1
|
Luo W, Zhong X, Shen S, Fang L, Huang Y, Wang Y, Qiu W. A comparative study of hypothalamic involvement in patients with myelin oligodendrocyte glycoprotein antibody-associated disease, neuromyelitis optica spectrum disorder, and multiple sclerosis. Eur J Neurol 2024; 31:e16377. [PMID: 38863307 PMCID: PMC11295172 DOI: 10.1111/ene.16377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/21/2024] [Accepted: 05/19/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND AND PURPOSE We aimed to characterize hypothalamic involvement in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) and compare it with neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS). METHODS A retrospective study was performed to identify hypothalamic lesions in patients diagnosed with MOGAD, NMOSD, or MS from January 2013 to May 2020. The demographic, clinical, and radiological features were recorded. Hypothalamic dysfunction and prognosis were assessed through physical examination, biochemical testing, sleep monitoring, and magnetic resonance imaging. RESULTS Hypothalamic lesions were observed in seven of 96 patients (7.3%) with MOGAD, 34 of 536 (6.3%) with NMOSD, and 16 of 356 (4.5%) with MS (p = 0.407). The time from disease onset to development of hypothalamic lesions was shortest in MOGAD (12 months). The frequency of bilateral hypothalamic lesions was the lowest in MOGAD (p = 0.008). The rate of hypothalamic dysfunction in MOGAD was 28.6%, which was lower than that in NMOSD (70.6%) but greater than that in MS patients (18.8%; p = 0.095 and p = 0.349, respectively). Hypothalamic dysfunction in MOGAD manifests as hypothalamic-pituitary-adrenal axis dysfunction and hypersomnia. The proportion of complete regression of hypothalamic lesions in MOGAD (100%) was much greater than that in NMOSD (41.7%) and MS patients (18.2%; p = 0.007 and p = 0.001, respectively). An improvement in hypothalamic dysfunction was observed in all MOGAD patients after immunotherapy. CONCLUSIONS MOGAD patients have a relatively high incidence of asymptomatic hypothalamic lesions. The overall prognosis of patients with hypothalamic involvement is good in MOGAD, as the lesions completely resolve, and dysfunction improves after immunotherapy.
Collapse
Affiliation(s)
- Wenjing Luo
- Department of NeurologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Department of NeurologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Xiaonan Zhong
- Department of NeurologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Shishi Shen
- Department of NeurologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Ling Fang
- Department of RadiologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yiying Huang
- Department of NeurologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yuge Wang
- Department of NeurologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Wei Qiu
- Department of NeurologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
2
|
Raheel K, See QR, Munday V, Fakhroo B, Ivanenko O, Salvatelli ML, Mutti C, Goadsby PJ, Delogu A, Naismith SL, Holland P, Parrino L, Chaudhuri KR, Rosenzweig I. Orexin and Sleep Disturbances in Alpha-Synucleinopathies: a Systematic Review. Curr Neurol Neurosci Rep 2024; 24:389-412. [PMID: 39031323 PMCID: PMC11349833 DOI: 10.1007/s11910-024-01359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE OF REVIEW Sleep disturbances are amongst most frequent non-motor symptoms of Parkinson's Disease (PD), and they are similarly frequently reported in other alpha-syncleinopathies, such as Dementia with Lewy Bodies (DLB) and Multiple System Atrophy (MSA). More recently, the orexin system has been implicated in control of arousal based on salient environmental set points, and its dysregulation in sleep issues in alpha-synucleinopathies suggested by the findings from the translational animal models. However, its role in the patients with alpha-synucleinopathies remains unclear. We thus set to systematically review, and to critically assess, contemporary evidence on the association of the orexinergic system and sleep disturbances in alpha-synucleinopathies. In this systematic review, studies investigating orexin and sleep in alpha-synucleinopathies (Rapid Eye Movement (REM) Behaviour Disorder (RBD), Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB), Multiple System Atrophy (MSA)) were identified using electronic database searches of PubMed, Web of Science and PsychINFO using MeSH terms, keywords, and title words such as "Alpha-synucleinopathies" AND "Orexin" AND "Sleep Disturbances". RECENT FINDINGS 17 studies were included in this systemic review, of which 2 studies on RBD, 10 on PD, 4 on DLB, and 1 on MSA patients. Taken together, RBD and PD studies suggest a potential adaptive increase in orexin levels in early stages of the neurodegenerative process, with reduced levels more often reported for later, more advanced stages of illness. To date, no differences in orexin levels were demonstrated between MSA patients and healthy controls. There is a dearth of studies on the role of orexin levels in alpha-synucleinopathies. Moreover, significant methodologic limitations in the current body of work, including use of non-standardised research protocols and lack of prospective, multi-centre studies, disallow for any finite conclusion in regards to underlying pathomechanisms. Nonetheless, a picture of a complex, multifaceted relationship between the dysregulation of the orexinergic pathway and sleep disturbances in alpha-synucleinopathies is emerging. Hence, future studies disentangling orexinergic pathomechanisms of alpha-syncleinopathies are urgently needed to obtain a more comprehensive account of the role of orexinergic pathway in alpha-synucleinopathies. Pharmacological manipulations of orexins may have multiple therapeutic applications in treatment strategies, disease diagnosis, and might be effective for treating both motor and non-motor symptoms.
Collapse
Affiliation(s)
- Kausar Raheel
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Qi Rui See
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Veronica Munday
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Basma Fakhroo
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Olga Ivanenko
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Marcello Luigi Salvatelli
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125, Parma, Italy
| | - Carlotta Mutti
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125, Parma, Italy
| | - Peter J Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, London, WC2R 2LS, UK
| | - Alessio Delogu
- Basic and Clinical Neuroscience, IoPPN, King's College London, London, WC2R 2LS, UK
| | - Sharon L Naismith
- Healthy Brain Ageing Program, School of Psychology; Brain and Mind Centre, The University of Sydney, & Charles Perkins Centre, Camperdown, Sydney, Australia
| | - Phil Holland
- Basic and Clinical Neuroscience, IoPPN, King's College London, London, WC2R 2LS, UK
| | - Liborio Parrino
- Sleep Disorders Center, Department of General and Specialized Medicine, University Hospital of Parma, 43125, Parma, Italy
- Department of Medicine and Surgery, Neurology Unit, University of Parma, 43125, Parma, Italy
| | - K Ray Chaudhuri
- Movement Disorders Unit, King's College Hospital and Department of Clinical and Basic Neurosciences, Institute of Psychiatry, Psychology & Neuroscience and Parkinson Foundation Centre of Excellence, King's College London, London, UK
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, De Crespigny Park, London, SE5 8AF, UK.
- Sleep Disorders Centre, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
3
|
Ayoub I, Freeman SA, Saoudi A, Liblau R. Infection, vaccination and narcolepsy type 1: Evidence and potential molecular mechanisms. J Neuroimmunol 2024; 393:578383. [PMID: 39032452 DOI: 10.1016/j.jneuroim.2024.578383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 07/23/2024]
Abstract
NT1 is a rare, chronic and disabling neurological disease causing excessive daytime sleepiness and cataplexy. NT1 is characterized pathologically by an almost complete loss of neurons producing the hypocretin (HCRT)/orexin neuropeptides in the lateral hypothalamus. While the exact etiology of NT1 is still unknown, numerous studies have provided compelling evidence supporting its autoimmune origin. The prevailing hypothetical view on the pathogenesis of NT1 involves an immune-mediated loss of HCRT neurons that can be triggered by Pandemrix® vaccination and/or by infection in genetically susceptible patients, specifically carriers of the HLA-DQB1*06:02 MHC class II allele. The molecular mechanisms by which infection/vaccination can induce autoimmunity in the case of NT1 remain to be elucidated. In this review, evidence regarding the involvement of vaccination and infection and the potential mechanisms by which it could be linked to the pathogenesis of NT1 will be discussed in light of the existing findings in other autoimmune diseases.
Collapse
Affiliation(s)
- Ikram Ayoub
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France.
| | - Sean A Freeman
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France; Department of Neurology, Toulouse University Hospitals, Toulouse, France
| | - Abdelhadi Saoudi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, Toulouse, France; Department of Immunology, Toulouse University Hospitals, Toulouse, France
| |
Collapse
|
4
|
Coelho FMS. Narcolepsy: an interface among neurology, immunology, sleep, and genetics. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-9. [PMID: 38565187 PMCID: PMC10987254 DOI: 10.1055/s-0044-1779299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 04/04/2024]
Abstract
Narcolepsy is a primary disorder of the central nervous system resulting from genetic, environmental, and immunological interactions defined as excessive daytime sleepiness plus cataplexy, hallucinations, sleep paralysis, and sleep fragmentation. The pathophysiology is not entirely known, but the interaction among genetic predisposition, environmental exposition, and immune component with consequent hypocretin-1 deficiency is the model to explain narcolepsy type I. The mechanism of narcolepsy type II is less understood. There is a delay of over ten years for the diagnosis of narcolepsy around the world. Patients with narcolepsy have many comorbidities with a negative impact on quality of life. The treatment of narcolepsy must contain an educational approach for the family, coworkers, and patients. Scheduled naps and sleep hygiene are essential to minimize the dose of medications. Much progress has been seen in the pharmacological treatment of narcolepsy with new stimulants, different presentations of oxybate, and recent studies with orexin agonists. Narcolepsy is a rare disease that needs to be more understood and highlighted to avoid delayed diagnosis and severe disabilities in patients.
Collapse
|
5
|
Liblau RS, Latorre D, Kornum BR, Dauvilliers Y, Mignot EJ. The immunopathogenesis of narcolepsy type 1. Nat Rev Immunol 2024; 24:33-48. [PMID: 37400646 DOI: 10.1038/s41577-023-00902-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
Narcolepsy type 1 (NT1) is a chronic sleep disorder resulting from the loss of a small population of hypothalamic neurons that produce wake-promoting hypocretin (HCRT; also known as orexin) peptides. An immune-mediated pathology for NT1 has long been suspected given its exceptionally tight association with the MHC class II allele HLA-DQB1*06:02, as well as recent genetic evidence showing associations with polymorphisms of T cell receptor genes and other immune-relevant loci and the increased incidence of NT1 that has been observed after vaccination with the influenza vaccine Pandemrix. The search for both self-antigens and foreign antigens recognized by the pathogenic T cell response in NT1 is ongoing. Increased T cell reactivity against HCRT has been consistently reported in patients with NT1, but data demonstrating a primary role for T cells in neuronal destruction are currently lacking. Animal models are providing clues regarding the roles of autoreactive CD4+ and CD8+ T cells in the disease. Elucidation of the pathogenesis of NT1 will allow for the development of targeted immunotherapies at disease onset and could serve as a model for other immune-mediated neurological diseases.
Collapse
Affiliation(s)
- Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France.
- Department of Immunology, Toulouse University Hospitals, Toulouse, France.
| | | | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yves Dauvilliers
- National Reference Center for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia and Kleine-Levin Syndrome, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, Montpellier, France
- INSERM Institute for Neurosciences of Montpellier, Montpellier, France
| | - Emmanuel J Mignot
- Stanford University, Center for Narcolepsy, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, USA.
| |
Collapse
|
6
|
Barateau L, Pizza F, Chenini S, Peter-Derex L, Dauvilliers Y. Narcolepsies, update in 2023. Rev Neurol (Paris) 2023; 179:727-740. [PMID: 37634997 DOI: 10.1016/j.neurol.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
Narcolepsy type 1 (NT1) and type 2 (NT2), also known as narcolepsy with and without cataplexy, are sleep disorders that benefited from major scientific advances over the last two decades. NT1 is caused by the loss of hypothalamic neurons producing orexin/hypocretin, a neurotransmitter regulating sleep and wake, which can be measured in the cerebrospinal fluid (CSF). A low CSF level of hypocretin-1/orexin-A is a highly specific and sensitive biomarker, sufficient to diagnose NT1. Orexin-deficiency is responsible for the main NT1 symptoms: sleepiness, cataplexy, disrupted nocturnal sleep, sleep-related hallucinations, and sleep paralysis. In the absence of a lumbar puncture, the diagnosis is based on neurophysiological tests (nocturnal and diurnal) and the presence of the pathognomonic symptom cataplexy. In the revised version of the International Classification of sleep Disorders, 3rd edition (ICSD-3-TR), a sleep onset rapid eye movement sleep (REM) period (SOREMP) (i.e. rapid occurrence of REM sleep) during the previous polysomnography may replace the diurnal multiple sleep latency test, when clear-cut cataplexy is present. A nocturnal SOREMP is very specific but not sensitive enough, and the diagnosis of cataplexy is usually based on clinical interview. It is thus of crucial importance to define typical versus atypical cataplectic attacks, and a list of clinical features and related degrees of certainty is proposed in this paper (expert opinion). The time frame of at least three months of evolution of sleepiness to diagnose NT1 was removed in the ICSD-3-TR, when clear-cut cataplexy or orexin-deficiency are established. However, it was kept for NT2 diagnosis, a less well-characterized disorder with unknown clinical course and absence of biolo biomarkers; sleep deprivation, shift working and substances intake being major differential diagnoses. Treatment of narcolepsy is nowadays only symptomatic, but the upcoming arrival of non-peptide orexin receptor-2 agonists should be a revolution in the management of these rare sleep diseases.
Collapse
Affiliation(s)
- L Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, Montpellier, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France; Institute of Neurosciences of Montpellier, University of Montpellier, Inserm, Montpellier, France.
| | - F Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - S Chenini
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, Montpellier, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France; Institute of Neurosciences of Montpellier, University of Montpellier, Inserm, Montpellier, France
| | - L Peter-Derex
- Center for Sleep Medicine and Respiratory Diseases, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon 1 University, Lyon, France; Lyon Neuroscience Research Center, PAM Team, Inserm U1028, CNRS UMR 5292, Lyon, France
| | - Y Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, Montpellier, France; National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France; Institute of Neurosciences of Montpellier, University of Montpellier, Inserm, Montpellier, France.
| |
Collapse
|
7
|
Alrouji M, Al-Kuraishy HM, Al-Gareeb AI, Zaafar D, Batiha GES. Orexin pathway in Parkinson's disease: a review. Mol Biol Rep 2023:10.1007/s11033-023-08459-5. [PMID: 37155018 DOI: 10.1007/s11033-023-08459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease (NDD) caused by dopaminergic neuron degeneration in the substantia nigra (SN). Orexin is a neuropeptide that plays a role in the pathogenesis of PD. Orexin has neuroprotective properties in dopaminergic neurons. In PD neuropathology, there is also degeneration of orexinergic neurons in the hypothalamus, in addition to dopaminergic neurons. However, the loss of orexinergic neurons in PD began after the degeneration of dopaminergic neurons. Reduced activity of orexinergic neurons has been linked to developing and progressing motor and non-motor symptoms in PD. In addition, the dysregulation of the orexin pathway is linked to the development of sleep disorders. The hypothalamic orexin pathway regulates various aspects of PD neuropathology at the cellular, subcellular, and molecular levels. Finally, non-motor symptoms, particularly insomnia and disturbed sleep, promote neuroinflammation and the accumulation of neurotoxic proteins as a result of defects in autophagy, endoplasmic reticulum (ER) stress, and the glymphatic system. As a result, this review aimed to highlight the potential role of orexin in PD neuropathology.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of clinical pharmacology and therapeutic medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of clinical pharmacology and therapeutic medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Al Beheira, Egypt.
| |
Collapse
|
8
|
Raciti L, Raciti G, Militi D, Tonin P, Quartarone A, Calabrò RS. Sleep in Disorders of Consciousness: A Brief Overview on a Still under Investigated Issue. Brain Sci 2023; 13:275. [PMID: 36831818 PMCID: PMC9954700 DOI: 10.3390/brainsci13020275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
Consciousness is a multifaceted concept, involving both wakefulness, i.e., a condition of being alert that is regulated by the brainstem, and awareness, a subjective experience of any thoughts or perception or emotion. Recently, the European Academy of Neurology has published international guidelines for a better diagnosis of coma and other disorders of consciousness (DOC) through the investigation of sleep patterns, such as slow-wave and REM, and the study of the EEG using machine learning methods and artificial intelligence. The management of sleep disorders in DOC patients is an increasingly hot topic and deserves careful diagnosis, to allow for the most accurate prognosis and the best medical treatment possible. The aim of this review was to investigate the anatomo-physiological basis of the sleep/wake cycle, as well as the main sleep patterns and sleep disorders in patients with DOC. We found that the sleep characteristics in DOC patients are still controversial. DOC patients often present a theta/delta pattern, while epileptiform activity, as well as other sleep elements, have been reported as correlating with outcomes in patients with coma and DOC. The absence of spindles, as well as REM and K-complexes of NREM sleep, have been used as poor predictors for early awakening in DOC patients, especially in UWS patients. Therefore, sleep could be considered a marker of DOC recovery, and effective treatments for sleep disorders may either indirectly or directly favor recovery of consciousness.
Collapse
Affiliation(s)
| | | | - David Militi
- IRCCS Centro Neurolesi Bonino Pulejo, 98121 Messina, Italy
| | | | | | | |
Collapse
|
9
|
Lopez R, Barateau L, Laura Rassu A, Evangelista E, Chenini S, Scholz S, Jaussent I, Dauvilliers Y. Rapid eye movement sleep duration during the multiple sleep latency test to diagnose hypocretin-deficient narcolepsy. Sleep 2023; 46:6759411. [PMID: 36222741 DOI: 10.1093/sleep/zsac247] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/09/2022] [Indexed: 11/07/2022] Open
Abstract
STUDY OBJECTIVES To assess the performances of alternative measures of the multiple sleep latency test (MSLT) to identify hypocretin-deficiency in patients with a complaint of hypersomnolence, including patients with narcolepsy. METHODS MSLT parameters from 374 drug-free patients with hypersomnolence, with complete clinical and polysomnographic (PSG) assessment and cerebrospinal hypocretin-1 measurement were collected. Conventional (sleep latency, number of sleep onset REM-SOREM-periods) and alternative (sleep duration, REM sleep latency and duration, sleep stage transitions) MSLT measures were compared as function of hypocretin-1 levels (≤110 vs > 110 pg/mL). We performed receiver-operating characteristics analyses to determine the best thresholds of MSLT parameters to identify hypocretin-deficiency in the global population and in subgroups of patients with narcolepsy (i.e. typical cataplexy and/or positive PSG/MSLT criteria, n = 223). RESULTS Patients with hypocretin-deficiency had shorter mean sleep and REM sleep latencies, longer mean sleep and REM sleep durations and more direct REM sleep transitions during the MSLT. The current standards of MSLT/PSG criteria identified hypocretin-deficient patients with a sensitivity of 0.87 and a specificity of 0.69, and 0.81/0.99 when combined with cataplexy. A mean REM sleep duration ≥ 4.1 min best identified hypocretin-deficiency in patients with hypersomnolence (AUC = 0.932, sensitivity 0.87, specificity 0.86) and ≥ 5.7 min in patients with narcolepsy (AUC = 0.832, sensitivity 0.77, specificity 0.82). CONCLUSION Compared to the current neurophysiological standard criteria, alternative MSLT parameters would better identify hypocretin-deficiency among patients with hypersomnolence and those with narcolepsy. We highlighted daytime REM sleep duration as a relevant neurophysiological biomarker of hypocretin-deficiency to be used in clinical and research settings.
Collapse
Affiliation(s)
- Régis Lopez
- Department of Neurology, Sleep-Wake Disorders Unit, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Lucie Barateau
- Department of Neurology, Sleep-Wake Disorders Unit, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Anna Laura Rassu
- Department of Neurology, Sleep-Wake Disorders Unit, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France
| | - Elisa Evangelista
- Department of Neurology, Sleep-Wake Disorders Unit, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France.,Sleep Disorders Unit, CHU Nîmes, Nîmes, France
| | - Sofiene Chenini
- Department of Neurology, Sleep-Wake Disorders Unit, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Sabine Scholz
- Department of Neurology, Sleep-Wake Disorders Unit, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Isabelle Jaussent
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France
| | - Yves Dauvilliers
- Department of Neurology, Sleep-Wake Disorders Unit, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
10
|
Decreased cerebrospinal fluid orexin levels not associated with clinical sleep disturbance in Parkinson's disease: A retrospective study. PLoS One 2022; 17:e0279747. [PMID: 36584130 PMCID: PMC9803214 DOI: 10.1371/journal.pone.0279747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Patients with Parkinson's disease (PD) often suffer from sleep disturbances, including excessive daytime sleepiness (EDS) and rapid eye movement sleep behavior disorder (RBD). These symptoms are also experienced by patients with narcolepsy, which is characterized by orexin neuronal loss. In PD, a decrease in orexin neurons is observed pathologically, but the association between sleep disturbance in PD and cerebrospinal fluid (CSF) orexin levels is still unclear. This study aimed to clarify the role of orexin as a biomarker in patients with PD. CSF samples were obtained from a previous cohort study conducted between 2015 and 2020. We cross-sectionally and longitudinally examined the association between CSF orexin levels, sleep, and clinical characteristics. We analyzed 78 CSF samples from 58 patients with PD and 21 samples from controls. CSF orexin levels in patients with PD (median = 272.0 [interquartile range = 221.7-334.5] pg/mL) were lower than those in controls (352.2 [296.2-399.5] pg/mL, p = 0.007). There were no significant differences in CSF orexin levels according to EDS, RBD, or the use of dopamine agonists. Moreover, no significant correlation was observed between CSF orexin levels and clinical characteristics by multiple linear regression analysis. Furthermore, the longitudinal changes in orexin levels were also not correlated with clinical characteristics. This study showed decreased CSF orexin levels in patients with PD, but these levels did not show any correlation with any clinical characteristics. Our results suggest the limited efficacy of CSF orexin levels as a biomarker for PD, and that sleep disturbances may also be affected by dysfunction of the nervous system other than orexin, or by dopaminergic treatments in PD. Understanding the reciprocal role of orexin among other neurotransmitters may provide a better treatment strategy for sleep disturbance in patients with PD.
Collapse
|
11
|
Higher basophil count decreases narcolepsy risk: a Mendelian randomization study. Neurol Sci 2022; 43:5575-5580. [DOI: 10.1007/s10072-022-06123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/01/2022] [Indexed: 10/18/2022]
|
12
|
Barateau L, Pizza F, Plazzi G, Dauvilliers Y. 50th anniversary of the ESRS in 2022-JSR special issue. J Sleep Res 2022; 31:e13631. [PMID: 35624073 DOI: 10.1111/jsr.13631] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 01/21/2023]
Abstract
This article addresses the clinical presentation, diagnosis, pathophysiology and management of narcolepsy type 1 and 2, with a focus on recent findings. A low level of hypocretin-1/orexin-A in the cerebrospinal fluid is sufficient to diagnose narcolepsy type 1, being a highly specific and sensitive biomarker, and the irreversible loss of hypocretin neurons is responsible for the main symptoms of the disease: sleepiness, cataplexy, sleep-related hallucinations and paralysis, and disrupted nocturnal sleep. The process responsible for the destruction of hypocretin neurons is highly suspected to be autoimmune, or dysimmune. Over the last two decades, remarkable progress has been made for the understanding of these mechanisms that were made possible with the development of new techniques. Conversely, narcolepsy type 2 is a less well-defined disorder, with a variable phenotype and evolution, and few reliable biomarkers discovered so far. There is a dearth of knowledge about this disorder, and its aetiology remains unclear and needs to be further explored. Treatment of narcolepsy is still nowadays only symptomatic, targeting sleepiness, cataplexy and disrupted nocturnal sleep. However, new psychostimulants have been recently developed, and the upcoming arrival of non-peptide hypocretin receptor-2 agonists should be a revolution in the management of this rare sleep disease, and maybe also for disorders beyond narcolepsy.
Collapse
Affiliation(s)
- Lucie Barateau
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Yves Dauvilliers
- Sleep-Wake Disorders Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Montpellier, France.,National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic Hypersomnia, and Kleine-Levin Syndrome, Montpellier, France.,Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
13
|
Tabikh M, Chahla C, Okdeh N, Kovacic H, Sabatier JM, Fajloun Z. Parkinson disease: Protective role and function of neuropeptides. Peptides 2022; 151:170713. [PMID: 34929264 DOI: 10.1016/j.peptides.2021.170713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023]
Abstract
Neuropeptides are bioactive molecules, made up of small chains of amino acids, with many neuromodulatory properties. Several lines of evidence suggest that neuropeptides, mainly expressed in the central nervous system (CNS), play an important role in the onset of Parkinson's Disease (PD) pathology. The wide spread disruption of neuropeptides has been excessively demonstrated to be related to the pathophysiological symptoms in PD where impairment in motor function per example was correlated with neuropeptides dysregulation in the substantia niagra (SN). Moreover, the levels of different neuropeptides have been found modified in the cerebrospinal fluid and blood of PD patients, indicating their potential role in the manifestation of PD symptoms and dysfunctions. In this review, we outlined the neuroprotective effects of neuropeptides on dopaminergic neuronal loss, oxidative stress and neuroinflammation in several models and tissues of PD. Our main focus was to elaborate the role of orexin, pituitary adenylate cyclase activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), opioids, angiotensin, carnosine and many others in the protection and/or involvement in the neurodegeneration of striatal dopaminergic cells. Further studies are required to better assess the mode of action and cellular mechanisms of neuropeptides in order to shift the focus from the in vitro and in vivo testing to applicable clinical testing. This review, allows a support for future use of neuropeptides as therapeutic solution for PA pathophysiology.
Collapse
Affiliation(s)
- Mireille Tabikh
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
| | - Charbel Chahla
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
| | - Nathalie Okdeh
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
| | - Herve Kovacic
- Faculté de Médecine, Université Aix-Marseille, Institut de Neuro-Physiopathologie, UMR 7051, Boulevard Pierre Dramard-CS80011, 13344, Marseille Cedex 15, France
| | - Jean-Marc Sabatier
- Faculté de Médecine, Université Aix-Marseille, Institut de Neuro-Physiopathologie, UMR 7051, Boulevard Pierre Dramard-CS80011, 13344, Marseille Cedex 15, France.
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon; Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon.
| |
Collapse
|
14
|
Latorre D, Federica S, Bassetti CLA, Kallweit U. Narcolepsy: a model interaction between immune system, nervous system, and sleep-wake regulation. Semin Immunopathol 2022; 44:611-623. [PMID: 35445831 PMCID: PMC9519713 DOI: 10.1007/s00281-022-00933-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022]
Abstract
Narcolepsy is a rare chronic neurological disorder characterized by an irresistible excessive daytime sleepiness and cataplexy. The disease is considered to be the result of the selective disruption of neuronal cells in the lateral hypothalamus expressing the neuropeptide hypocretin, which controls the sleep-wake cycle. Diagnosis and management of narcolepsy represent still a substantial medical challenge due to the large heterogeneity in the clinical manifestation of the disease as well as to the lack of understanding of the underlying pathophysiological mechanisms. However, significant advances have been made in the last years, thus opening new perspective in the field. This review describes the current knowledge of clinical presentation and pathology of narcolepsy as well as the existing diagnostic criteria and therapeutic intervention for the disease management. Recent evidence on the potential immune-mediated mechanisms that may underpin the disease establishment and progression are also highlighted.
Collapse
Affiliation(s)
| | - Sallusto Federica
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.,Center of Medical Immunology, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | - Ulf Kallweit
- Clinical Sleep and Neuroimmunology, Institute of Immunology, University Witten/Herdecke, Witten, Germany.,Center for Biomedical Education and Research (ZBAF), University Witten/Herdecke, Witten, Germany
| |
Collapse
|
15
|
Azeez IA, Igado OO, Olopade JO. An overview of the orexinergic system in different animal species. Metab Brain Dis 2021; 36:1419-1444. [PMID: 34224065 DOI: 10.1007/s11011-021-00761-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/06/2021] [Indexed: 01/13/2023]
Abstract
Orexin (hypocretin), is a neuropeptide produced by a subset of neurons in the lateral hypothalamus. From the lateral hypothalamus, the orexin-containing neurons project their fibres extensively to other brain structures, and the spinal cord constituting the central orexinergic system. Generally, the term ''orexinergic system'' usually refers to the orexin peptides and their receptors, as well as to the orexin neurons and their projections to different parts of the central nervous system. The extensive networks of orexin axonal fibres and their terminals allow these neuropeptidergic neurons to exert great influence on their target regions. The hypothalamic neurons containing the orexin neuropeptides have been implicated in diverse functions, especially related to the control of a variety of homeostatic functions including feeding behaviour, arousal, wakefulness stability and energy expenditure. The broad range of functions regulated by the orexinergic system has led to its description as ''physiological integrator''. In the last two decades, the orexinergic system has been a topic of great interest to the scientific community with many reports in the public domain. From the documentations, variations exist in the neuroanatomical profile of the orexinergic neuron soma, fibres and their receptors from animal to animal. Hence, this review highlights the distinct variabilities in the morphophysiological aspects of the orexinergic system in the vertebrate animals, mammals and non-mammals, its presence in other brain-related structures, including its involvement in ageing and neurodegenerative diseases. The presence of the neuropeptide in the cerebrospinal fluid and peripheral tissues, as well as its alteration in different animal models and conditions are also reviewed.
Collapse
Affiliation(s)
- Idris A Azeez
- Department of Veterinary Anatomy, University of Jos, Jos, Nigeria
| | - Olumayowa O Igado
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
16
|
Exploring the Role of Orexinergic Neurons in Parkinson's Disease. Neurotox Res 2021; 39:2141-2153. [PMID: 34495449 DOI: 10.1007/s12640-021-00411-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting about 2% of the population. A neuropeptide, orexin, is linked with sleep abnormalities in the parkinsonian patient. This study aimed to review the changes in the orexinergic system in parkinsonian subjects and the effects of orexin. A number of search techniques were used and presumed during the search, including cloud databank searches of PubMed and Medline using title words, keywords, and MeSH terms. PD is characterised by motor dysfunctions (postural instability, rigidity, tremor) and cognitive disorders, sleep-wake abnormalities grouped under non-motor disorders. The Orexinergic system found in the hypothalamus is linked with autonomic function, neuroprotection, learning and memory, and the sleep-wake cycle. Prepro-orexin, a precursor peptide (130 amino acids), gives rise to orexins (Orx-A and Orx-B). Serum orexin level measurement is vital for evaluating several neurological disorders (Alzheimer's disease, Huntington's disease, and PD). Orexinergic neurons are activated by hypoglycemia and ghrelin, while they are restrained by food consumption and leptin. Orexinergic system dysfunctioning was found to be linked with non-motor symptoms (sleep abnormalities) in PD. Orexinergic neuron's behaviour may be either inhibitory or excitatory depending on the environment in which they are present. As well, orexin antagonists are found to improve the abnormal sleep pattern. Since the orexinergic system plays a role in several psychological and neurological disorders, therefore, these disorders can be managed by targeting this system.
Collapse
|
17
|
Maski KP, Colclasure A, Little E, Steinhart E, Scammell TE, Navidi W, Diniz Behn C. Stability of nocturnal wake and sleep stages defines central nervous system disorders of hypersomnolence. Sleep 2021; 44:zsab021. [PMID: 33512510 PMCID: PMC8564004 DOI: 10.1093/sleep/zsab021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/22/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES We determine if young people with narcolepsy type 1 (NT1), narcolepsy type 2 (NT2), and idiopathic hypersomnia (IH) have distinct nocturnal sleep stability phenotypes compared to subjectively sleepy controls. METHODS Participants were 5- to 21-year old and drug-naïve or drug free: NT1 (n = 46), NT2 (n = 12), IH (n = 18), and subjectively sleepy controls (n = 48). We compared the following sleep stability measures from polysomnogram recording between each hypersomnolence disorder to subjectively sleepy controls: number of wake and sleep stage bouts, Kaplan-Meier survival curves for wake and sleep stages, and median bout durations. RESULTS Compared to the subjectively sleepy control group, NT1 participants had more bouts of wake and all sleep stages (p ≤ .005) except stage N3. NT1 participants had worse survival of nocturnal wake, stage N2, and rapid eye movement (REM) bouts (p < .005). In the first 8 hours of sleep, NT1 participants had longer stage N1 bouts but shorter REM (all ps < .004). IH participants had a similar number of bouts but better survival of stage N2 bouts (p = .001), and shorter stage N3 bouts in the first 8 hours of sleep (p = .003). In contrast, NT2 participants showed better stage N1 bout survival (p = .006) and longer stage N1 bouts (p = .02). CONCLUSIONS NT1, NT2, and IH have unique sleep physiology compared to subjectively sleepy controls, with only NT1 demonstrating clear nocturnal wake and sleep instability. Overall, sleep stability measures may aid in diagnoses and management of these central nervous system disorders of hypersomnolence.
Collapse
Affiliation(s)
- Kiran P Maski
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Alicia Colclasure
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA
| | - Elaina Little
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Erin Steinhart
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Thomas E Scammell
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - William Navidi
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA
| | - Cecilia Diniz Behn
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
18
|
Fronczek R, Schinkelshoek M, Shan L, Lammers GJ. The orexin/hypocretin system in neuropsychiatric disorders: Relation to signs and symptoms. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:343-358. [PMID: 34225940 DOI: 10.1016/b978-0-12-820107-7.00021-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hypocretin-1 and 2 (or orexin A and B) are neuropeptides exclusively produced by a group of neurons in the lateral and dorsomedial hypothalamus that project throughout the brain. In accordance with this, the two different hypocretin receptors are also found throughout the brain. The hypocretin system is mainly involved in sleep-wake regulation, but also in reward mechanisms, food intake and metabolism, autonomic regulation including thermoregulation, and pain. The disorder most strongly linked to the hypocretin system is the primary sleep disorder narcolepsy type 1 caused by a lack of hypocretin signaling, which is most likely due to an autoimmune process targeting the hypocretin-producing neurons. However, the hypocretin system may also be affected, but to a lesser extent and less specifically, in various other neurological disorders. Examples are neurodegenerative diseases such as Alzheimer's, Huntington's and Parkinson's disease, immune-mediated disorders such as multiple sclerosis, neuromyelitis optica, and anti-Ma2 encephalitis, and genetic disorders such as type 1 diabetus mellitus and Prader-Willi Syndrome. A partial hypocretin deficiency may contribute to the sleep features of these disorders.
Collapse
Affiliation(s)
- Rolf Fronczek
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands.
| | - Mink Schinkelshoek
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| | - Ling Shan
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands; Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Gert Jan Lammers
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands; Sleep Wake Centre SEIN, Heemstede, The Netherlands
| |
Collapse
|
19
|
Lu J, Huang ML, Li JH, Jin KY, Li HM, Mou TT, Fronczek R, Duan JF, Xu WJ, Swaab D, Bao AM. Changes of Hypocretin (Orexin) System in Schizophrenia: From Plasma to Brain. Schizophr Bull 2021; 47:1310-1319. [PMID: 33974073 PMCID: PMC8379539 DOI: 10.1093/schbul/sbab042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hypocretin (also called orexin) regulates various functions, such as sleep-wake rhythms, attention, cognition, and energy balance, which show significant changes in schizophrenia (SCZ). We aimed to identify alterations in the hypocretin system in SCZ patients. We measured plasma hypocretin-1 levels in SCZ patients and healthy controls and found significantly decreased plasma hypocretin-1 levels in SCZ patients, which was mainly due to a significant decrease in female SCZ patients compared with female controls. In addition, we measured postmortem hypothalamic hypocretin-1-immunoreactivity (ir), ventricular cerebrospinal fluid (CSF) hypocretin-1 levels, and hypocretin receptor (Hcrt-R) mRNA expression in the superior frontal gyrus (SFG) in SCZ patients and controls We observed a significant decrease in the amount of hypothalamic hypocretin-1 ir in SCZ patients, which was due to decreased amounts in female but not male patients. Moreover, Hcrt-R2 mRNA in the SFG was decreased in female SCZ patients compared with female controls, while male SCZ patients showed a trend of increased Hcrt-R1 mRNA and Hcrt-R2 mRNA expression compared with male controls. We conclude that central hypocretin neurotransmission is decreased in SCZ patients, especially female patients, and this is reflected in the plasma.
Collapse
Affiliation(s)
- Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Man-Li Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Jin-Hui Li
- Department of Traditional Chinese Medicine & Rehabilitation, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kang-Yu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Mei Li
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting-Ting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
| | - Jin-Feng Duan
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Wei-Juan Xu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China
| | - Dick Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands,NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-Min Bao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, China,NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China,To whom correspondence should be addressed; Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; tel: +86 571 88208789, fax: +86 571 88208094, e-mail:
| |
Collapse
|
20
|
Giannoccaro MP, Liguori R, Plazzi G, Pizza F. Reviewing the Clinical Implications of Treating Narcolepsy as an Autoimmune Disorder. Nat Sci Sleep 2021; 13:557-577. [PMID: 34007229 PMCID: PMC8123964 DOI: 10.2147/nss.s275931] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Narcolepsy type 1 (NT1) is a lifelong sleep disorder, primarily characterized clinically by excessive daytime sleepiness and cataplexy and pathologically by the loss of hypocretinergic neurons in the lateral hypothalamus. Despite being a rare disorder, the NT1-related burden for patients and society is relevant due to the early onset and chronic nature of this condition. Although the etiology of narcolepsy is still unknown, mounting evidence supports a central role of autoimmunity. To date, no cure is available for this disorder and current treatment is symptomatic. Based on the hypothesis of the autoimmune etiology of this disease, immunotherapy could possibly represent a valid therapeutic option. However, contrasting and limited results have been provided so far. This review discusses the evidence supporting the use of immunotherapy in narcolepsy, the outcomes obtained so far, current issues and future directions.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Pizza
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Murillo-Rodríguez E, Millán-Aldaco D, Palomero-Rivero M, Morales-Lara D, Mechoulam R, Drucker-Colín R. Cannabidiol Partially Blocks the Excessive Sleepiness in Hypocretindeficient Rats: Preliminary Data. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:705-712. [PMID: 31642794 DOI: 10.2174/1871527318666191021143300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/05/2019] [Accepted: 09/13/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Excessive daytime sleepiness and cataplexy are among the symptoms of narcolepsy, a sleep disorder caused by the loss of hypocretin/orexin (HCRT/OX) neurons placed into the Hypothalamus (LH). Several treatments for managing narcolepsy include diverse drugs to induce alertness, such as antidepressants, amphetamine, or modafinil, etc. Recent evidence has shown that cannabidiol (CBD), a non-psychotropic derived from Cannabis sativa, shows positive therapeutic effects in neurodegenerative disorders, including Parkinson´s disease. Furthermore, CBD provokes alertness and enhances wake-related neurochemicals in laboratory animals. Thus, it is plausible to hypothesize that excessive somnolence observed in narcolepsy might be blocked by CBD. OBJECTIVE Here, we determined whether the systemic injection of CBD (5mg/kg, i.p.) would block the excessive sleepiness in a narcoleptic model. METHODS To test this idea, the neurotoxin hypocretin-2-saporin (HCRT2/SAP) was bilaterally injected into the LH of rats to eliminate HCRT leading to the establishment of narcoleptic-like behavior. Since excessive somnolence in HCRT2/SAP lesioned rats has been observed during the lights-off period, CBD was administered at the beginning of the dark phase. RESULTS Hourly analysis of sleep data showed that CBD blocked the sleepiness during the lights-off period across 7h post-injection in lesioned rats. CONCLUSION Taking together, these preliminary findings suggest that CBD might prevent sleepiness in narcolepsy.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico.,Intercontinental Neuroscience Research Group, Merida, Yucatán, Mexico
| | - Diana Millán-Aldaco
- Depto. de Neurociencia Cognitiva, División de Neurociencias, Instituto de Fisiología Celular. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marcela Palomero-Rivero
- Depto. de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Daniela Morales-Lara
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico.,Intercontinental Neuroscience Research Group, Merida, Yucatán, Mexico
| | - Raphael Mechoulam
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem, Israel
| | - René Drucker-Colín
- Depto. de Neuropatología Molecular, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
22
|
de Martin Truzzi G, Naufel MF, Tufik S, Coelho FM. The influence of narcolepsy on olfactory function: a review. Sleep Med 2020; 72:75-81. [PMID: 32554327 DOI: 10.1016/j.sleep.2020.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/01/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Narcolepsy is a sleep disorder associated with loss of hypocretin cells characterized by irrepressible need to sleep, often accompanied by cataplexy, sleep fragmentation, hypnagogical and hypnopompic hallucinations, and sleep paralysis. It is also correlated with alterations in the sleep-wake cycle, dysautonomia, olfactory dysfunction, and eating disorders. METHODS This is a review about influence of narcolepsy on human olfaction. Pubmed, Embase, Ovid and Cochrane databases were searched for articles on the evaluation of olfactory function in narcoleptic patients including terms as narcolepsy, olfaction disorder, amongst others. RESULTS Seven articles met the inclusion criteria. In five of them, the olfaction of narcoleptic patients was diminished in comparison with healthy control groups. The diagnosis of narcolepsy relates to worse performance in olfactory tests. Experimental researches showed that hypocretin and hypocretin receptors are present in the olfactory system, and this neuropeptide may have a role on olfactory sensitivity and on the olfactory modulation. The cause of hyposmia appears to be multifactorial. Among them, it stands out the hypocretin deficiency, therefore, that seems to be involved in the olfactory impairment in narcoleptic patients.
Collapse
Affiliation(s)
| | - Maria Fernanda Naufel
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil; Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Fernando Morgadinho Coelho
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil; Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
23
|
Liu C, Xue Y, Liu MF, Wang Y, Chen L. Orexin and Parkinson's disease: A protective neuropeptide with therapeutic potential. Neurochem Int 2020; 138:104754. [PMID: 32422324 DOI: 10.1016/j.neuint.2020.104754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease caused by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. PD is characterized by motor dysfunctions as well as non-motor disorders. Orexin (also known as hypocretin) is a kind of neuropeptide involved in the regulation of motor control, the sleep/wake cycle, learning and memory, gastric motility and respiratory function. Several lines of evidence suggest that the orexinergic system is involved in the manifestations of PD, especially the non-motor disorders. Recent studies have revealed the protective actions and potential therapeutic applications of orexin in both cellular and animal models of PD. Here we present a brief overview of the involvement of the orexinergic system in PD, including the pathological changes in the lateral hypothalamus, the loss of orexinergic neurons and the fluctuation of orexin levels in CSF. Furthermore, we also review the neuroprotective effects of orexin in cellular and animal models of PD.
Collapse
Affiliation(s)
- Cui Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mei-Fang Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ying Wang
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
24
|
Giannoccaro MP, Sallemi G, Liguori R, Plazzi G, Pizza F. Immunotherapy in Narcolepsy. Curr Treat Options Neurol 2020; 22:2. [PMID: 31997035 DOI: 10.1007/s11940-020-0609-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Narcolepsy type 1 (NT1) is a chronic and disabling sleep disorder due to the loss of hypocretinergic neurons in the lateral hypothalamus pathophysiologically linked to an autoimmune process. Current treatment is symptomatic, and no cure is available to date. Immunotherapy is considered a promising future therapeutic option, and this review discusses the rationale for immunotherapy in narcolepsy, current evidences of its effects, outcome measures, and future directions. RECENT FINDINGS A limited number of case reports and uncontrolled small case series have reported the effect of different immunotherapies in patients with NT1. These studies were mainly based on the use of intravenous immunoglobulin (IVig), followed by corticosteroids, plasmapheresis, and monoclonal antibodies. Although initial reports showed an improvement of symptoms, particularly when patients were treated close to disease onset, other observations have not confirmed these results. Inadequate timing of treatment, placebo effects, and spontaneous improvement due to the natural disease course can account for these contrasting findings. Moreover, clear endpoints and standardized outcome measures have not been used and are currently missing in the pediatric population. On the basis of the available data, there are no enough evidences to support the use of immunotherapy in NT1. Randomized, controlled studies using clear endpoints and new outcome measures are needed to achieve a definitive answer about the usefulness of these treatments in narcolepsy.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giombattista Sallemi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Ospedale Bellaria, Padiglione G, piano 1, Via Altura 3, 40139 Bologna, Italy. .,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
| |
Collapse
|
25
|
Narcolepsy — clinical spectrum, aetiopathophysiology, diagnosis and treatment. Nat Rev Neurol 2019; 15:519-539. [DOI: 10.1038/s41582-019-0226-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
|
26
|
Ghazi Sherbaf F, Rostam Abadi Y, Mojtahed Zadeh M, Ashraf-Ganjouei A, Sanjari Moghaddam H, Aarabi MH. Microstructural Changes in Patients With Parkinson's Disease Comorbid With REM Sleep Behaviour Disorder and Depressive Symptoms. Front Neurol 2018; 9:441. [PMID: 29997561 PMCID: PMC6028696 DOI: 10.3389/fneur.2018.00441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
The diagnosis of Parkinson's disease (PD) is currently anchored on clinical motor symptoms, which appear more than 20 years after initiation of the neurotoxicity. Extra-nigral involvement in the onset of PD with probable nonmotor manifestations before the development of motor signs, lead us to the preclinical (asymptomatic) or prodromal stages of the disease (various nonmotor or subtle motor signs). REM sleep behavior disorder (RBD) and depression are established prodromal clinical markers of PD and predict worse motor and cognitive outcomes. Nevertheless, taken by themselves, these markers are not yet claimed to be practical in identifying high-risk individuals. Combining promising markers may be helpful in a reliable diagnosis of early PD. Therefore, we aimed to detect neural correlates of RBD and depression in 93 treatment-naïve and non-demented early PD by means of diffusion MRI connectometry. Comparing four groups of PD patients with or without comorbid RBD and/or depressive symptoms with each other and with 31 healthy controls, we found that these two non-motor symptoms are associated with lower connectivity in several white matter tracts including the cerebellar peduncles, corpus callosum and long association fibers such as cingulum, fornix, and inferior longitudinal fasciculus. For the first time, we were able to detect the involvement of short association fibers (U-fibers) in PD neurodegenerative process. Longitudinal studies on larger sample groups are needed to further investigate the reported associations.
Collapse
|
27
|
Black SW, Sun JD, Santiago P, Laihsu A, Kimura N, Yamanaka A, Bersot R, Humphries PS. Partial ablation of the orexin field induces a sub-narcoleptic phenotype in a conditional mouse model of orexin neurodegeneration. Sleep 2018; 41:5025920. [DOI: 10.1093/sleep/zsy116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/29/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sarah Wurts Black
- In Vivo Biology Department, Reset Therapeutics, South San Francisco, CA
| | - Jessica D Sun
- In Vivo Biology Department, Reset Therapeutics, South San Francisco, CA
| | - Pamela Santiago
- In Vivo Biology Department, Reset Therapeutics, South San Francisco, CA
| | - Alex Laihsu
- In Vivo Biology Department, Reset Therapeutics, South San Francisco, CA
| | - Nikki Kimura
- In Vivo Biology Department, Reset Therapeutics, South San Francisco, CA
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Ross Bersot
- In Vivo Biology Department, Reset Therapeutics, South San Francisco, CA
| | - Paul S Humphries
- In Vivo Biology Department, Reset Therapeutics, South San Francisco, CA
| |
Collapse
|
28
|
Enevoldsen LH, Tindborg M, Hovmand NL, Christoffersen C, Ellingsgaard H, Suetta C, Stallknecht BM, Jennum PJ, Kjær A, Gammeltoft S. Functional brown adipose tissue and sympathetic activity after cold exposure in humans with type 1 narcolepsy. Sleep 2018; 41:4996398. [DOI: 10.1093/sleep/zsy092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lotte Hahn Enevoldsen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Denmark
| | - Marie Tindborg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Christina Christoffersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Denmark
| | | | - Charlotte Suetta
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Denmark
| | - Bente Merete Stallknecht
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Denmark
| | | |
Collapse
|
29
|
Laperchia C, Xu YZ, Mumba Ngoyi D, Cotrufo T, Bentivoglio M. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: Hypothalamic Peptidergic Sleep and Wake-Regulatory Neurons. Front Neuroanat 2018. [PMID: 29535612 PMCID: PMC5835115 DOI: 10.3389/fnana.2018.00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neuron populations of the lateral hypothalamus which synthesize the orexin (OX)/hypocretin or melanin-concentrating hormone (MCH) peptides play crucial, reciprocal roles in regulating wake stability and sleep. The disease human African trypanosomiasis (HAT), also called sleeping sickness, caused by extracellular Trypanosoma brucei (T. b.) parasites, leads to characteristic sleep-wake cycle disruption and narcoleptic-like alterations of the sleep structure. Previous studies have revealed damage of OX and MCH neurons during systemic infection of laboratory rodents with the non-human pathogenic T. b. brucei subspecies. No information is available, however, on these peptidergic neurons after systemic infection with T. b. gambiense, the etiological agent of 97% of HAT cases. The present study was aimed at the investigation of immunohistochemically characterized OX and MCH neurons after T. b. gambiense or T. b. brucei infection of a susceptible rodent, the multimammate mouse, Mastomysnatalensis. Cell counts and evaluation of OX fiber density were performed at 4 and 8 weeks post-infection, when parasites had entered the brain parenchyma from the periphery. A significant decrease of OX neurons (about 44% reduction) and MCH neurons (about 54% reduction) was found in the lateral hypothalamus and perifornical area at 8 weeks in T. b. gambiense-infected M. natalensis. A moderate decrease (21% and 24% reduction, respectively), which did not reach statistical significance, was found after T. b. brucei infection. In two key targets of diencephalic orexinergic innervation, the peri-suprachiasmatic nucleus (SCN) region and the thalamic paraventricular nucleus (PVT), densitometric analyses showed a significant progressive decrease in the density of orexinergic fibers in both infection paradigms, and especially during T. b. gambiense infection. Altogether the findings provide novel information showing that OX and MCH neurons are highly vulnerable to chronic neuroinflammatory signaling caused by the infection of human-pathogenic African trypanosomes.
Collapse
Affiliation(s)
- Claudia Laperchia
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Yuan-Zhong Xu
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Dieudonné Mumba Ngoyi
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of Congo
| | - Tiziana Cotrufo
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Bentivoglio
- Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience (INN), Verona Unit, Verona, Italy
| |
Collapse
|
30
|
Trace Amine-Associated Receptor 1 Agonists as Narcolepsy Therapeutics. Biol Psychiatry 2017; 82:623-633. [PMID: 27919403 PMCID: PMC5395352 DOI: 10.1016/j.biopsych.2016.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Narcolepsy, a disorder of rapid eye movement (REM) sleep, is characterized by excessive daytime sleepiness and cataplexy, a loss of muscle tone triggered by emotional stimulation. Current narcolepsy pharmacotherapeutics include controlled substances with abuse potential or drugs with undesirable side effects. As partial agonists at trace amine-associated receptor 1 (TAAR1) promote wakefulness in mice and rats, we evaluated whether TAAR1 agonism had beneficial effects in two mouse models of narcolepsy. METHODS In the first experiment, male homozygous B6-Taar1tm1(NLSLacZ)Blt (Taar1 knockout) and wild-type mice were surgically implanted to record electroencephalogram, electromyogram, locomotor activity, and body temperature, and the efficacy of the TAAR1 agonist, RO5256390, on sleep/wake and physiological parameters was determined. In the second experiment, the effects of the TAAR1 full agonist RO5256390 and partial agonist RO5263397 on sleep/wake, locomotor activity, body temperature, and cataplexy were assessed in two mouse narcolepsy models. RESULTS RO5256390 profoundly reduced rapid eye movement sleep in wild-type mice; these effects were eliminated in Taar1 knockout mice. The TAAR1 partial agonist RO5263397 also promoted wakefulness and suppressed nonrapid eye movement sleep. Both compounds reduced body temperature in the two narcolepsy models at the highest doses tested. Both TAAR1 compounds also mitigated cataplexy, the pathognomonic symptom of this disorder, in the narcolepsy models. The therapeutic benefit was mediated through a reduction in number of cataplexy episodes and time spent in cataplexy. CONCLUSIONS These results suggest TAAR1 agonism as a new therapeutic pathway for treatment of this orphan disease. The common underlying mechanism may be the suppression of rapid eye movement sleep.
Collapse
|
31
|
The link between narcolepsy and autonomic cardiovascular dysfunction: a translational perspective. Clin Auton Res 2017; 28:545-555. [DOI: 10.1007/s10286-017-0473-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
|
32
|
Lopez R, Barateau L, Evangelista E, Chenini S, Robert P, Jaussent I, Dauvilliers Y. Temporal Changes in the Cerebrospinal Fluid Level of Hypocretin-1 and Histamine in Narcolepsy. Sleep 2017; 40:2979189. [PMID: 28364477 PMCID: PMC5806580 DOI: 10.1093/sleep/zsw010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Study Objectives: To follow the temporal changes of cerebrospinal fluid (CSF) biomarker levels in
narcoleptic patients with unexpected hypocretin level at referral. Methods: From 2007 to 2015, 170 human leukocyte antigen (HLA) DQB1*06:02-positive patients with
primary narcolepsy and definite (n = 155, 95 males, 60 females, 36
children) or atypical cataplexy (n = 15, 4 males, 3 children) were
referred to our center. Cerebrospinal hypocretin deficiency was found in 95.5% and 20%
of patients with definitive and atypical cataplexy, respectively. CSF hypocretin-1
(n = 6) and histamine/tele-methylhistamine (n = 5)
levels were assessed twice (median interval: 14.4 months) in four patients with definite
and in two with atypical cataplexy and hypocretin level greater than 100 pg/mL at
baseline. Results: CSF hypocretin levels decreased from normal/intermediate to undetectable levels in
three of the four patients with definite cataplexy and remained stable in the other
(>250 pg/mL). Hypocretin level decreased from 106 to 27 pg/mL in one patient with
atypical cataplexy, and remained stable in the other (101 and 106 pg/mL). CSF histamine
and tele-methylhistamine levels remained stable, but for one patient showing increased
frequency of cataplexy and a strong decrease (−72.5%) of tele-methylhistamine levels
several years after disease onset. No significant association was found between relative
or absolute change in hypocretin level and demographic/clinical features. Conclusions: These findings show that in few patients with narcolepsy with cataplexy, symptoms and
CSF marker levels can change over time. In these rare patients with cataplexy without
baseline hypocretin deficiency, CSF markers should be monitored over time with potential
for immune therapies in early stages to try limiting hypocretin neuron loss.
Collapse
Affiliation(s)
- Régis Lopez
- Unité des Troubles du Sommeil Service de Neurologie, Centre National de Référence Narcolepsie Hypersomnies, Hôpital Gui-de-Chauliac, Montpellier F-34000, France.,Inserm U1061, Montpellier F-34000, France.,Université de Montpellier, Montpellier F-34000, France
| | - Lucie Barateau
- Unité des Troubles du Sommeil Service de Neurologie, Centre National de Référence Narcolepsie Hypersomnies, Hôpital Gui-de-Chauliac, Montpellier F-34000, France.,Université de Montpellier, Montpellier F-34000, France
| | - Elisa Evangelista
- Unité des Troubles du Sommeil Service de Neurologie, Centre National de Référence Narcolepsie Hypersomnies, Hôpital Gui-de-Chauliac, Montpellier F-34000, France.,Université de Montpellier, Montpellier F-34000, France
| | - Sofiene Chenini
- Unité des Troubles du Sommeil Service de Neurologie, Centre National de Référence Narcolepsie Hypersomnies, Hôpital Gui-de-Chauliac, Montpellier F-34000, France.,Université de Montpellier, Montpellier F-34000, France
| | | | - Isabelle Jaussent
- Inserm U1061, Montpellier F-34000, France.,Université de Montpellier, Montpellier F-34000, France
| | - Yves Dauvilliers
- Unité des Troubles du Sommeil Service de Neurologie, Centre National de Référence Narcolepsie Hypersomnies, Hôpital Gui-de-Chauliac, Montpellier F-34000, France.,Inserm U1061, Montpellier F-34000, France.,Université de Montpellier, Montpellier F-34000, France
| |
Collapse
|
33
|
Abstract
Alzheimer's disease (AD) is the most frequent age-related dementia. It prevalently causes cognitive decline, although it is frequently associated with secondary behavioral disturbances. AD neurodegeneration characteristically produces a remarkable destruction of the sleep-wake cycle, with diurnal napping, nighttime arousals, sleep fragmentation, and REM sleep impairment. It was recently hypothesized that the orexinergic system was involved in AD pathology. Accordingly, recent papers showed the association between orexinergic neurotransmission dysfunction, sleep impairment, and cognitive decline in AD. Orexin is a hypothalamic neurotransmitter which physiologically produces wakefulness and reduces REM sleep and may alter the sleep-wake cycle in AD patients. Furthermore, the orexinergic system seems to interact with CSF AD biomarkers, such as beta-amyloid and tau proteins. Beta-amyloid accumulation is the main hallmark of AD pathology, while tau proteins mark brain neuronal injury due to AD pathology. Investigations so far suggest that orexinergic signaling overexpression alters the sleep-wake cycle and secondarily induces beta-amyloid accumulation and tau-mediated neurodegeneration. Therefore, considering that orexinergic system dysregulation impairs sleep-wake rhythms and may influence AD pathology, it is hypothesized that orexin receptor antagonists are likely potential preventive/therapeutic options in AD patients.
Collapse
Affiliation(s)
- Claudio Liguori
- Sleep Medicine Centre, Neurophysiopathology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
34
|
|
35
|
Mishima T, Kasanuki K, Koga S, Castanedes-Casey M, Wszolek ZK, Tsuboi Y, Dickson DW. Reduced orexin immunoreactivity in Perry syndrome and multiple system atrophy. Parkinsonism Relat Disord 2017; 42:85-89. [PMID: 28651750 DOI: 10.1016/j.parkreldis.2017.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/01/2017] [Accepted: 06/10/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Orexin is a neuropeptide that plays a key role in maintaining a state of arousal, and possibly associates with sleep apnea syndrome (SAS). Reduced orexin immunoreactivity has been reported in various neurologic conditions such as narcolepsy, Alzheimer's disease, Lewy body disease and multiple system atrophy (MSA); however, there has been no report investigating orexin in Perry syndrome, a rare hereditary neurodegenerative disease characterized by four clinical cardinal signs (parkinsonism, depression/apathy, weight loss, and central hypoventilation). Perry syndrome patients frequently have sleep disturbances, including SAS and insomnia. METHODS We evaluated orexin immunoreactivity in Perry syndrome. Using imaging analysis, we quantitatively assessed orexin immunoreactivity in the nucleus basalis of Meynert in three Perry syndrome cases, as well as five cases of frontotemporal lobar degeneration with motor neuron disease, five cases of MSA and five age-matched controls. For these cases, antemortem clinical information on sleep disturbances has been reviewed. RESULTS In Perry syndrome and MSA, there was reduction of orexin immunoreactivity compared with controls (Perry syndrome: p = 0.020, MSA: p < 0.001). In contrast, FTLD-MND did not have significant reduction of orexin immunoreactivity. Two out of three cases of Perry syndrome had SAS confirmed by polysomnography. CONCLUSIONS This is the first report assessing orexin immunoreactivity in Perry syndrome, and it showed significant reduction, similar to select neurodegenerative diseases, such as MSA. Further analysis with more cases will be needed to elucidate the specific mechanism of orexin loss in these disorders.
Collapse
Affiliation(s)
- Takayasu Mishima
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, United States; Department of Neurology, Fukuoka University, Fukuoka 8140180, Japan
| | - Koji Kasanuki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, United States
| | | | - Zbigniew K Wszolek
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka 8140180, Japan
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, United States.
| |
Collapse
|
36
|
Abstract
Narcolepsy is a chronic sleep disorder that has a typical onset in adolescence and is characterized by excessive daytime sleepiness, which can have severe consequences for the patient. Problems faced by patients with narcolepsy include social stigma associated with this disease, difficulties in obtaining an education and keeping a job, a reduced quality of life and socioeconomic consequences. Two subtypes of narcolepsy have been described (narcolepsy type 1 and narcolepsy type 2), both of which have similar clinical profiles, except for the presence of cataplexy, which occurs only in patients with narcolepsy type 1. The pathogenesis of narcolepsy type 1 is hypothesized to be the autoimmune destruction of the hypocretin-producing neurons in the hypothalamus; this hypothesis is supported by immune-related genetic and environmental factors associated with the disease. However, direct evidence in support of the autoimmune hypothesis is currently unavailable. Diagnosis of narcolepsy encompasses clinical, electrophysiological and biological evaluations, but simpler and faster procedures are needed. Several medications are available for the symptomatic treatment of narcolepsy, all of which have quite good efficacy and safety profiles. However, to date, no treatment hinders or slows disease development. Improved diagnostic tools and increased understanding of the pathogenesis of narcolepsy type 1 are needed and might lead to therapeutic or even preventative interventions.
Collapse
Affiliation(s)
- Birgitte R Kornum
- Molecular Sleep Laboratory, Department of Clinical Biochemistry, Rigshospitalet, Forskerparken, Nordre Ringvej 69, 2600 Glostrup, Denmark.,Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| | - Stine Knudsen
- Norwegian Centre of Expertise for Neurodevelopmental Disorders and Hypersomnias, Oslo University Hospital, Oslo, Norway
| | - Hanna M Ollila
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Stanford University, Stanford, California, USA
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, AUSL di Bologna, Bologna, Italy
| | - Poul J Jennum
- Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| | - Yves Dauvilliers
- Sleep Unit, Narcolepsy Reference Center, Department of Neurology, Gui de Chauliac Hospital, INSERM 1061, Montpellier, France
| | - Sebastiaan Overeem
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands.,Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
37
|
Drakatos P, Leschziner G. Cataplexy with Normal Sleep Studies and Normal CSF Hypocretin: An Explanation? J Clin Sleep Med 2017; 12:449-50. [PMID: 26564387 DOI: 10.5664/jcsm.5604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/08/2015] [Indexed: 11/13/2022]
Abstract
Patients with narcolepsy usually develop excessive daytime sleepiness (EDS) before or coincide with the occurrence of cataplexy, with the latter most commonly associated with low cerebrospinal fluid (CSF) hypocretin-1 levels. Cataplexy preceding the development of other features of narcolepsy is a rare phenomenon. We describe a case of isolated cataplexy in the context of two non-diagnostic multiple sleep latency tests and normal CSF-hypocretin-1 levels (217 pg/mL) who gradually developed EDS and low CSF-hypocretin-1 (< 110 pg/mL).
Collapse
Affiliation(s)
- Panagis Drakatos
- Sleep Disorders Centre, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Guy Leschziner
- Sleep Disorders Centre, Guy's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.,King's College London, UK
| |
Collapse
|
38
|
Planty C, Mallett CP, Yim K, Blanco JCG, Boukhvalova M, March T, van der Most R, Destexhe E. Evaluation of the potential effects of AS03-adjuvanted A(H1N1)pdm09 vaccine administration on the central nervous system of non-primed and A(H1N1)pdm09-primed cotton rats. Hum Vaccin Immunother 2016; 13:90-102. [PMID: 27629482 DOI: 10.1080/21645515.2016.1227518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An increased risk of narcolepsy following administration of an AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine (Pandemrix™) was described in children and adolescents in certain European countries. We investigated the potential effects of administration of the AS03-adjuvanted vaccine, non-adjuvanted vaccine antigen and AS03 Adjuvant System alone, on the central nervous system (CNS) in one-month-old cotton rats. Naïve or A(H1N1)pdm09 virus-primed animals received 2 or 3 intramuscular injections, respectively, of test article or saline at 2-week intervals. Parameters related to systemic inflammation (hematology, serum IL-6/IFN-γ/TNF-α) were assessed. Potential effects on the CNS were investigated by histopathological evaluation of brain sections stained with hematoxylin-and-eosin, or by immunohistochemical staining of microglia, using Iba1 and CD68 as markers for microglia identification/activation, albumin as indicator of vascular leakage, and hypocretin. We also determined cerebrospinal fluid (CSF) hypocretin levels and hemagglutination-inhibiting antibody titers. Immunogenicity of the AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine was confirmed by the induction of hemagglutination-inhibiting antibodies. Both AS03-adjuvanted vaccine and AS03 alone activated transient innate (neutrophils/eosinophils) immune responses. No serum cytokines were detected. CNS analyses revealed neither microglia activation nor inflammatory cellular infiltrates in the brain. No differences between treatment groups were detected for albumin extravascular leakage, CSF hypocretin levels, numbers of hypocretin-positive neuronal bodies or distributions of hypocretin-positive axonal/dendritic projections. Consequently, there was no evidence that intramuscular administration of the test articles promoted inflammation or damage in the CNS, or blood-brain barrier disruption, in this model.
Collapse
Affiliation(s)
| | | | - Kevin Yim
- c Sigmovir Biosystems Inc. , Rockville , MD , USA
| | | | | | | | | | | |
Collapse
|
39
|
Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiol Dis 2016; 95:210-24. [PMID: 27461050 DOI: 10.1016/j.nbd.2016.07.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/29/2016] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.
Collapse
|
40
|
Hirtz C, Vialaret J, Gabelle A, Nowak N, Dauvilliers Y, Lehmann S. From radioimmunoassay to mass spectrometry: a new method to quantify orexin-A (hypocretin-1) in cerebrospinal fluid. Sci Rep 2016; 6:25162. [PMID: 27165941 PMCID: PMC4863245 DOI: 10.1038/srep25162] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/11/2016] [Indexed: 12/14/2022] Open
Abstract
I125 radioimmunoassay (RIA) is currently the standard technique for quantifying cerebrospinal fluid (CSF) orexin-A/hypocretin-1, a biomarker used to diagnose narcolepsy type 1. However, orexin-A RIA is liable to undergo cross-reactions with matrix constituents generating interference, high variability between batches, low precision and accuracy, and requires special radioactivity precautions. Here we developed the first quantitative mass spectrometry assay of orexin-A based on a multiple reaction monitoring (MRM) approach. This method was tested in keeping with the Clinical and Laboratory Standards Institute (CLSI) guidelines and its clinical relevance was confirmed by comparing patients with narcolepsy type 1 versus patients with other neurological conditions. The results obtained using MRM and RIA methods were highly correlated, and Bland–Altman analysis established their interchangeability. However, the MRM values had a wider distribution and were 2.5 time lower than the RIA findings. In conclusion, this method of assay provides a useful alternative to RIA to quantify orexin-A, and may well replace it not only in narcolepsy type 1, but also in the increasing number of pathologies in which the quantification of this analyte is relevant.
Collapse
Affiliation(s)
- Christophe Hirtz
- CHU Montpellier, Institut de Recherche en Biothérapie, hôpital St Eloi, Laboratoire de Biochimie Protéomique Clinique et CRB, Montpellier, F-34000 France.,Université de Montpellier, Montpellier, F-34000 France. INSERM U1183, Montpellier, F-34000 France
| | - Jérôme Vialaret
- CHU Montpellier, Institut de Recherche en Biothérapie, hôpital St Eloi, Laboratoire de Biochimie Protéomique Clinique et CRB, Montpellier, F-34000 France.,Université de Montpellier, Montpellier, F-34000 France. INSERM U1183, Montpellier, F-34000 France
| | - Audrey Gabelle
- CHU Montpellier, Institut de Recherche en Biothérapie, hôpital St Eloi, Laboratoire de Biochimie Protéomique Clinique et CRB, Montpellier, F-34000 France.,Université de Montpellier, Montpellier, F-34000 France. INSERM U1183, Montpellier, F-34000 France.,Memory Research Resources center, Department of Neurology, Gui-de-Chauliac Hospital, Montpellier University Hospital, F-34000 France
| | - Nora Nowak
- CHU Montpellier, Institut de Recherche en Biothérapie, hôpital St Eloi, Laboratoire de Biochimie Protéomique Clinique et CRB, Montpellier, F-34000 France.,Université de Montpellier, Montpellier, F-34000 France. INSERM U1183, Montpellier, F-34000 France
| | - Yves Dauvilliers
- National Reference Centre for Orphan Diseases, Narcolepsy, Idiopathic hypersomnia and Kleine-Levin Syndrome, France.,Sleep Disorders Center, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, Inserm U1061, Montpellier, France
| | - Sylvain Lehmann
- CHU Montpellier, Institut de Recherche en Biothérapie, hôpital St Eloi, Laboratoire de Biochimie Protéomique Clinique et CRB, Montpellier, F-34000 France.,Université de Montpellier, Montpellier, F-34000 France. INSERM U1183, Montpellier, F-34000 France
| |
Collapse
|
41
|
Rapid eye movement sleep disruption and sleep fragmentation are associated with increased orexin-A cerebrospinal-fluid levels in mild cognitive impairment due to Alzheimer's disease. Neurobiol Aging 2016; 40:120-126. [DOI: 10.1016/j.neurobiolaging.2016.01.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 01/30/2023]
|
42
|
Jiang H, Huang J, Shen Y, Guo S, Wang L, Han C, Liu L, Ma K, Xia Y, Li J, Xu X, Xiong N, Wang T. RBD and Neurodegenerative Diseases. Mol Neurobiol 2016; 54:2997-3006. [PMID: 27032389 DOI: 10.1007/s12035-016-9831-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 03/04/2016] [Indexed: 01/08/2023]
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is a sleep disorder characterized by enacting one's dreams during the REM sleep, with most of the dreams being violent or aggressive, so that patients often come to see the doctor complaining hurting themselves or bed partners during sleep. Prevalence of RBD, based on population, is 0.38-2.01 %, but much higher in patients with neurodegenerative diseases, especially synucleinopathies. RBD may herald the emergence of synucleinopathies by decades, such that it may be used as an effective early marker of neurodegenerative diseases. Pharmaceutical treatment of RBD includes clonazepam, melatonin, pramipexole, and some newly reported medications. In this review, we summarized the clinical and PSG features of RBD, the pathophysiology and the therapy of it, focusing on the correlation between neurodegenerative diseases and RBD, in order to emphasize the significance of RBD as an early marker of neurodegenerative diseases.
Collapse
Affiliation(s)
- Haiyang Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Yan Shen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Shiyi Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Luxi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Ling Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Kai Ma
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Yun Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Jie Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Xiaoyun Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, 430022, Hubei, China.
| |
Collapse
|
43
|
Babkina OV, Poluektov MG, Levin OS. Heterogeneity of excessive daytime sleepiness in Parkinson’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 2016; 116:60-70. [DOI: 10.17116/jnevro20161166260-70] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Black SW, Yamanaka A, Kilduff TS. Challenges in the development of therapeutics for narcolepsy. Prog Neurobiol 2015; 152:89-113. [PMID: 26721620 DOI: 10.1016/j.pneurobio.2015.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/14/2015] [Accepted: 12/04/2015] [Indexed: 01/19/2023]
Abstract
Narcolepsy is a neurological disorder that afflicts 1 in 2000 individuals and is characterized by excessive daytime sleepiness and cataplexy-a sudden loss of muscle tone triggered by positive emotions. Features of narcolepsy include dysregulation of arousal state boundaries as well as autonomic and metabolic disturbances. Disruption of neurotransmission through the hypocretin/orexin (Hcrt) system, usually by degeneration of the HCRT-producing neurons in the posterior hypothalamus, results in narcolepsy. The cause of Hcrt neurodegeneration is unknown but thought to be related to autoimmune processes. Current treatments for narcolepsy are symptomatic, including wake-promoting therapeutics that increase presynaptic dopamine release and anticataplectic agents that activate monoaminergic neurotransmission. Sodium oxybate is the only medication approved by the US Food and Drug Administration that alleviates both sleep/wake disturbances and cataplexy. Development of therapeutics for narcolepsy has been challenged by historical misunderstanding of the disease, its many disparate symptoms and, until recently, its unknown etiology. Animal models have been essential to elucidating the neuropathology underlying narcolepsy. These models have also aided understanding the neurobiology of the Hcrt system, mechanisms of cataplexy, and the pharmacology of narcolepsy medications. Transgenic rodent models will be critical in the development of novel therapeutics for the treatment of narcolepsy, particularly efforts directed to overcome challenges in the development of hypocretin replacement therapy.
Collapse
Affiliation(s)
- Sarah Wurts Black
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA.
| |
Collapse
|
45
|
Gallone S, Boschi S, Rubino E, De Martino P, Scarpini E, Galimberti D, Fenoglio C, Acutis PL, Maniaci MG, Pinessi L, Rainero I. Is HCRTR2 a genetic risk factor for Alzheimer's disease? Dement Geriatr Cogn Disord 2015; 38:245-53. [PMID: 24969517 DOI: 10.1159/000359964] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUNDS/AIMS Alzheimer's disease (AD) is one of the main types of dementia affecting about 50-55% of all demented patients. Sleep disturbances in AD patients are associated with the severity of dementia and are often the primary reason for institutionalization. These sleep problems partly resemble the core symptoms of narcolepsy, a sleep disorder caused by a general loss of the neurotransmitter hypocretin. The aim of our study was to investigate whether genetic variants in the hypocretin (HCRT) and in the hypocretin receptors 1 and 2 (HCRTR1, HCRTR2) genes could modify the occurrence and the clinical features of AD and to examine if these possible variants influence the role of the protein in sleep regulation. METHODS Using a case-control strategy, we genotyped 388 AD patients and 272 controls for 10 SNPs in the HCRT, HCRTR1 and HCRTR2 genes. In order to evaluate which residues belong to the HCRTR2 binding site, we built a molecular model. RESULTS The genotypic and allelic frequencies of the rs2653349 polymorphism were different (χ(2) = 5.77, p = 0.016; χ(2) = 6.728, p = 0.035) between AD patients and controls. The carriage of the G allele was associated with an increased AD risk (OR 2.53; 95% CI 1.10-5.80). No significant differences were found in the distribution of either genotypic or allelic frequencies between cases and controls in the HCRTR1 polymorphisms rs2271933, rs10914456 and rs4949449 and in the HCRTR2 polymorphism rs3122156. CONCLUSION Our data support the hypothesis that the HCRTR2 gene is likely to be a risk factor for AD. The increased risk inferred is quite small, but in the context of a multi-factorial disease, the presence of this polymorphism may significantly contribute to influencing the susceptibility for AD by interacting with other unknown genetic or environmental factors in sleep regulation.
Collapse
Affiliation(s)
- Salvatore Gallone
- Neurology II, Department of Neuroscience, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nixon JP, Mavanji V, Butterick TA, Billington CJ, Kotz CM, Teske JA. Sleep disorders, obesity, and aging: the role of orexin. Ageing Res Rev 2015; 20:63-73. [PMID: 25462194 DOI: 10.1016/j.arr.2014.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/19/2014] [Accepted: 11/14/2014] [Indexed: 02/03/2023]
Abstract
The hypothalamic neuropeptides orexin A and B (hypocretin 1 and 2) are important homeostatic mediators of central control of energy metabolism and maintenance of sleep/wake states. Dysregulation or loss of orexin signaling has been linked to narcolepsy, obesity, and age-related disorders. In this review, we present an overview of our current understanding of orexin function, focusing on sleep disorders, energy balance, and aging, in both rodents and humans. We first discuss animal models used in studies of obesity and sleep, including loss of function using transgenic or viral-mediated approaches, gain of function models using exogenous delivery of orexin receptor agonist, and naturally-occurring models in which orexin responsiveness varies by individual. We next explore rodent models of orexin in aging, presenting evidence that orexin loss contributes to age-related changes in sleep and energy balance. In the next section, we focus on clinical importance of orexin in human obesity, sleep, and aging. We include discussion of orexin loss in narcolepsy and potential importance of orexin in insomnia, correlations between animal and human studies of age-related decline, and evidence for orexin involvement in age-related changes in cognitive performance. Finally, we present a summary of recent studies of orexin in neurodegenerative disease. We conclude that orexin acts as an integrative homeostatic signal influencing numerous brain regions, and that this pivotal role results in potential dysregulation of multiple physiological processes when orexin signaling is disrupted or lost.
Collapse
|
47
|
Palomba M, Seke-Etet PF, Laperchia C, Tiberio L, Xu YZ, Colavito V, Grassi-Zucconi G, Bentivoglio M. Alterations of orexinergic and melanin-concentrating hormone neurons in experimental sleeping sickness. Neuroscience 2015; 290:185-95. [PMID: 25595977 DOI: 10.1016/j.neuroscience.2014.12.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/12/2014] [Accepted: 12/23/2014] [Indexed: 01/24/2023]
Abstract
Human African trypanosomiasis or sleeping sickness is a severe, neglected tropical disease caused by the extracellular parasite Trypanosoma brucei. The disease, which leads to chronic neuroinflammation, is characterized by sleep and wake disturbances, documented also in rodent models. In rats and mice infected with Trypanosoma brucei brucei, we here tested the hypothesis that the disease could target neurons of the lateral hypothalamus (LH) containing orexin (OX)-A or melanin-concentrating hormone (MCH), implicated in sleep/wake regulation. In the cerebrospinal fluid of infected rats, the OX-A level was significantly decreased early after parasite neuroinvasion, and returned to the control level at an advanced disease stage. The number of immunohistochemically characterized OX-A and MCH neurons decreased significantly in infected rats during disease progression and in infected mice at an advanced disease stage. A marked reduction of the complexity of dendritic arborizations of OX-A neurons was documented in infected mice. The evaluation of NeuN-immunoreactive neurons did not reveal significant neuronal loss in the LH of infected mice, thus suggesting a potential selective vulnerability of OX-A and MCH neurons. Immunophenotyping and quantitative analysis showed in infected mice marked activation of microglial cells surrounding OX-A neurons. Day/night oscillation of c-Fos baseline expression was used as marker of OX-A neuron activity in mice. In control animals Fos was expressed in a higher proportion of OX-A neurons in the night (activity) phase than in the day (rest) phase. Interestingly, in infected mice the diurnal spontaneous Fos oscillation was reversed, with a proportion of OX-A/Fos neurons significantly higher at daytime than at nighttime. Altogether the findings reveal a progressive decrease of OX-A and MCH neurons and dysregulation of OX-A neuron diurnal activity in rodent models of sleeping sickness. The data point to the involvement of these peptidergic neurons in the pathogenesis of sleep/wake alterations in the disease and to their vulnerability to inflammatory signaling.
Collapse
Affiliation(s)
- M Palomba
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - P F Seke-Etet
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - C Laperchia
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - L Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - Y-Z Xu
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - V Colavito
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - G Grassi-Zucconi
- Department of Neurological and Movement Sciences, University of Verona, Italy
| | - M Bentivoglio
- Department of Neurological and Movement Sciences, University of Verona, Italy.
| |
Collapse
|
48
|
Wu H, Zhuang J, Stone WS, Zhang L, Zhao Z, Wang Z, Yang Y, Li X, Zhao X, Zhao Z. Symptoms and occurrences of narcolepsy: a retrospective study of 162 patients during a 10-year period in Eastern China. Sleep Med 2014; 15:607-13. [PMID: 24767723 DOI: 10.1016/j.sleep.2013.12.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 12/13/2022]
|
49
|
Arias-Carrión O, Murillo-Rodríguez E. Effects of hypocretin/orexin cell transplantation on narcoleptic-like sleep behavior in rats. PLoS One 2014; 9:e95342. [PMID: 24736646 PMCID: PMC3988205 DOI: 10.1371/journal.pone.0095342] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/25/2014] [Indexed: 11/22/2022] Open
Abstract
The sleep disorder narcolepsy is now considered a neurodegenerative disease because there is a massive loss of neurons containing the neuropeptide hypocretin/orexin (HCRT). In consequence, narcoleptic patients have very low cerebrospinal fluid (CSF) levels of HCRT. Studies in animal models of narcolepsy have shown the neurophysiological role of the HCRT system in the development of this disease. For example, the injection of the neurotoxin named hypocretin-2-saporin (HCRT2/SAP) into the lateral hypothalamus (LH) destroys the HCRT neurons, therefore diminishes the contents of HCRT in the CSF and induces narcoleptic-like behavior in rats. Transplants of various cell types have been used to induce recovery in a variety of neurodegenerative animal models. In models such as Parkinson's disease, cell survival has been shown to be small but satisfactory. Similarly, cell transplantation could be employed to implant grafts of HCRT cells into the LH or even other brain regions to treat narcolepsy. Here, we report for the first time that transplantation of HCRT neurons into the LH of HCRT2/SAP-lesioned rats diminishes narcoleptic-like sleep behavior. Therefore, cell transplantation may provide an effective method to treat narcolepsy.
Collapse
Affiliation(s)
- Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González, Mexico City, Mexico
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Ajusco Medio, Mexico City, Mexico
- * E-mail: (OAC); (EMR)
| | - Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, Mexico
- * E-mail: (OAC); (EMR)
| |
Collapse
|
50
|
Heier MS, Skinningsrud A, Paus E, Gautvik KM. Increased cerebrospinal fluid levels of nerve cell biomarkers in narcolepsy with cataplexy. Sleep Med 2014; 15:614-8. [PMID: 24784789 DOI: 10.1016/j.sleep.2014.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/22/2014] [Accepted: 02/05/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND The association between narcolepsy with cataplexy and the hypocretinergic system in the central nervous system is strong since up to 75-90% of all patients have cerebrospinal fluid (CSF) hypocretin-1 deficiency. The predominant occurrence of HLADQB1*0602 tissue type in narcolepsy patients and recent results from genome-wide association studies suggest an underlying immunological mechanism. The present study was initiated to clarify whether measurement of nerve cell biomarkers in CSF could give additional knowledge of the pathophysiological mechanisms causing narcolepsy with cataplexy. METHODS Two patient groups with narcolepsy, comprising 18 patients with low CSF hypocretin-1 concentrations and typical cataplexy, and 18 patients with normal CSF hypocretin-1 levels and mild cataplexy-like symptoms, were compared to 17 controls. We measured the nerve cell biomarkers beta-amyloid (Aβ42), total tau protein (T-tau), phosphorylated tau (P-tau) and neuron-specific enolase (NSE) in CSF. RESULTS The concentrations of all biomarkers were significantly elevated in both patient groups compared to the controls. The concentration of beta-amyloid was significantly higher in the patient group with normal CSF hypocretin-1 concentration than in those with low concentrations, whereas the other biomarkers showed no difference between the patient groups. CONCLUSION The findings of elevated levels of CSF biomarkers independent of CSF hypocretin-1 reduction may reflect alterations in cell metabolism. The results suggest a more extensive affection of the sleep regulating cellular network, affecting other neuronal sites important in the regulation of sleep, in addition to the hypocretin-producing neurons.
Collapse
Affiliation(s)
- M S Heier
- Norwegian Resource Center for AD/HD, Tourette's Syndrome and Narcolepsy, Oslo University Hospital, Oslo, Norway.
| | - A Skinningsrud
- Department of Multidisciplinary Laboratory Medicine and Medical Biochemistry, Akershus University Hospital, Lørenskog, Norway
| | - E Paus
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - K M Gautvik
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|