1
|
Jones R, Cirovic S, Rusbridge C. A review of cerebrospinal fluid circulation with respect to Chiari-like malformation and syringomyelia in brachycephalic dogs. Fluids Barriers CNS 2025; 22:25. [PMID: 40065427 PMCID: PMC11895204 DOI: 10.1186/s12987-025-00636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Cerebrospinal fluid (CSF) plays a crucial role in maintaining brain homeostasis by facilitating the clearance of metabolic waste and regulating intracranial pressure. Dysregulation of CSF flow can lead to conditions like syringomyelia, and hydrocephalus. This review details the anatomy of CSF flow, examining its contribution to waste clearance within the brain and spinal cord. The review integrates data from human, canine, and other mammalian studies, with a particular focus on brachycephalic dogs. Certain dog breeds exhibit a high prevalence of CSF-related conditions due to artificial selection for neotenous traits, making them valuable models for studying analogous human conditions, such as Chiari-like malformation and syringomyelia associated with craniosynostosis. This review discusses the anatomical features specific to some brachycephalic breeds and the impact of skull and cranial cervical conformation on CSF flow patterns, providing insights into the pathophysiology and potential modelling approaches for these conditions.
Collapse
Affiliation(s)
- Ryan Jones
- School of Veterinary Medicine, University of Surrey, Guildford, GU2 7XH, UK.
| | - Srdjan Cirovic
- Department of Mechanical Engineering Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Clare Rusbridge
- School of Veterinary Medicine, University of Surrey, Guildford, GU2 7XH, UK
- Wear Referrals Veterinary Specialist & Emergency Hospital, Bradbury, Stockton-On-Tees, UK
| |
Collapse
|
2
|
Sun YR, Lv QK, Liu JY, Wang F, Liu CF. New perspectives on the glymphatic system and the relationship between glymphatic system and neurodegenerative diseases. Neurobiol Dis 2025; 205:106791. [PMID: 39778750 DOI: 10.1016/j.nbd.2025.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Neurodegenerative diseases (ND) are characterized by the accumulation of aggregated proteins. The glymphatic system, through its rapid exchange mechanisms between cerebrospinal fluid (CSF) and interstitial fluid (ISF), facilitates the movement of metabolic substances within the brain, serving functions akin to those of the peripheral lymphatic system. This emerging waste clearance mechanism offers a novel perspective on the removal of pathological substances in ND. This article elucidates recent discoveries regarding the glymphatic system and updates relevant concepts within its model. It discusses the potential roles of the glymphatic system in ND, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple system atrophy (MSA), and proposes the glymphatic system as a novel therapeutic target for these conditions.
Collapse
Affiliation(s)
- Yan-Rui Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Qian-Kun Lv
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake hospital affilicated to Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Toft-Bertelsen TL, Andreassen SN, Norager NH, Simonsen AH, Hasselbalch SG, Juhler M, MacAulay N. Differential Lipid Signatures of Lumbar and Cisternal Cerebrospinal Fluid. Biomolecules 2024; 14:1431. [PMID: 39595607 PMCID: PMC11591603 DOI: 10.3390/biom14111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The molecular composition of cerebrospinal fluid (CSF) is often used as a key indicator of biochemical alterations within distinct brain and spinal cord fluid compartments. The CSF protein content in lumbar CSF samples is widely employed as a biomarker matrix for diagnosing brain-related pathological conditions. CSF lipid profiles may serve as promising complementary diagnostics, but it remains unresolved if the lipid distribution is consistent along the neuroaxis. METHODS The lipid composition was determined with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in cisternal CSF obtained from healthy subjects undergoing preventive surgery of an unruptured aneurism (n = 11) and lumbar CSF obtained from individuals referred for the clinical evaluation of cognitive dysfunction but subsequently cleared and deemed healthy (n = 19). RESULTS We reveal discernible variations in lipid composition along the neuroaxis, with a higher overall lipid concentration in cisternal CSF, although with different relative distributions of the various lipid classes in the two compartments. The cisternal CSF contained elevated levels of most lipid classes, e.g., sphingomyelins, lysophosphatidylcholines, plasmenylphosphatidylcholines, phosphatidic acids, and triacylglycerols, whereas a few select lipids from the classes of fatty acids, phosphatidylcholines, amides and plasmenylphosphatidylethanolamines were, oppositely, elevated in the lumbar CSF pool. CONCLUSIONS The distinct lipid distribution along the neuroaxis illustrates that the molecular constituents in these two CSF compartments are not uniform. These findings emphasize the necessity of establishing a lumbar lipid index for the accurate interpretation of the cranial CSF lipid profile.
Collapse
Affiliation(s)
| | | | - Nicolas H. Norager
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital-Rigshospitalet, 2200 Copenhagen, Denmark
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Department of Neurology, Section 6911, Copenhagen University Hospital-Rigshospitalet, 2200 Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Department of Neurology, Section 6911, Copenhagen University Hospital-Rigshospitalet, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Marianne Juhler
- Department of Neurosurgery, Neuroscience Centre, Copenhagen University Hospital-Rigshospitalet, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Hladky SB, Barrand MA. Regulation of brain fluid volumes and pressures: basic principles, intracranial hypertension, ventriculomegaly and hydrocephalus. Fluids Barriers CNS 2024; 21:57. [PMID: 39020364 PMCID: PMC11253534 DOI: 10.1186/s12987-024-00532-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/21/2024] [Indexed: 07/19/2024] Open
Abstract
The principles of cerebrospinal fluid (CSF) production, circulation and outflow and regulation of fluid volumes and pressures in the normal brain are summarised. Abnormalities in these aspects in intracranial hypertension, ventriculomegaly and hydrocephalus are discussed. The brain parenchyma has a cellular framework with interstitial fluid (ISF) in the intervening spaces. Framework stress and interstitial fluid pressure (ISFP) combined provide the total stress which, after allowing for gravity, normally equals intracerebral pressure (ICP) with gradients of total stress too small to measure. Fluid pressure may differ from ICP in the parenchyma and collapsed subarachnoid spaces when the parenchyma presses against the meninges. Fluid pressure gradients determine fluid movements. In adults, restricting CSF outflow from subarachnoid spaces produces intracranial hypertension which, when CSF volumes change very little, is called idiopathic intracranial hypertension (iIH). Raised ICP in iIH is accompanied by increased venous sinus pressure, though which is cause and which effect is unclear. In infants with growing skulls, restriction in outflow leads to increased head and CSF volumes. In adults, ventriculomegaly can arise due to cerebral atrophy or, in hydrocephalus, to obstructions to intracranial CSF flow. In non-communicating hydrocephalus, flow through or out of the ventricles is somehow obstructed, whereas in communicating hydrocephalus, the obstruction is somewhere between the cisterna magna and cranial sites of outflow. When normal outflow routes are obstructed, continued CSF production in the ventricles may be partially balanced by outflow through the parenchyma via an oedematous periventricular layer and perivascular spaces. In adults, secondary hydrocephalus with raised ICP results from obvious obstructions to flow. By contrast, with the more subtly obstructed flow seen in normal pressure hydrocephalus (NPH), fluid pressure must be reduced elsewhere, e.g. in some subarachnoid spaces. In idiopathic NPH, where ventriculomegaly is accompanied by gait disturbance, dementia and/or urinary incontinence, the functional deficits can sometimes be reversed by shunting or third ventriculostomy. Parenchymal shrinkage is irreversible in late stage hydrocephalus with cellular framework loss but may not occur in early stages, whether by exclusion of fluid or otherwise. Further studies that are needed to explain the development of hydrocephalus are outlined.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, Tennis Court Rd, Cambridge, CB2 1PD, UK.
| | | |
Collapse
|
5
|
Hoang TA, Gracia G, Cao E, Nicolazzo JA, Trevaskis NL. Quantifying the Lymphatic Transport of Model Therapeutics from the Brain in Rats. Mol Pharm 2024; 21:2473-2483. [PMID: 38579335 DOI: 10.1021/acs.molpharmaceut.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
In recent years, the drainage of fluids, immune cells, antigens, fluorescent tracers, and other solutes from the brain has been demonstrated to occur along lymphatic outflow pathways to the deep cervical lymph nodes in the neck. To the best of our knowledge, no studies have evaluated the lymphatic transport of therapeutics from the brain. The objective of this study was to determine the lymphatic transport of model therapeutics of different molecular weights and lipophilicity from the brain using cervical lymph cannulation and ligation models in rats. To do this, anesthetized Sprague-Dawley rats were cannulated at the carotid artery and cannulated, ligated, or left intact at the cervical lymph duct. Rats were administered 14C-ibuprofen (206.29 g/mol, logP 3.84), 3H-halofantrine HCl (536.89 g/mol, logP 8.06), or 3H-albumin (∼65,000 g/mol) via direct injection into the brain striatum at a rate of 0.5 μL/min over 16 min. Plasma or cervical lymph samples were collected for up to 6-8 h following dosing, and brain and lymph nodes were collected at 6 or 8 h. Samples were subsequently analyzed for radioactivity levels via scintillation counting. For 14C-ibuprofen, plasma concentrations over time (plasma AUC0-6h) were >2 fold higher in lymph-ligated rats than in lymph-intact rats, suggesting that ibuprofen is cleared from the brain primarily via nonlymphatic routes (e.g., across the blood-brain barrier) but that this clearance is influenced by changes in lymphatic flow. For 3H-halofantrine, >73% of the dose was retained at the brain dosing site in lymph-intact and lymph-ligated groups, and plasma AUC0-8h values were low in both groups (<0.3% dose.h/mL), consistent with the high retention in the brain. It was therefore not possible to determine whether halofantrine undergoes lymphatic transport from the brain within the duration of the study. For 3H-albumin, plasma AUC0-8h values were not significantly different between lymph-intact, lymph-ligated, and lymph-cannulated rats. However, >4% of the dose was recovered in cervical lymph over 8 h. Lymph/plasma concentration ratios of 3H-albumin were also very high (up to 53:1). Together, these results indicate that 3H-albumin is transported from the brain not only via lymphatic routes but also via the blood. Similar to other tissues, the lymphatics may thus play a significant role in the transport of macromolecules, including therapeutic proteins, from the brain but are unlikely to be a major transport pathway from the brain for small molecule drugs that are not lipophilic. Our rat cervical lymph cannulation model can be used to quantify the lymphatic drainage of different molecules and factors from the brain.
Collapse
Affiliation(s)
- Thu A Hoang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Gracia Gracia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Enyuan Cao
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3000, Australia
| |
Collapse
|
6
|
Kaur J, Boyd ED, Ding G, Zhang L, Luo H, Li Q, Li L, Wei M, Landschoot-Ward J, Chopp M, Zhang Z, Jiang Q. The Association between Glymphatic System and Perivascular Macrophages in Brain Waste Clearance. Diagnostics (Basel) 2024; 14:731. [PMID: 38611644 PMCID: PMC11011895 DOI: 10.3390/diagnostics14070731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
The glymphatic system suggests the convective bulk flow of cerebrospinal fluid (CSF) through perivascular spaces and the interstitial spaces of the brain parenchyma for the rapid removal of toxic waste solutes from the brain. However, the presence of convective bulk flow within the brain interstitial spaces is still under debate. We first addressed this argument to determine the involvement of the glymphatic system in brain waste clearance utilizing contrast-enhanced 3D T1-weighted imaging (T1WI), diffusion tensor imaging (DTI), and confocal microscopy imaging. Furthermore, perivascular macrophages (PVMs), which are immune cells located within perivascular spaces, have not been thoroughly explored for their association with the glymphatic system. Therefore, we investigated tracer uptake by PVMs in the perivascular spaces of both the arteries/arterioles and veins/venules and the potential association of PVMs in assisting the glymphatic system for interstitial waste clearance. Our findings demonstrated that both convective bulk flow and diffusion are responsible for the clearance of interstitial waste solutes from the brain parenchyma. Furthermore, our results suggested that PVMs may play an important function in glymphatic system-mediated interstitial waste clearance. The glymphatic system and PVMs could be targeted to enhance interstitial waste clearance in patients with waste-associated neurological conditions and aging.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Edward D. Boyd
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Hao Luo
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
| | - Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
| | - Min Wei
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
| | - Julie Landschoot-Ward
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Neurology, Wayne State University, Detroit, MI 48202, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Neurology, Wayne State University, Detroit, MI 48202, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.B.); (G.D.); (L.Z.); (H.L.); (Q.L.); (L.L.); (M.W.); (J.L.-W.); (M.C.); (Z.Z.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Neurology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
7
|
Bojarskaite L, Nafari S, Ravnanger AK, Frey MM, Skauli N, Åbjørsbråten KS, Roth LC, Amiry-Moghaddam M, Nagelhus EA, Ottersen OP, Bogen IL, Thoren AE, Enger R. Role of aquaporin-4 polarization in extracellular solute clearance. Fluids Barriers CNS 2024; 21:28. [PMID: 38532513 DOI: 10.1186/s12987-024-00527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/02/2024] [Indexed: 03/28/2024] Open
Abstract
Waste from the brain has been shown to be cleared via the perivascular spaces through the so-called glymphatic system. According to this model the cerebrospinal fluid (CSF) enters the brain in perivascular spaces of arteries, crosses the astrocyte endfoot layer, flows through the parenchyma collecting waste that is subsequently drained along veins. Glymphatic clearance is dependent on astrocytic aquaporin-4 (AQP4) water channels that are highly enriched in the endfeet. Even though the polarized expression of AQP4 in endfeet is thought to be of crucial importance for glymphatic CSF influx, its role in extracellular solute clearance has only been evaluated using non-quantitative fluorescence measurements. Here we have quantitatively evaluated clearance of intrastriatally infused small and large radioactively labeled solutes in mice lacking AQP4 (Aqp4-/-) or lacking the endfoot pool of AQP4 (Snta1-/-). We confirm that Aqp4-/- mice show reduced clearance of both small and large extracellular solutes. Moreover, we find that the Snta1-/- mice have reduced clearance only for the 500 kDa [3H]dextran, but not 0.18 kDa [3H]mannitol suggesting that polarization of AQP4 to the endfeet is primarily important for clearance of large, but not small molecules. Lastly, we observed that clearance of 500 kDa [3H]dextran increased with age in adult mice. Based on our quantitative measurements, we confirm that presence of AQP4 is important for clearance of extracellular solutes, while the perivascular AQP4 localization seems to have a greater impact on clearance of large versus small molecules.
Collapse
Affiliation(s)
- Laura Bojarskaite
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
- Department of Neurology, Oslo University Hospital, Oslo, 0027, Norway
| | - Sahar Nafari
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
| | - Anne Katrine Ravnanger
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
| | - Mina Martine Frey
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
| | - Nadia Skauli
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
| | - Knut Sindre Åbjørsbråten
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
| | - Lena Catherine Roth
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
| | - Mahmood Amiry-Moghaddam
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
| | - Erlend A Nagelhus
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
| | - Ole Petter Ottersen
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
| | - Inger Lise Bogen
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
- Section for Drug Abuse Research, Department of Forensic Sciences, Oslo University Hospital, P.O. Box N-4950, Nydalen, Oslo, 0424, Norway
| | - Anna E Thoren
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway
| | - Rune Enger
- GliaLab and Letten Centre, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, P.O.B. 1103, Oslo, 0317, Norway.
| |
Collapse
|
8
|
Alghanimy A, Work LM, Holmes WM. The glymphatic system and multiple sclerosis: An evolving connection. Mult Scler Relat Disord 2024; 83:105456. [PMID: 38266608 DOI: 10.1016/j.msard.2024.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder that affects the central nervous system, resulting in demyelination and an array of neurological manifestations. Recently, there has been significant scientific interest in the glymphatic system, which operates as a waste-clearance system for the brain. This article reviews the existing literature, and explores potential links between the glymphatic system and MS, shedding light on its evolving significance in the context of MS pathogenesis. The authors consider the pathophysiological implications of glymphatic dysfunction in MS, the impact of disrupted sleep on glymphatic function, and the bidirectional relationship between MS and sleep disturbances. By offering an understanding of the intricate interplay between the glymphatic system and MS, this review provides valuable insights which may lead to improved diagnostic techniques and more effective therapeutic interventions.
Collapse
Affiliation(s)
- Alaa Alghanimy
- School of Psychology and Neuroscience, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow G61 1QH, United Kingdom; Radiological Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Lorraine M Work
- School of Cardiovascular and Metabolic Health, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - William M Holmes
- School of Psychology and Neuroscience, College of Medicine, Veterinary and Life Science, University of Glasgow, Glasgow G61 1QH, United Kingdom
| |
Collapse
|
9
|
Licastro E, Pignataro G, Iliff JJ, Xiang Y, Lo EH, Hayakawa K, Esposito E. Glymphatic and lymphatic communication with systemic responses during physiological and pathological conditions in the central nervous system. Commun Biol 2024; 7:229. [PMID: 38402351 PMCID: PMC10894274 DOI: 10.1038/s42003-024-05911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Crosstalk between central nervous system (CNS) and systemic responses is important in many pathological conditions, including stroke, neurodegeneration, schizophrenia, epilepsy, etc. Accumulating evidence suggest that signals for central-systemic crosstalk may utilize glymphatic and lymphatic pathways. The glymphatic system is functionally connected to the meningeal lymphatic system, and together these pathways may be involved in the distribution of soluble proteins and clearance of metabolites and waste products from the CNS. Lymphatic vessels in the dura and meninges transport cerebrospinal fluid, in part collected from the glymphatic system, to the cervical lymph nodes, where solutes coming from the brain (i.e., VEGFC, oligomeric α-syn, β-amyloid) might activate a systemic inflammatory response. There is also an element of time since the immune system is strongly regulated by circadian rhythms, and both glymphatic and lymphatic dynamics have been shown to change during the day and night. Understanding the mechanisms regulating the brain-cervical lymph node (CLN) signaling and how it might be affected by diurnal or circadian rhythms is fundamental to find specific targets and timing for therapeutic interventions.
Collapse
Affiliation(s)
- Ester Licastro
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Yanxiao Xiang
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, UK
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Elga Esposito
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, UK.
| |
Collapse
|
10
|
Piersanti E, Rognes ME, Vinje V. Are brain displacements and pressures within the parenchyma induced by surface pressure differences? A computational modelling study. PLoS One 2023; 18:e0288668. [PMID: 38150460 PMCID: PMC10752538 DOI: 10.1371/journal.pone.0288668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/30/2023] [Indexed: 12/29/2023] Open
Abstract
The intracranial pressure is implicated in many homeostatic processes in the brain and is a fundamental parameter in several diseases such as e.g. idiopathic normal pressure hydrocephalus. The presence of a small but persistent pulsatile intracranial pulsatile transmantle pressure gradient (on the order of a few mmHg/m at peak) has recently been demonstrated in hydrocephalus subjects. A key question is whether pulsatile intracranial pressure and displacements can be induced by a small pressure gradient originating from the brain surface alone. In this study, we model the brain parenchyma as either a linearly elastic or a poroelastic medium, and impose a pulsatile pressure gradient acting between the ventricular and the pial surfaces but no additional external forces. Using this high-resolution physics-based model, we use in vivo pulsatile pressure gradients from subjects with idiopathic normal pressure hydrocephalus to compute parenchyma displacement, volume change, fluid pressure, and fluid flux. The resulting displacement field is pulsatile and in qualitatively and quantitatively good agreement with the literature, both with elastic and poroelastic models. However, the pulsatile forces on the boundaries are not sufficient for pressure pulse propagation through the brain parenchyma. Our results suggest that pressure differences at the brain surface, originating e.g. from pulsating arteries surrounding the brain, are not alone sufficient to drive interstitial fluid flow within the brain parenchyma and that potential pressure gradients found within the parenchyma rather arise from a large portion of the blood vessel network, including smaller blood vessels within the brain parenchyma itself.
Collapse
Affiliation(s)
- Eleonora Piersanti
- Simula Research Laboratory, Oslo, Norway
- Expert Analytics AS, Oslo, Norway
| | | | - Vegard Vinje
- Simula Research Laboratory, Oslo, Norway
- Expert Analytics AS, Oslo, Norway
| |
Collapse
|
11
|
Zhu HH, Li SS, Wang YC, Song B, Gao Y, Xu YM, Li YS. Clearance dysfunction of trans-barrier transport and lymphatic drainage in cerebral small vessel disease: Review and prospect. Neurobiol Dis 2023; 189:106347. [PMID: 37951367 DOI: 10.1016/j.nbd.2023.106347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
Cerebral small vessel disease (CSVD) causes 20%-25% of stroke and contributes to 45% of dementia cases worldwide. However, since its early symptoms are inconclusive in addition to the complexity of the pathological basis, there is a rather limited effective therapies and interventions. Recently, accumulating evidence suggested that various brain-waste-clearance dysfunctions are closely related to the pathogenesis and prognosis of CSVD, and after a comprehensive and systematic review we classified them into two broad categories: trans-barrier transport and lymphatic drainage. The former includes blood brain barrier and blood-cerebrospinal fluid barrier, and the latter, glymphatic-meningeal lymphatic system and intramural periarterial drainage pathway. We summarized the concepts and potential mechanisms of these clearance systems, proposing a relatively complete framework for elucidating their interactions with CSVD. In addition, we also discussed recent advances in therapeutic strategies targeting clearance dysfunction, which may be an important area for future CSVD research.
Collapse
Affiliation(s)
- Hang-Hang Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, China.
| | - Shan-Shan Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yun-Chao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, China.
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, China.
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, China.
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, China.
| | - Yu-Sheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, China.
| |
Collapse
|
12
|
MacAulay N, Toft-Bertelsen TL. Dual function of the choroid plexus: Cerebrospinal fluid production and control of brain ion homeostasis. Cell Calcium 2023; 116:102797. [PMID: 37801806 DOI: 10.1016/j.ceca.2023.102797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/08/2023]
Abstract
The choroid plexus is a small monolayered epithelium located in the brain ventricles and serves to secrete the cerebrospinal fluid (CSF) that envelops the brain and fills the central ventricles. The CSF secretion is sustained with a concerted effort of a range of membrane transporters located in a polarized fashion in this tissue. Prominent amongst these are the Na+/K+-ATPase, the Na+,K+,2Cl- cotransporter (NKCC1), and several HCO3- transporters, which together support the net transepithelial transport of the major electrolytes, Na+ and Cl-, and thus drive the CSF secretion. The choroid plexus, in addition, serves an important role in keeping the CSF K+ concentration at a level compatible with normal brain function. The choroid plexus Na+/K+-ATPase represents a key factor in the barrier-mediated control of the CSF K+ homeostasis, as it increases its K+ uptake activity when faced with elevated extracellular K+ ([K+]o). In certain developmental or pathological conditions, the NKCC1 may revert its net transport direction to contribute to CSF K+ homeostasis. The choroid plexus ion transport machinery thus serves dual, yet interconnected, functions with its contribution to electrolyte and fluid secretion in combination with its control of brain K+ levels.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark.
| | - Trine L Toft-Bertelsen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| |
Collapse
|
13
|
Bällgren F, Hammarlund-Udenaes M, Loryan I. Active Uptake of Oxycodone at Both the Blood-Cerebrospinal Fluid Barrier and The Blood-Brain Barrier without Sex Differences: A Rat Microdialysis Study. Pharm Res 2023; 40:2715-2730. [PMID: 37610619 PMCID: PMC10733202 DOI: 10.1007/s11095-023-03583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Oxycodone active uptake across the blood-brain barrier (BBB) is associated with the putative proton-coupled organic cation (H+/OC) antiporter system. Yet, the activity of this system at the blood-cerebrospinal fluid barrier (BCSFB) is not fully understood. Additionally, sex differences in systemic pharmacokinetics and pharmacodynamics of oxycodone has been reported, but whether the previous observations involve sex differences in the function of the H+/OC antiporter system remain unknown. The objective of this study was, therefore, to investigate the extent of oxycodone transport across the BBB and the BCSFB in female and male Sprague-Dawley rats using microdialysis. METHODS Microdialysis probes were implanted in the blood and two of the following brain locations: striatum and lateral ventricle or cisterna magna. Oxycodone was administered as an intravenous infusion, and dialysate, blood and brain were collected. Unbound partition coefficients (Kp,uu) were calculated to understand the extent of oxycodone transport across the blood-brain barriers. Non-compartmental analysis was conducted using Phoenix 64 WinNonlin. GraphPad Prism version 9.0.0 was used to perform t-tests, one-way and two-way analysis of variance followed by Tukey's or Šídák's multiple comparison tests. Differences were considered significant at p < 0.05. RESULTS The extent of transport at the BBB measured in striatum was 4.44 ± 1.02 (Kp,uu,STR), in the lateral ventricle 3.41 ± 0.74 (Kp,uu,LV) and in cisterna magna 2.68 ± 1.01 (Kp,uu,CM). These Kp,uu values indicate that the extent of oxycodone transport is significantly lower at the BCSFB compared with that at the BBB, but still confirm the presence of active uptake at both blood-brain interfaces. No significant sex differences were observed in neither the extent of oxycodone delivery to the brain, nor in the systemic pharmacokinetics of oxycodone. CONCLUSIONS The findings clearly show that active uptake is present at both the BCSFB and the BBB. Despite some underestimation of the extent of oxycodone delivery to the brain, CSF may be an acceptable surrogate of brain ISF for oxycodone, and potentially also other drugs actively transported into the brain via the H+/OC antiporter system.
Collapse
Affiliation(s)
- Frida Bällgren
- Translational Pharmacokinetics/Pharmacodynamics group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden.
| | - Margareta Hammarlund-Udenaes
- Translational Pharmacokinetics/Pharmacodynamics group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden
| | - Irena Loryan
- Translational Pharmacokinetics/Pharmacodynamics group (tPKPD), Department of Pharmacy, Uppsala University, Box 580, 75123, Uppsala, Sweden.
| |
Collapse
|
14
|
Yang T, Sun Y, Li Q, Alraqmany N, Zhang F. Effects of Ischemic Stroke on Interstitial Fluid Clearance in Mouse Brain: a Bead Study. Cell Mol Neurobiol 2023; 43:4141-4156. [PMID: 37634198 PMCID: PMC11407736 DOI: 10.1007/s10571-023-01400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The clearance of brain interstitial fluid (ISF) is important in maintaining brain homeostasis. ISF clearance impairment leads to toxic material accumulation in the brain, and ischemic stroke could impair ISF clearance. The present study investigates ISF clearance under normal and ischemic conditions. The carboxylate-modified FluoSpheres beads (0.04 μm in diameter) were injected into the striatum. Sham or transient middle cerebral artery occlusion surgeries were performed on the mice. The brain sections were immunostained with cell markers, and bead distribution at various time points was examined with a confocal microscope. Primary mouse neuronal cultures were incubated with the beads to explore in vitro endocytosis. Two physiological routes for ISF clearance were identified. The main one was to the lateral ventricle (LV) through the cleft between the striatum and the corpus callosum (CC)/external capsule (EC), where some beads were captured by the ependymal macrophages and choroid plexus. An alternative and minor route was to the subarachnoid space through the CC/EC and the cortex, where some of the beads were endocytosed by neurons. After ischemic stroke, a significant decrease in the main route and an increase in the minor route were observed. Additionally, microglia/macrophages engulfed the beads in the infarction. In conclusion, we report that the physiological clearance of ISF and beads mainly passes through the cleft between the CC/EC and striatum into the LV, or alternatively through the cortex into the subarachnoid space. Stroke delays the main route but enhances the minor route, and microglia/macrophages engulf the beads in the infarction. Ischemic stroke impairs the clearance of brain interstitial fluid/beads. Under physiological conditions, the main route ( ① ) of interstitial fluid clearance is to the lateral ventricle, and the minor one ( ② ) is to the subarachnoid space. Ischemic stroke weakens the main route ( ① ), enhances the minor one ( ② ), and leads to microglial/macrophage phagocytosis within the infarction ( ③ ).
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Yang Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Qianqian Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Nour Alraqmany
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
15
|
Kaur J, Boyd E, Ding G, Zhang L, Luo H, Li Q, Li L, Wei M, Landschoot-Ward J, Chopp M, Zhang Z, Jiang Q. The Association between Glymphatic System and Perivascular Macrophages in Brain Waste Clearance. RESEARCH SQUARE 2023:rs.3.rs-3390074. [PMID: 37886481 PMCID: PMC10602168 DOI: 10.21203/rs.3.rs-3390074/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The glymphatic system suggests the convective bulk flow of cerebrospinal fluid (CSF) through perivascular spaces and the interstitial spaces of the brain parenchyma for the rapid removal of toxic waste solutes from the brain. However, the presence of convective bulk flow within the brain interstitial spaces is still under debate. We first addressed this argument to determine the involvement of the glymphatic system in brain waste clearance utilizing contrast-enhanced 3D T1-weighted imaging (T1WI), diffusion tensor imaging (DTI), and confocal microscopy imaging. Furthermore, perivascular macrophages (PVMs), which are immune cells located within perivascular spaces, have not been thoroughly explored for their association with the glymphatic system. Therefore, we investigated tracer uptake by PVMs in the perivascular spaces of both the arteries/arterioles and veins/venules and the potential association of PVMs in assisting the glymphatic system for interstitial waste clearance. Our findings demonstrated that both convective bulk flow and diffusion are responsible for the clearance of interstitial waste solutes from the brain parenchyma. Furthermore, our results suggested that PVMs play an important function in glymphatic system-mediated interstitial waste clearance. The glymphatic system and PVMs could be targeted to enhance interstitial waste clearance in patients with waste-associated neurological conditions and aging.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Edward Boyd
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Radiology, Michigan State University, Lasing, MI, USA
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Radiology, Michigan State University, Lasing, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physiology, Michigan State University, Lasing, MI, USA
| | - Hao Luo
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Min Wei
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | | | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Physiology, Michigan State University, Lasing, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physiology, Michigan State University, Lasing, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Radiology, Michigan State University, Lasing, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
16
|
Sennfält S, Thrippleton MJ, Stringer M, Reyes CA, Chappell F, Doubal F, Garcia DJ, Zhang J, Cheng Y, Wardlaw J. Visualising and semi-quantitatively measuring brain fluid pathways, including meningeal lymphatics, in humans using widely available MRI techniques. J Cereb Blood Flow Metab 2023; 43:1779-1795. [PMID: 37254892 PMCID: PMC10581238 DOI: 10.1177/0271678x231179555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Brain fluid dynamics remains poorly understood with central issues unresolved. In this study, we first review the literature regarding points of controversy, then pilot study if conventional MRI techniques can assess brain fluid outflow pathways and explore potential associations with small vessel disease (SVD). We assessed 19 subjects participating in the Mild Stroke Study 3 who had FLAIR imaging before and 20-30 minutes after intravenous Gadolinium (Gd)-based contrast. Signal intensity (SI) change was assessed semi-quantitatively by placing regions of interest, and qualitatively by a visual scoring system, along dorsal and basal fluid outflow routes. Following i.v. Gd, SI increased substantially along the anterior, middle, and posterior superior sagittal sinus (SSS) (82%, 104%, and 119%, respectively), at basal areas (cribriform plate, 67%; jugular foramina, 72%), and in narrow channels surrounding superficial cortical veins separated from surrounding cerebrospinal fluid (CSF) (96%) (all p < 0.001). The SI increase was associated with higher intraparenchymal perivascular spaces (PVS) scores (Std. Beta 0.71, p = 0.01). Our findings suggests that interstitial fluid drainage is visible on conventional MRI and drains from brain parenchyma via cortical perivenous spaces to dural meningeal lymphatics along the SSS remaining separate from the CSF. An association with parenchymal PVS requires further research, now feasible in humans.
Collapse
Affiliation(s)
- Stefan Sennfält
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Michael Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Francesca Chappell
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Fergus Doubal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniela J Garcia
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Junfang Zhang
- Department of Neurology, Shanghai General Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yajun Cheng
- Department of Neurology, West China Hospital and Sichuan University, Chengdu, China
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Yoo SS, Kim E, Kowsari K, Van Reet J, Kim HC, Yoon K. Non-invasive enhancement of intracortical solute clearance using transcranial focused ultrasound. Sci Rep 2023; 13:12339. [PMID: 37524783 PMCID: PMC10390479 DOI: 10.1038/s41598-023-39640-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023] Open
Abstract
Transport of interstitial fluid and solutes plays a critical role in clearing metabolic waste from the brain. Transcranial application of focused ultrasound (FUS) has been shown to promote localized cerebrospinal fluid solute uptake into the brain parenchyma; however, its effects on the transport and clearance of interstitial solutes remain unknown. We demonstrate that pulsed application of low-intensity FUS to the rat brain enhances the transport of intracortically injected fluorescent tracers (ovalbumin and high molecular-weight dextran), yielding greater parenchymal tracer volume distribution compared to the unsonicated control group (ovalbumin by 40.1% and dextran by 34.6%). Furthermore, FUS promoted the drainage of injected interstitial ovalbumin to both superficial and deep cervical lymph nodes (cLNs) ipsilateral to sonication, with 78.3% higher drainage observed in the superficial cLNs compared to the non-sonicated hemisphere. The application of FUS increased the level of solute transport visible from the dorsal brain surface, with ~ 43% greater area and ~ 19% higher fluorescence intensity than the unsonicated group, especially in the pial surface ipsilateral to sonication. The sonication did not elicit tissue-level neuronal excitation, measured by an electroencephalogram, nor did it alter the molecular weight of the tracers. These findings suggest that nonthermal transcranial FUS can enhance advective transport of interstitial solutes and their subsequent removal in a completely non-invasive fashion, offering its potential non-pharmacological utility in facilitating clearance of waste from the brain.
Collapse
Affiliation(s)
- Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA.
| | - Evgenii Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
| | - Kavin Kowsari
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
| | - Jared Van Reet
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
| | - Hyun-Chul Kim
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, MA, 02115, Boston, USA
- Department of Artificial Intelligence, Kyungpook National University, Daegu, Republic of Korea
| | - Kyungho Yoon
- School of Computational Science and Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Poulain A, Riseth J, Vinje V. Multi-compartmental model of glymphatic clearance of solutes in brain tissue. PLoS One 2023; 18:e0280501. [PMID: 36881576 PMCID: PMC9990927 DOI: 10.1371/journal.pone.0280501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/02/2023] [Indexed: 03/08/2023] Open
Abstract
The glymphatic system is the subject of numerous pieces of research in biology. Mathematical modelling plays a considerable role in this field since it can indicate the possible physical effects of this system and validate the biologists' hypotheses. The available mathematical models that describe the system at the scale of the brain (i.e. the macroscopic scale) are often solely based on the diffusion equation and do not consider the fine structures formed by the perivascular spaces. We therefore propose a mathematical model representing the time and space evolution of a mixture flowing through multiple compartments of the brain. We adopt a macroscopic point of view in which the compartments are all present at any point in space. The equations system is composed of two coupled equations for each compartment: One equation for the pressure of a fluid and one for the mass concentration of a solute. The fluid and solute can move from one compartment to another according to certain membrane conditions modelled by transfer functions. We propose to apply this new modelling framework to the clearance of 14C-inulin from the rat brain.
Collapse
Affiliation(s)
- Alexandre Poulain
- Laboratoire Paul Painlevé, UMR 8524 CNRS, Université de Lille, Lille, France
- Department for Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Jørgen Riseth
- Department of Mathematics, University of Oslo, Oslo, Norway
- Department for Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| | - Vegard Vinje
- Department for Numerical Analysis and Scientific Computing, Simula Research Laboratory, Oslo, Norway
| |
Collapse
|
19
|
Sleep cycle-dependent vascular dynamics in male mice and the predicted effects on perivascular cerebrospinal fluid flow and solute transport. Nat Commun 2023; 14:953. [PMID: 36806170 PMCID: PMC9941497 DOI: 10.1038/s41467-023-36643-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
Perivascular spaces are important highways for fluid and solute transport in the brain enabling efficient waste clearance during sleep. However, the underlying mechanisms augmenting perivascular flow in sleep are unknown. Using two-photon imaging of naturally sleeping male mice we demonstrate sleep cycle-dependent vascular dynamics of pial arteries and penetrating arterioles: slow, large-amplitude oscillations in NREM sleep, a vasodilation in REM sleep, and a vasoconstriction upon awakening at the end of a sleep cycle and microarousals in NREM and intermediate sleep. These vascular dynamics are mirrored by changes in the size of the perivascular spaces of the penetrating arterioles: slow fluctuations in NREM sleep, reduction in REM sleep and an enlargement upon awakening after REM sleep and during microarousals in NREM and intermediate sleep. By biomechanical modeling we demonstrate that these sleep cycle-dependent perivascular dynamics likely enhance fluid flow and solute transport in perivascular spaces to levels comparable to cardiac pulsation-driven oscillations.
Collapse
|
20
|
Sangalli L, Boggero IA. The impact of sleep components, quality and patterns on glymphatic system functioning in healthy adults: A systematic review. Sleep Med 2023; 101:322-349. [PMID: 36481512 DOI: 10.1016/j.sleep.2022.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/04/2022] [Accepted: 11/13/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The glymphatic system is thought to be responsible for waste clearance in the brain. As it is primarily active during sleep, different components of sleep, subjective sleep quality, and sleep patterns may contribute to glymphatic functioning. This systematic review aimed at exploring the effect of sleep components, sleep quality, and sleep patterns on outcomes associated with the glymphatic system in healthy adults. METHODS PubMed®, Scopus, and Web of Science were searched for studies published in English until December 2021. Articles subjectively or objectively investigating sleep components (total sleep time, time in bed, sleep efficiency, sleep onset latency, wake-up after sleep onset, sleep stage, awakenings), sleep quality, or sleep pattern in healthy individuals, on outcomes associated with glymphatic system (levels of amyloid-β, tau, α-synuclein; cerebrospinal fluid, perivascular spaces; apolipoprotein E) were selected. RESULTS Out of 8359 records screened, 51 studies were included. Overall, contradictory findings were observed according to different sleep assessment method. The most frequently assessed sleep parameters were total sleep time, sleep quality, and sleep efficiency. No association was found between sleep efficiency and amyloid-β, and between slow-wave activity and tau. Most of the studies did not find any correlation between total sleep time and amyloid-β nor tau level. Opposing results correlated sleep quality with amyloid-β and tau. CONCLUSIONS This review highlighted inconsistent results across the studies; as such, the specific association between the glymphatic system and sleep parameters in healthy adults remains poorly understood. Due to the heterogeneity of sleep assessment methods and the self-reported data representing the majority of the observations, future studies with universal study design and sleep methodology in healthy individuals are advocated.
Collapse
Affiliation(s)
- L Sangalli
- Department of Oral Health Science, Division of Orofacial Pain, University of Kentucky, College of Dentistry, Lexington, Kentucky, USA; College of Dental Medicine - Illinois, Downers Grove, Illinois, USA.
| | - I A Boggero
- Department of Oral Health Science, Division of Orofacial Pain, University of Kentucky, College of Dentistry, Lexington, Kentucky, USA; Department of Psychology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
21
|
Suresh S, Larson J, Jenrow KA. Chronic neuroinflammation impairs waste clearance in the rat brain. Front Neuroanat 2022; 16:1013808. [PMID: 36569282 PMCID: PMC9768431 DOI: 10.3389/fnana.2022.1013808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background Previous reports have established an association between impaired clearance of macromolecular waste from the brain parenchyma and a variety of brain insults for which chronic neuroinflammation is a common pathological feature. Here we investigate whether chronic neuroinflammation is sufficient to impair macromolecular waste clearance from the rat brain. Methods Using a rodent model of chronic neuroinflammation induced by a single high-dose injection of lipopolysaccharide, the clearance kinetics of two fluorophore-conjugated dextran tracers were assayed at 8-weeks post-induction. The expression and distribution of amyloid β and aquaporin-4 proteins within selected brain regions were assayed at 36-weeks post-induction, following open-field, novel object recognition, and contextual fear conditioning assays. Results Chronic neuroinflammation significantly impaired the clearance kinetics of both dextran tracers and resulted in significantly elevated levels of amyloid β within the hippocampus. Aquaporin-4 density on astrocytic endfeet processes was also reduced within multiple brain regions. These pathologies were associated with significantly enhanced contextual fear memory. Conclusion Our results suggest that chronic neuroinflammation is sufficient to compromise the clearance of macromolecular waste from the brain parenchyma and may be the root cause of impaired waste clearance associated with a variety of brain pathologies.
Collapse
Affiliation(s)
- Swathi Suresh
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Jacob Larson
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States,Department of Physics, Central Michigan University, Mount Pleasant, MI, United States
| | - Kenneth Allen Jenrow
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States,Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States,*Correspondence: Kenneth Allen Jenrow,
| |
Collapse
|
22
|
White H, Webb R, McKnight I, Legg K, Lee C, Lee PH, Spicer OS, Shim JW. TRPV4 mRNA is elevated in the caudate nucleus with NPH but not in Alzheimer's disease. Front Genet 2022; 13:936151. [PMID: 36406122 PMCID: PMC9670164 DOI: 10.3389/fgene.2022.936151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/17/2022] [Indexed: 01/04/2023] Open
Abstract
Symptoms of normal pressure hydrocephalus (NPH) and Alzheimer's disease (AD) are somewhat similar, and it is common to misdiagnose these two conditions. Although there are fluid markers detectable in humans with NPH and AD, determining which biomarker is optimal in representing genetic characteristics consistent throughout species is poorly understood. Here, we hypothesize that NPH can be differentiated from AD with mRNA biomarkers of unvaried proximity to telomeres. We examined human caudate nucleus tissue samples for the expression of transient receptor potential cation channel subfamily V member 4 (TRPV4) and amyloid precursor protein (APP). Using the genome data viewer, we analyzed the mutability of TRPV4 and other genes in mice, rats, and humans through matching nucleotides of six genes of interest and one house keeping gene with two factors associated with high mutation rate: 1) proximity to telomeres or 2) high adenine and thymine (A + T) content. We found that TRPV4 and microtubule associated protein tau (MAPT) mRNA were elevated in NPH. In AD, mRNA expression of TRPV4 was unaltered unlike APP and other genes. In mice, rats, and humans, the nucleotide size of TRPV4 did not vary, while in other genes, the sizes were inconsistent. Proximity to telomeres in TRPV4 was <50 Mb across species. Our analyses reveal that TRPV4 gene size and mutability are conserved across three species, suggesting that TRPV4 can be a potential link in the pathophysiology of chronic hydrocephalus in aged humans (>65 years) and laboratory rodents at comparable ages.
Collapse
Affiliation(s)
- Hunter White
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Ryan Webb
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Ian McKnight
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Kaitlyn Legg
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States
| | - Chan Lee
- Department of Anesthesia, Indiana University Health Arnett Hospital, Lafayette, IN, United States
| | - Peter H.U. Lee
- Department of Cardiothoracic Surgery, Southcoast Health, Fall River, MA, United States,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Olivia Smith Spicer
- National Institute of Mental Health, National Institute of Health, Bethesda, MD, United States
| | - Joon W. Shim
- Department of Biomedical Engineering, Marshall University, Huntington, WV, United States,*Correspondence: Joon W. Shim,
| |
Collapse
|
23
|
Zhao L, Tannenbaum A, Bakker ENTP, Benveniste H. Physiology of Glymphatic Solute Transport and Waste Clearance from the Brain. Physiology (Bethesda) 2022; 37:0. [PMID: 35881783 PMCID: PMC9550574 DOI: 10.1152/physiol.00015.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 12/25/2022] Open
Abstract
This review focuses on the physiology of glymphatic solute transport and waste clearance, using evidence from experimental animal models as well as from human studies. Specific topics addressed include the biophysical characteristics of fluid and solute transport in the central nervous system, glymphatic-lymphatic coupling, as well as the role of cerebrospinal fluid movement for brain waste clearance. We also discuss the current understanding of mechanisms underlying increased waste clearance during sleep.
Collapse
Affiliation(s)
- Lucy Zhao
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
| | - Allen Tannenbaum
- Departments of Computer Science and Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Erik N T P Bakker
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
24
|
Role of the glymphatic system in idiopathic intracranial hypertension. Clin Neurol Neurosurg 2022; 222:107446. [DOI: 10.1016/j.clineuro.2022.107446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
|
25
|
Abstract
Circulation of cerebrospinal fluid and interstitial fluid around the central nervous system and through the brain transports not only those water-like fluids but also any solutes they carry, including nutrients, drugs, and metabolic wastes. Passing through brain tissue primarily during sleep, this circulation has implications for neurodegenerative disorders including Alzheimer's disease, for tissue damage during stroke and cardiac arrest, and for flow-related disorders such as hydrocephalus and syringomyelia. Recent experimental results reveal several features of this flow, but other aspects are not fully understood, including its driving mechanisms. We review the experimental evidence and theoretical modeling of cerebrospinal fluid flow, including the roles of advection and diffusion in transporting solutes. We discuss both local, detailed fluid-dynamic models of specific components of the system and global hydraulic models of the overall network of flow paths.
Collapse
Affiliation(s)
- Douglas H Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, New York, USA
| | - John H Thomas
- Department of Mechanical Engineering and Department of Physics and Astronomy, University of Rochester, Rochester, New York, USA
| |
Collapse
|
26
|
Oernbo EK, Steffensen AB, Razzaghi Khamesi P, Toft-Bertelsen TL, Barbuskaite D, Vilhardt F, Gerkau NJ, Tritsaris K, Simonsen AH, Lolansen SD, Andreassen SN, Hasselbalch SG, Zeuthen T, Rose CR, Kurtcuoglu V, MacAulay N. Membrane transporters control cerebrospinal fluid formation independently of conventional osmosis to modulate intracranial pressure. Fluids Barriers CNS 2022; 19:65. [PMID: 36038945 PMCID: PMC9422132 DOI: 10.1186/s12987-022-00358-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Disturbances in the brain fluid balance can lead to life-threatening elevation in the intracranial pressure (ICP), which represents a vast clinical challenge. Nevertheless, the details underlying the molecular mechanisms governing cerebrospinal fluid (CSF) secretion are largely unresolved, thus preventing targeted and efficient pharmaceutical therapy of cerebral pathologies involving elevated ICP. Methods Experimental rats were employed for in vivo determinations of CSF secretion rates, ICP, blood pressure and ex vivo excised choroid plexus for morphological analysis and quantification of expression and activity of various transport proteins. CSF and blood extractions from rats, pigs, and humans were employed for osmolality determinations and a mathematical model employed to determine a contribution from potential local gradients at the surface of choroid plexus. Results We demonstrate that CSF secretion can occur independently of conventional osmosis and that local osmotic gradients do not suffice to support CSF secretion. Instead, the CSF secretion across the luminal membrane of choroid plexus relies approximately equally on the Na+/K+/2Cl− cotransporter NKCC1, the Na+/HCO3− cotransporter NBCe2, and the Na+/K+-ATPase, but not on the Na+/H+ exchanger NHE1. We demonstrate that pharmacological modulation of CSF secretion directly affects the ICP. Conclusions CSF secretion appears to not rely on conventional osmosis, but rather occur by a concerted effort of different choroidal transporters, possibly via a molecular mode of water transport inherent in the proteins themselves. Therapeutic modulation of the rate of CSF secretion may be employed as a strategy to modulate ICP. These insights identify new promising therapeutic targets against brain pathologies associated with elevated ICP. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00358-4.
Collapse
Affiliation(s)
- Eva K Oernbo
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Annette B Steffensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Pooya Razzaghi Khamesi
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Trine L Toft-Bertelsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Dagne Barbuskaite
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Niklas J Gerkau
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Katerina Tritsaris
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Anja H Simonsen
- Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sara D Lolansen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Søren N Andreassen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Steen G Hasselbalch
- Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Zeuthen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Christine R Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Vartan Kurtcuoglu
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| |
Collapse
|
27
|
The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov 2022; 21:763-779. [PMID: 35948785 DOI: 10.1038/s41573-022-00500-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 12/14/2022]
Abstract
In the past decade, evidence for a fluid clearance pathway in the central nervous system known as the glymphatic system has grown. According to the glymphatic system concept, cerebrospinal fluid flows directionally through the brain and non-selectively clears the interstitium of metabolic waste. Importantly, the glymphatic system may be modulated by particular drugs such as anaesthetics, as well as by non-pharmacological factors such as sleep, and its dysfunction has been implicated in central nervous system disorders such as Alzheimer disease. Although the glymphatic system is best described in rodents, reports using multiple neuroimaging modalities indicate that a similar transport system exists in the human brain. Here, we overview the evidence for the glymphatic system and its role in disease and discuss opportunities to harness the glymphatic system therapeutically; for example, by improving the effectiveness of intrathecally delivered drugs.
Collapse
|
28
|
Proulx ST, Engelhardt B. Central nervous system zoning: How brain barriers establish subdivisions for CNS immune privilege and immune surveillance. J Intern Med 2022; 292:47-67. [PMID: 35184353 PMCID: PMC9314672 DOI: 10.1111/joim.13469] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The central nervous system (CNS) coordinates all our body functions. Neurons in the CNS parenchyma achieve this computational task by high speed communication via electrical and chemical signals and thus rely on a strictly regulated homeostatic environment, which does not tolerate uncontrolled entry of blood components including immune cells. The CNS thus has a unique relationship with the immune system known as CNS immune privilege. Previously ascribed to the presence of blood-brain barriers and the lack of lymphatic vessels in the CNS parenchyma prohibiting, respectively, efferent and afferent connections with the peripheral immune system, it is now appreciated that CNS immune surveillance is ensured by cellular and acellular brain barriers that limit immune cell and mediator accessibility to specific compartments at the borders of the CNS. CNS immune privilege is established by a brain barriers anatomy resembling the architecture of a medieval castle surrounded by two walls bordering a castle moat. Built for protection and defense this two-walled rampart at the outer perimeter of the CNS parenchyma allows for accommodation of different immune cell subsets and efficient monitoring of potential danger signals derived from inside or outside of the CNS parenchyma. It enables effective mounting of immune responses within the subarachnoid or perivascular spaces, while leaving the CNS parenchyma relatively undisturbed. In this study, we propose that CNS immune privilege rests on the proper function of the brain barriers, which allow for CNS immune surveillance but prohibit activation of immune responses from the CNS parenchyma unless it is directly injured.
Collapse
Affiliation(s)
- Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
29
|
Khang M, Bindra RS, Mark Saltzman W. Intrathecal delivery and its applications in leptomeningeal disease. Adv Drug Deliv Rev 2022; 186:114338. [PMID: 35561835 DOI: 10.1016/j.addr.2022.114338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Abstract
Intrathecal delivery (IT) of opiates into the cerebrospinal fluid (CSF) for anesthesia and pain relief has been used clinically for decades, but this relatively straightforward approach of bypassing the blood-brain barrier has been underutilized for other indications because of its lack of utility in delivering small lipid-soluble drugs. However, emerging evidence suggests that IT drug delivery be an efficacious strategy for the treatment of cancers in which there is leptomeningeal spread of disease. In this review, we discuss CSF flow dynamics and CSF clearance pathways in the context of intrathecal delivery. We discuss human and animal studies of several new classes of therapeutic agents-cellular, protein, nucleic acid, and nanoparticle-based small molecules-that may benefit from IT delivery. The complexity of the CSF compartment presents several key challenges in predicting biodistribution of IT-delivered drugs. New approaches and strategies are needed that can overcome the high rates of turnover in the CSF to reach specific tissues or cellular targets.
Collapse
|
30
|
Quintin S, Barpujari A, Mehkri Y, Hernandez J, Lucke-Wold B. The glymphatic system and subarachnoid hemorrhage: disruption and recovery. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022; 2:118-130. [PMID: 35756328 PMCID: PMC9221287 DOI: 10.37349/ent.2022.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023]
Abstract
The glymphatic system, or glial-lymphatic system, is a waste clearance system composed of perivascular channels formed by astrocytes that mediate the clearance of proteins and metabolites from the brain. These channels facilitate the movement of cerebrospinal fluid throughout brain parenchyma and are critical for homeostasis. Disruption of the glymphatic system leads to an accumulation of these waste products as well as increased interstitial fluid in the brain. These phenomena are also seen during and after subarachnoid hemorrhages (SAH), contributing to the brain damage seen after rupture of a major blood vessel. Herein this review provides an overview of the glymphatic system, its disruption during SAH, and its function in recovery following SAH. The review also outlines drugs which target the glymphatic system and may have therapeutic applications following SAH.
Collapse
Affiliation(s)
- Stephan Quintin
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Arnav Barpujari
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Yusuf Mehkri
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Jairo Hernandez
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
31
|
Xuan X, Zhou G, Chen C, Shao A, Zhou Y, Li X, Zhou J. Glymphatic System: Emerging Therapeutic Target for Neurological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6189170. [PMID: 35726332 PMCID: PMC9206554 DOI: 10.1155/2022/6189170] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
The newly discovered glymphatic system acts as pseudolymphatic vessels subserving brain waste clearance and is functionally dependent on astrocytic aquaporin-4 channels. The glymphatic system primarily functions during sleep as an interchange between cerebrospinal fluid and interstitial fluid, with cerebrospinal fluid flowing into the parenchyma via the perivascular spaces and then exchanging with interstitial fluid. The discovery of meningeal lymphatics helps refine the conceptual framework of glymphatic pathway, as certain waste products collected alongside perivascular spaces ultimately drain into the cervical lymph nodes via meningeal lymphatics, whose function regulates the functioning of the glymphatic system. The glymphatic and meningeal lymphatic systems are critical for the homeostasis of central nervous system, and their malfunctions complicate cerebral dysfunction and diseases. The present review will shed light on the structure, regulation, functions, and interrelationships of the glymphatic system and meningeal lymphatics. We will also expound on their impairments and corresponding targeted intervention in neurodegenerative diseases, traumatic brain injury, stroke, and infectious/autoimmune diseases, offering valuable references for future research.
Collapse
Affiliation(s)
- Xianjun Xuan
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Guoyi Zhou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Caihong Chen
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobo Li
- Department of Neurology, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Jiaqi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| |
Collapse
|
32
|
Callai EMM, Zin LEF, Catarina LS, Ponzoni D, Gonçalves CAS, Vizuete AFK, Cougo MC, Boff J, Puricelli E, Fernandes EK, da Silva Torres IL, Quevedo AS. Evaluation of the immediate effects of a single transcranial direct current stimulation session on astrocyte activation, inflammatory response, and pain threshold in naïve rats. Behav Brain Res 2022; 428:113880. [PMID: 35390432 DOI: 10.1016/j.bbr.2022.113880] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 02/15/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022]
Abstract
Transcranial direct current stimulation (tDCS) has demonstrated clinical benefits such as analgesia, anti-inflammatory, and neuroprotective effects. However, the mechanisms of action of a single tDCS session are poorly characterized. The present study aimed to evaluate the effects of a single tDCS session on pain sensitivity, inflammatory parameters, and astrocyte activity in naive rats. In the first experiment, sixty-day-old male Wistar rats (n=95) were tested for mechanical pain threshold (von Frey test). Afterward, animals were submitted to a single bimodal tDCS (0.5mA, 20minutes) or sham-tDCS session. According to the group, animals were re-tested at different time intervals (30, 60, 120minutes, or 24hours) after the intervention, euthanized, and the cerebral cortex collected for biochemical analysis. A second experiment (n=16) was performed using a similar protocol to test the hypotheses that S100B levels in the cerebrospinal fluid (CSF) are altered by tDCS. Elisa assay quantified the levels of tumor necrosis factor-alfa (TNF-α), interleukin-10 (IL10), S100 calcium-binding protein B (S100B), and Glial fibrillary acidic protein (GFAP). Data were analyzed using ANOVA and independent t-test (P<0.05). Results showed that tDCS decreased pain sensitivity (30 and 60min), cerebral TNF-α and S100B levels (30min). CSF S100B levels increased 30minutes after intervention. There were no differences in IL10 and GFAP levels. TCDS showed analgesic, anti-inflammatory, and neuroprotective effects in naive animals. Therefore, this non-invasive and inexpensive therapy may potentially be a preemptive alternative to reduce pain, inflammation, and neurodegeneration in situations where patients will undergo medical procedures (e.g., surgery).
Collapse
Affiliation(s)
- Etiane Micheli Meyer Callai
- Postgraduate Program in Dentistry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil
| | | | - Luciana Santa Catarina
- Postgraduate Program in Dentistry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil
| | - Deise Ponzoni
- Postgraduate Program in Dentistry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Milton Cristian Cougo
- Postgraduate Program in Dentistry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil
| | - Jamile Boff
- Postgraduate Program in Dentistry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil
| | - Edela Puricelli
- Postgraduate Program in Dentistry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Alexandre Silva Quevedo
- Postgraduate Program in Dentistry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil; Neuroscience Graduate Program, UFRGS, Porto Alegre, RS, Brazil; Pharmacology Graduate Program, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
33
|
Abstract
The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-β, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.
Collapse
Affiliation(s)
- Martin Kaag Rasmussen
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
34
|
MacAulay N, Keep RF, Zeuthen T. Cerebrospinal fluid production by the choroid plexus: a century of barrier research revisited. Fluids Barriers CNS 2022; 19:26. [PMID: 35317823 PMCID: PMC8941821 DOI: 10.1186/s12987-022-00323-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cerebrospinal fluid (CSF) envelops the brain and fills the central ventricles. This fluid is continuously replenished by net fluid extraction from the vasculature by the secretory action of the choroid plexus epithelium residing in each of the four ventricles. We have known about these processes for more than a century, and yet the molecular mechanisms supporting this fluid secretion remain unresolved. The choroid plexus epithelium secretes its fluid in the absence of a trans-epithelial osmotic gradient, and, in addition, has an inherent ability to secrete CSF against an osmotic gradient. This paradoxical feature is shared with other 'leaky' epithelia. The assumptions underlying the classical standing gradient hypothesis await experimental support and appear to not suffice as an explanation of CSF secretion. Here, we suggest that the elusive local hyperosmotic compartment resides within the membrane transport proteins themselves. In this manner, the battery of plasma membrane transporters expressed in choroid plexus are proposed to sustain the choroidal CSF secretion independently of the prevailing bulk osmotic gradient.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Zeuthen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| |
Collapse
|
35
|
Hladky SB, Barrand MA. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 2022; 19:9. [PMID: 35115036 PMCID: PMC8815211 DOI: 10.1186/s12987-021-00282-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
The glymphatic hypothesis proposes a mechanism for extravascular transport into and out of the brain of hydrophilic solutes unable to cross the blood-brain barrier. It suggests that there is a circulation of fluid carrying solutes inwards via periarterial routes, through the interstitium and outwards via perivenous routes. This review critically analyses the evidence surrounding the mechanisms involved in each of these stages. There is good evidence that both influx and efflux of solutes occur along periarterial routes but no evidence that the principal route of outflow is perivenous. Furthermore, periarterial inflow of fluid is unlikely to be adequate to provide the outflow that would be needed to account for solute efflux. A tenet of the hypothesis is that flow sweeps solutes through the parenchyma. However, the velocity of any possible circulatory flow within the interstitium is too small compared to diffusion to provide effective solute movement. By comparison the earlier classical hypothesis describing extravascular transport proposed fluid entry into the parenchyma across the blood-brain barrier, solute movements within the parenchyma by diffusion, and solute efflux partly by diffusion near brain surfaces and partly carried by flow along "preferred routes" including perivascular spaces, white matter tracts and subependymal spaces. It did not suggest fluid entry via periarterial routes. Evidence is still incomplete concerning the routes and fate of solutes leaving the brain. A large proportion of the solutes eliminated from the parenchyma go to lymph nodes before reaching blood but the proportions delivered directly to lymph or indirectly via CSF which then enters lymph are as yet unclear. In addition, still not understood is why and how the absence of AQP4 which is normally highly expressed on glial endfeet lining periarterial and perivenous routes reduces rates of solute elimination from the parenchyma and of solute delivery to it from remote sites of injection. Neither the glymphatic hypothesis nor the earlier classical hypothesis adequately explain how solutes and fluid move into, through and out of the brain parenchyma. Features of a more complete description are discussed. All aspects of extravascular transport require further study.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
36
|
Noorani B, Chowdhury EA, Alqahtani F, Sajib MS, Ahn Y, Nozohouri E, Patel D, Mikelis C, Mehvar R, Bickel U. A Semi-Physiological Three-Compartment Model Describes Brain Uptake Clearance and Efflux of Sucrose and Mannitol after IV Injection in Awake Mice. Pharm Res 2022; 39:251-261. [PMID: 35146590 PMCID: PMC9645436 DOI: 10.1007/s11095-022-03175-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/22/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE To evaluate a three-compartmental semi-physiological model for analysis of uptake clearance and efflux from brain tissue of the hydrophilic markers sucrose and mannitol, compared to non-compartmental techniques presuming unidirectional uptake. METHODS Stable isotope-labeled [13C]sucrose and [13C]mannitol (10 mg/kg each) were injected as IV bolus into the tail vein of awake young adult mice. Blood and brain samples were taken after different time intervals up to 8 h. Plasma and brain concentrations were quantified by UPLC-MS/MS. Brain uptake clearance (Kin) was analyzed using either the single-time point analysis, the multiple time point graphical method, or by fitting the parameters of a three-compartmental model that allows for symmetrical exchange across the blood-brain barrier and an additional brain efflux clearance. RESULTS The three-compartment model was able to describe the experimental data well, yielding estimates for Kin of sucrose and mannitol of 0.068 ± 0.005 and 0.146 ± 0.020 μl.min-1.g-1, respectively, which were significantly different (p < 0.01). The separate brain efflux clearance had values of 0.693 ± 0.106 (sucrose) and 0.881 ± 0.20 (mannitol) μl.min-1.g-1, which were not statistically different. Kin values obtained by single time point and multiple time point analyses were dependent on the terminal sampling time and showed declining values for later time points. CONCLUSIONS Using the three-compartment model allows determination of Kin for small molecule hydrophilic markers with low blood-brain barrier permeability. It also provides, for the first time, an estimate of brain efflux after systemic administration of a marker, which likely represents bulk flow clearance from brain tissue.
Collapse
Affiliation(s)
- Behnam Noorani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, 14214, USA
| | - Faleh Alqahtani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
- Food and Drug Administration, Silver Spring, Maryland, 20903, USA
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Dhavalkumar Patel
- LC-MS Core Facility, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
| | - Constantinos Mikelis
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA
- Department of Pharmacy, University of Patras, 26504, Patras, Greece
| | - Reza Mehvar
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA.
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, California, 92618, USA.
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S Coulter St., Amarillo, Texas, 79106, USA.
- Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106, USA.
| |
Collapse
|
37
|
Carlstrom LP, Eltanahy A, Perry A, Rabinstein AA, Elder BD, Morris JM, Meyer FB, Graffeo CS, Lundgaard I, Burns TC. A clinical primer for the glymphatic system. Brain 2021; 145:843-857. [PMID: 34888633 DOI: 10.1093/brain/awab428] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/14/2022] Open
Abstract
The complex and dynamic system of fluid flow through the perivascular and interstitial spaces of the central nervous system has new-found implications for neurological diseases. Cerebrospinal fluid movement throughout the CNS parenchyma is more dynamic than could be explained via passive diffusion mechanisms alone. Indeed, a semi-structured glial-lymphatic (glymphatic) system of astrocyte-supported extracellular perivascular channels serves to directionally channel extracellular fluid, clearing metabolites and peptides to optimize neurologic function. Clinical studies of the glymphatic network has to date proven challenging, with most data gleaned from rodent models and post-mortem investigations. However, increasing evidence suggests that disordered glymphatic function contributes to the pathophysiology of CNS aging, neurodegenerative disease, and CNS injuries, as well as normal pressure hydrocephalus. Unlocking such pathophysiology could provide important avenues toward novel therapeutics. We here provide a multidisciplinary overview of glymphatics and critically review accumulating evidence regarding its structure, function, and hypothesized relevance to neurological disease. We highlight emerging technologies of relevance to the longitudinal evaluation of glymphatic function in health and disease. Finally, we discuss the translational opportunities and challenges of studying glymphatic science.
Collapse
Affiliation(s)
- Lucas P Carlstrom
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Ahmed Eltanahy
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | - Avital Perry
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Benjamin D Elder
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Fredric B Meyer
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Iben Lundgaard
- Departments of Experimental Medical Science, Lund University, Lund 228 11 Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund 228 11 Sweden
| | - Terry C Burns
- Departments of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
38
|
Yamada S. Cerebrospinal fluid dynamics. Croat Med J 2021; 62:399-410. [PMID: 34472743 PMCID: PMC8491047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/02/2021] [Indexed: 08/17/2024] Open
Abstract
The classical cerebrospinal fluid (CSF) circulation theory has been accepted as an established theory of CSF physiology. It describes bulk CSF flow from production site to absorption site. However, much controversy remains regarding the basic CSF physiology and the mechanisms behind the development of hydrocephalus. In the recent observations made using advanced magnetic resonance imaging (MRI) technique, namely, the time spatial inversion pulse (Time-SLIP) method, CSF was used as internal CSF tracer to trace true CSF movement. Observation of the CSF dynamics using this method reveals aspects of CSF dynamics that are different from those of classical CSF circulation theory. Cerebrospinal fluid shows pulsation but does not show bulk flow from production site to absorption site, a theory that was built upon externally injected tracer studies. Observation of the exogeneous tracer studies were true but misinterpreted. Causes of misinterpretations are the differences between results obtained using the true CSF tracer and exogenous tracers. A better understanding of the real CSF physiology can be significant for the advancement of medical sciences in the future. Revisiting CSF flow physiology is a necessary step toward this goal.
Collapse
Affiliation(s)
- Shinya Yamada
- Shinya Yamada, Department of Neurosurgery, Kugayama Hospital, 2-14-20 Kita-Karasuyama, Setagaya, Tokyo 252-0385, Japan,
| |
Collapse
|
39
|
Zhou X, Li Y, Lenahan C, Ou Y, Wang M, He Y. Glymphatic System in the Central Nervous System, a Novel Therapeutic Direction Against Brain Edema After Stroke. Front Aging Neurosci 2021; 13:698036. [PMID: 34421575 PMCID: PMC8372556 DOI: 10.3389/fnagi.2021.698036] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Stroke is the destruction of brain function and structure, and is caused by either cerebrovascular obstruction or rupture. It is a disease associated with high mortality and disability worldwide. Brain edema after stroke is an important factor affecting neurologic function recovery. The glymphatic system is a recently discovered cerebrospinal fluid (CSF) transport system. Through the perivascular space and aquaporin 4 (AQP4) on astrocytes, it promotes the exchange of CSF and interstitial fluid (ISF), clears brain metabolic waste, and maintains the stability of the internal environment within the brain. Excessive accumulation of fluid in the brain tissue causes cerebral edema, but the glymphatic system plays an important role in the process of both intake and removal of fluid within the brain. The changes in the glymphatic system after stroke may be an important contributor to brain edema. Understanding and targeting the molecular mechanisms and the role of the glymphatic system in the formation and regression of brain edema after stroke could promote the exclusion of fluids in the brain tissue and promote the recovery of neurological function in stroke patients. In this review, we will discuss the physiology of the glymphatic system, as well as the related mechanisms and therapeutic targets involved in the formation of brain edema after stroke, which could provide a new direction for research against brain edema after stroke.
Collapse
Affiliation(s)
- Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youwei Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Chowdhury EA, Noorani B, Alqahtani F, Bhalerao A, Raut S, Sivandzade F, Cucullo L. Understanding the brain uptake and permeability of small molecules through the BBB: A technical overview. J Cereb Blood Flow Metab 2021; 41:1797-1820. [PMID: 33444097 PMCID: PMC8327119 DOI: 10.1177/0271678x20985946] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The brain is the most important organ in our body requiring its unique microenvironment. By the virtue of its function, the blood-brain barrier poses a significant hurdle in drug delivery for the treatment of neurological diseases. There are also different theories regarding how molecules are typically effluxed from the brain. In this review, we comprehensively discuss how the different pharmacokinetic techniques used for measuring brain uptake/permeability of small molecules have evolved with time. We also discuss the advantages and disadvantages associated with these different techniques as well as the importance to utilize the right method to properly assess CNS exposure to drug molecules. Even though very strong advances have been made we still have a long way to go to ensure a reduction in failures in central nervous system drug development programs.
Collapse
Affiliation(s)
- Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, USA
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aditya Bhalerao
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, USA
| | - Snehal Raut
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, USA
| | - Farzane Sivandzade
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, USA
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, USA
| |
Collapse
|
41
|
Kaur J, Fahmy LM, Davoodi-Bojd E, Zhang L, Ding G, Hu J, Zhang Z, Chopp M, Jiang Q. Waste Clearance in the Brain. Front Neuroanat 2021; 15:665803. [PMID: 34305538 PMCID: PMC8292771 DOI: 10.3389/fnana.2021.665803] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
Waste clearance (WC) is an essential process for brain homeostasis, which is required for the proper and healthy functioning of all cerebrovascular and parenchymal brain cells. This review features our current understanding of brain WC, both within and external to the brain parenchyma. We describe the interplay of the blood-brain barrier (BBB), interstitial fluid (ISF), and perivascular spaces within the brain parenchyma for brain WC directly into the blood and/or cerebrospinal fluid (CSF). We also discuss the relevant role of the CSF and its exit routes in mediating WC. Recent discoveries of the glymphatic system and meningeal lymphatic vessels, and their relevance to brain WC are highlighted. Controversies related to brain WC research and potential future directions are presented.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Lara M. Fahmy
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Esmaeil Davoodi-Bojd
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Radiology, Henry Ford Health System, Detroit, MI, United States
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
42
|
Naseri Kouzehgarani G, Feldsien T, Engelhard HH, Mirakhur KK, Phipps C, Nimmrich V, Clausznitzer D, Lefebvre DR. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv Drug Deliv Rev 2021; 173:20-59. [PMID: 33705875 DOI: 10.1016/j.addr.2021.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Initially thought to be useful only to reach tissues in the immediate vicinity of the CSF circulatory system, CSF circulation is now increasingly viewed as a viable pathway to deliver certain therapeutics deeper into brain tissues. There is emerging evidence that this goal is achievable in the case of large therapeutic proteins, provided conditions are met that are described herein. We show how fluid dynamic modeling helps predict infusion rate and duration to overcome high CSF turnover. We posit that despite model limitations and controversies, fluid dynamic models, pharmacokinetic models, preclinical testing, and a qualitative understanding of the glymphatic system circulation can be used to estimate drug penetration in brain tissues. Lastly, in addition to highlighting landmark scientific and medical literature, we provide practical advice on formulation development, device selection, and pharmacokinetic modeling. Our review of clinical studies suggests a growing interest for intra-CSF delivery, particularly for targeted proteins.
Collapse
|
43
|
Tadayon E, Moret B, Sprugnoli G, Monti L, Pascual-Leone A, Santarnecchi E. Improving Choroid Plexus Segmentation in the Healthy and Diseased Brain: Relevance for Tau-PET Imaging in Dementia. J Alzheimers Dis 2021; 74:1057-1068. [PMID: 32144979 DOI: 10.3233/jad-190706] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent studies have revealed the possible role of choroid plexus (ChP) in Alzheimer's disease (AD). T1-weighted MRI is the modality of choice for the segmentation of ChP in humans. Manual segmentation is considered the gold-standard technique, but given its time-consuming nature, large-scale neuroimaging studies of ChP would be impossible. In this study, we introduce a lightweight segmentation algorithm based on the Gaussian Mixture Model (GMM). We compared its performance against manual segmentation as well as automated segmentation by Freesurfer in three separate datasets: 1) patients with structural MRIs enhanced with contrast (n = 19), 2) young healthy subjects (n = 20), and 3) patients with AD (n = 20). GMM outperformed Freesurfer and showed high similarity with manual segmentation. To further assess the algorithm's performance in large scale studies, we performed GMM segmentations in young healthy subjects from the Human Connectome Project (n = 1,067), as well as healthy controls, mild cognitive impairment (MCI), and AD patients from the Alzheimer's Disease Neuroimaging Initiative (n = 509). In both datasets, GMM segmented ChP more accurately than Freesurfer. To show the clinical importance of accurate ChP segmentation, total AV1451 (tau) PET binding to ChP was measured in 108 MCI and 32 AD patients. GMM was able to reveal the higher AV1451 binding to ChP in AD compared with MCI. Our results provide evidence for the utility of the GMM in accurately segmenting ChP and show its clinical relevance in AD. Future structural and functional studies of ChP will benefit from GMM's accurate segmentation.
Collapse
Affiliation(s)
- Ehsan Tadayon
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Beatrice Moret
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Department of General Psychology, University of Padova, Padova, Italy.,Human Inspired Technology Research Centre, University of Padova, Padova, Italy
| | - Giulia Sprugnoli
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Radiology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lucia Monti
- Unit of Neuroimaging and Neurointervention, Santa Maria Alle Scotte Medical Center, Siena, Italy
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.,Guttmann Brain Health Institute, Guttmann Institut, Universitat Autonoma, Barcelona, Spain.,Department of Neurology, Harvard Medical School, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division for Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | | |
Collapse
|
44
|
Sun A, Wang J. Choroid Plexus and Drug Removal Mechanisms. AAPS JOURNAL 2021; 23:61. [PMID: 33942198 DOI: 10.1208/s12248-021-00587-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
Timely and efficient removal of xenobiotics and metabolites from the brain is crucial in maintaining the homeostasis and normal function of the brain. The choroid plexus (CP) forms the blood-cerebrospinal fluid barrier and vitally removes drugs and wastes from the brain through several co-existing clearance mechanisms. The CP epithelial (CPE) cells synthesize and secrete the cerebrospinal fluid (CSF). As the CSF passes through the ventricular and subarachnoid spaces and eventually drains into the general circulation, it collects and removes drugs, toxins, and metabolic wastes from the brain. This bulk flow of the CSF serves as a default and non-selective pathway for the removal of solutes and macromolecules from the brain interstitium. Besides clearance by CSF bulk flow, the CPE cells express several multispecific membrane transporters to actively transport substrates from the CSF side into the blood side. In addition, several phase I and II drug-metabolizing enzymes are expressed in the CPE cells, which enzymatically inactivate a broad spectrum of reactive or toxic substances. This review summarizes our current knowledge of the functional characteristics and key contributors to the various clearance pathways in the CP-CSF system, overviewing recent developments in our understanding of CSF flow dynamics and the functional roles of CP uptake and efflux transporters in influencing CSF drug concentrations.
Collapse
Affiliation(s)
- Austin Sun
- Department of Pharmaceutics, University of Washington, Health Science Building Room H-272J, Box 357610, Seattle, Washington, 98195-7610, USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Health Science Building Room H-272J, Box 357610, Seattle, Washington, 98195-7610, USA.
| |
Collapse
|
45
|
Cells with Many Talents: Lymphatic Endothelial Cells in the Brain Meninges. Cells 2021; 10:cells10040799. [PMID: 33918497 PMCID: PMC8067019 DOI: 10.3390/cells10040799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
The lymphatic system serves key functions in maintaining fluid homeostasis, the uptake of dietary fats in the small intestine, and the trafficking of immune cells. Almost all vascularized peripheral tissues and organs contain lymphatic vessels. The brain parenchyma, however, is considered immune privileged and devoid of lymphatic structures. This contrasts with the notion that the brain is metabolically extremely active, produces large amounts of waste and metabolites that need to be cleared, and is especially sensitive to edema formation. Recently, meningeal lymphatic vessels in mammals and zebrafish have been (re-)discovered, but how they contribute to fluid drainage is still not fully understood. Here, we discuss these meningeal vessel systems as well as a newly described cell population in the zebrafish and mouse meninges. These cells, termed brain lymphatic endothelial cells/Fluorescent Granular Perithelial cells/meningeal mural lymphatic endothelial cells in fish, and Leptomeningeal Lymphatic Endothelial Cells in mice, exhibit remarkable features. They have a typical lymphatic endothelial gene expression signature but do not form vessels and rather constitute a meshwork of single cells, covering the brain surface.
Collapse
|
46
|
Paris J, Angeli E, Bousquet G. The Pharmacology of Xenobiotics after Intracerebro Spinal Fluid Administration: Implications for the Treatment of Brain Tumors. Int J Mol Sci 2021; 22:1281. [PMID: 33525427 PMCID: PMC7865853 DOI: 10.3390/ijms22031281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/16/2023] Open
Abstract
The incidence of brain metastasis has been increasing for 10 years, with poor prognosis, unlike the improvement in survival for extracranial tumor localizations. Since recent advances in molecular biology and the development of specific molecular targets, knowledge of the brain distribution of drugs has become a pharmaceutical challenge. Most anticancer drugs fail to cross the blood-brain barrier. In order to get around this problem and penetrate the brain parenchyma, the use of intrathecal administration has been developed, but the mechanisms governing drug distribution from the cerebrospinal fluid to the brain parenchyma are poorly understood. Thus, in this review we discuss the pharmacokinetics of drugs after intrathecal administration, their penetration of the brain parenchyma and the different systems causing their efflux from the brain to the blood.
Collapse
Affiliation(s)
- Justine Paris
- Institut National de la Santé Et de la Recherche Médicale (INSERM), U942, 9 Rue de Chablis, 93000 Bobigny, France; (J.P.); (E.A.)
| | - Eurydice Angeli
- Institut National de la Santé Et de la Recherche Médicale (INSERM), U942, 9 Rue de Chablis, 93000 Bobigny, France; (J.P.); (E.A.)
- Assistance Publique Hôpitaux de Paris, Avicenne Hospital, Department of Medical Oncology, 93000 Bobigny, France
- Sorbonne Paris Nord University, 99 Avenue Jean Baptiste Clément, 93430 Villetaneuse, France
| | - Guilhem Bousquet
- Institut National de la Santé Et de la Recherche Médicale (INSERM), U942, 9 Rue de Chablis, 93000 Bobigny, France; (J.P.); (E.A.)
- Assistance Publique Hôpitaux de Paris, Avicenne Hospital, Department of Medical Oncology, 93000 Bobigny, France
- Sorbonne Paris Nord University, 99 Avenue Jean Baptiste Clément, 93430 Villetaneuse, France
| |
Collapse
|
47
|
Bryniarski MA, Ren T, Rizvi AR, Snyder AM, Morris ME. Targeting the Choroid Plexuses for Protein Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12100963. [PMID: 33066423 PMCID: PMC7602164 DOI: 10.3390/pharmaceutics12100963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022] Open
Abstract
Delivery of therapeutic agents to the central nervous system is challenged by the barriers in place to regulate brain homeostasis. This is especially true for protein therapeutics. Targeting the barrier formed by the choroid plexuses at the interfaces of the systemic circulation and ventricular system may be a surrogate brain delivery strategy to circumvent the blood-brain barrier. Heterogenous cell populations located at the choroid plexuses provide diverse functions in regulating the exchange of material within the ventricular space. Receptor-mediated transcytosis may be a promising mechanism to deliver protein therapeutics across the tight junctions formed by choroid plexus epithelial cells. However, cerebrospinal fluid flow and other barriers formed by ependymal cells and perivascular spaces should also be considered for evaluation of protein therapeutic disposition. Various preclinical methods have been applied to delineate protein transport across the choroid plexuses, including imaging strategies, ventriculocisternal perfusions, and primary choroid plexus epithelial cell models. When used in combination with simultaneous measures of cerebrospinal fluid dynamics, they can yield important insight into pharmacokinetic properties within the brain. This review aims to provide an overview of the choroid plexuses and ventricular system to address their function as a barrier to pharmaceutical interventions and relevance for central nervous system drug delivery of protein therapeutics. Protein therapeutics targeting the ventricular system may provide new approaches in treating central nervous system diseases.
Collapse
|
48
|
Desland FA, Hormigo A. The CNS and the Brain Tumor Microenvironment: Implications for Glioblastoma Immunotherapy. Int J Mol Sci 2020; 21:ijms21197358. [PMID: 33027976 PMCID: PMC7582539 DOI: 10.3390/ijms21197358] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor in adults. Its aggressive nature is attributed partly to its deeply invasive margins, its molecular and cellular heterogeneity, and uniquely tolerant site of origin—the brain. The immunosuppressive central nervous system (CNS) and GBM microenvironments are significant obstacles to generating an effective and long-lasting anti-tumoral response, as evidenced by this tumor’s reduced rate of treatment response and high probability of recurrence. Immunotherapy has revolutionized patients’ outcomes across many cancers and may open new avenues for patients with GBM. There is now a range of immunotherapeutic strategies being tested in patients with GBM that target both the innate and adaptive immune compartment. These strategies include antibodies that re-educate tumor macrophages, vaccines that introduce tumor-specific dendritic cells, checkpoint molecule inhibition, engineered T cells, and proteins that help T cells engage directly with tumor cells. Despite this, there is still much ground to be gained in improving the response rates of the various immunotherapies currently being trialed. Through historical and contemporary studies, we examine the fundamentals of CNS immunity that shape how to approach immune modulation in GBM, including the now revamped concept of CNS privilege. We also discuss the preclinical models used to study GBM progression and immunity. Lastly, we discuss the immunotherapeutic strategies currently being studied to help overcome the hurdles of the blood–brain barrier and the immunosuppressive tumor microenvironment.
Collapse
|
49
|
Fame RM, Lehtinen MK. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev Cell 2020; 52:261-275. [PMID: 32049038 DOI: 10.1016/j.devcel.2020.01.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
We summarize recent work illuminating how cerebrospinal fluid (CSF) regulates brain function. More than a protective fluid cushion and sink for waste, the CSF is an integral CNS component with dynamic and diverse roles emerging in parallel with the developing CNS. This review examines the current understanding about early CSF and its maturation and roles during CNS development and discusses open questions in the field. We focus on developmental changes in the ventricular system and CSF sources (including neural progenitors and choroid plexus). We also discuss concepts related to the development of fluid dynamics including flow, perivascular transport, drainage, and barriers.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
50
|
Kaur J, Davoodi-Bojd E, Fahmy LM, Zhang L, Ding G, Hu J, Zhang Z, Chopp M, Jiang Q. Magnetic Resonance Imaging and Modeling of the Glymphatic System. Diagnostics (Basel) 2020; 10:diagnostics10060344. [PMID: 32471025 PMCID: PMC7344900 DOI: 10.3390/diagnostics10060344] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The glymphatic system is a newly discovered waste drainage pathway in the brain; it plays an important role in many neurological diseases. Ongoing research utilizing various cerebrospinal fluid tracer infusions, either directly or indirectly into the brain parenchyma, is investigating clearance pathways by using distinct imaging techniques. In the present review, we discuss the role of the glymphatic system in various neurological diseases and efflux pathways of brain waste clearance based on current evidence and controversies. We mainly focus on new magnetic resonance imaging (MRI) modeling techniques, along with traditional computational modeling, for a better understanding of the glymphatic system function. Future sophisticated modeling techniques hold the potential to generate quantitative maps for glymphatic system parameters that could contribute to the diagnosis, monitoring, and prognosis of neurological diseases. The non-invasive nature of MRI may provide a safe and effective way to translate glymphatic system measurements from bench-to-bedside.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Esmaeil Davoodi-Bojd
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Radiology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Lara M Fahmy
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI 48201, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI 48201, USA;
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-313-916-8735; Fax: +1-313-916-1324
| |
Collapse
|