1
|
Reis MEMD, Araújo LTFD, de Andrade WMG, Resende NDS, Lima RRMD, Nascimento ESD, Costa MSMDO, Cavalcante JC. Distribution of nitric oxide synthase in the rock cavy (Kerodon rupestris) brain I: The diencephalon. Brain Res 2018; 1685:60-78. [DOI: 10.1016/j.brainres.2018.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/27/2022]
|
2
|
Ruginsk SG, Mecawi ADS, da Silva MP, Reis WL, Coletti R, de Lima JBM, Elias LLK, Antunes-Rodrigues J. Gaseous modulators in the control of the hypothalamic neurohypophyseal system. Physiology (Bethesda) 2015; 30:127-38. [PMID: 25729058 DOI: 10.1152/physiol.00040.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are gaseous molecules produced by the brain. Within the hypothalamus, gaseous molecules have been highlighted as autocrine and paracrine factors regulating endocrine function. Therefore, in the present review, we briefly discuss the main findings linking NO, CO, and H2S to the control of body fluid homeostasis at the hypothalamic level, with particular emphasis on the regulation of neurohypophyseal system output.
Collapse
Affiliation(s)
- Silvia Graciela Ruginsk
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Andre de Souza Mecawi
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Melina Pires da Silva
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Wagner Luis Reis
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil; and Physiology Department, Georgia Regents University, Augusta, Georgia
| | - Ricardo Coletti
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil; and
| | | | - Lucila Leico Kagohara Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil; and
| | - Jose Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil; and
| |
Collapse
|
3
|
Reis WL, Biancardi VC, Son S, Antunes-Rodrigues J, Stern JE. Carbon monoxide and nitric oxide interactions in magnocellular neurosecretory neurones during water deprivation. J Neuroendocrinol 2015; 27:111-22. [PMID: 25494574 DOI: 10.1111/jne.12245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/13/2014] [Accepted: 12/07/2014] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO) and carbon monoxide (CO) are diffusible gas messengers in the brain. Previously, we have shown their independent involvement in central fluid/electrolyte homeostasis control. In the present study, we investigated a possible functional interaction between NO/CO in the regulation of vasopressin (VP) and oxytocin (OT) magnocellular neurosecretory cells (MNCs) activity in euhydrated (EU) and dehydrated [48-h water-deprived (48WD)] rats. Using brain slices from EU and 48WD rats, we measured, by immunohistochemistry, the expression of neuronal NO synthase (nNOS, which synthesises NO) and haeme-oxygenase (HO-1, which synthesises CO) in the hypothalamic supraoptic nucleus (SON). In addition, we used patch-clamp electrophysiology to investigate whether regulation of SON MNC firing activity by endogenous CO was dependent on NO bioavailability and GABAergic inhibitory synaptic function. We found a proportion of OT and VP SON MNCs in EU rats to co-express both of HO-1 and nNOS (33.2 ± 2.9% and 15.3 ± 1.4%, respectively), which was increased in 48WD rats (55.5 ± 0.9% and 21.0 ± 1.7%, respectively, P < 0.05 for both). Inhibition of endogenous HO activity [chromium mesoporphyrin IX chloride (CrMP) 20 μm] induced MNC membrane hyperpolarisation and decreased firing activity, and these effects were blunted by previous blockade of endogenous NOS activity (l-NAME, 2 mm) or blockade of inhibitory GABA function [Picrotoxin (Sigma-Aldrich, St Louis, MO, USA), 50 μm]. No significant changes in SON NO bioavailability (4,5 diaminofluorescein diacetate fluorescence) were observed after CrMP treatment. Taken together, our results support a state-dependent functional inter-relationship between NO and CO in MNCs, in which CO acts as an excitatory gas molecule, whose effects are largely dependent on interactions with the inhibitory SON signals NO and GABA.
Collapse
Affiliation(s)
- W L Reis
- Department of Physiology, Georgia Regents University, Augusta, GA, USA; Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
4
|
Silva MPD, Cedraz-Mercez PL, Varanda WA. Effects of nitric oxide on magnocellular neurons of the supraoptic nucleus involve multiple mechanisms. Braz J Med Biol Res 2014; 47:90-100. [PMID: 24519124 PMCID: PMC4051181 DOI: 10.1590/1414-431x20133326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/22/2013] [Indexed: 01/24/2023] Open
Abstract
Physiological evidence indicates that the supraoptic nucleus (SON) is an
important region for integrating information related to homeostasis of body
fluids. Located bilaterally to the optic chiasm, this nucleus is composed of
magnocellular neurosecretory cells (MNCs) responsible for the synthesis and
release of vasopressin and oxytocin to the neurohypophysis. At the cellular
level, the control of vasopressin and oxytocin release is directly linked to the
firing frequency of MNCs. In general, we can say that the excitability of these
cells can be controlled via two distinct mechanisms: 1) the intrinsic membrane
properties of the MNCs themselves and 2) synaptic input from circumventricular
organs that contain osmosensitive neurons. It has also been demonstrated that
MNCs are sensitive to osmotic stimuli in the physiological range. Therefore, the
study of their intrinsic membrane properties became imperative to explain the
osmosensitivity of MNCs. In addition to this, the discovery that several
neurotransmitters and neuropeptides can modulate their electrical activity
greatly increased our knowledge about the role played by the MNCs in fluid
homeostasis. In particular, nitric oxide (NO) may be an important player in
fluid balance homeostasis, because it has been demonstrated that the enzyme
responsible for its production has an increased activity following a hypertonic
stimulation of the system. At the cellular level, NO has been shown to change
the electrical excitability of MNCs. Therefore, in this review, we focus on some
important points concerning nitrergic modulation of the neuroendocrine system,
particularly the effects of NO on the SON.
Collapse
Affiliation(s)
- M P da Silva
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão PretoSP, Brasil, Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - P L Cedraz-Mercez
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão PretoSP, Brasil, Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - W A Varanda
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão PretoSP, Brasil, Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
5
|
da Silva MP, Ventura RR, Varanda WA. Hypertonicity increases NO production to modulate the firing rate of magnocellular neurons of the supraoptic nucleus of rats. Neuroscience 2013; 250:70-9. [PMID: 23850590 DOI: 10.1016/j.neuroscience.2013.06.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 06/10/2013] [Accepted: 06/29/2013] [Indexed: 11/27/2022]
Abstract
Increases in plasma osmolality enhance nitric oxide (NO) levels in magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus (SON) and modulate the secretion of both vasopressin (VP) and oxytocin (OT). In this paper, we describe the effects of hypertonicity on the electrical properties of MNCs by focusing on the nitrergic modulation of their activity in this condition. Membrane potentials were measured using the patch clamp technique, in the presence of both glutamatergic and GABAergic neurotransmission blockers, in coronal brain slices of male Wistar rats. The recordings were first made under a control condition (295 mosm/kg H2O), then in the presence of a hypertonic stimulus (330 mosm/kg H2O) and, finally, with a hypertonic stimulus plus 500 μM L-Arginine or 100 μM N-nitro-L-Arginine methyl ester hydrochloride (L-NAME). Hypertonicity per se increased the firing frequency of the neurons. L-Arginine prevented the increase in fire frequency induced by hypertonic stimulus, and L-NAME (inhibitor of nitric oxide synthase) induced an additional increase in frequency when applied together with the hypertonic solution. Moreover, L-Arginine hyperpolarizes the resting potential and decreases the peak value of the after-hyperpolarization; both effects were blocked by L-NAME and hypertonicity and/or L-NAME reduced the time constant of the rising phase of the after-depolarization. These results demonstrate that an intrinsic nitrergic system is part of the mechanisms controlling the excitability of MNCs of the SON when the internal fluid homeostasis is disturbed.
Collapse
Affiliation(s)
- M P da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
6
|
Whitaker AM, Sulzer JK, Molina PE. Augmented central nitric oxide production inhibits vasopressin release during hemorrhage in acute alcohol-intoxicated rodents. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1529-39. [PMID: 21849630 DOI: 10.1152/ajpregu.00035.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute alcohol intoxication (AAI) attenuates the AVP response to hemorrhage, contributing to impaired hemodynamic counter-regulation. This can be restored by central cholinergic stimulation, implicating disrupted signaling regulating AVP release. AVP is released in response to hemorrhage and hyperosmolality. Studies have demonstrated nitric oxide (NO) to play an inhibitory role on AVP release. AAI has been shown to increase NO content in the paraventricular nucleus. We hypothesized that the attenuated AVP response to hemorrhage during AAI is the result of increased central NO inhibition. In addition, we predicted that the increased NO tone during AAI would impair the AVP response to hyperosmolality. Conscious male Sprague-Dawley rats (300-325 g) received a 15-h intragastric infusion of alcohol (2.5 g/kg + 300 mg·kg(-1)·h(-1)) or dextrose prior to a 60-min fixed-pressure hemorrhage (∼40 mmHg) or 5% hypertonic saline infusion (0.05 ml·kg(-1)·min(-1)). AAI attenuated the AVP response to hemorrhage, which was associated with increased paraventricular NO content. In contrast, AAI did not impair the AVP response to hyperosmolality. This was accompanied by decreased paraventricular NO content. To confirm the role of NO in the alcohol-induced inhibition of AVP release during hemorrhage, the nitric oxide synthase inhibitor, nitro-l-arginine methyl ester (l-NAME; 250 μg/5 μl), was administered centrally prior to hemorrhage. l-NAME did not further increase AVP levels during hemorrhage in dextrose-treated animals; however, it restored the AVP response during AAI. These results indicate that AAI impairs the AVP response to hemorrhage, while not affecting the response to hyperosmolality. Furthermore, these data demonstrate that the attenuated AVP response to hemorrhage is the result of augmented central NO inhibition.
Collapse
Affiliation(s)
- Annie M Whitaker
- Louisiana State University Health Science Center, Department of Physiology and Alcohol and Drug Abuse, Center of Excellence, New Orleans, Louisiana 70112-1393, USA
| | | | | |
Collapse
|
7
|
Aguila FA, Oliveira-Pelegrin GR, Yao ST, Murphy D, Rocha MJA. Anteroventral third ventricle (AV3V) lesion affects hypothalamic neuronal nitric oxide synthase (nNOS) expression following water deprivation. Brain Res Bull 2011; 86:239-45. [PMID: 21840380 DOI: 10.1016/j.brainresbull.2011.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/21/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) has been reported to be up-regulated in the hypothalamic supraoptic nucleus (SON) during dehydration which in turn could increase nitric oxide (NO) production and consequently affect arginine vasopressin (AVP) secretion. The anteroventral third ventricle (AV3V) region has strong afferent connections with the SON. Herein we describe our analysis of the effects of an AV3V lesion on AVP secretion, and c-fos and nNOS expression in the SON following dehydration. Male Wistar rats had their AV3V region electrolytically lesioned or were sham operated. After 21 days they were submitted to dehydration or left as controls (euhydrated). Two days later, one group was anaesthetized, perfused and the brains were processed for Fos protein and nNOS immunohistochemistry (IHC). Another group was decapitated, the blood collected for hematocrit, osmolality, serum sodium and AVP plasma level analysis. The brains were removed for measurement of neurohypophyseal AVP content, and the SON was punched out and processed for nNOS detection by western blotting. The AV3V lesion reduced AVP plasma levels and c-fos expression in the SON following dehydration (P<0.05). Western blotting revealed an up-regulation of nNOS in the SON of control animals following dehydration, whereas such up-regulation was not observed in AV3V-lesioned rats (P<0.05). We conclude that the AV3V region plays a role in regulating the expression of nNOS in the SON of rats submitted to dehydration, and thus may affect the local nitric oxide production and the secretion of vasopressin.
Collapse
Affiliation(s)
- Fábio Alves Aguila
- Departamento de Morfologia, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
8
|
Oliveira-Pelegrin GR, Aguila FA, Basso PJ, Rocha MJA. Role of central NO-cGMP pathway in vasopressin and oxytocin gene expression during sepsis. Peptides 2010; 31:1847-52. [PMID: 20621145 DOI: 10.1016/j.peptides.2010.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/26/2010] [Accepted: 06/28/2010] [Indexed: 11/17/2022]
Abstract
Sepsis induces massive production of inflammatory mediators, such as nitric oxide (NO), and causes neuroendocrine and cardiovascular alterations. This study investigates the involvement of the central NO-cGMP pathway in arginine vasopressin (AVP) and oxytocin (OXY) gene expression during sepsis induced by cecal ligation and puncture (CLP). Male Wistar rats received an i.c.v. injection of ODQ (0.25 μg/μL), a selective inhibitor of the heme site of soluble guanylate cyclase, or of 1% dymethilsulfoxide (DMSO), as vehicle. Thirty minutes after the injections, sepsis was induced by cecal ligation and puncture or the animals were sham operated. The ODQ pre-treatment did not alter the progressive NO increase observed after CLP. In the supraoptic nucleus (SON), this pretreatment increased the relative gene expression ratio of AVP and OXY in the initial phase of sepsis, but in the late phase, the gene expression of both hormones was reduced. In the paraventricular nucleus (PVN), soluble guanylate cyclase inhibition caused an even larger decrease in the relative gene expression ratio of AVP and OXY during sepsis. These results are indicative of a role of the NO-cGMP pathway in hormonal synthesis in the SON and PVN of the hypothalamus during polymicrobial sepsis.
Collapse
Affiliation(s)
- Gabriela Ravanelli Oliveira-Pelegrin
- Departamento de Morfologia, Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
9
|
Mancuso C, Navarra P, Preziosi P. Roles of nitric oxide, carbon monoxide, and hydrogen sulfide in the regulation of the hypothalamic-pituitary-adrenal axis. J Neurochem 2010; 113:563-75. [PMID: 20089135 DOI: 10.1111/j.1471-4159.2010.06606.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The importance of stress in modifying human behavior and lifestyle is no longer a matter of debate. Although mild stress enhances the immune response and prevents infections, prolonged stress seems to play pathogenic roles in depression and neurodegenerative disorders. The body has developed an adaptive stress response consisting of cardiovascular, metabolic, and psychological changes, which act in concert to eliminate stressors. One of the major components of this response is the hypothalamic-pituitary-adrenal axis, also known as the stress axis. Over the last 30 years, many studies have documented the integrated stress-axis regulation by neurotransmitters. They have also demonstrated that gaseous neuromodulators, such as NO, CO, and H(2)S, regulate the hypothalamic release of neuropeptides. The specific effects (stimulatory vs. inhibitory) of these gases on the stress axis varies, depending on the type of stress (neurogenic or immuno-inflammatory), its intensity (low or high), and the species studied (rodents or humans). This review examines the complex roles of NO, CO, and H(2)S in modulation of stress-axis activity, with particular emphasis on the regulatory effects they exert at the hypothalamic level.
Collapse
Affiliation(s)
- Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| | | | | |
Collapse
|
10
|
Maolood N, Grange-Messent V, Raison D, Hardin-Pouzet H. Noradrenergic regulation in mouse supraoptic nucleus involves a nitric oxide pathway only to regulate arginine-vasopressin expression and not oxytocin expression. J Neurosci Res 2007; 85:2991-9. [PMID: 17628500 DOI: 10.1002/jnr.21394] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Noradrenalin (NA) regulates the expression of arginine-vasopressin (AVP) and oxytocin (OT) by magnocellular neurons in the supraoptic nucleus (SON) of the hypothamalus. Nitric oxide (NO) may be one of the factors involved in the NA signaling pathway regulating AVP and OT expression. To test this possibility, we used an ex vivo experimental model of mouse hypothalamus slices. Increases in AVP and OT levels in the SON were detected by immunohistochemistry and immunoenzyme assays after 1 hr and 4 hr incubations with NA (10(-4) M). There was also an increase in the expression and activity of neuronal NOS and inducible NOS in the SON as assessed by immunohistochemical and histoenzymological analysis of NADPH-diaphorase, whereas endothelial NOS was undetectable. To specify the role of NO, the slices were treated with NA and L-arginine methyl ester (L-NAME, an NOS inhibitor; 3 microM). This treatment for 1 hr abolished the NA-induced increase in AVP. Treatment with sodium nitroprusside (SNP, an NO donor; 0.1 mM) increased AVP levels, confirming that NO regulates AVP expression. Addition of 1 mM EGTA during the incubation with NA reduced the AVP increase by half, indicating that both nNOS and iNOS activities are involved in the regulation. A 1-hr treatment with L-NAME did not prevent the increase in OT induced by NA; similarly, treatment with SNP had no effect. These findings show that NO is involved in the regulation of AVP expression by NA and that NA control of OT expression is independent of NO.
Collapse
Affiliation(s)
- Nasren Maolood
- NSI, CNRS UMR 7101, Université Pierre et Marie Curie--Paris VI, Paris, France
| | | | | | | |
Collapse
|
11
|
Kadekaro M, Su G, Chu R, Lei Y, Li J, Fang L. Effects of nitric oxide on expressions of nitrosocysteine and calcium-activated potassium channels in the supraoptic nuclei and neural lobe of dehydrated rats. Neurosci Lett 2006; 411:117-22. [PMID: 17098363 PMCID: PMC1831875 DOI: 10.1016/j.neulet.2006.10.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 10/17/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
Nitric oxide (NO) is an important gas mediator in the signal transduction cascade regulating osmotic function in the hypothalamo-neurohypophysial system. We previously found that increased nitric oxide synthase (NOS) activity in the supraoptic nuclei (SON) and neural lobe following osmotic stimulation and NO could regulate the expression of Ca(2+)-activated K(+) channel (BK channels) protein in the magnocellular system during dehydration. The aim of the current study is to examine the role of NO in the regulation of nitrosocysteine and BK channel protein in the magnocellular system in dehydrated animals. Using Western blot analysis and quantitative immunofluorescent staining study, we found that water deprivation in rats significantly enhanced the expression of nitrosocysteine protein in SON and neural lobes. Immunohistochemistry study indicated that dehydration significantly increased the profiles of SON neurons co-expressing nitrosocysteine with BK-channel protein. Intracerebroventricular administration of L-NAME (an inhibitor of NO synthase) significantly reduced the neuronal profiles of nitrosocysteine, as well as their co-expression with BK-channel in SON of dehydrated rats. However, treatment of sodium nitroprusside (a donor of NO) increased this co-expression. Our results indicate that NO signaling cascade may control the expression of BK channels through the regulation of nitrosocysteine in SON and neural lobe of rats during osmotic regulation.
Collapse
Affiliation(s)
- Massako Kadekaro
- Division of Neurosurgery, Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Guangxiao Su
- Division of Neurosurgery, Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Rong Chu
- Division of Neurosurgery, Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Yongzhong Lei
- Division of Neurosurgery, Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Junfa Li
- Institute for Biomedical Science of Pain, Capital University of Medical Sciences, #10 YouAnMen St., Beijing 100054, China
- Corresponding Authors: Li Fang, M.D., Ph.D., Division of Neurosurgery, Department of Surgery, Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0517, USA, Phone: (409) 772-2944, Fax: 409-772-4687; E-mail: , Junfa Li, M.D., Institute for Biomedical Science of Pain, Capital University of Medical Sciences, #10 YouAnMen St., Beijing 100054, China, Phone: +86-10-6305-1482; Fax: +86-10-6305-1494. E-mail address:
| | - Li Fang
- Division of Neurosurgery, Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Corresponding Authors: Li Fang, M.D., Ph.D., Division of Neurosurgery, Department of Surgery, Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0517, USA, Phone: (409) 772-2944, Fax: 409-772-4687; E-mail: , Junfa Li, M.D., Institute for Biomedical Science of Pain, Capital University of Medical Sciences, #10 YouAnMen St., Beijing 100054, China, Phone: +86-10-6305-1482; Fax: +86-10-6305-1494. E-mail address:
| |
Collapse
|
12
|
Kadekaro M, Su G, Chu R, Lei Y, Li J, Fang L. Nitric oxide up-regulates the expression of calcium-dependent potassium channels in the supraoptic nuclei and neural lobe of rats following dehydration. Neurosci Lett 2006; 404:50-5. [PMID: 16782273 DOI: 10.1016/j.neulet.2006.05.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/07/2006] [Accepted: 05/16/2006] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) is a gas molecule to signal neurotransmission in the hypothalamo-neurohypophysial system during osmotic regulation. We previously reported that osmotic stimulation increased nitric oxide synthase (NOS) activity in the supraoptic nuclei (SON) and neural lobe. The aim of this study is to define the role of NO in the regulation of Ca(2+)-activated K(+) channels (BK channels) expression in the magnocellular system following dehydration. We used Western blot analysis and quantitative immunocytochemistry to conduct the experiment in rats. In the immunoblot study, we found that water deprivation significantly increased the expression of BK channels in the SON and neural lobes. Dehydration also enhanced the profiles of neurons expressing vasopressin and oxytocin significantly. In about 70% of these neurons, BK channels were co-localized in the same neuron, and their expression increased significantly during dehydration. We further examined the effects of intracerebroventricular administration of sodium nitroprusside (a donor of NO) and L-NAME (an inhibitor of NO synthase) on expression of BK channels in the SON. We found that compared to animals treated with the donor of NO, there were significant decreases in the expression of BK proteins in animals receiving L-NAME. These results suggest that NO may enhance the expression of BK channels in the supraoptic nuclei and neural lobe of rats following dehydration.
Collapse
Affiliation(s)
- Massako Kadekaro
- Division of Neurosurgery, Department of Surgery, Neuroscience and Cell Biology, The University of Texas Medical Branch, Galveston, 77555-0517, USA
| | | | | | | | | | | |
Collapse
|
13
|
Stern JE, Zhang W. Cellular sources, targets and actions of constitutive nitric oxide in the magnocellular neurosecretory system of the rat. J Physiol 2004; 562:725-44. [PMID: 15550458 PMCID: PMC1665550 DOI: 10.1113/jphysiol.2004.077735] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide (NO) is a key activity-dependent modulator of the magnocellular neurosecretory system (MNS) during conditions of high hormonal demand. In addition, recent studies support the presence of a functional constitutive NO tone. The aim of this study was to identify the cellular sources, targets, signalling mechanisms and functional relevance of constitutive NO production within the supraoptic nucleus (SON). Direct visualization of intracellular NO, along with neuronal nitric oxide synthase (nNOS) and cGMP immunohistochemistry, was used to study the cellular sources and targets of NO within the SON, respectively. Our results support the presence of a strong NO basal tone within the SON, and indicate that vasopressin (VP) neurones constitute the major neuronal source and target of basal NO. NO induced-fluorescence and cGMP immunoreactivity (cGMPir) were also found in the glia and microvasculature of the SON, suggesting that they contribute as sources/targets of NO within the SON. cGMPir was also found in association with glutamic acid decarboxylase 67 (GAD67)- and vesicular glutamate transporter 2 (VGLUT2)-positive terminals. Glutamate, acting on NMDA and possibly AMPA receptors, was found to be an important neurotransmitter driving basal NO production within the SON. Finally, electrophysiological recordings obtained from SON neurones in a slice preparation indicated that constitutive NO efficiently restrains ongoing firing activity of these neurones. Furthermore, phasically active (putative VP) and continuously firing neurones appeared to be influenced by NO originating from different sources. The potential roles for basal NO as an autocrine signalling molecule, and one that bridges neuronal-glial-vascular interactions within the MNS are discussed.
Collapse
Affiliation(s)
- Javier E Stern
- Department of Psychiatry, Genome Research Insitute, University of Cincinnati, 2170 E. Galbraith Road, Cincinnati, OH 45237, USA.
| | | |
Collapse
|
14
|
Abstract
Nitric oxide (NO), a free radical gas produced endogenously from the amino acid L-arginine by NO synthase (NOS), has important functions in modulating vasopressin and oxytocin secretion from the hypothalamo-neurohypophyseal system. NO production is stimulated during increased functional activity of magnocellular neurons, in parallel with plastic changes of the supraoptic nucleus (SON) and paraventricular nucleus. Electrophysiological data recorded from the SON of hypothalamic slices indicate that NO inhibits firing of phasic and non-phasic neurons, while L-NAME, an NOS inhibitor, increases their activity. Results from measurement of neurohypophyseal hormones are more variable. Overall, however, it appears that NO, tonically produced in the forebrain, inhibits vasopressin and oxytocin secretion during normovolemic, isosmotic conditions. During osmotic stimulation, dehydration, hypovolemia and hemorrhage, as well as high plasma levels of angiotensin II, NO inhibition of vasopressin neurons is removed, while that of oxytocin neurons is enhanced. This produces a preferential release of vasopressin over oxytocin important for correction of fluid imbalance. During late pregnancy and throughout lactation, fluid homeostasis is altered and expression of NOS in the SON is down- and up-regulated, respectively, in parallel with plastic changes of the magnocellular system. NO inhibition of magnocellular neurons involves GABA and prostaglandin synthesis and the signal-transduction mechanism is independent of the cGMP-pathway. Plasma hormone levels are unaffected by i.c.v. 1H-[1, 2, 4]oxadiazolo-[4,3-a]quinoxalin-1-one (a soluble guanylyl cyclase inhibitor) or 8-Br-cGMP administered to conscious rats. Moreover, cGMP does not increase in homogenates of the neural lobe and in microdialysates of the SON when NO synthesis is enhanced during osmotic stimulation. Among alternative signal-transduction pathways, nitrosylation of target proteins affecting activity of ion channels is considered.
Collapse
Affiliation(s)
- M Kadekaro
- Division of Neurosurgery, The University of Texas Medical Branch at Galveston, Galveston, TX 77555-0517, USA.
| |
Collapse
|