016790A, but not 5-HT, increased intracellular Ca2+ in these cells. However, 5-HT pre-treatment enhanced GSK1016790A-mediated Ca2+ signaling, consistent with sensitization of TRPV4. The functional interaction was further characterized in HEK293 cells expressing 5-HT2A to reveal that TRPV4 enhances the duration of 5-HT-evoked Ca2+ signaling through a PLA2 and PKC-dependent mechanism. In summary, this study demonstrates that TRPV4 contributes to 5-HT2A-induced plasma extravasation in the airways and upper GI tract, with evidence supporting a mechanism of action involving SP and CGRP release.
Collapse
Affiliation(s)
- Jeffri S Retamal
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Megan S Grace
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
- Department of Physiology, School of Medicine Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Clinical Medicine, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Larissa K Dill
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Paulina Ramirez-Garcia
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Scott Peng
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Arisbel B Gondin
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Felix Bennetts
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Sadia Alvi
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Pradeep Rajasekhar
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Juhura G Almazi
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
| | - Simona E Carbone
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Nigel W Bunnett
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Nicholas A Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia.
| | - Daniel P Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia.
| | - Peter McIntyre
- School of Medical Sciences and Health Innovations Research Institute, RMIT University, Bundoora, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
2
|
Molecular Dambusters: What Is Behind Hyperpermeability in Bradykinin-Mediated Angioedema? Clin Rev Allergy Immunol 2021; 60:318-347. [PMID: 33725263 PMCID: PMC7962090 DOI: 10.1007/s12016-021-08851-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 02/08/2023]
Abstract
In the last few decades, a substantial body of evidence underlined the pivotal role of bradykinin in certain types of angioedema. The formation and breakdown of bradykinin has been studied thoroughly; however, numerous questions remained open regarding the triggering, course, and termination of angioedema attacks. Recently, it became clear that vascular endothelial cells have an integrative role in the regulation of vessel permeability. Apart from bradykinin, a great number of factors of different origin, structure, and mechanism of action are capable of modifying the integrity of vascular endothelium, and thus, may participate in the regulation of angioedema formation. Our aim in this review is to describe the most important permeability factors and the molecular mechanisms how they act on endothelial cells. Based on endothelial cell function, we also attempt to explain some of the challenging findings regarding bradykinin-mediated angioedema, where the function of bradykinin itself cannot account for the pathophysiology. By deciphering the complex scenario of vascular permeability regulation and edema formation, we may gain better scientific tools to be able to predict and treat not only bradykinin-mediated but other types of angioedema as well.
Collapse
|
3
|
Effect of P2 receptor on the intracellular calcium increase by cancer cells in human umbilical vein endothelial cells. Naunyn Schmiedebergs Arch Pharmacol 2008; 377:429-36. [PMID: 18210093 DOI: 10.1007/s00210-007-0259-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 12/24/2007] [Indexed: 12/14/2022]
Abstract
One of the important functions of vascular endothelial cells is as a barrier between blood and vascular tissue. This led us to speculate that cancer cells affect endothelial cells during metastasis. In the present study, we investigated the influence of human fibrosarcoma cells (HT-1080) on human umbilical vein endothelial cells (HUVEC), particularly intracellular calcium ion levels ([Ca2+]i), which are known to be an important intracellular signal transduction factor. HUVEC were treated with a fluorescent marker, and the fluorescence intensity of [Ca2+]i was then measured by phase contrast microscopic imaging. Extracellular adenosine triphosphate (ATP) release was measured using the chemiluminescence of luciferin-luciferase and a photon counting imaging system. HT-1080 (5x10(4) cells per dish) was found to increase [Ca2+]i in HUVEC. This [Ca2+]i rise was significantly reduced by U-73122 (phospholipase C inhibitor, 1 microM) and thapsigargin (calcium pump inhibitor, 1 microM). Interestingly, the [Ca2+]i rise in HUVEC was also significantly reduced by pyridoxalphosphare-6-azophenyl-2', 4'-disulfonic acid, a P2Y receptor antagonist (100 microM) and apyrase, a nucleotidase inhibitor (2 U/ml). In addition, we observed ATP release from HT-1080. These results suggest that [Ca2+]i in HUVEC was increased through the phospholipase C-IP3 pathway via ATP release from cancer cells. We previously reported that extracellular ATP increased [Ca2+]i and enhanced macromolecular permeability via the P2Y receptor. In tumor metastasis, cancer cells may exploit these regulatory mechanisms in the endothelial cell layer.
Collapse
|
4
|
Ray CJ, Marshall JM. The cellular mechanisms by which adenosine evokes release of nitric oxide from rat aortic endothelium. J Physiol 2005; 570:85-96. [PMID: 16239264 PMCID: PMC1464284 DOI: 10.1113/jphysiol.2005.099390] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Adenosine and nitric oxide (NO) are important local mediators of vasodilatation. The aim of this study was to elucidate the mechanisms underlying adenosine receptor-mediated NO release from the endothelium. In studies on freshly excised rat aorta, second-messenger systems were pharmacologically modulated by appropriate antagonists while a NO-sensitive electrode was used to measure adenosine-evoked NO release from the endothelium. We showed that A1-mediated NO release requires extracellular Ca2+, phospholipase A2 (PLA2) and ATP-sensitive K+ (KATP) channel activation whereas A2A-mediated NO release requires extracellular Ca2+ and Ca2+-activated K+ (KCa) channels. Since our previous study showed that A1- and A2A-receptor-mediated NO release requires activation of adenylate cyclase (AC), we propose the following novel pathways. The K+ efflux resulting from A1-receptor-coupled KATP-channel activation facilitates Ca2+ influx which may cause some stimulation of endothelial NO synthase (eNOS). However, the increase in [Ca2+]i also stimulates PLA2 to liberate arachidonic acid and stimulate cyclooxygenase to generate prostacyclin (PGI2). PGI2 acts on its endothelial receptors to increase cAMP, so activating protein kinase A (PKA) to phosphorylate and activate eNOS resulting in NO release. By contrast, the K+ efflux resulting from A2A-coupled KCa channels facilitates Ca2+ influx, thereby activating eNOS and NO release. This process may be facilitated by phosphorylation of eNOS by PKA via the action of A2A-receptor-mediated stimulation of AC increasing cAMP. These pathways may be important in mediating vasodilatation during exercise and systemic hypoxia when adenosine acting in an endothelium- and NO-dependent manner has been shown to be important.
Collapse
Affiliation(s)
- Clare J Ray
- Department of Physiology, The Medical School, University of Birmingham, Birmingham B15 2TT, UK.
| | | |
Collapse
|
5
|
Hiraoka H, Kimura N, Furukawa Y, Ogawara KI, Kimura T, Higaki K. Up-regulation of P-glycoprotein expression in small intestine under chronic serotonin-depleted conditions in rats. J Pharmacol Exp Ther 2004; 312:248-55. [PMID: 15466248 DOI: 10.1124/jpet.104.071290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To investigate the role of serotonin (5-HT), an important neurotransmitter and hormone/paracrine agent in the small intestine, in the transport activity of P-glycoprotein (P-gp), the intestinal transport of quinidine, a P-gp substrate, was examined in 5-HT-depleted rats prepared by intraperitoneal administration of p-chlorophenylalanine, a specific inhibitor of tryptophan hydroxylase in 5-HT biosynthesis. In the in vitro transport study, quinidine transport across rat jejunum was significantly enhanced in both the secretory and absorptive directions under 5-HT-depleted conditions, although the secretory transport was still predominant. The electrophysiological study suggested that the quinidine transport via passive diffusion was enhanced presumably through a paracellular route. This might be due to looser tight junctions under 5-HT-depleted conditions. The voltage-clamp technique clearly indicated that the secretory transport of quinidine through the transcellular pathway was also enhanced by the depletion of 5-HT. Furthermore, 5-HT depletion increased verapamil-sensitive secretory transport of quinidine in rat jejunum. These results indicate that the secretory transport of quinidine via P-gp was significantly enhanced under 5-HT-depleted conditions. The level of ATP, an energy source for functioning P-gp, wet weight of jejunum, and total protein level in rat jejunal mucosa were not changed by 5-HT depletion, but the expression of P-gp in the brush-border membrane of rat jejunum was significantly induced, which is partly responsible for the enhancement of P-gp activity under the 5-HT-depleted condition.
Collapse
Affiliation(s)
- Hideo Hiraoka
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Tuo BG, Sellers Z, Paulus P, Barrett KE, Isenberg JI. 5-HT induces duodenal mucosal bicarbonate secretion via cAMP- and Ca2+-dependent signaling pathways and 5-HT4 receptors in mice. Am J Physiol Gastrointest Liver Physiol 2004; 286:G444-51. [PMID: 14576083 DOI: 10.1152/ajpgi.00105.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In previous studies, we have found that 5-hydroxytryptamine (5-HT) is a potent stimulant of duodenal mucosal bicarbonate secretion (DMBS) in mice. The aim of the present study was to determine the intracellular signaling pathways and 5-HT receptor subtypes involved in 5-HT-induced DMBS. Bicarbonate secretion by murine duodenal mucosa was examined in vitro in Ussing chambers. 5-HT receptor involvement in DMBS was inferred from pharmacological studies by using selective 5-HT receptor antagonists and agonists. The expression of 5-HT(4) receptor mRNA in duodenal mucosa and epithelial cells was analyzed by RT-PCR. cAMP-dependent signaling pathway inhibitors MDL-12330A, Rp-cAMP, and H-89 and Ca(2+)-dependent signaling pathway inhibitors verapamil and W-13 markedly reduced 5-HT-stimulated duodenal bicarbonate secretion and short-circuit current (I(sc)), whereas cGMP-dependent signaling pathway inhibitors NS-2028 and KT-5823 failed to alter these responses. Both SB-204070 and high-dose ICS-205930 (selective 5-HT(4) receptor antagonists) markedly inhibited 5-HT-stimulated bicarbonate secretion and I(sc), whereas methiothepine (5-HT(1) receptor antagonist), ketanserin (5-HT(2) receptor antagonist), and a low concentration of ICS-205930 (5-HT(3) receptor antagonist) had no effect. RS-67506 (partial 5-HT(4) receptor agonist) concentration-dependently increased bicarbonate secretion and I(sc), whereas 5-carboxamidotryptamine (5-HT(1) receptor agonist), alpha-methyl-5-HT (5-HT(2) receptor agonist), and phenylbiguanide (5-HT(3) receptor agonist) did not significantly increase bicarbonate secretion or I(sc). RT-PCR analysis confirmed the expression of 5-HT(4) receptor mRNA in murine duodenal mucosa and epithelial cells. These results demonstrate that 5-HT regulates DMBS via both cAMP- and Ca(2+)-dependent signaling pathways and 5-HT(4) receptors located in the duodenal mucosa and/or epithelial cells.
Collapse
Affiliation(s)
- Bi-Guang Tuo
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, CA 92103, USA
| | | | | | | | | |
Collapse
|
9
|
Martin S, Andriambeloson E, Takeda K, Andriantsitohaina R. Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production. Br J Pharmacol 2002; 135:1579-87. [PMID: 11906973 PMCID: PMC1573266 DOI: 10.1038/sj.bjp.0704603] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
1. The present study investigates the mechanisms by which polyphenolic compounds from red wine elicit Ca(2+) mobilization in bovine aortic endothelial cells (BAECs). Two polyphenol-containing red wine extracts, red wine polyphenolic compounds (RWPC) and Provinols, and delphinidin, an anthocyanin were used. 2. RWPC stimulated a Ca(2+)-dependent release of nitric oxide (NO) from BAECs accounting for the relaxation of endothelium-denuded rat aortic rings as shown by cascade bioassay. 3. RWPC, Provinols and delphinidin increased cytosolic free calcium ([Ca(2+)](i)), by releasing Ca(2+) from intracellular stores and by increasing Ca(2+) entry. 4. The RWPC-induced increase in [Ca(2+)](i) was decreased by exposure to ryanodine (30 microM), whereas Provinols and delphinidin-induced increases in [Ca(2+)](i) were decreased by bradykinin (0.1 microM) and thapsigargin (1 microM) pre-treatment. 5. RWPC, Provinols and delphinidin-induced increases in [Ca(2+)](i) were sensitive to inhibitors of phospholipase C (neomycin, 3 mM; U73122, 3 microM) and tyrosine kinase (herbimycin A, 1 microM). 6. RWPC, Provinols and delphinidin induced herbimycin A (1 microM)-sensitive tyrosine phosphorylation of several intracellular proteins. 7. Provinols released Ca(2+) via both a cholera (CTX) and pertussis toxins (PTX)-sensitive pathway, whereas delphinidin released Ca(2+) only via a PTX-sensitive mechanism. 8. Our data contribute in defining the mechanisms of endothelial NO production caused by wine polyphenols including the increase in [Ca(2+)](i) and the activation of tyrosine kinases. Furthermore, RWPC, Provinols and delphinidin display differences in the process leading to [Ca(2+)](i) increases in endothelial cells illustrating multiple cellular targets of natural dietary polyphenolic compounds.
Collapse
Affiliation(s)
- Sophie Martin
- Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR CNRS 7034, Faculté de Pharmacie, Université Louis Pasteur, 67401 Illkirch, France
| | - Emile Andriambeloson
- Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR CNRS 7034, Faculté de Pharmacie, Université Louis Pasteur, 67401 Illkirch, France
| | - Ken Takeda
- Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR CNRS 7034, Faculté de Pharmacie, Université Louis Pasteur, 67401 Illkirch, France
| | - Ramaroson Andriantsitohaina
- Pharmacologie et Physico-Chimie des Interactions Cellulaires et Moléculaires, UMR CNRS 7034, Faculté de Pharmacie, Université Louis Pasteur, 67401 Illkirch, France
- Author for correspondence:
| |
Collapse
|
10
|
Lee HZ, Wu C. Serotonin-induced protein kinase C activation in cultured rat heart endothelial cells. Eur J Pharmacol 2000; 403:195-202. [PMID: 10973619 DOI: 10.1016/s0014-2999(00)00495-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study examined whether serotonin can activate protein kinase C in rat heart endothelial cells. Protein kinase C isozyme translocation was examined by Western blot analysis with isozyme-specific anti-protein kinase C antibody. In this study, only alpha protein kinase C isozyme was found to be translocated from the cytosolic to the particulate fractions after serotonin stimulation. The effect of serotonin on the incorporation of 32P from [gamma-32P]ATP into peptide substrate was studied as another indicator of protein kinase C activation. The experiments in this study demonstrated that the Ca(2+)-phospholipid-dependent protein kinase, protein kinase C, was activated by serotonin. By investigating [3H]phorbol 12,13-dibutyrate binding to protein kinase C and trypsin-treated protein kinase C activity, we demonstrated that the site of action of serotonin is probably the regulatory domain of protein kinase C. Finally, we also demonstrated that serotonin had no effect on the intracellular concentration of cyclic nucleotides (cAMP, cGMP). These findings support the hypothesis that protein kinase C may be an important participant in serotonin-induced endothelial cell contraction and barrier dysfunction.
Collapse
Affiliation(s)
- H Z Lee
- School of Pharmacy, China Medical College, 91, Hsueh-Shih Road, 404, Taichung, Taiwan.
| | | |
Collapse
|