1
|
Chen Y, Li H, Wang J, Yang S, Su Z, Wang W, Rao C, Hou L. The Ednrb-Aim2-AKT axis regulates neural crest-derived melanoblast proliferation during early development. Development 2024; 151:dev202444. [PMID: 39555938 DOI: 10.1242/dev.202444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 10/17/2024] [Indexed: 11/19/2024]
Abstract
Ednrb is specifically required to develop neural crest (NC) stem cell-derived lineages. However, it is still unknown why Ednrb signaling is only needed for the early development of melanoblasts in the skin and eye. We show that Ednrb is required for the proliferation of melanoblasts during early mouse development. To understand the mechanism of melanoblast proliferation, we found that the gene absent in melanoma 2 (Aim2) is upregulated in Ednrb-deficient NC cells by RNA-sequencing analysis. Consequently, the knockdown or knockout of Aim2 partially rescued the proliferation of Ednrb-deficient melanoblasts. Conversely, the overexpression of Aim2 in melanoblasts suppressed their proliferation. We further show that Ednrb signaling could act through the microRNA miR-196b to block the suppression of melanoblast proliferation by Aim2 in primary NC cell cultures. These results reveal the Ednrb-Aim2-AKT axis in regulating melanocyte development and suggest that Ednrb signaling functions as a negative regulator of Aim2, which inhibits the proliferation of melanoblasts in early development. These findings uncover a previously unreported role for Aim2 outside the inflammasome, showing that it is a significant regulator controlling NC stem cell-derived lineage development.
Collapse
Affiliation(s)
- Yu Chen
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huirong Li
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jing Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shanshan Yang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhongyuan Su
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wanxiao Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chunbao Rao
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
2
|
Leite JA, Menezes L, Martins E, Rodrigues TS, Tavares L, Ebering A, Schelmbauer C, Martelossi Cebinelli GC, Zinina V, Golden A, Soshnikova N, Zamboni DS, Cunha FQ, Huber M, Silva JS, Waisman A, Carlos D, Saraiva Câmara NO. AIM2 promotes T H17 cells differentiation by regulating RORγt transcription activity. iScience 2023; 26:108134. [PMID: 37867943 PMCID: PMC10585393 DOI: 10.1016/j.isci.2023.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
AIM2 is an interferon-inducible HIN-200 protein family member and is well-documented for its roles in innate immune responses as a DNA sensor. Recent studies have highlighted AIM2's function on regulatory T cells (Treg) and follicular T cells (Tfh). However, its involvement in Th17 cell differentiation remains unclear. This study reveals that AIM2 promotes Th17 cell differentiation. AIM2 deficiency decreases IL-17A production and downregulates key Th17 associated proteins (RORγt, IL-1R1, IL-23R). AIM2 is located in the nucleus of Th17 cells, where it interacts with RORγt, enhancing its binding to the Il17a promoter. The absence of AIM2 hinders naive CD4 T cells from differentiating into functional Th17 cells and from inducing colitis in Rag1-/- mice. This study uncovers AIM2's role as a regulator of Th17 cell transcriptional programming, highlighting its potential as a therapeutic target for Th17 cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Jefferson Antônio Leite
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luísa Menezes
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Eloisa Martins
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
- Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Tamara Silva Rodrigues
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Tavares
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Anna Ebering
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Carsten Schelmbauer
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Guilherme C. Martelossi Cebinelli
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Valeriya Zinina
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Artemiy Golden
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Natalia Soshnikova
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dario S. Zamboni
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Magdalena Huber
- Institute of Systems Immunology, Center for Tumor and Immunology, University of Marburg, Marburg, Germany
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Fiocruz-Bi-Institutional Translational Medicine Project, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
- Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Zhang X, Liu R. Pyroptosis-related genes GSDMB, GSDMC, and AIM2 polymorphisms are associated with risk of non-small cell lung cancer in a Chinese Han population. Front Genet 2023; 14:1212465. [PMID: 37359371 PMCID: PMC10287965 DOI: 10.3389/fgene.2023.1212465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Pyroptosis is essential for the remodeling of tumor immune microenvironment and suppression of tumor development. However, there is little information available about pyroptosis-related gene polymorphisms in non-small cell lung cancer (NSCLC). Methods: Six SNPs in the GSDMB, GSDMC, and AIM2 were genotyped in 650 NSCLC cases and 650 healthy controls using a MassARRAY platform. Results: Minor alleles of rs8067378, rs2305480, and rs77681114 were associated with a lower risk of NSCLC (p < 0.005), whereas rs2290400 and rs1103577 were related to an increased risk (p < 0.00001). Moreover, rs8067378-AG/GG, rs2305480-GA/AA, and rs77681114-GA/AA genotypes were associated with a decrease in NSCLC risk (p < 0.005). In contrast, the TC/CC genotypes of rs2290400 and rs1103577 were associated with an elevated NSCLC risk (p < 0.0001). Based on the analysis of genetic models, minor alleles of rs8067378, rs2305480 and rs77681114 were related to reduced risk of NSCLC (p < 0.05); whereas rs2290400 and rs1103577 were related to increased risk (p < 0.01). Conclusion: Our findings provided new insights into the roles of pyroptosis-related genes in NSCLC, as well as new factors to be considered for assessing the risk of developing this cancer.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Respiratory Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Rongfeng Liu
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Qin Y, Pan L, Qin T, Ruan H, Zhang Y, Zhang Y, Li J, Yang J, Li W. Pan-cancer analysis of AIM2 inflammasomes with potential implications for immunotherapy in human cancer: A bulk omics research and single cell sequencing validation. Front Immunol 2022; 13:998266. [PMID: 36248785 PMCID: PMC9559585 DOI: 10.3389/fimmu.2022.998266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe absent in melanoma 2 (AIM2) inflammasome is a multi-protein platform that recognizes aberrant cytoplasmic double-stranded DNA(dsDNA) and induces cytokine maturation, release, and pyroptosis. Some studies found that the AIM2 inflammasome was a double-edged sword in many cancers. However, there have been fewer studies on AIM2 inflammasomes in pan-cancer.MethodsGene expression was analyzed using The Cancer Genome Atlas (TCGA) database and The Genotype-Tissue Expression (GTEx) database. Immunohistochemistry (IHC) was used to validate the expression of the AIM2. We used the survival curve to explore the prognostic significance of the AIM2 inflammasomes in pan-cancer. Mutations and methylation of AIM2 inflammasome-related genes (AIM2i-RGs) were also comprehensively analyzed. Single sample gene set enrichment analysis was used to calculate the AIM2 inflammasomes score and explore the correlation of the AIM2 inflammasomes score with immune-related genes and immune infiltrations. The function of AIM2 inflammasomes in pan-cancer was analyzed at the single-cell level. Single-cell transcriptome sequencing (scRNA-seq) data was used to assess the activation state of the AIM2 inflammasomes in the tumor microenvironment.ResultsWe found that AIM2i-RGs were aberrantly expressed in tumors and were strongly associated with prognosis. In pan-cancer, the expression of AIM2i-RGs was positively associated with copy number variation and negatively associated with methylation. In AIM2i-RGs, missense mutations were the predominant type of single nucleotide polymorphism. Moreover, we found that the drugs dimethyloxallyl glycine (DMOG) and Z-LNle-CHO may be sensitive to the AIM2 inflammasomes. The AIM2 inflammasomes score was significantly and positively correlated with the tumor immunity score and the stroma score. In most tumors, the AIM2 inflammasomes score was significantly and positively correlated with CD8+ T cell abundance in the tumor microenvironment. Additionally, the AIM2 inflammasomes score was significantly correlated with immune checkpoint genes in pan-cancer as well as immune checkpoint therapy-related markers including tumor mutational burden (TMB), microsatellite instability(MSI), and tumor immune dysfunction and exclusion(TIDE). scRNA-seq analysis suggested that AIM2 inflammasomes differ significantly among different cells in the tumor microenvironment. IHC confirmed low expression of AIM2 in colorectal cancer.DiscussionAIM2 inflammasomes may be a new target for future tumor therapy It is likely involved in tumor development, and its high expression may serve as a predictor of tumor immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Qin
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Liuxian Pan
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Tianyu Qin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hanyi Ruan
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yujie Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jianli Li
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
| | - Jianrong Yang
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
- *Correspondence: Wei Li, ; Jianrong Yang,
| | - Wei Li
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research center of Health Management, Guangxi Academy of Medical Sciences, Nanning, China
- *Correspondence: Wei Li, ; Jianrong Yang,
| |
Collapse
|
5
|
Wang J, Gao J, Huang C, Jeong S, Ko R, Shen X, Chen C, Zhong W, Zou Y, Yu B, Shen C. Roles of AIM2 Gene and AIM2 Inflammasome in the Pathogenesis and Treatment of Psoriasis. Front Genet 2022; 13:929162. [PMID: 36118867 PMCID: PMC9481235 DOI: 10.3389/fgene.2022.929162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Psoriasis is an immune-mediated chronic inflammatory skin disease caused by a combination of environmental incentives, polygenic genetic control, and immune regulation. The inflammation-related gene absent in melanoma 2 (AIM2) was identified as a susceptibility gene for psoriasis. AIM2 inflammasome formed from the combination of AIM2, PYD-linked apoptosis-associated speck-like protein (ASC) and Caspase-1 promotes the maturation and release of inflammatory cytokines such as IL-1β and IL-18, and triggers an inflammatory response. Studies showed the genetic and epigenetic associations between AIM2 gene and psoriasis. AIM2 gene has an essential role in the occurrence and development of psoriasis, and the inhibitors of AIM2 inflammasome will be new therapeutic targets for psoriasis. In this review, we summarized the roles of the AIM2 gene and AIM2 inflammasome in pathogenesis and treatment of psoriasis, hopefully providing a better understanding and new insight into the roles of AIM2 gene and AIM2 inflammasome in psoriasis.
Collapse
Affiliation(s)
- Jieyi Wang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- School of Clinical Medicine, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Jing Gao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei, Anhui, China
| | - Cong Huang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Sohyun Jeong
- Marcus Institute for Aging Research at Hebrew SeniorLife, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Randy Ko
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Xue Shen
- Department of Dermatology, Chengdu Second People’s Hospital, Chengdu, Sichuan, China
| | - Chaofeng Chen
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Weilong Zhong
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yanfen Zou
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
- School of Clinical Medicine, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Changbing Shen
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University—The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Structure, Activation and Regulation of NLRP3 and AIM2 Inflammasomes. Int J Mol Sci 2021; 22:ijms22020872. [PMID: 33467177 PMCID: PMC7830601 DOI: 10.3390/ijms22020872] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The inflammasome is a three-component (sensor, adaptor, and effector) filamentous signaling platform that shields from multiple pathogenic infections by stimulating the proteolytical maturation of proinflammatory cytokines and pyroptotic cell death. The signaling process initiates with the detection of endogenous and/or external danger signals by specific sensors, followed by the nucleation and polymerization from sensor to downstream adaptor and then to the effector, caspase-1. Aberrant activation of inflammasomes promotes autoinflammatory diseases, cancer, neurodegeneration, and cardiometabolic disorders. Therefore, an equitable level of regulation is required to maintain the equilibrium between inflammasome activation and inhibition. Recent advancement in the structural and mechanistic understanding of inflammasome assembly potentiates the emergence of novel therapeutics against inflammasome-regulated diseases. In this review, we have comprehensively discussed the recent and updated insights into the structure of inflammasome components, their activation, interaction, mechanism of regulation, and finally, the formation of densely packed filamentous inflammasome complex that exists as micron-sized punctum in the cells and mediates the immune responses.
Collapse
|
7
|
Zhang M, Jin C, Yang Y, Wang K, Zhou Y, Zhou Y, Wang R, Li T, Hu R. AIM2 promotes non‐small‐cell lung cancer cell growth through inflammasome‐dependent pathway. J Cell Physiol 2019; 234:20161-20173. [DOI: 10.1002/jcp.28617] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Minda Zhang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Chenyu Jin
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Yunjia Yang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Keke Wang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Yunjiang Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Yang Zhou
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Tao Li
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| | - Rong Hu
- State Key Laboratory of Natural Medicines, Department of Physiology China Pharmaceutical University Nanjing China
| |
Collapse
|
8
|
Farshchian M, Nissinen L, Siljamäki E, Riihilä P, Piipponen M, Kivisaari A, Kallajoki M, Grénman R, Peltonen J, Peltonen S, Quint KD, Bavinck JNB, Kähäri VM. Tumor cell-specific AIM2 regulates growth and invasion of cutaneous squamous cell carcinoma. Oncotarget 2018; 8:45825-45836. [PMID: 28526809 PMCID: PMC5542230 DOI: 10.18632/oncotarget.17573] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 04/18/2017] [Indexed: 12/20/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. Inflammation is a typical feature in cSCC progression. Analysis of the expression of inflammasome components in cSCC cell lines and normal human epidermal keratinocytes revealed upregulation of the expression of AIM2 mRNA and protein in cSCC cells. Elevated levels of AIM2 mRNA were noted in cSCCs in vivo compared with normal skin. Strong and moderate tumor cell specific expression of AIM2 was detected with immunohistochemistry (IHC) in sporadic human cSCCs in vivo, whereas expression of AIM2 was moderate in cSCC in situ (cSCCIS) and low or absent in actinic keratosis (AK) and normal skin. IHC of cSCCs, cSCCIS and AKs from organ transplant recipients also revealed strong and moderate tumor cell specific expression of AIM2 in cSCCs. Knockdown of AIM2 resulted in reduction in viability of cSCC cells and onset of apoptosis. RNA-seq and pathway analysis after knockdown of AIM2 in cSCC cells revealed downregulation of the biofunction category Cell cycle and upregulation of the biofunction category Cell Death and Survival. Knockdown of AIM2 also resulted in reduction in invasion of cSCC cells and downregulation in production of invasion proteinases MMP1 and MMP13. Knockdown of AIM2 resulted in suppression of growth and vascularization of cSCC xenografts in vivo. These results provide evidence for the role of AIM2 in the progression of cSCC and identify AIM2 inflammasome function as a potential therapeutic target in these invasive and metastatic tumors.
Collapse
Affiliation(s)
- Mehdi Farshchian
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Liisa Nissinen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Elina Siljamäki
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pilvi Riihilä
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Minna Piipponen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Atte Kivisaari
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Reidar Grénman
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, University of Turku, Turku, Finland
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | - Koen D Quint
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands.,DDL Diagnostic Laboratory, Rijswijk, The Netherlands
| | | | - Veli-Matti Kähäri
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland.,MediCity Research Laboratory, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Lugrin J, Martinon F. The AIM2 inflammasome: Sensor of pathogens and cellular perturbations. Immunol Rev 2017; 281:99-114. [DOI: 10.1111/imr.12618] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jérôme Lugrin
- Service of Adult Intensive Care Medicine; Lausanne University Hospital; Epalinges Switzerland
| | - Fabio Martinon
- Department of Biochemistry; University of Lausanne; Epalinges Switzerland
| |
Collapse
|
10
|
Svensson A, Patzi Churqui M, Schlüter K, Lind L, Eriksson K. Maturation-dependent expression of AIM2 in human B-cells. PLoS One 2017; 12:e0183268. [PMID: 28809949 PMCID: PMC5557365 DOI: 10.1371/journal.pone.0183268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/01/2017] [Indexed: 02/01/2023] Open
Abstract
Intracellular DNA- and RNA-sensing receptors, such as the IFN-inducible protein Absent in Melanoma 2 (AIM2), serve as host sensors against a wide range of infections. Immune sensing and inflammasome activation by AIM2 has been implicated in innate antiviral recognition in many experimental systems using cell-lines and animal models. However, little is known about the expression and function of AIM2 in freshly isolated human cells. In this study we investigated the expression of AIM2 in different cell types derived from human cord and adult peripheral blood, in steady state and following in vitro-activation. Adult but not cord blood B-cells expressed high levels of AIM2 mRNA at steady state. In adults, AIM2 was primarily expressed in mature memory CD27+ B-cells. Both adult and cord blood derived B-cells could induce their transcription of AIM2 mRNA in response to type II IFN but not type I IFN or the AIM2 ligand poly dA:dT. Upon B-cell receptor stimulation, B-cells from adult blood expressed reduced levels of AIM2 mRNA. In addition, we show that adult B-cells were able to release IL-1β upon stimulation with synthetic DNA. We conclude that functional AIM2 is preferentially expressed in adult human CD27+ B-cells, but is absent in cord blood mononuclear cells.
Collapse
Affiliation(s)
- Alexandra Svensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Marianela Patzi Churqui
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Virology, Immunity and Infection Unit, SELADIS institute, Biochemistry and Pharmacy Faculty, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Kerstin Schlüter
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Liza Lind
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Eriksson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
11
|
Moreira RB, Pirmez C, de Oliveira-Neto MP, Aguiar LS, Gonçalves AJS, Pereira LOR, Abreu L, De Oliveira MP. AIM2 inflammasome is associated with disease severity in tegumentary leishmaniasis caused by Leishmania (V.) braziliensis. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/04/2017] [Indexed: 12/22/2022]
Affiliation(s)
- R. B. Moreira
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - C. Pirmez
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - M. P. de Oliveira-Neto
- Instituto Nacional de Infectologia; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - L. S. Aguiar
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - A. J. S. Gonçalves
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - L. O. R. Pereira
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - L. Abreu
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| | - M. P. De Oliveira
- Laboratório Interdisciplinar de Pesquisas Médicas; Instituto Oswaldo Cruz; Fundação Oswaldo Cruz (Fiocruz); Rio de Janeiro RJ Brazil
| |
Collapse
|
12
|
Chen J, Wang Z, Yu S. AIM2 regulates viability and apoptosis in human colorectal cancer cells via the PI3K/Akt pathway. Onco Targets Ther 2017; 10:811-817. [PMID: 28243117 PMCID: PMC5315344 DOI: 10.2147/ott.s125039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Absent in melanoma 2 (AIM2) plays an important role in innate immunity as a DNA sensor in the cytoplasm by triggering the assembly of an AIM2 inflammasome that results in caspase-1-mediated inflammatory responses and cell death. In recent years, studies have indicated that AIM2 can suppress cancer cell proliferation, and mutations in the gene encoding AIM2 are frequently identified in patients with colorectal cancer (CRC). However, the mechanism by which AIM2 restricts tumor growth remains unclear. We reconstructed AIM2 expression in HCT116 CRC cells by lentivirus transfection. Using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry, we demonstrated that expression of AIM2 inhibited the viability and increased the apoptosis rate of CRC cells, and cell cycle analysis suggested that AIM2 blocked cell cycle transition from G1 to S phase. Western blot analysis showed that AIM2 promoted apoptosis in CRC cells by suppressing the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway. Our data suggest that AIM2 plays a critical role as a tumor suppressor and might serve as a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Jianjun Chen
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhenjun Wang
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Sanshui Yu
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
13
|
Choubey D. Absent in melanoma 2 proteins in the development of cancer. Cell Mol Life Sci 2016; 73:4383-4395. [PMID: 27328971 PMCID: PMC11108365 DOI: 10.1007/s00018-016-2296-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/04/2016] [Accepted: 06/16/2016] [Indexed: 12/19/2022]
Abstract
Recent studies utilizing chemical-induced colitis-associated and sporadic colon cancer in mouse models indicated a protective role for absent in melanoma 2 (Aim2) in colon epithelial cells. Accordingly, mutations in the human AIM2 gene have been found in colorectal cancer (CRC), and reduced expression of AIM2 in CRC is associated with its progression. Furthermore, the overexpression of AIM2 protein in human cancer cell lines inhibits cell proliferation. Interferon-inducible Aim2 and AIM2 are members of the PYHIN (PYRIN and HIN domain-containing) protein family and share ~57 % amino acid identity. The family also includes murine p202, human PYRIN-only protein 3, and IFI16, which negatively regulate Aim2/AIM2 functions. Because the CRC incidence and mortality rates are higher among men compared with women and the expression of Aim2/AIM2 proteins and their regulators is dependent upon age, gender, and sex hormones, we discuss the potential roles of Aim2/AIM2 in the development of cancer. An improved understanding of the biological functions of the AIM2 in the development of CRC will likely identify new therapeutic approaches to treat patients.
Collapse
Affiliation(s)
- Divaker Choubey
- Research Service, Cincinnati VA Medical Center, 3200 Vine Street, ML-151, Cincinnati, OH, 45220, USA.
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, P. O. Box-670056, Cincinnati, OH, 45267, USA.
| |
Collapse
|
14
|
Gasser S, Zhang WYL, Tan NYJ, Tripathi S, Suter MA, Chew ZH, Khatoo M, Ngeow J, Cheung FSG. Sensing of dangerous DNA. Mech Ageing Dev 2016; 165:33-46. [PMID: 27614000 DOI: 10.1016/j.mad.2016.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/19/2022]
Abstract
The presence of damaged and microbial DNA can pose a threat to the survival of organisms. Cells express various sensors that recognize specific aspects of such potentially dangerous DNA. Recognition of damaged or microbial DNA by sensors induces cellular processes that are important for DNA repair and inflammation. Here, we review recent evidence that the cellular response to DNA damage and microbial DNA are tightly intertwined. We also discuss insights into the parameters that enable DNA sensors to distinguish damaged and microbial DNA from DNA present in healthy cells.
Collapse
Affiliation(s)
- Stephan Gasser
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117597 Singapore.
| | - Wendy Y L Zhang
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Nikki Yi Jie Tan
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Shubhita Tripathi
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Manuel A Suter
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Zhi Huan Chew
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117597 Singapore
| | - Muznah Khatoo
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore
| | - Joanne Ngeow
- Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore; Divsion of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, 169610, Singapore; Oncology Academic Clinical Program, Duke-NUS Graduate Medical School, 8 College Road, 169857, Singapore
| | - Florence S G Cheung
- Immunology Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore 117456, Singapore.
| |
Collapse
|
15
|
Man SM, Karki R, Kanneganti TD. AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity. Eur J Immunol 2015; 46:269-80. [PMID: 26626159 DOI: 10.1002/eji.201545839] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/13/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022]
Abstract
Recognition of DNA by the cell is an important immunological signature that marks the initiation of an innate immune response. AIM2 is a cytoplasmic sensor that recognizes dsDNA of microbial or host origin. Upon binding to DNA, AIM2 assembles a multiprotein complex called the inflammasome, which drives pyroptosis and proteolytic cleavage of the proinflammatory cytokines pro-IL-1β and pro-IL-18. Release of microbial DNA into the cytoplasm during infection by Francisella, Listeria, Mycobacterium, mouse cytomegalovirus, vaccinia virus, Aspergillus, and Plasmodium species leads to activation of the AIM2 inflammasome. In contrast, inappropriate recognition of cytoplasmic self-DNA by AIM2 contributes to the development of psoriasis, dermatitis, arthritis, and other autoimmune and inflammatory diseases. Inflammasome-independent functions of AIM2 have also been described, including the regulation of the intestinal stem cell proliferation and the gut microbiota ecology in the control of colorectal cancer. In this review we provide an overview of the latest research on AIM2 inflammasome and its role in infection, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Si Ming Man
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
16
|
Absent in melanoma 2 (AIM2) expressed in human dental pulp mediates IL-1β secretion in response to cytoplasmic DNA. Inflammation 2015; 38:566-75. [PMID: 24986444 DOI: 10.1007/s10753-014-9963-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The inflammasome has been determined to play an important role in inflammatory diseases in recent years. Absent in melanoma 2 (AIM2), an inflammasome that recognizes cytoplasmic DNA, has recently been identified as a critical regulator of immune responses. In this study, we explored whether AIM2 was expressed in human dental pulp and defined the role of AIM2 in regulating interleukin (IL)-1β secretion. We demonstrated that AIM2 was only detected in the odontoblast layer of healthy dental pulp, whereas strong expression was observed in inflamed dental pulp. Stimulation with interferon gamma (IFN-γ) and cytoplasmic DNA significantly activated the AIM2 inflammasome and increased IL-1β secretion in human dental pulp cells (HDPCs) in a time- and dose-dependent manner. Moreover, the knockdown of AIM2 downregulated both cleaved-caspase-1 expression and IL-1β release in HDPCs. These results suggest that AIM2 expressed in human dental pulp plays an important role in the immune defense by activating the inflammasome signaling pathway.
Collapse
|
17
|
Han Y, Chen Z, Hou R, Yan D, Liu C, Chen S, Li X, Du W. Expression of AIM2 is correlated with increased inflammation in chronic hepatitis B patients. Virol J 2015; 12:129. [PMID: 26290184 PMCID: PMC4545983 DOI: 10.1186/s12985-015-0360-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 08/14/2015] [Indexed: 12/12/2022] Open
Abstract
Background The absent in melanoma 2 (AIM2), a cytosolic dsDNA inflammasome, can be activated by viral DNA to trigger caspase-1. Its role in immunopathology of chronic hepatitis B and C virus (HBV, HCV) infection is still largely unclear. In this study, the expression AIM2, and its downstream cytokines, caspase-1, IL-18 and IL-1β, in liver tissue of patients with chronic hepatitis B and C (CHB, CHC) were investigated. Methods A total of 70 patients diagnosed with chronic hepatitis were enrolled, including 47 patients with CHB and 23 patients with CHC. A liver biopsy was taken from each patient, and immunohistochemistry was used to detect the expression of AIM2 and inflammatory factors caspase-1, IL-18, and IL-1β in the biopsy specimens. The relationship between AIM2 expression and these inflammatory factors was analyzed. Results The expression of AIM2 in CHB patients (89.4 %) was significantly higher than in CHC patients (8.7 %), and among the CHB patients, the expression of AIM2 was significantly higher in the high HBV replication group (HBV DNA ≥ 1 × 105copies/mL) than in the low HBV replication group (HBV DNA < 1 × 105copies/mL). The expression of AIM2 was also correlated with HBV-associated inflammatory activity in CHB patients statistically. Additionally, AIM2 levels were positively correlated with the expression of caspase-1, IL-1β and IL-18 in CHB patients, which implied that the AIM2 expression is directly correlated with the inflammatory activity associated with CHB. Conclusions AIM2 upregulation may be a component of HBV immunopathology. The underlying mechanism and possible signal pathway warrant further study.
Collapse
Affiliation(s)
- Yongtao Han
- Deparment of Pharmacy, Qilu Hospital, Shandong University, Jinan, China.
| | - Ziping Chen
- Digestive Department, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| | - Ruiping Hou
- Department of Infectious Disease, Hospital of Laiwu Affiliated to Taishan Medical College, Laiwu, China.
| | - Daojie Yan
- Digestive Department, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| | - Changhong Liu
- Digestive Department, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| | - Shijun Chen
- Department of Liver Disease, Jinan Infectious Disease Hospital, Shandong University, Jinan, China.
| | - Xiaobo Li
- Center of Translational Medicine, Harbin Medical University, Harbin, Heilongjiang Province, 150086, China.
| | - Wenjun Du
- Digestive Department, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China. .,Digestive Department, Shandong Provincial Qianfoshan Hospital, School of Medicine, Shandong University, Jingshi Road 16766#, Jinan, 250014, China.
| |
Collapse
|
18
|
Wilson JE, Petrucelli AS, Chen L, Koblansky AA, Truax AD, Oyama Y, Rogers AB, Brickey WJ, Wang Y, Schneider M, Mühlbauer M, Chou WC, Barker BR, Jobin C, Allbritton NL, Ramsden DA, Davis BK, Ting JPY. Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat Med 2015; 21:906-13. [PMID: 26107252 DOI: 10.1038/nm.3908] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
The inflammasome activates caspase-1 and the release of interleukin-1β (IL-1β) and IL-18, and several inflammasomes protect against intestinal inflammation and colitis-associated colon cancer (CAC) in animal models. The absent in melanoma 2 (AIM2) inflammasome is activated by double-stranded DNA, and AIM2 expression is reduced in several types of cancer, but the mechanism by which AIM2 restricts tumor growth remains unclear. We found that Aim2-deficient mice had greater tumor load than Asc-deficient mice in the azoxymethane/dextran sodium sulfate (AOM/DSS) model of colorectal cancer. Tumor burden was also higher in Aim2(-/-)/Apc(Min/+) than in APC(Min/+) mice. The effects of AIM2 on CAC were independent of inflammasome activation and IL-1β and were primarily mediated by a non-bone marrow source of AIM2. In resting cells, AIM2 physically interacted with and limited activation of DNA-dependent protein kinase (DNA-PK), a PI3K-related family member that promotes Akt phosphorylation, whereas loss of AIM2 promoted DNA-PK-mediated Akt activation. AIM2 reduced Akt activation and tumor burden in colorectal cancer models, while an Akt inhibitor reduced tumor load in Aim2(-/-) mice. These findings suggest that Akt inhibitors could be used to treat AIM2-deficient human cancers.
Collapse
Affiliation(s)
- Justin E Wilson
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA. [2] Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. [3] Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alex S Petrucelli
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA. [2] Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. [3] Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Liang Chen
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA. [2] Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. [3] Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - A Alicia Koblansky
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA. [2] Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. [3] Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Agnieszka D Truax
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA. [2] Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. [3] Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yoshitaka Oyama
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA. [2] Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. [3] Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Arlin B Rogers
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - W June Brickey
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA. [2] Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. [3] Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yuli Wang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Monika Schneider
- The American Association of Immunologists, Bethesda, Maryland, USA
| | - Marcus Mühlbauer
- 1] Department of Medicine, Division of Gastroenterology, University of Florida College of Medicine, Gainesville, Florida, USA. [2] Department of Infectious Diseases &Pathology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Wei-Chun Chou
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA. [2] Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. [3] Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brianne R Barker
- Department of Biology, Drew University, Madison, New Jersey, USA
| | - Christian Jobin
- 1] Department of Medicine, Division of Gastroenterology, University of Florida College of Medicine, Gainesville, Florida, USA. [2] Department of Infectious Diseases &Pathology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Nancy L Allbritton
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dale A Ramsden
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA. [2] Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA. [3] Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Beckley K Davis
- Department of Biology, Franklin &Marshall College, Lancaster, Pennsylvania, USA
| | - Jenny P Y Ting
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA. [2] Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA. [3] Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
19
|
Comparative Purification and Characterization of Two HIN Domains, Hematopoietic Interferon-Inducible Nuclear Antigens with a 200-Amino-Acid Repeat, in Murine AIM2-Like Receptors. Biosci Biotechnol Biochem 2014; 77:2283-7. [DOI: 10.1271/bbb.130544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
AIM2 mediates inflammation-associated renal damage in hepatitis B virus-associated glomerulonephritis by regulating caspase-1, IL-1β, and IL-18. Mediators Inflamm 2014; 2014:190860. [PMID: 24701032 PMCID: PMC3950499 DOI: 10.1155/2014/190860] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/25/2013] [Accepted: 01/07/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND & AIMS AIM2 plays an important role in innate immunity, but its role in regulating the immune response to hepatitis B virus (HBV) is unknown. We hypothesized that AIM2 expression is positively correlated with HBV-mediated inflammation in patients with HBV-associated glomerulonephritis (HBV-GN), potentiating inflammation and leading to renal damage. We therefore analyzed the expression of AIM2 and inflammatory factors in HBV-GN tissues and cell lines relative to the inflammatory response to HBV infection and HBV status. METHODS Seventy-nine patients with chronic nephritis (CN) were included: 54 with HBV-GN and 24 with chronic glomerulonephritis (CGN). Expression of AIM2, caspase-1, and IL-1β was detected by immunohistochemistry in renal biopsies from each patient. Following siRNA-mediated knockdown of AIM2 in HBV-infected and HBV-uninfected human glomerular mesangial (HGM) cells, expression of caspase-1, IL-1β, and IL-18 was detected by qRT-PCR and Western blot. RESULTS AIM2 expression in HBV-GN biopsies (81.4%) was significantly higher than in CGN (4.0%) and positively correlated with caspase-1 and IL-1β expression in HBV-GN. In vitro, AIM2 knockdown reduced caspase-1, IL-1β, and IL-18 expression in HBV-infected and HBV-uninfected HGM cells. CONCLUSION AIM2 elevation during HBV infection or replication may contribute to inflammatory damage, thus providing a putative therapeutic target for HBV-GN.
Collapse
|
21
|
Li H, Wang J, Wang J, Cao LS, Wang ZX, Wu JW. Structural mechanism of DNA recognition by the p202 HINa domain: insights into the inhibition of Aim2-mediated inflammatory signalling. Acta Crystallogr F Struct Biol Commun 2014; 70:21-9. [PMID: 24419611 PMCID: PMC3943098 DOI: 10.1107/s2053230x1303135x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/15/2013] [Indexed: 12/20/2022] Open
Abstract
The HIN-200 family of proteins play significant roles in inflammation-related processes. Among them, AIM2 (absent in melanoma 2) and IFI16 (γ-interferon-inducible protein 16) recognize double-stranded DNA to initiate inflammatory responses. In contrast, p202, a mouse interferon-inducible protein containing two HIN domains (HINa and HINb), has been reported to inhibit Aim2-mediated inflammatory signalling in mouse. To understand the inhibitory mechanism, the crystal structure of the p202 HINa domain in complex with a 20 bp DNA was determined, in which p202 HINa nonspecifically recognizes both strands of DNA through electrostatic attraction. The p202 HINa domain binds DNA more tightly than does AIM2 HIN, and the DNA-binding mode of p202 HINa is different from that of the AIM2 HIN and IFI16 HINb domains. These results, together with the reported data on p202 HINb, lead to an interaction model for full-length p202 and dsDNA which provides a conceivable mechanism for the negative regulation of Aim2 inflammasome activation by p202.
Collapse
Affiliation(s)
- He Li
- MOE Key Laboratory of Protein Science and Tsinghua–Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Jue Wang
- MOE Key Laboratory of Protein Science and Tsinghua–Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Jie Wang
- MOE Key Laboratory of Protein Science and Tsinghua–Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Lu-Sha Cao
- MOE Key Laboratory of Protein Science and Tsinghua–Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Zhi-Xin Wang
- MOE Key Laboratory of Protein Science and Tsinghua–Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Jia-Wei Wu
- MOE Key Laboratory of Protein Science and Tsinghua–Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
22
|
Du W, Zhen J, Zheng Z, Ma S, Chen S. Expression of AIM2 is high and correlated with inflammation in hepatitis B virus associated glomerulonephritis. JOURNAL OF INFLAMMATION-LONDON 2013; 10:37. [PMID: 24325587 PMCID: PMC4028891 DOI: 10.1186/1476-9255-10-37] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 12/06/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Innate immunity is the first line of defense against invasive microbial infection, and AIM2 plays an important role in this process by sensing double-stranded DNA viruses. However, the role of AIM2 in regulating the immune response to viruses in vivo, especially in sensing hepatitis B virus (HBV), has not been examined. We hypothesized that the expression of AIM2 increases corresponding to HBV-mediated inflammation in patients with hepatitis B virus associated glomerulonephritis (HBV-GN), a condition which activates inflammatory mechanisms and causes renal damage. To test this hypothesis, we analyzed the expression of AIM2 in HBV-GN patients in relation to the inflammatory response to HBV infection. METHODS A total of 79 patients diagnosed with chronic nephritis (CN) were enrolled in this study, including 54 HBV-GN patients as the experimental group and 24 chronic glomerulonephritis (CGN) patients as the negative control group. Six patients diagnosed with chronic hepatitis B (CHB) were also enrolled as positive controls. Each CN patient received renal biopsy, and immunohistochemistry was used to detect the expression of AIM2 and inflammatory factors caspase-1 and IL-1β in the biopsy specimens. CHB patients received liver puncture biopsy, and immunohistochemistry was used to detect the expression of AIM2 in these specimens. Expression of AIM 2 among different groups and in relation to inflammatory factors caspase-1 and IL-1β was analyzed. RESULTS The expression of AIM2 in HBV-GN patients (81.4%) was significantly higher than in CGN patients (4.0%). Among the HBV-GN patients, expression of AIM2 was significantly higher in the high HBV replication group than in the low HBV replication group. AIM2 expression was not correlated with age, gender, HBeAg status in serum, HBV-antigen type deposited in renal tissue or pathological type of HBV-GN. However, AIM2 levels were positively correlated with the expression of caspase-1 and IL-1β in HBV-GN patients. The data suggest that AIM2 expression is directly correlated with HBV infection-associated inflammation. CONCLUSION The elevation of AIM2 during HBV infection or replication may contribute to its associated inflammatory damage, thus providing a putative therapeutic target and a new avenue for researching the pathogenesis of HBV-GN.
Collapse
Affiliation(s)
- Wenjun Du
- Shandong University School of Medicine, Jinan, China.,Digestive Department, Shandong provincial Qianfoshan hospital, Shandong University, Jinan, China
| | - Junhui Zhen
- Shandong University School of Medicine, Jinan, China.,Department of Pathology, Shandong University School of Medicine, Jinan, China
| | - Zhaomin Zheng
- Shandong University School of Medicine, Jinan, China.,Digestive Department, Shandong provincial Qianfoshan hospital, Shandong University, Jinan, China
| | - Shumin Ma
- Shandong University School of Medicine, Jinan, China.,Department of Liver Disease, Jinan Infectious Disease Hospital, Shandong University School of Medicine, Jinan, China
| | - Shijun Chen
- Shandong University School of Medicine, Jinan, China.,Department of Liver Disease, Jinan Infectious Disease Hospital, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
23
|
Wang Y, Zhai S, Wang H, Jia Q, Jiang W, Zhang X, Zhang A, Liu J, Ni L. Absent in melanoma 2 (AIM2) in rat dental pulp mediates the inflammatory response during pulpitis. J Endod 2013; 39:1390-4. [PMID: 24139260 DOI: 10.1016/j.joen.2013.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 07/05/2013] [Accepted: 07/21/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION In recent years, the inflammasome has been determined to play an important role in inflammatory diseases. However, the role of the inflammasome in pulpitis remains unclear. Absent in melanoma 2 (AIM2) is a type of inflammasome that recognizes cytosolic double stranded DNA and forms a caspase-1-activating inflammasome with apoptosis-associated speck-like protein containing a caspase activating recruiting domain. In this study, we determined whether AIM2 was expressed in pulp cells and defined the role of AIM2 in the initiation of inflammation within the dental pulp. METHODS In the in vivo study, the right maxillary molars from male adult Sprague-Dawley rats (250-350 g) were exposed to the pulp. In the in vitro study, the pulp cells isolated from the mandibular incisors of the Sprague-Dawley rats (2 weeks) were conventionally cultured. Immunofluorescence staining was used to determine the expression and distribution of AIM2 in the rat dental pulp tissues and cells in the presence or absence of inflammatory stimulation. Western blotting and real-time polymerase chain reaction were performed to determine whether there was a correlation between AIM2 expression levels and inflammation both in vivo and in vitro. RESULTS In healthy dental pulp tissues and cells, AIM2 was only detected in the odontoblast layer. Stimulation significantly increased AIM2 expression in both the dental pulp tissues and cultured cells. The mRNA and protein levels of AIM2 were significantly up-regulated in response to inflammatory stimulation in a dose-dependent manner. Moreover, we also found that AIM2 expression correlated with interleukin-1 levels. These results reveal a direct relationship between the AIM2 inflammasome and pulpitis. CONCLUSIONS Our study demonstrates that AIM2 is expressed in dental pulp tissues and mediates the inflammatory response during pulpitis. Therapeutic interventions aimed at reducing AIM2 expression may be beneficial in the treatment of pulpitis.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Molecular mechanism for p202-mediated specific inhibition of AIM2 inflammasome activation. Cell Rep 2013; 4:327-39. [PMID: 23850291 DOI: 10.1016/j.celrep.2013.06.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 05/14/2013] [Accepted: 06/19/2013] [Indexed: 02/05/2023] Open
Abstract
Mouse p202 containing two hemopoietic expression, interferon inducibility, nuclear localization (HIN) domains antagonizes AIM2 inflammasome signaling and potentially modifies lupus susceptibility. We found that only HIN1 of p202 binds double-stranded DNA (dsDNA), while HIN2 forms a homotetramer. Crystal structures of HIN1 revealed that dsDNA is bound on face opposite the site used in AIM2 and IFI16. The structure of HIN2 revealed a dimer of dimers, the face analogous to the HIN1 dsDNA binding site being a dimerization interface. Electron microscopy imaging showed that HIN1 is flexibly linked to HIN2 in p202, and tetramerization provided enhanced avidity for dsDNA. Surprisingly, HIN2 of p202 interacts with the AIM HIN domain. We propose that this results in a spatial separation of the AIM2 pyrin domains, and indeed p202 prevented the dsDNA-dependent clustering of apoptosis-associated speck-like protein containing caspase recruitment domain (ASC) and AIM2 inflammasome activation. We hypothesize that while p202 was evolutionarily selected to limit AIM2-mediated inflammation in some mouse strains, the same mechanism contributes to increased interferon production and lupus susceptibility.
Collapse
|
25
|
Cell-specific regulation of nucleic acid sensor cascades: a controlling interest in the antiviral response. J Virol 2012; 86:13303-12. [PMID: 23015711 DOI: 10.1128/jvi.02296-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In this study, we examined the capacities of non-antigen-presenting cell types to propagate antiviral signals following infection with recombinant adenovirus or by direct nucleic acid transfection. Three murine cell lines (RAW264.7 macrophages as a positive control, FL83B hepatocytes, and MS1 endothelial cells) were assessed following exposure to adenovirus, DNA, or RNA ligands. Based on primary (interferon response factor 3 [IRF3] phosphorylation) and secondary (STAT1/2 phosphorylation) response markers, we found each cell line presented a unique response profile: RAW cells were highly responsive, MS1 cells were modified in their response, and FL83B cells were essentially nonresponsive. Comparative reverse transcription-quantitative PCR (RT-qPCR) of nucleic acid sensing components revealed major differences between the three cell types. A prominent difference was at the level of adaptor molecules; TRIF, MyD88, MAVS, and STING. TRIF was absent in MS1 and FL83B cells, whereas MyD88 levels were diminished in FL83B hepatocytes. These differences resulted in compromised TLR-mediated activation. While the cytosolic adaptor MAVS was well represented in all cell lines, the DNA adaptor STING was deficient in FL83B hepatocytes (down by nearly 3 log units). The absence of STING provides an explanation for the lack of DNA responsiveness in these cells. This hypothesis was confirmed by acquisition of IRF3 activation in Flag-STING FL83B cells following DNA transfection. To consolidate the central role of adaptors in MS1 endothelial cells, short hairpin RNA (shRNA) knockdown of STING and MAVS resulted in a ligand-specific loss of IRF3 responsiveness. In contrast to the requirement for specific adaptor proteins, a requirement for a specific DNA sensor (AIM2, DDx41, or p204) in the IRF3 activation response was not detected by shRNA knockdown in MS1 cells. The data reveal that cell-specific regulation of nucleic acid sensing cascade components influences antiviral recognition responses, that controlling levels of adaptor molecules is a recurring strategy in regulating antiviral recognition response functions, and that comparative RT-qPCR has predictive value for antiviral/innate response functions in these cells.
Collapse
|
26
|
Dombrowski Y, Koglin S, Schauber J. DNA-triggered AIM2 inflammasome activation in keratinocytes: Comment on Kopfnagel et al. Exp Dermatol. 2011. 20:1027-9. Exp Dermatol 2012; 21:474-5; author reply 475-6. [DOI: 10.1111/j.1600-0625.2012.01466.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yvonne Dombrowski
- Department of Dermatology and Allergy, Ludwig-Maximilian University; Munich; Germany
| | - Sarah Koglin
- Department of Dermatology and Allergy, Ludwig-Maximilian University; Munich; Germany
| | - Jürgen Schauber
- Department of Dermatology and Allergy, Ludwig-Maximilian University; Munich; Germany
| |
Collapse
|
27
|
Abstract
Pattern recognition receptors (PRRs) on host cells detect pathogens to activate innate immunity which, in turn, initiates inflammatory and adaptive immune responses. Successful activation of PRRs is, therefore, critical to controlling infections and driving pathogen‐specific adaptive immunity, but overactivity of PRRs causes systemic inflammation, which is detrimental to the host. Here we review the PRR literature as it relates to horses and speculate on the role PRRs may play in sepsis and endotoxaemia.
Collapse
Affiliation(s)
- A H Werners
- Anatomy, Physiology and Pharmacology Academic Programme, School of Veterinary Medicine, St George's University, True Blue, Grenada, West Indies
| | | |
Collapse
|
28
|
Horvath GL, Schrum JE, De Nardo CM, Latz E. Intracellular sensing of microbes and danger signals by the inflammasomes. Immunol Rev 2011; 243:119-35. [PMID: 21884172 DOI: 10.1111/j.1600-065x.2011.01050.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cells of the innate immune system mobilize a coordinated immune response towards invading microbes and after disturbances in tissue homeostasis. These immune responses typically lead to infection control and tissue repair. Exaggerated or uncontrolled immune responses, however, can also induce acute of chronic inflammatory pathologies that are characteristic for many common diseases such as sepsis, arthritis, atherosclerosis, or Alzheimer's disease. In recent years, the concerted efforts of many scientists have uncovered numerous mechanisms by which immune cells detect foreign or changed self-substances that appear in infections or during tissue damage. These substances stimulate signaling receptors, which leads to cellular activation and the induction of effector mechanisms. Here, we review the role of inflammasomes, a family of signaling molecules that form multi-molecular signaling platforms and activate inflammatory caspases and interleukin-1β cytokines.
Collapse
Affiliation(s)
- Gabor L Horvath
- Biomedical Center, Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
29
|
Veeranki S, Duan X, Panchanathan R, Liu H, Choubey D. IFI16 protein mediates the anti-inflammatory actions of the type-I interferons through suppression of activation of caspase-1 by inflammasomes. PLoS One 2011; 6:e27040. [PMID: 22046441 PMCID: PMC3203938 DOI: 10.1371/journal.pone.0027040] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 10/09/2011] [Indexed: 01/09/2023] Open
Abstract
Background Type-I interferons (IFNs) are used to treat certain inflammatory diseases. Moreover, activation of type-I IFN-signaling in immune cells inhibits the production of proinflammatory cytokines and activation of inflammasomes. However, the molecular mechanisms remain largely unknown. Upon sensing cytosolic double-stranded DNA, the AIM2 protein forms the AIM2-ASC inflammasome, resulting in activation of caspase-1. Given that the IFI16 and AIM2 proteins are IFN-inducible and can heterodimerize with each other, we investigated the regulation of IFI16, AIM2, and inflammasome proteins by type-I and type-II IFNs and explored whether the IFI16 protein could negatively regulate the activation of the AIM2 (or other) inflammasome. Methodology/ Principal Findings We found that basal levels of the IFI16 and AIM2 proteins were relatively low in peripheral blood monocytes (CD14+) and in the THP-1 monocytic cell line. However, treatment of THP-1 cells with type-I (IFN-α or β) or type-II (IFN-γ) IFN induced the expression levels of IFI16, AIM2, ASC and CASP1 proteins. The induced levels of IFI16 and AIM2 proteins were detected primarily in the cytoplasm. Accordingly, relatively more IFI16 protein bound with the AIM2 protein in the cytoplasmic fraction. Notably, increased expression of IFI16 protein in transfected HEK-293 cells inhibited activation of caspase-1 by the AIM2-ASC inflammasome. Moreover, the constitutive knockdown of the IFI16 expression in THP-1 cells increased the basal and induced [induced by poly(dA:dT) or alum] activation of the caspase-1 by the AIM2 and NLRP3 inflammasomes. Conclusions/Significance Our observations revealed that the type-I and type-II IFNs induce the expression of IFI16, AIM2, and inflammasome proteins to various extents in THP-1 cells and the expression of IFI16 protein in THP-1 cells suppresses the activation of caspase-1 by the AIM2 and NLRP3 inflammasomes. Thus, our observations identify the IFI16 protein as a mediator of the anti-inflammatory actions of the type-I IFNs.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Xin Duan
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ravichandran Panchanathan
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
| | - Hongzhu Liu
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Divaker Choubey
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
30
|
Nour AM, Reichelt M, Ku CC, Ho MY, Heineman TC, Arvin AM. Varicella-zoster virus infection triggers formation of an interleukin-1β (IL-1β)-processing inflammasome complex. J Biol Chem 2011; 286:17921-33. [PMID: 21385879 PMCID: PMC3093867 DOI: 10.1074/jbc.m110.210575] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Innate cellular immunity is the immediate host response against pathogens, and activation of innate immunity also modulates the induction of adaptive immunity. The nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a family of intracellular receptors that recognize conserved patterns associated with intracellular pathogens, but information about their role in the host defense against DNA viruses is limited. Here we report that varicella-zoster virus (VZV), an alphaherpesvirus that is the causative agent of varicella and herpes zoster, induces formation of the NLRP3 inflammasome and the associated processing of the proinflammatory cytokine IL-1β by activated caspase-1 in infected cells. NLRP3 inflammasome formation was induced in VZV-infected human THP-1 cells, which are a transformed monocyte cell line, primary lung fibroblasts, and melanoma cells. Absent in melanoma gene-2 (AIM2) is an interferon-inducible protein that can form an alternative inflammasome complex with caspase-1 in virus-infected cells. Experiments in VZV-infected melanoma cells showed that NLRP3 protein recruits the adaptor protein ASC and caspase-1 to form an NLRP3 inflammasome complex independent of AIM2 protein and in the absence of free radical reactive oxygen species release. NLRP3 was also expressed extensively in infected skin xenografts in the severe combined immunodeficiency mouse model of VZV pathogenesis in vivo. We conclude that NLRP3 inflammasome formation is an innate cellular response to infection with this common pathogenic human herpesvirus.
Collapse
Affiliation(s)
- Adel M Nour
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Choubey D, Duan X, Dickerson E, Ponomareva L, Panchanathan R, Shen H, Srivastava R. Interferon-inducible p200-family proteins as novel sensors of cytoplasmic DNA: role in inflammation and autoimmunity. J Interferon Cytokine Res 2010; 30:371-80. [PMID: 20187776 DOI: 10.1089/jir.2009.0096] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deregulated innate immune responses that result in increased levels of type I interferons (IFNs) and stimulation of IFN-inducible genes are thought to contribute to chronic inflammation and autoimmunity. One family of IFN-inducible genes is the Ifi200 family, which includes the murine (eg, Ifi202a, Ifi202b, Ifi203, Ifi204, Mndal, and Aim2) and human (eg, IFI16, MNDA, IFIX, and AIM2) genes. Genes in the family encode structurally related proteins (the p200-family proteins), which share at least one partially conserved repeat of 200-amino acid (200-AA) residues. Consistent with the presence of 2 consecutive oligonucleotide/oligosaccharide-binding folds in the repeat, the p200-family proteins can bind to DNA. Additionally, these proteins (except the p202 proteins) also contain a pyrin (PYD) domain in the N-terminus. Increased expression of p202 proteins in certain strains of female mice is associated with lupus-like disease. Interestingly, only the Aim2 protein is conserved between the mouse and humans. Several recent studies have provided evidence that the Aim2 and p202 proteins can recognize DNA in cytoplasm and the Aim2 protein upon sensing DNA can form a caspase-1-activating inflammasome. In this review, we discuss how the ability of p200-family proteins to sense cytoplasmic DNA may contribute to the development of chronic inflammation and associated diseases.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Panchanathan R, Duan X, Shen H, Rathinam VAK, Erickson LD, Fitzgerald KA, Choubey D. Aim2 deficiency stimulates the expression of IFN-inducible Ifi202, a lupus susceptibility murine gene within the Nba2 autoimmune susceptibility locus. THE JOURNAL OF IMMUNOLOGY 2010; 185:7385-93. [PMID: 21057088 DOI: 10.4049/jimmunol.1002468] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Murine Aim2 and p202 proteins (encoded by the Aim2 and Ifi202 genes) are members of the IFN-inducible p200 protein family. Both proteins can sense dsDNA in the cytoplasm. However, upon sensing dsDNA, only the Aim2 protein through its pyrin domain can form an inflammasome to activate caspase-1 and induce cell death. Given that the p202 protein has been predicted to inhibit the activation of caspase-1 by the Aim2 protein and that increased levels of the p202 protein in female mice of certain strains are associated with lupus susceptibility, we compared the expression of Aim2 and Ifi202 genes between Aim2-deficient and age-matched wild-type mice. We found that the Aim2 deficiency in immune cells stimulated the expression of Ifi202 gene. The increased levels of the p202 protein in cells were associated with increases in the expression of IFN-β, STAT1, and IFN-inducible genes. Moreover, after knockdown of Aim2 expression in the murine macrophage cell line J774.A1, IFN-β treatment of cells robustly increased STAT1 protein levels (compared with those of control cells), increased the activating phosphorylation of STAT1 on Tyr-701, and stimulated the activity of an IFN-responsive reporter. Notably, the expression of Aim2 in non-lupus-prone (C57BL/6 and B6.Nba2-C) and lupus-prone (B6.Nba2-ABC) splenic cells and in a murine macrophage cell line that overexpressed p202 protein was found to be inversely correlated with Ifi202. Collectively, our observations demonstrate an inverse correlation between Aim2 and p202 expressions. We predict that defects in Aim2 expression within immune cells contribute to increased susceptibility to lupus.
Collapse
|
33
|
Patsos G, Germann A, Gebert J, Dihlmann S. Restoration of absent in melanoma 2 (AIM2) induces G2/M cell cycle arrest and promotes invasion of colorectal cancer cells. Int J Cancer 2010; 126:1838-1849. [PMID: 19795419 DOI: 10.1002/ijc.24905] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Absent in melanoma 2 (AIM2) is a member of the interferon-inducible HIN-200 protein family. Recent findings point to a role of AIM2 function in both inflammation and cancer. In response to foreign cytoplasmic DNA, AIM2 forms an inflammasome, resulting in caspase activation in inflammatory cells. Moreover, AIM2 reduces breast cancer cell proliferation and mammary tumor growth in a mouse model and shows a high frequency of frameshift mutations in microsatellite unstable (MSI-H) gastric, endometrial and colorectal cancers. However, the consequences of AIM2 restoration in AIM2-deficient colon cancer cells have not yet been examined. Using different constructs for expression of AIM2 fusion proteins, we found that AIM2 restoration clearly suppressed cell proliferation and viability in HCT116 cells as well as in cell lines derived from other entities. In contrast to previous reports from breast cancer cells, our cell cycle analyses of colon cancer cells revealed that AIM2-mediated inhibition of cell proliferation is associated with accumulation of cells at late S-phase, resulting in G2/M arrest. The latter correlated well with upregulation of cyclin D3 and p21(Waf1/Cip1) as well as with inhibition of cdc2 activity through Tyr-15 phosphorylation. Furthermore, AIM2 restoration affected the adhesion of colorectal cancer cells to fibronectin and stimulated the invasion through extracellular matrix-coated membrane in transwell assays. Consistent with this phenotype, AIM2 induced the expression of invasion-associated genes such as VIM and MCAM, whereas ANXA10 and CDH1 were downregulated. Our data suggest that AIM2 mediates reduction of cell proliferation by cell cycle arrest, thereby conferring an invasive phenotype in colon cancer cells.
Collapse
Affiliation(s)
- Georgios Patsos
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anja Germann
- Fraunhofer Institut fuer Biomedizinische Technik (IBMT), Department of Biohybrid Systems, Molecular Cell and Tissue Engineering, St. Ingbert, Germany
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Susanne Dihlmann
- Department of Applied Tumor Biology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
34
|
Molecular mechanisms involved in inflammasome activation. Trends Cell Biol 2009; 19:455-64. [PMID: 19716304 DOI: 10.1016/j.tcb.2009.06.002] [Citation(s) in RCA: 270] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/20/2009] [Accepted: 06/23/2009] [Indexed: 12/21/2022]
Abstract
Germline-encoded pattern recognition receptors (PRRs) sense microbial or endogenous products released from damaged or dying cells and trigger innate immunity. In most cases, sensing of these signals is coupled to signal transduction pathways that lead to transcription of immune response genes that combat infection or lead to cell death. Members of the NOD-like receptor (NLR) family assemble into large multiprotein complexes, termed inflammasomes. Inflammasomes do not regulate transcription of immune response genes, but activate caspase-1, a proteolytic enzyme that cleaves and activates the secreted cytokines interleukin-1beta and interleukin-18. Inflammasomes also regulate pyroptosis, a caspase-1-dependent form of cell death that is highly inflammatory. Here, we review exciting recent developments on the role of inflammasome complexes in host defense and the discovery of a new DNA sensing inflammasome, and describe important progress made in our understanding of how inflammasomes are activated. Additionally, we highlight how dysregulation of inflammasomes contributes to human disease.
Collapse
|
35
|
Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, Hardy LL, Garceau V, Sweet MJ, Ross IL, Hume DA, Stacey KJ. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 2009; 323:1057-60. [PMID: 19131592 DOI: 10.1126/science.1169841] [Citation(s) in RCA: 668] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mammalian innate immune system is activated by foreign nucleic acids. Detection of double-stranded DNA (dsDNA) in the cytoplasm triggers characteristic antiviral responses and macrophage cell death. Cytoplasmic dsDNA rapidly activated caspase 3 and caspase 1 in bone marrow-derived macrophages. We identified the HIN-200 family member and candidate lupus susceptibility factor, p202, as a dsDNA binding protein that bound stably and rapidly to transfected DNA. Knockdown studies showed p202 to be an inhibitor of DNA-induced caspase activation. Conversely, the related pyrin domain-containing HIN-200 factor, AIM2 (p210), was required for caspase activation by cytoplasmic dsDNA. This work indicates that HIN-200 proteins can act as pattern recognition receptors mediating responses to cytoplasmic dsDNA.
Collapse
Affiliation(s)
- Tara L Roberts
- The University of Queensland, Institute for Molecular Bioscience, QLD 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ludlow LE, Hii LL, Thorpe J, Newbold A, Tainton KM, Trapani JA, Clarke CJP, Johnstone RW. Cloning and characterisation of Ifi206: a new murine HIN-200 family member. J Cell Biochem 2008; 103:1270-82. [PMID: 17786933 DOI: 10.1002/jcb.21512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
HIN-200 proteins are interferon-inducible proteins capable of regulating cell growth, senescence, differentiation and death. Using a combination of in silico analysis of NCBI EST databases and screening of murine C57BL/6 cDNA libraries we isolated novel murine HIN-200 cDNAs designated Ifi206S and Ifi206L encoding two putative mRNA splice variants. The p206S and p206L protein isoforms have a modular domain structure consisting of an N-terminal PAAD/DAPIN/Pyrin domain, a region rich in serine, threonine and proline residues and a C-terminal 200 B domain characteristic of other HIN-200 proteins. Ifi206 mRNA was detected only in the spleen and lung of BALB/c and C57BL/6 mice and expression was up-regulated by both types I and II IFN subtypes. p206 protein was predominantly expressed in the cytoplasm and addition of LMB, a CRM1 dependent nuclear export inhibitor, caused p206 to accumulate in the nucleus. Unlike other human and mouse HIN-200 proteins that contain only a single 200 amino acid domain, overexpression of p206 impaired the clonogenic growth of tumour cell lines. Thus, p206 represents the newest HIN-200 family member discovered. It has distinct and restricted pattern of expression however maintains many of the hallmarks of HIN-200 proteins including the presence of a characteristic 200 X domain, induction by interferon and an ability to suppress tumour cell growth.
Collapse
Affiliation(s)
- Louise E Ludlow
- Cancer Immunology Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ludlow LE, Purton LE, Klarmann K, Gough DJ, Hii LL, Trapani JA, Keller JR, Clarke CJ, Johnstone RW. The Role of p202 in Regulating Hematopoietic Cell Proliferation and Differentiation. J Interferon Cytokine Res 2008; 28:5-11. [DOI: 10.1089/jir.2007.0070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Louise E. Ludlow
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
- Current address: Department of Medicine and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, and Department of Medicine, Evanston Northwestern Healthcare, Evanston, IL, 60208
| | - Louise E. Purton
- Stem Cell Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Current address: Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02114
| | - Kim Klarmann
- Basic Research Program, SAIC-Inc. Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702-1201
| | - Daniel J. Gough
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
- Current address: New York University School of Medicine, New York, NY 10016
| | - Linda L. Hii
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| | - Joseph A. Trapani
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| | - Jonathan R. Keller
- Basic Research Program, SAIC-Inc. Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702-1201
| | - Christopher J.P. Clarke
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| | - Ricky W. Johnstone
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre, East Melbourne VIC 3002, Australia
- Department of Pathology, University of Melbourne, VIC 3010, Australia
| |
Collapse
|
38
|
Asefa B, Dermott JM, Kaldis P, Stefanisko K, Garfinkel DJ, Keller JR. p205, a potential tumor suppressor, inhibits cell proliferation via multiple pathways of cell cycle regulation. FEBS Lett 2006; 580:1205-14. [PMID: 16458891 DOI: 10.1016/j.febslet.2006.01.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 12/28/2005] [Accepted: 01/02/2006] [Indexed: 11/18/2022]
Abstract
p205 is a member of the interferon-inducible p200 family of proteins that regulate cell proliferation. Over-expression of p205 inhibits cell growth, although its mechanism of action is currently unknown. Therefore, we evaluated the effect of p205 on the p53 and Rb-dependent pathways of cell cycle regulation. p205 expression results in elevated levels of p21, and activates the p21 promoter in vitro in a p53-dependent manner. In addition, p205 induces increased expression of Rb, and binds directly to Rb and p53. Interestingly, p205 also induces growth inhibition independent of p53 and Rb by delaying G2/M progression in proliferating cells, and is a substrate for Cdk2 kinase activity. Finally, we have identified other binding partners of p205 by a yeast two-hybrid screen, including the paired homeodomain protein HoxB2. Taken together, our results indicate that p205 induces growth arrest by interaction with multiple transcription factors that regulate the cell cycle, including but not entirely dependent on the Rb- and p53-mediated pathways of growth inhibition.
Collapse
Affiliation(s)
- Benyam Asefa
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute-Frederick, Building 560, Room 31-56, Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
39
|
Albrecht M, Choubey D, Lengauer T. The HIN domain of IFI-200 proteins consists of two OB folds. Biochem Biophys Res Commun 2005; 327:679-87. [PMID: 15649401 DOI: 10.1016/j.bbrc.2004.12.056] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2004] [Indexed: 02/07/2023]
Abstract
The interferon-inducible p200 (IFI-200/HIN-200) family of proteins regulates cell growth and differentiation, and confers resistance to the development of tumors and virus infections. IFI-200 family members are thought to exert their biological effects by modulation of the transcriptional activities of numerous factors and interaction with other proteins through the C-terminal HIN domains. However, the HIN domain structure and function have remained obscure. Therefore, we performed a comprehensive bioinformatics analysis and assembled a structure-based multiple sequence alignment of IFI-200 proteins. The application of fold recognition methods revealed that the HIN domain consists of two consecutive OB domains. Our structural models of DNA-binding HIN domains afford the long-sought interpretations for many previous experimental observations. Our results also raise the possibility of as yet unexplored functional roles of IFI-200 proteins as transcriptional regulators and as interaction partners of proteins involved in immunomodulatory and apoptotic processes.
Collapse
Affiliation(s)
- Mario Albrecht
- Max-Planck-Institute for Informatics, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany.
| | | | | |
Collapse
|
40
|
Cresswell KS, Clarke CJP, Jackson JT, Darcy PK, Trapani JA, Johnstone RW. Biochemical and growth regulatory activities of the HIN-200 family member and putative tumor suppressor protein, AIM2. Biochem Biophys Res Commun 2005; 326:417-24. [PMID: 15582594 DOI: 10.1016/j.bbrc.2004.11.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Indexed: 01/23/2023]
Abstract
The human HIN-200 family member AIM2 was originally identified in a screen for suppressors of melanoma tumorigenicity following introduction of chromosome 6 into the UACC903 human melanoma cell line. Although the AIM2 protein contained many of the conserved structural motifs common to other HIN-200 proteins, the biochemical characteristics of AIM2 and the ability of overexpressed AIM2 to phenocopy the effect of introduction of chromosome 6 in the UACC903 cells had not been assessed. Herein we demonstrated that AIM2 was localised within the nucleus of transfected or interferon-treated human cells. In addition, AIM2 could homodimerise via the amino-terminal (PAAD/DAPIN) region and heterodimerise with the related IFI 16 protein. However, overexpressed AIM2 did not significantly affect the growth or survival of UACC903 cells or another human melanoma cell line. These data indicate that AIM2 has many of the biochemical and structural characteristics of HIN-200 proteins, however, its expression is not sufficient to induce a tumor-suppressor-like phenotype.
Collapse
Affiliation(s)
- Kim S Cresswell
- The Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, 3002 Vic., Australia
| | | | | | | | | | | |
Collapse
|
41
|
Dermott JM, Gooya JM, Asefa B, Weiler SR, Smith M, Keller JR. Inhibition of Growth by p205: A Nuclear Protein and Putative Tumor Suppressor Expressed during Myeloid Cell Differentiation. Stem Cells 2004; 22:832-48. [PMID: 15342947 DOI: 10.1634/stemcells.22-5-832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
p205 belongs to a family of interferon-inducible proteins called the IFI-200 family, which have been implicated in the regulation of cell growth and differentiation. While p205 is induced in hematopoietic stem cells during myeloid cell differentiation, its function is not known. Therefore, the aim of this study was to determine the role of p205 in regulating proliferation in hematopoietic progenitor cells and in nonhematopoietic cell lines. We found that p205 localizes to the nucleus in hematopoietic and nonhematopoietic cell lines. Transient expression of p205 in murine IL-3-dependent BaF3 and 32D-C123 progenitor cell lines inhibited IL-3-induced growth and proliferation. The closely related IFI-200 family members, p204 and p202, similarly inhibited IL-3-dependent progenitor cell proliferation. p205 also inhibited the proliferation and growth of normal hematopoietic progenitor cells. In nonhematopoietic cell lines, p205 and p204 expression inhibited NIH3T3 cell colony formation in vitro, and microinjection of p205 expression vectors into NIH3T3 fibroblasts inhibited serum-induced proliferation. We have determined the functional domains of p205 necessary for activity, which were identified as the N-terminal domain in apoptosis and interferon response (DAPIN)/PYRIN domain, and the C-terminal retinoblastoma protein (Rb)-binding motif. In addition, we have demonstrated that a putative ataxia telangiectasia, mutated (ATM) kinase phosphorylation site specifically regulates the activity of p205. Taken together, these data suggest that p205 is a potent cell growth regulator whose activity is mediated by its protein-binding domains. We propose that during myelomonocytic cell differentiation, induction of p205 expression contributes to cell growth arrest, thus allowing progenitor cells to differentiate.
Collapse
Affiliation(s)
- Jonathan M Dermott
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute at Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
42
|
Ding Y, Wang L, Su LK, Frey JA, Shao R, Hunt KK, Yan DH. Antitumor activity of IFIX, a novel interferon-inducible HIN-200 gene, in breast cancer. Oncogene 2004; 23:4556-66. [PMID: 15122330 DOI: 10.1038/sj.onc.1207592] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We identified IFIX as a new member of the hematopoietic interferon (IFN)-inducible nuclear protein with the 200-amino-acid repeat (HIN-200) family. Six different alternatively spliced forms of mRNA are transcribed from the IFIX gene, which are predicted to encode six different isoforms of IFIX proteins (IFIXalpha1, alpha2, beta1, beta2, gamma1, and gamma2). The IFIX proteins are primarily localized in the nucleus. They share a common N-terminal region that contains a predicted pyrin domain and a putative nuclear localization signal. Unlike IFIXalpha and IFIXbeta, IFIXgamma isoforms do not have the 200-amino-acid signature motif. Interestingly, the expression of IFIX was reduced in most human breast tumors and breast cancer cell lines. Expression of IFIXalpha1, the longest isoform of IFIX, in human breast cancer cell lines reduced their anchorage-dependent and -independent growth in vitro and tumorigenicity in nude mice. Moreover, a liposome-mediated IFIXalpha1 gene transfer suppressed the growth of already-formed tumors in a breast cancer xenograft model. IFIXalpha1 appears to suppress the growth of breast cancer cells in a pRB- and p53-independent manner by increasing the expression of the cyclin-dependent kinase inhibitor p21(CIP1), which leads to the reduction of the kinase activity of both Cdk2 and p34(Cdc2). Together, our results show that IFIXalpha1 possesses a tumor-suppressor activity and suggest IFIXalpha1 may be used as a therapeutic agent in cancer treatment.
Collapse
Affiliation(s)
- Yi Ding
- 1Department of Molecular and Cellular Oncology, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kim HK, Choi IJ, Kim HS, Kim JH, Kim E, Park IS, Chun JH, Kim IH, Kim IJ, Kang HC, Park JH, Bae JM, Lee JS, Park JG. DNA microarray analysis of the correlation between gene expression patterns and acquired resistance to 5-FU/cisplatin in gastric cancer. Biochem Biophys Res Commun 2004; 316:781-9. [PMID: 15033468 DOI: 10.1016/j.bbrc.2004.02.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Indexed: 11/19/2022]
Abstract
The mechanisms of intrinsic and/or acquired anti-cancer drug resistance have been described in in vitro resistance models, but the clinical relevance has remained undefined. We undertook a prospective study to identify correlations between gene expression and clinical resistance to 5-FU/cisplatin. We compared expression profiles from gastric cancer endoscopic biopsy specimens obtained at a chemosensitive state (partial remission after 5-FU/cisplatin) with those obtained at a refractory state (disease progression), using Affymetrix oligonucleotide microarray technology (U133A). Using 119 discriminating probes and a cross-validation approach, we were able to correctly identify the chemo-responsiveness of 7 pairs of training samples and 1 independent test pair. These exploratory data demonstrate that the gene expression profiles differ between chemosensitive and refractory state gastric cancer biopsy samples.
Collapse
Affiliation(s)
- Hark Kyun Kim
- Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Choubey D, Pramanik R, Xin H. Subcellular localization and mechanisms of nucleocytoplasmic distribution of p202, an interferon-inducible candidate for lupus susceptibility. FEBS Lett 2003; 553:245-9. [PMID: 14572632 DOI: 10.1016/s0014-5793(03)01006-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Increased expression of p202 (52 kDa), an interferon (IFN)-inducible murine protein, in splenic cells (B- and T-cells) derived from female mice of the lupus-prone strains is correlated with increased susceptibility to develop systemic lupus erythematosus. However, the molecular mechanisms remain unclear. Our previous studies have indicated that, in IFN-treated fibroblasts, p202 is detected both in the cytoplasm and in the nucleus. Moreover, in the cytoplasm, a fraction of p202 associates with a membranous organelle. Here we report that, in the cytoplasm, a fraction of p202 associated with mitochondria. Additionally, we found that the constitutive p202 is primarily detected in the cytoplasm. Remarkably, the IFN treatment of cells potentiated nuclear accumulation of p202. Our observations are consistent with the possibility that IFN signaling regulates p202 levels as well as its nucleocytoplasmic distribution. These observations will serve as a basis to elucidate the molecular mechanisms by which p202 contributes to lupus susceptibility.
Collapse
Affiliation(s)
- Divaker Choubey
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Medical Center, 60153 Maywood, IL, USA.
| | | | | |
Collapse
|
45
|
Doggett KL, Briggs JA, Linton MF, Fazio S, Head DR, Xie J, Hashimoto Y, Laborda J, Briggs RC. Retroviral mediated expression of the human myeloid nuclear antigen in a null cell line upregulates Dlk1 expression. J Cell Biochem 2002; 86:56-66. [PMID: 12112016 DOI: 10.1002/jcb.10190] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The human myeloid nuclear differentiation antigen (MNDA) is a hematopoietic cell specific nuclear protein. MNDA and other related gene products interact with and alter the activity of a large number of proteins involved in regulating specific gene transcription. MNDA and related genes exhibit expression characteristics, which suggest functions unique to specific lineages of cells, in addition to mediating the effects of interferons. Cells of the human K562 myeloid line do not express MNDA and are relatively immature compared to lines that express MNDA (HL-60, U937, and THP1). The hypothesis that MNDA influences the expression of specific genes was tested by creating MNDA expressing K562 cells using stable retroviral mediated gene transfer followed by evaluation of transcription profiles. Two macroarrays containing a total of 2,350 cDNAs of known genes showed a specific up-regulation of Dlk1 expression in MNDA expressing K562 cell clones. Real time quantitative RT-PCR analysis confirmed an average of over 3- and 7-fold upregulation of Dlk1 in two clones of MNDA expressing K562 cells. The effects on Dlk1 were also confirmed by Northern blotting. Dlk1 is essential for normal hematopoiesis and abnormal expression is a proposed marker of myelodysplastic syndrome. Additional screening of transcription profiles after induced erythroid and megakaryoblastic differentiation showed no additional gene transcripts altered by the presence of MNDA. These results indicate that MNDA alters expression of a gene essential for normal hematopoiesis.
Collapse
Affiliation(s)
- Kevin L Doggett
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-5310, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Leszczyniecka M, Roberts T, Dent P, Grant S, Fisher PB. Differentiation therapy of human cancer: basic science and clinical applications. Pharmacol Ther 2001; 90:105-56. [PMID: 11578655 DOI: 10.1016/s0163-7258(01)00132-2] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Current cancer therapies are highly toxic and often nonspecific. A potentially less toxic approach to treating this prevalent disease employs agents that modify cancer cell differentiation, termed 'differentiation therapy.' This approach is based on the tacit assumption that many neoplastic cell types exhibit reversible defects in differentiation, which upon appropriate treatment, results in tumor reprogramming and a concomitant loss in proliferative capacity and induction of terminal differentiation or apoptosis (programmed cell death). Laboratory studies that focus on elucidating mechanisms of action are demonstrating the effectiveness of 'differentiation therapy,' which is now beginning to show translational promise in the clinical setting.
Collapse
Affiliation(s)
- M Leszczyniecka
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|