1
|
Hu Y, Li M, Liu Z, Song X, Qu Y, Qin Y. Carbon catabolite repression involves physical interaction of the transcription factor CRE1/CreA and the Tup1-Cyc8 complex in Penicillium oxalicum and Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:244. [PMID: 34952627 PMCID: PMC8710005 DOI: 10.1186/s13068-021-02092-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/04/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Cellulolytic enzyme production in filamentous fungi requires a release from carbon catabolite repression (CCR). The protein CRE1/CreA (CRE = catabolite responsive element) is a key transcription factor (TF) that is involved in CCR and represses cellulolytic gene expression. CRE1/CreA represents the functional equivalent of Mig1p, an important Saccharomyces cerevisiae TF in CCR that exerts its repressive effect by recruiting a corepressor complex Tup1p-Cyc8p. Although it is known from S. cerevisiae that CRE1/CreA might repress gene expression via interacting with the corepressor complex Tup1-Cyc8, this mechanism is unconfirmed in other filamentous fungi, since the physical interaction has not yet been verified in these organisms. The precise mechanism on how CRE1/CreA achieves transcriptional repression after DNA binding remains unknown. RESULTS The results from tandem affinity purification and bimolecular fluorescence complementation revealed a direct physical interaction between the TF CRE1/CreA and the complex Tup1-Cyc8 in the nucleus of cellulolytic fungus Trichoderma reesei and Penicillium oxalicum. Both fungi have the ability to secrete a complex arsenal of enzymes to synergistically degrade lignocellulosic materials. In P. oxalicum, the protein PoCyc8, a subunit of complex Tup1-Cyc8, interacts directly with TF PoCreA and histone H3 lysine 36 (H3K36) methyltransferase PoSet2 in the nucleus. The di-methylation level of H3K36 in the promoter of prominent cellulolytic genes (cellobiohydrolase-encoding gene Pocbh1/cel7A and endoglucanase-encoding gene Poegl1/cel7B) is positively correlated with the expression levels of TF PoCreA. Since the methylation of H3K36 was also demonstrated to be a repression marker of cellulolytic gene expression, it appears feasible that the cellulolytic genes are repressed via PoCreA-Tup1-Cyc8-Set2-mediated transcriptional repression. CONCLUSION This study verifies the long-standing conjecture that the TF CRE1/CreA represses gene expression by interacting with the corepressor complex Tup1-Cyc8 in filamentous fungi. A reasonable explanation is proposed that PoCreA represses gene expression by recruiting complex PoTup1-Cyc8. Histone methyltransferase Set2, which methylates H3K36, is also involved in the regulatory network by interacting with PoCyc8. The findings contribute to the understanding of CCR mechanism in filamentous fungi and could aid in biotechnologically relevant enzyme production.
Collapse
Affiliation(s)
- Yueyan Hu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237 China
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, No. 72 Binhai Road, Qingdao, 266237 China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, No. 72 Binhai Road, Qingdao, 266237 China
| | - Mengxue Li
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237 China
| | - Zhongjiao Liu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237 China
| | - Xin Song
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237 China
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, No. 72 Binhai Road, Qingdao, 266237 China
| | - Yinbo Qu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237 China
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, No. 72 Binhai Road, Qingdao, 266237 China
| | - Yuqi Qin
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, 266237 China
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, No. 72 Binhai Road, Qingdao, 266237 China
- NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Shandong University, No. 72 Binhai Road, Qingdao, 266237 China
| |
Collapse
|
2
|
Parnell EJ, Parnell TJ, Stillman DJ. Genetic analysis argues for a coactivator function for the Saccharomyces cerevisiae Tup1 corepressor. Genetics 2021; 219:6329640. [PMID: 34849878 DOI: 10.1093/genetics/iyab120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/20/2021] [Indexed: 11/14/2022] Open
Abstract
The Tup1-Cyc8 corepressor complex of Saccharomyces cerevisiae is recruited to promoters by DNA-binding proteins to repress transcription of genes, including the a-specific mating-type genes. We report here a tup1(S649F) mutant that displays mating irregularities and an α-predominant growth defect. RNA-Seq and ChIP-Seq were used to analyze gene expression and Tup1 occupancy changes in mutant vs wild type in both a and α cells. Increased Tup1(S649F) occupancy tended to occur upstream of upregulated genes, whereas locations with decreased occupancy usually did not show changes in gene expression, suggesting this mutant not only loses corepressor function but also behaves as a coactivator. Based upon studies demonstrating a dual role of Tup1 in both repression and activation, we postulate that the coactivator function of Tup1(S649F) results from diminished interaction with repressor proteins, including α2. We also found that large changes in mating-type-specific gene expression between a and α or between mutant and wild type were not easily explained by the range of Tup1 occupancy levels within their promoters, as predicted by the classic model of a-specific gene repression by Tup1. Most surprisingly, we observed Tup1 occupancy upstream of the a-specific gene MFA2 and the α-specific gene MF(ALPHA)1 in cells in which each gene was expressed rather than repressed. These results, combined with the identification of additional mating-related genes upregulated in the tup1(S649F) α strain, illustrate that the role of Tup1 in distinguishing mating types in yeast appears to be both more comprehensive and more nuanced than previously appreciated.
Collapse
Affiliation(s)
- Emily J Parnell
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Timothy J Parnell
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - David J Stillman
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Defenouillère Q, Verraes A, Laussel C, Friedrich A, Schacherer J, Léon S. The induction of HAD-like phosphatases by multiple signaling pathways confers resistance to the metabolic inhibitor 2-deoxyglucose. Sci Signal 2019; 12:12/597/eaaw8000. [PMID: 31481524 DOI: 10.1126/scisignal.aaw8000] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anti-cancer strategies that target the glycolytic metabolism of tumors have been proposed. The glucose analog 2-deoxyglucose (2DG) is imported into cells and, after phosphorylation, becomes 2DG-6-phosphate, a toxic by-product that inhibits glycolysis. Using yeast as a model, we performed an unbiased mass spectrometry-based approach to probe the cellular effects of 2DG on the proteome and study resistance mechanisms to 2DG. We found that two phosphatases that target 2DG-6-phosphate were induced upon exposure to 2DG and participated in 2DG detoxification. Dog1 and Dog2 are HAD (haloacid dehalogenase)-like phosphatases, which are evolutionarily conserved. 2DG induced Dog2 by activating several signaling pathways, such as the stress response pathway mediated by the p38 MAPK ortholog Hog1, the unfolded protein response (UPR) triggered by 2DG-induced ER stress, and the cell wall integrity (CWI) pathway mediated by the MAPK Slt2. Loss of the UPR or CWI pathways led to 2DG hypersensitivity. In contrast, mutants impaired in the glucose-mediated repression of genes were 2DG resistant because glucose availability transcriptionally repressed DOG2 by inhibiting signaling mediated by the AMPK ortholog Snf1. The characterization and genome resequencing of spontaneous 2DG-resistant mutants revealed that DOG2 overexpression was a common strategy underlying 2DG resistance. The human Dog2 homolog HDHD1 displayed phosphatase activity toward 2DG-6-phosphate in vitro and its overexpression conferred 2DG resistance in HeLa cells, suggesting that this 2DG phosphatase could interfere with 2DG-based chemotherapies. These results show that HAD-like phosphatases are evolutionarily conserved regulators of 2DG resistance.
Collapse
Affiliation(s)
- Quentin Defenouillère
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex 13, France
| | - Agathe Verraes
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex 13, France
| | - Clotilde Laussel
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex 13, France
| | - Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, 67000 Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, 67000 Strasbourg, France
| | - Sébastien Léon
- Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique/Université Paris-Diderot, Sorbonne Paris Cité, 75205, Paris Cedex 13, France.
| |
Collapse
|
4
|
Tartas A, Zarkadas C, Palaiomylitou M, Gounalaki N, Tzamarias D, Vlassi M. Ssn6-Tup1 global transcriptional co-repressor: Role of the N-terminal glutamine-rich region of Ssn6. PLoS One 2017; 12:e0186363. [PMID: 29053708 PMCID: PMC5650148 DOI: 10.1371/journal.pone.0186363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/29/2017] [Indexed: 11/19/2022] Open
Abstract
The Ssn6-Tup1 complex is a general transcriptional co-repressor formed by the interaction of Ssn6, a tetratricopeptide repeat (TPR) protein, with the Tup1 repressor. We have previously shown that the N-terminal domain of Ssn6 comprising TPRs 1 to 3 is necessary and sufficient for this interaction and that TPR1 plays critical role. In a subsequent study, we provided evidence that in the absence of Tup1, TPR1 is susceptible to proteolysis and that conformational change(s) accompany the Ssn6-Tup1 complex formation. In this study, we address the question whether the N-terminal non-TPR, glutamine-rich tail of Ssn6 (NTpolyQ), plays any role in the Ssn6/Tup1 association. Our biochemical and yeast-two-hybrid data show that truncation/deletion of the NTpolyQ domain of Ssn6 results in its self association and prevents Tup1 interaction. These results combined with in silico modeling data imply a major role of the NTpolyQ tail of Ssn6 in regulating its interaction with Tup1.
Collapse
Affiliation(s)
- Athanassios Tartas
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi Attikis, Athens, Greece
| | - Christoforos Zarkadas
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi Attikis, Athens, Greece
| | - Maria Palaiomylitou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi Attikis, Athens, Greece
| | - Niki Gounalaki
- Institute of Molecular Biology & Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - Dimitris Tzamarias
- Biology Department, University of Crete, Heraklion, Crete, Greece
- * E-mail: (MV); (DT)
| | - Metaxia Vlassi
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi Attikis, Athens, Greece
- * E-mail: (MV); (DT)
| |
Collapse
|
5
|
Role for Protein Kinase A in the Neurospora Circadian Clock by Regulating White Collar-Independent frequency Transcription through Phosphorylation of RCM-1. Mol Cell Biol 2015; 35:2088-102. [PMID: 25848091 DOI: 10.1128/mcb.00709-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 03/30/2015] [Indexed: 01/24/2023] Open
Abstract
Rhythmic activation and repression of clock gene expression is essential for the eukaryotic circadian clock functions. In the Neurospora circadian oscillator, the transcription of the frequency (frq) gene is periodically activated by the White Collar (WC) complex and suppressed by the FRQ-FRH complex. We previously showed that there is WC-independent frq transcription and its repression is required for circadian gene expression. How WC-independent frq transcription is regulated is not known. We show here that elevated protein kinase A (PKA) activity results in WC-independent frq transcription and the loss of clock function. We identified RCM-1 as the protein partner of RCO-1 and an essential component of the clock through its role in suppressing WC-independent frq transcription. RCM-1 is a phosphoprotein and is a substrate of PKA in vivo and in vitro. Mutation of the PKA-dependent phosphorylation sites on RCM-1 results in WC-independent transcription of frq and impaired clock function. Furthermore, we showed that RCM-1 is associated with the chromatin at the frq locus, a process that is inhibited by PKA. Together, our results demonstrate that PKA regulates frq transcription by inhibiting RCM-1 activity through RCM-1 phosphorylation.
Collapse
|
6
|
Lakhssassi N, Doblas VG, Rosado A, del Valle AE, Posé D, Jimenez AJ, Castillo AG, Valpuesta V, Borsani O, Botella MA. The Arabidopsis tetratricopeptide thioredoxin-like gene family is required for osmotic stress tolerance and male sporogenesis. PLANT PHYSIOLOGY 2012; 158:1252-66. [PMID: 22232384 PMCID: PMC3291270 DOI: 10.1104/pp.111.188920] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/06/2012] [Indexed: 05/23/2023]
Abstract
TETRATRICOPEPTIDE THIOREDOXIN-LIKE (TTL) proteins are characterized by the presence of six tetratricopeptide repeats in conserved positions and a carboxyl-terminal region known as the thioredoxin-like domain with homology to thioredoxins. In Arabidopsis (Arabidopsis thaliana), the TTL gene family is composed by four members, and the founder member, TTL1, is required for osmotic stress tolerance. Analysis of sequenced genomes indicates that TTL genes are specific to land plants. In this study, we report the expression profiles of Arabidopsis TTL genes using data mining and promoter-reporter β-glucuronidase fusions. Our results show that TTL1, TTL3, and TTL4 display ubiquitous expression in normal growing conditions but differential expression patterns in response to osmotic and NaCl stresses. TTL2 shows a very different expression pattern, being specific to pollen grains. Consistent with the expression data, ttl1, ttl3, and ttl4 mutants show reduced root growth under osmotic stress, and the analysis of double and triple mutants indicates that TTL1, TTL3, and TTL4 have partially overlapping yet specific functions in abiotic stress tolerance while TTL2 is involved in male gametophytic transmission.
Collapse
MESH Headings
- Adaptation, Physiological
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/physiology
- Arabidopsis Proteins/classification
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Computational Biology
- Data Mining
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Multigene Family
- Mutation
- Phylogeny
- Plant Roots/genetics
- Plant Roots/metabolism
- Plant Roots/physiology
- Plants, Genetically Modified/drug effects
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/physiology
- Pollen/genetics
- Pollen/metabolism
- Pollen/physiology
- Promoter Regions, Genetic
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sodium Chloride/pharmacology
- Stress, Physiological
Collapse
|
7
|
Jäschke Y, Schwarz J, Clausnitzer D, Müller C, Schüller HJ. Pleiotropic corepressors Sin3 and Ssn6 interact with repressor Opi1 and negatively regulate transcription of genes required for phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 2010; 285:91-100. [PMID: 21104417 DOI: 10.1007/s00438-010-0589-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/03/2010] [Indexed: 01/19/2023]
Abstract
Repressor protein Opi1 is required to negatively regulate yeast structural genes of phospholipid biosynthesis in the presence of precursor molecules inositol and choline (IC). Opi1 interacts with the paired amphipathic helix 1 (PAH1) of pleiotropic corepressor Sin3, leading to recruitment of histone deacetylases (HDACs). Mutational analysis of the Opi1-Sin3 interaction domain (OSID) revealed that hydrophobic OSID residues L56, V59 and V67 of Opi1 are indispensable for gene repression. Our results also suggested that repression is not executed entirely via Sin3. Indeed, we could show that OSID contacts a second pleiotropic corepressor, Ssn6 (=Cyc8), which together with Tup1 is also able to recruit HDACs. Interestingly, mutations sin3 and ssn6 turned out as synthetically lethal. Our analysis further revealed that OSID not only binds to PAH1 but also interacts with tetratricopeptide repeats (TPR) of Ssn6. This interaction could no longer be observed with Opi1 OSID variants. To trigger gene repression, Opi1 must also interact with activator Ino2, using its activator interaction domain (AID). AID contains a hydrophobic structural motif reminiscent of a leucine zipper. Our mutational analysis of selected positions indeed confirmed that residues L333, L340, V343, V350, L354 and V361 are necessary for repression of Opi1 target genes.
Collapse
Affiliation(s)
- Yvonne Jäschke
- Institut für Genetik und Funktionelle Genomforschung, Jahnstrasse 15a, 17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
8
|
Qiao Y, Lee SI, Piao R, Jiang W, Ham TH, Chin JH, Piao Z, Han L, Kang SY, Koh HJ. Fine mapping and candidate gene analysis of the floury endosperm gene, FLO(a), in rice. Mol Cells 2010; 29:167-74. [PMID: 20016946 DOI: 10.1007/s10059-010-0010-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/19/2009] [Accepted: 10/28/2009] [Indexed: 10/20/2022] Open
Abstract
In addition to its role as an energy source for plants, animals and humans, starch is also an environmentally friendly alternative to fossil fuels. In rice, the eating and cooking quality of the grain is determined by its starch properties. The floury endosperm of rice has been explored as an agronomical trait in breeding and genetics studies. In the present study, we characterized a floury endosperm mutant, flo(a), derived from treatment of Oryza sativa ssp. japonica cultivar Hwacheong with MNU. The innermost endosperm of the flo(a) mutant exhibited floury characteristics while the outer layer of the endosperm appeared normal. Starch granules in the flo(a) mutant formed a loosely-packed crystalline structure and X-ray diffraction revealed that the overall crystallinity of the starch was decreased compared to wild-type. The FLO(a) gene was isolated via a map-based cloning approach and predicted to encode the tetratricopeptide repeat domain-containing protein, OsTPR. Three mutant alleles contain a nucleotide substitution that generated one stop codon or one splice site, respectively, which presumably disrupts the interaction of the functionally conserved TPR motifs. Taken together, our map-based cloning approach pinpointed an OsTPR as a strong candidate of FLO(a), and the proteins that contain TPR motifs might play a significant role in rice starch biosynthetic pathways.
Collapse
Affiliation(s)
- Yongli Qiao
- Department of Plant Science, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Filardo F, Robertson M, Singh DP, Parish RW, Swain SM. Functional analysis of HvSPY, a negative regulator of GA response, in barley aleurone cells and Arabidopsis. PLANTA 2009; 229:523-537. [PMID: 19011896 DOI: 10.1007/s00425-008-0843-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Accepted: 10/10/2008] [Indexed: 05/27/2023]
Abstract
SPINDLY (SPY) is an important regulator of plant development, and consists of an N-half tetratricopeptide repeat (TPR) domain containing 10 TPR motifs and a C-half catalytic domain, similar to O-GlcNAc transferase (OGT) of animals. The best characterised role of SPY is a negative regulator of GA signalling, and all known spy alleles have been isolated based on increased GA response. Of the eight alleles that directly affect the TPR domain, all alter TPRs 6, 8 and/or 9. To test the hypothesis that a subset of TPRs, including 6, 8 and 9, are both essential and sufficient for the regulation of GA response, we overexpressed the full-length barley (Hordeum vulgare L.) SPY protein (HvSPY) and several deletion mutants in barley aleurone cells and in Arabidopsis wild type (WT) and spy-4 plants. Transient assays in barley aleurone cells, that also express endogenous HvSPY, demonstrated that introduced HvSPY and HvTPR inhibited GA(3)-induced alpha-amylase expression. With the exception of HvSPYDelta1-5, the other deletion proteins were partially active in the barley assay, including HvSPYDelta6-9 which lacks TPRs 6, 8 and 9. In Arabidopsis, analysis of seed germination under a range of conditions revealed that 35S:HvSPY increased seed dormancy. Hvspy-2, which lacks parts of the eighth and ninth TPRs, was able to partially complement all aspects of the spy-4 phenotype. In the presence of AtSPY, 35S:HvTPR caused some phenotypes consistent with a decrease in GA signalling, including increased seed sensitivity to paclobutrazol and delayed flowering. These plants also possessed distorted leaf morphology and altered epidermal cell shape. Thus, despite genetic analysis demonstrating that TPRs 6, 8 and 9 are required for regulation of GA signalling, our results suggest that these TPRs are neither absolutely essential nor sufficient for SPY activity.
Collapse
|
10
|
Palaiomylitou M, Tartas A, Vlachakis D, Tzamarias D, Vlassi M. Investigating the structural stability of the Tup1-interaction domain of Ssn6: evidence for a conformational change on the complex. Proteins 2008; 70:72-82. [PMID: 17634984 DOI: 10.1002/prot.21489] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ssn6, a tetratricopeptide repeat (TPR) containing protein, associates with the Tup1 repressor to form a global transcriptional co-repressor complex, which is conserved across species. The three N-terminal TPR repeats of Ssn6, out of a total of 10, are involved in this particular interaction. Our previously reported 3D-modeling and mutagenesis data suggested that the structural integrity of TPR1 and its correct positioning relatively to TPR2 are crucial for Tup1 binding. In this study, we first investigate the structural stability of the Tup1 binding domain of Ssn6, in pure form, through a combination of CD spectroscopy and limited proteolysis mapping. The obtained data were next combined with molecular dynamics simulations and disorder/order predictions. This combined study revealed that, although competent to fold, in the absence of Tup1, TPR1 is partially unfolded with its helix B being highly dynamic exposing an apolar surface to the solvent. Subsequent CD spectroscopy on this domain complexed with a Tup1 fragment comprising its Ssn6 binding region provided strong evidence for a conformational change consisting of acquisition of alpha-helical structure with simultaneous stabilization of a coiled-coil configuration upon complex formation. We propose that this conformational change occurs largely in the TPR1 of Ssn6 and is in accord with the concept of folding coupled to binding, proposed for other TPR domains. A possible implication of the structural flexibility of Ssn6 TPR1 in Tup1 recognition is discussed and a novel mode of interaction is proposed for this particular TPR-mediated complex.
Collapse
Affiliation(s)
- Maria Palaiomylitou
- Institute of Biology, National Centre for Scientific Research Demokritos, 15310 Ag. Paraskevi Attikis, Greece
| | | | | | | | | |
Collapse
|
11
|
Silverstone AL, Tseng TS, Swain SM, Dill A, Jeong SY, Olszewski NE, Sun TP. Functional analysis of SPINDLY in gibberellin signaling in Arabidopsis. PLANT PHYSIOLOGY 2007; 143:987-1000. [PMID: 17142481 PMCID: PMC1803720 DOI: 10.1104/pp.106.091025] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) SPINDLY (SPY) protein negatively regulates the gibberellin (GA) signaling pathway. SPY is an O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) with a protein-protein interaction domain consisting of 10 tetratricopeptide repeats (TPR). OGTs add a GlcNAc monosaccharide to serine/threonine residues of nuclear and cytosolic proteins. Determination of the molecular defects in 14 new spy alleles reveals that these mutations cluster in three TPRs and the C-terminal catalytic region. Phenotypic characterization of 12 spy alleles indicates that TPRs 6, 8, and 9 and the catalytic domain are crucial for GA-regulated stem elongation, floral induction, and fertility. TPRs 8 and 9 and the catalytic region are also important for modulating trichome morphology and inflorescence phyllotaxy. Consistent with a role for SPY in embryo development, several alleles affect seedling cotyledon number. These results suggest that three of the TPRs and the OGT activity in SPY are required for its function in GA signal transduction. We also examined the effect of spy mutations on another negative regulator of GA signaling, REPRESSOR OF ga1-3 (RGA). The DELLA motif in RGA is essential for GA-induced proteolysis of RGA, and deletion of this motif (as in rga-delta17) causes a GA-insensitive dwarf phenotype. Here, we demonstrate that spy partially suppresses the rga-delta17 phenotype but does not reduce rga-delta17 or RGA protein levels or alter RGA nuclear localization. We propose that SPY may function as a negative regulator of GA response by increasing the activity of RGA, and presumably other DELLA proteins, by GlcNAc modification.
Collapse
Affiliation(s)
- Aron L Silverstone
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Rosado A, Schapire AL, Bressan RA, Harfouche AL, Hasegawa PM, Valpuesta V, Botella MA. The Arabidopsis tetratricopeptide repeat-containing protein TTL1 is required for osmotic stress responses and abscisic acid sensitivity. PLANT PHYSIOLOGY 2006; 142:1113-26. [PMID: 16998088 PMCID: PMC1630727 DOI: 10.1104/pp.106.085191] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Mutations in the Arabidopsis (Arabidopsis thaliana) TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE 1 (TTL1) cause reduced tolerance to NaCl and osmotic stress that is characterized by reduced root elongation, disorganization of the root meristem, and impaired osmotic responses during germination and seedling development. Expression analyses of genes involved in abscisic acid (ABA) biosynthesis and catabolism suggest that TTL1 is not involved in the regulation of ABA levels but is required for ABA-regulated responses. TTL1 regulates the transcript levels of several dehydration-responsive genes, such as the transcription factor DREB2A, and genes encoding dehydration response proteins, such as ERD1 (early response to dehydration 1), ERD3, and COR15a. The TTL1 gene encodes a novel plant protein with tetratricopeptide repeats and a region with homology to thioredoxin proteins. Based on homology searches, there are four TTL members in the Arabidopsis genome with similar intron-exon structure and conserved amino acid domains. Proteins containing tetratricopeptide repeat motifs act as scaffold-forming multiprotein complexes and are emerging as essential elements for plant hormonal responses (such as gibberellin responses and ethylene biosynthesis). In this report, we identify TTL1 as a positive regulator of ABA signaling during germination and seedling development under stress.
Collapse
Affiliation(s)
- Abel Rosado
- Departamento de Biología Molecular y Bioquímica Universidad de Málaga, 29010 Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
García-Sánchez S, Mavor AL, Russell CL, Argimon S, Dennison P, Enjalbert B, Brown AJP. Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Mol Biol Cell 2005; 16:2913-25. [PMID: 15814841 PMCID: PMC1142435 DOI: 10.1091/mbc.e05-01-0071] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In budding yeast, Tup1 and Ssn6/Cyc8 form a corepressor that regulates a large number of genes. This Tup1-Ssn6 corepressor appears to be conserved from yeast to man. In the pathogenic fungus Candida albicans, Tup1 regulates cellular morphogenesis, phenotypic switching, and metabolism, but the role of Ssn6 remains unclear. We show that there are clear differences in the morphological and invasive phenotypes of C. albicans ssn6 and tup1 mutants. Unlike Tup1, Ssn6 depletion promoted morphological events reminiscent of phenotypic switching rather than filamentous growth. Transcript profiling revealed minimal overlap between the Ssn6 and Tup1 regulons. Hypha-specific genes, which are repressed by Tup1 and Nrg1, were not derepressed in ssn6 cells under the conditions studied. In contrast, the phase specific gene WH11 was derepressed in ssn6 cells, but not in tup1 or nrg1 cells. Hence Ssn6 and Tup1 play distinct roles in C. albicans. Nevertheless, both Ssn6 and Tup1 were required for the Nrg1-mediated repression of an artificial NRE promoter, and lexA-Nrg1 mediated repression in the C. albicans one-hybrid system. These observations are explained in models that are generally consistent with the Tup1-Ssn6 paradigm in budding yeast.
Collapse
Affiliation(s)
- Susana García-Sánchez
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
14
|
Sohn KC, Lee KY, Park JE, Do SI. OGT functions as a catalytic chaperone under heat stress response: a unique defense role of OGT in hyperthermia. Biochem Biophys Res Commun 2004; 322:1045-51. [PMID: 15336570 DOI: 10.1016/j.bbrc.2004.08.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Indexed: 11/24/2022]
Abstract
Protein O-GlcNAcylation is proceeded by O-linked GlcNAc transferase (OGT) in nucleocytoplasm and is involved in many biological processes although its physiological role is not clearly defined. To identify the functional significance of O-GlcNAcylation, we investigated heat stress effects on protein O-GlcNAcylation. Here, we found that protein O-GlcNAcylation was significantly increased in vivo during acute heat stress in mammalian cells and simultaneously, the enhanced protein O-GlcNAcylation was closely associated with cell survival in hyperthermia. Our results demonstrate that hyperthermal cytotoxicity may considerably be facilitated under the condition of insufficient level of protein O-GlcNAcylation inside cells. Furthermore, OGT reaction might be crucial for triggering thermotolerance to recover hyperthermal sensitivity without particular induction of heat shock proteins (hsps). Thus, we propose that OGT can respond rapidly to heat stress through the enhancement of nucleocytoplasmic protein O-GlcNAcylation for a rescue from the early phase of hyperthermal cytotoxicity.
Collapse
Affiliation(s)
- Kyung-Cheol Sohn
- Chungnam National University, School of Bioscience and Biotechnology, Taejon 305-764, Republic of Korea
| | | | | | | |
Collapse
|
15
|
Blom E, van de Vrugt HJ, de Vries Y, de Winter JP, Arwert F, Joenje H. Multiple TPR motifs characterize the Fanconi anemia FANCG protein. DNA Repair (Amst) 2004; 3:77-84. [PMID: 14697762 DOI: 10.1016/j.dnarep.2003.09.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The genome protection pathway that is defective in patients with Fanconi anemia (FA) is controlled by at least eight genes, including BRCA2. A key step in the pathway involves the monoubiquitylation of FANCD2, which critically depends on a multi-subunit nuclear 'core complex' of at least six FANC proteins (FANCA, -C, -E, -F, -G, and -L). Except for FANCL, which has WD40 repeats and a RING finger domain, no significant domain structure has so far been recognized in any of the core complex proteins. By using a homology search strategy comparing the human FANCG protein sequence with its ortholog sequences in Oryzias latipes (Japanese rice fish) and Danio rerio (zebrafish) we identified at least seven tetratricopeptide repeat motifs (TPRs) covering a major part of this protein. TPRs are degenerate 34-amino acid repeat motifs which function as scaffolds mediating protein-protein interactions, often found in multiprotein complexes. In four out of five TPR motifs tested (TPR1, -2, -5, and -6), targeted missense mutagenesis disrupting the motifs at the critical position 8 of each TPR caused complete or partial loss of FANCG function. Loss of function was evident from failure of the mutant proteins to complement the cellular FA phenotype in FA-G lymphoblasts, which was correlated with loss of binding to FANCA. Although the TPR4 mutant fully complemented the cells, it showed a reduced interaction with FANCA, suggesting that this TPR may also be of functional importance. The recognition of FANCG as a typical TPR protein predicts this protein to play a key role in the assembly and/or stabilization of the nuclear FA protein core complex.
Collapse
Affiliation(s)
- Eric Blom
- Department of Clinical Genetics and Human Genetics, VU University Medical Center, Van der Boechorststraat 7, NL-1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Molecular chaperones facilitate the correct folding of other proteins under physiological and stress conditions. Recently it has become evident that various co-chaperone proteins regulate the cellular functions of these chaperones, particularly Hsp70 and Hsp90. Hop is one of the most extensively studied co-chaperones that is able to directly associate with both Hsp70 and Hsp90. The current dogma proposes that Hop functions primarily as an adaptor that directs Hsp90 to Hsp70-client protein complexes in the cytoplasm. However, recent evidence suggests that Hop can also modulate the chaperone activities of these Hsps, and that it is not dedicated to Hsp70 and Hsp90. While the co-chaperone function of Hop within the cytoplasm has been extensively studied, its association with nuclear complexes and prion proteins remains to be elucidated. This article will review the structural features of Hop, and the evidence that its biological function is considerably broader than previously envisaged.
Collapse
Affiliation(s)
- O O Odunuga
- Division of Medical Virology, Faculty of Health Sciences, University of Cape Town, South Africa
| | | | | |
Collapse
|
17
|
Pallen MJ, Francis MS, Fütterer K. Tetratricopeptide-like repeats in type-III-secretion chaperones and regulators. FEMS Microbiol Lett 2003; 223:53-60. [PMID: 12799000 DOI: 10.1016/s0378-1097(03)00344-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Efficient type-III secretion depends on cytosolic molecular chaperones, which bind specifically to the translocators and effectors. In the past there has been a tendency to shoe-horn all type-III-secretion chaperones into a single structural and functional class. However, we have shown that the LcrH/SycD-like chaperones consist of three central tetratricopeptide-like repeats that are predicted to fold into an all-alpha-helical array that is quite distinct from the known structure of the SycE class of chaperones. Furthermore, we predict that this array creates a peptide-binding groove that is utterly different from the helix-binding groove in SycE. We present a homology model of LcrH/SycD that is consistent with existing mutagenesis data. We also report the existence of tetratricopeptide-like repeats in regulators of type-III secretion, such as HilA from Salmonella enterica and HrpB from Ralstonia solanacearum. The discovery of tetratricopeptide-like repeats in type-III-secretion regulators and chaperones provides a new conceptual framework for structural and mutagenesis studies and signals a potential unification of prokaryotic and eukaryotic chaperone biology.
Collapse
Affiliation(s)
- Mark J Pallen
- Division of Immunity and Infection, Medical School, University of Birmingham, Birmingham, B15 2TT, UK.
| | | | | |
Collapse
|
18
|
Fluge Ø, Bruland O, Akslen LA, Varhaug JE, Lillehaug JR. NATH, a novel gene overexpressed in papillary thyroid carcinomas. Oncogene 2002; 21:5056-68. [PMID: 12140756 DOI: 10.1038/sj.onc.1205687] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2001] [Revised: 05/15/2002] [Accepted: 05/20/2002] [Indexed: 11/08/2022]
Abstract
In this study a replica cDNA screening (RCS) approach to identify genes differentially expressed in papillary thyroid carcinomas (PTC) was used, as compared to non-neoplastic thyroid tissues. RCS is based on hybridization of radioactively labeled cDNA probes made from the biopsies to replica membranes with 15 000 clones from a PTC cDNA library. Among the genes overexpressed in PTC, and especially in clinically aggressive tumors with histologic evidence of poorly differentiated or undifferentiated areas, a novel gene named NATH was found. NATH has two mRNA species, 4.6 and 5.8 kb, both harboring the same open reading frame encoding a putative protein of 866 amino acids. The NATH protein is homologous to yeast N-acetyltransferase (NAT)1 and to mouse NARG1 (mNAT1) and contains four tetratricopeptide repeat (TPR) domains, suggesting that NATH may be part of a multiprotein complex. Overlapping RT-PCR fragments from several PTC biopsies confirmed the NATH mRNA sequence. Northern blots, semiquantitative RT-PCR experiments, TaqMan real-time RT-PCR experiments, and in situ hybridization verified the overexpression of NATH mRNA localized to tumor cells in PTC biopsies. NATH was expressed at a low level in most human adult tissues, including the normal thyroid gland. Increased NATH expression was seen especially in a Burkitt lymphoma cell line and in adult human testis. Recombinant in vitro expression showed that NATH protein was located mainly in the cytoplasm, and was present as a single protein band of the expected 105 kDa molecular weight. Heterologous expression of NATH in the papillary carcinoma cell line (NPA) and 293 cells did not alter the cellular proliferation rate. The biological function of NATH remains to be elucidated, but the overexpression in classic PTC and especially in poorly differentiated or undifferentiated components may indicate a function in the progression of papillary thyroid carcinomas.
Collapse
Affiliation(s)
- Øystein Fluge
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway.
| | | | | | | | | |
Collapse
|
19
|
Kang H, Sayner SL, Gross KL, Russell LC, Chinkers M. Identification of amino acids in the tetratricopeptide repeat and C-terminal domains of protein phosphatase 5 involved in autoinhibition and lipid activation. Biochemistry 2001; 40:10485-90. [PMID: 11523989 DOI: 10.1021/bi010999i] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein phosphatase 5 (PP5) exhibits low basal activity due to the autoinhibitory properties of its N-terminal and C-terminal domains but can be activated approximately 40-fold in vitro by polyunsaturated fatty acids. To identify residues involved in regulating PP5 activity, we performed scanning mutagenesis of its N-terminal tetratricopeptide repeat (TPR) domain and deletion mutagenesis of its C-terminal domain. Mutating residues in a groove of the TPR domain that binds to heat shock protein 90 had no effect on basal phosphatase activity. Mutation of Glu-76, however, whose side chain projects away from this groove, resulted in a 10-fold elevation of basal activity without affecting arachidonic acid-stimulated activity. Thus, the interface of the TPR domain involved in PP5 autoinhibition appears to be different from that involved in heat shock protein 90 binding. We also observed a 10-fold elevation of basal phosphatase activity upon removing the C-terminal 13 amino acids of PP5, with a concomitant 50% decrease in arachidonic acid-stimulated activity. These two effects were accounted for by two distinct amino acid deletions: deleting the four C-terminal residues (496-499) of PP5 had no effect on its activity, but removing Gln-495 elevated basal activity 10-fold. Removal of a further three amino acids had no additional effect, but deleting Asn-491 resulted in a 50% reduction in arachidonic acid-stimulated activity. Thus, Glu-76 in the TPR domain and Gln-495 at the C-terminus were implicated in maintaining the low basal activity of PP5. While the TPR domain alone has been thought to mediate fatty acid activation of PP5, our data suggest that Asn-491, near its C-terminus, may also be involved in this process.
Collapse
Affiliation(s)
- H Kang
- Department of Pharmacology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | | | |
Collapse
|
20
|
Tseng TS, Swain SM, Olszewski NE. Ectopic expression of the tetratricopeptide repeat domain of SPINDLY causes defects in gibberellin response. PLANT PHYSIOLOGY 2001; 126:1250-1258. [PMID: 11457975 PMCID: PMC116481 DOI: 10.1104/pp.126.3.1250] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2000] [Revised: 02/26/2001] [Accepted: 04/10/2001] [Indexed: 05/23/2023]
Abstract
The SPINDLY (SPY) protein of Arabidopsis is a negative regulator of gibberellin (GA) response. The SPY protein has 10 copies of the tetratricopeptide repeat (TPR) at the N terminus. TPR motifs function as protein-protein interaction domains. Several spy alleles are affected only in the TPR region suggesting that protein-protein interactions mediated by this domain are important for proper GA signaling. We have used a reverse genetics approach to further investigate the role of the TPR domain. The TPR domain of SPY was overexpressed in wild-type, gai, and spy plants. Expression of the TPR domain alone is not sufficient to rescue spy mutants. Expression of the TPR domain in a wild-type background produces phenotypes similar to those caused by loss-of-function spy mutants including resistance to GA biosynthesis inhibitors, short hypocotyl length, and early flowering. The dwarfing of the floral shoot internodes caused by the gai mutation was suppressed by expression of the TRP domain. Expression of the TPR domain had no effect on the abundance of endogenous SPY mRNA. The TPR domain was found to interact with SPY both in vitro and in yeast two-hybrid assays. These data indicate that the TPR domain of SPY can participate in protein-protein interactions and that these interactions are important for the proper functioning of SPY.
Collapse
Affiliation(s)
- T S Tseng
- Department of Plant Biology and Plant Molecular Genetics Institute, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|