1
|
Steinert JR, Amal H. The contribution of an imbalanced redox signalling to neurological and neurodegenerative conditions. Free Radic Biol Med 2023; 194:71-83. [PMID: 36435368 DOI: 10.1016/j.freeradbiomed.2022.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Nitric oxide and other redox active molecules such as oxygen free radicals provide essential signalling in diverse neuronal functions, but their excess production and insufficient scavenging induces cytotoxic redox stress which is associated with numerous neurodegenerative and neurological conditions. A further component of redox signalling is mediated by a homeostatic regulation of divalent metal ions, the imbalance of which contributes to neuronal dysfunction. Additional antioxidant molecules such as glutathione and enzymes such as super oxide dismutase are involved in maintaining a physiological redox status within neurons. When cellular processes are perturbed and generation of free radicals overwhelms the antioxidants capacity of the neurons, a resulting redox damage leads to neuronal dysfunction and cell death. Cellular sources for production of redox-active molecules may include NADPH oxidases, mitochondria, cytochrome P450 and nitric oxide (NO)-generating enzymes, such as endothelial, neuronal and inducible NO synthases. Several neurodegenerative and developmental neurological conditions are associated with an imbalanced redox state as a result of neuroinflammatory processes leading to nitrosative and oxidative stress. Ongoing research aims at understanding the causes and consequences of such imbalanced redox homeostasis and its role in neuronal dysfunction.
Collapse
Affiliation(s)
- Joern R Steinert
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham, NG7 2NR, UK.
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Gas regulation of complex II reversal via electron shunting to fumarate in the mammalian ETC. Trends Biochem Sci 2022; 47:689-698. [PMID: 35397924 PMCID: PMC9288524 DOI: 10.1016/j.tibs.2022.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 12/24/2022]
Abstract
The electron transport chain (ETC) is a major currency converter that exchanges the chemical energy of fuel oxidation to proton motive force and, subsequently, ATP generation, using O2 as a terminal electron acceptor. Discussed herein, two new studies reveal that the mammalian ETC is forked. Hypoxia or H2S exposure promotes the use of fumarate as an alternate terminal electron acceptor. The fumarate/succinate and CoQH2/CoQ redox couples are nearly iso-potential, revealing that complex II is poised for facile reverse electron transfer, which is sensitive to CoQH2 and fumarate concentrations. The gas regulators, H2S and •NO, modulate O2 affinity and/or inhibit the electron transfer rate at complex IV. Their induction under hypoxia suggests a mechanism for how traffic at the ETC fork can be regulated.
Collapse
|
3
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Griffiths K, Lee JJ, Frenneaux MP, Feelisch M, Madhani M. Nitrite and myocardial ischaemia reperfusion injury. Where are we now? Pharmacol Ther 2021; 223:107819. [PMID: 33600852 DOI: 10.1016/j.pharmthera.2021.107819] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease remains the leading cause of death worldwide despite major advances in technology and treatment, with coronary heart disease (CHD) being a key contributor. Following an acute myocardial infarction (AMI), it is imperative that blood flow is rapidly restored to the ischaemic myocardium. However, this restoration is associated with an increased risk of additional complications and further cardiomyocyte death, termed myocardial ischaemia reperfusion injury (IRI). Endogenously produced nitric oxide (NO) plays an important role in protecting the myocardium from IRI. It is well established that NO mediates many of its downstream functions through the 'canonical' NO-sGC-cGMP pathway, which is vital for cardiovascular homeostasis; however, this pathway can become impaired in the face of inadequate delivery of necessary substrates, in particular L-arginine, oxygen and reducing equivalents. Recently, it has been shown that during conditions of ischaemia an alternative pathway for NO generation exists, which has become known as the 'nitrate-nitrite-NO pathway'. This pathway has been reported to improve endothelial dysfunction, protect against myocardial IRI and attenuate infarct size in various experimental models. Furthermore, emerging evidence suggests that nitrite itself provides multi-faceted protection, in an NO-independent fashion, against a myriad of pathophysiologies attributed to IRI. In this review, we explore the existing pre-clinical and clinical evidence for the role of nitrate and nitrite in cardioprotection and discuss the lessons learnt from the clinical trials for nitrite as a perconditioning agent. We also discuss the potential future for nitrite as a pre-conditioning intervention in man.
Collapse
Affiliation(s)
- Kayleigh Griffiths
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jordan J Lee
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Michael P Frenneaux
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
5
|
Remesar X, Alemany M. Dietary Energy Partition: The Central Role of Glucose. Int J Mol Sci 2020; 21:E7729. [PMID: 33086579 PMCID: PMC7593952 DOI: 10.3390/ijms21207729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Humans have developed effective survival mechanisms under conditions of nutrient (and energy) scarcity. Nevertheless, today, most humans face a quite different situation: excess of nutrients, especially those high in amino-nitrogen and energy (largely fat). The lack of mechanisms to prevent energy overload and the effective persistence of the mechanisms hoarding key nutrients such as amino acids has resulted in deep disorders of substrate handling. There is too often a massive untreatable accumulation of body fat in the presence of severe metabolic disorders of energy utilization and disposal, which become chronic and go much beyond the most obvious problems: diabetes, circulatory, renal and nervous disorders included loosely within the metabolic syndrome. We lack basic knowledge on diet nutrient dynamics at the tissue-cell metabolism level, and this adds to widely used medical procedures lacking sufficient scientific support, with limited or nil success. In the present longitudinal analysis of the fate of dietary nutrients, we have focused on glucose as an example of a largely unknown entity. Even most studies on hyper-energetic diets or their later consequences tend to ignore the critical role of carbohydrate (and nitrogen disposal) as (probably) the two main factors affecting the substrate partition and metabolism.
Collapse
Affiliation(s)
- Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine Faculty of Biology, University Barcelona, 08028 Barcelona, Spain;
- IBUB Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, 08028 Barcelona, Spain
| |
Collapse
|
6
|
Poderoso JJ, Helfenberger K, Poderoso C. The effect of nitric oxide on mitochondrial respiration. Nitric Oxide 2019; 88:61-72. [PMID: 30999001 DOI: 10.1016/j.niox.2019.04.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 01/04/2023]
Abstract
This article reviews the interactions between nitric oxide (NO) and mitochondrial respiration. Mitochondrial ATP synthesis is responsible for virtually all energy production in mammals, and every other process in living organisms ultimately depends on that energy production. Furthermore, both necrosis and apoptosis, that summarize the main forms of cell death, are intimately linked to mitochondrial integrity. Endogenous and exogenous •NO inhibits mitochondrial respiration by different well-studied mechanisms and several nitrogen derivatives. Instantaneously, low concentrations of •NO, specifically and reversibly inhibit cytochrome c oxidase in competition with oxygen, in several tissues and cells in culture. Higher concentrations of •NO and its derivatives (peroxynitrite, nitrogen dioxide or nitrosothiols) can cause irreversible inhibition of the respiratory chain, uncoupling, permeability transition, and/or cell death. Peroxynitrite can cause opening of the permeability transition pore and opening of this pore causes loss of cytochrome c, which in turn might contribute to peroxynitrite-induced inhibition of respiration. Therefore, the inhibition of cytochrome c oxidase by •NO may be involved in the physiological and/or pathological regulation of respiration rate, and its affinity for oxygen, which depend on reactive nitrogen species formation, pH, proton motriz force and oxygen supply to tissues.
Collapse
Affiliation(s)
- Juan José Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Hospital de Clínicas "José de San Martín", Laboratorio Del Metabolismo Del Oxígeno, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Katia Helfenberger
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th Floor, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cecilia Poderoso
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Paraguay 2155 5th Floor, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Edwards TM, Hamlin HJ. Reproductive endocrinology of environmental nitrate. Gen Comp Endocrinol 2018; 265:31-40. [PMID: 29577898 DOI: 10.1016/j.ygcen.2018.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022]
Abstract
Nitrate is a widespread contaminant of aquatic ecosystems and drinking water. It is also broadly active in organismal physiology, and as such, has the potential to both enhance and disrupt normal physiological function. In animals, nitrate is a proposed endocrine disrupter that is converted in vivo to nitrite and nitric oxide. Nitric oxide, in particular, is a potent cell signaling molecule that participates in diverse biological pathways and events. Here, we review in vivo nitrate cycling and downstream mechanistic physiology, with an emphasis on reproductive outcomes. However, in many cases, the research produces contradictory results, in part because there is good evidence that nitrate follows a non-monotonic dose-response curve. This conundrum highlights an array of opportunities for scientists from different fields to collaborate for a full understanding of nitrate physiology. Opposing conclusions are especially likely when in vivo/in vitro, long term/short term, high dose/low dose, or hypoxia/normoxia studies are compared. We conclude that in vivo studies are most appropriate for testing an organism's integrated endocrine response to nitrate. Based on the limited available studies, there is a generalized trend that shorter term studies (less than 1 month) or studies involving low doses (≤5 mg/L NO3-N) cause steroid hormone levels to decline. Studies that last more than a month and/or involve higher, but still environmentally relevant, exposures (>50-100 mg/L NO3-N) cause steroid hormone levels to increase. Very high nitrate doses (>500 mg/L NO3-N) are cytotoxic in many species. Hypoxia and acidity are likely to intensify the effects of nitrate. For study design, degree of study animal reproductive maturity or activity is important, with immature/reproductively quiescent animals responding to nitrate differently, compared with reproductively active animals. A detailed table of studies is presented.
Collapse
Affiliation(s)
- Thea M Edwards
- Department of Biology, University of the South, Sewanee, TN, USA.
| | | |
Collapse
|
8
|
Ghosh S, Deka H, Dangat YB, Saha S, Gogoi K, Vanka K, Mondal B. Reductive nitrosylation of nickel(ii) complex by nitric oxide followed by nitrous oxide release. Dalton Trans 2018; 45:10200-8. [PMID: 27230278 DOI: 10.1039/c6dt00826g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni(ii) complex of ligand ( = bis(2-ethyl-4-methylimidazol-5-yl)methane) in methanol solution reacts with an equivalent amount of NO resulting in a corresponding Ni(i) complex. Adding further NO equivalent affords a Ni(i)-nitrosyl intermediate with the {NiNO}(10) configuration. This nitrosyl intermediate upon subsequent reaction with additional NO results in the release of N2O and formation of a Ni(ii)-nitrito complex. Crystallographic characterization of the nitrito complex revealed a symmetric η(2)-O,O-nitrito bonding to the metal ion. This study demonstrates the reductive nitrosylation of a Ni(ii) center followed by N2O release in the presence of excess NO.
Collapse
Affiliation(s)
- Somnath Ghosh
- Department of Chemsitry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Hemanta Deka
- Department of Chemsitry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Yuvraj B Dangat
- Academy of Scientific and Innovative Research, National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Soumen Saha
- Department of Chemsitry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Kuldeep Gogoi
- Department of Chemsitry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Kumar Vanka
- Academy of Scientific and Innovative Research, National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Biplab Mondal
- Department of Chemsitry, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
9
|
Deryagin OG, Gavrilova SA, Gainutdinov KL, Golubeva AV, Andrianov VV, Yafarova GG, Buravkov SV, Koshelev VB. Molecular Bases of Brain Preconditioning. Front Neurosci 2017; 11:427. [PMID: 28790886 PMCID: PMC5524930 DOI: 10.3389/fnins.2017.00427] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/11/2017] [Indexed: 12/20/2022] Open
Abstract
Preconditioning of the brain induces tolerance to the damaging effects of ischemia and prevents cell death in ischemic penumbra. The development of this phenomenon is mediated by mitochondrial adenosine triphosphate-sensitive potassium (KATP+) channels and nitric oxide signaling (NO). The aim of this study was to investigate the dynamics of molecular changes in mitochondria after ischemic preconditioning (IP) and the effect of pharmacological preconditioning (PhP) with the KATP+-channels opener diazoxide on NO levels after ischemic stroke in rats. Immunofluorescence-histochemistry and laser-confocal microscopy were applied to evaluate the cortical expression of electron transport chain enzymes, mitochondrial KATP+-channels, neuronal and inducible NO-synthases, as well as the dynamics of nitrosylation and nitration of proteins in rats during the early and delayed phases of IP. NO cerebral content was studied with electron paramagnetic resonance (EPR) spectroscopy using spin trapping. We found that 24 h after IP in rats, there is a two-fold decrease in expression of mitochondrial KATP+-channels (p = 0.012) in nervous tissue, a comparable increase in expression of cytochrome c oxidase (p = 0.008), and a decrease in intensity of protein S-nitrosylation and nitration (p = 0.0004 and p = 0.001, respectively). PhP led to a 56% reduction of free NO concentration 72 h after ischemic stroke simulation (p = 0.002). We attribute this result to the restructuring of tissue energy metabolism, namely the provision of increased catalytic sites to mitochondria and the increased elimination of NO, which prevents a decrease in cell sensitivity to oxygen during subsequent periods of severe ischemia.
Collapse
Affiliation(s)
- Oleg G Deryagin
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Svetlana A Gavrilova
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Khalil L Gainutdinov
- Laboratory of Neurorehabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of SciencesKazan, Russia
| | - Anna V Golubeva
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Vyatcheslav V Andrianov
- Laboratory of Neurorehabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of SciencesKazan, Russia
| | - Guzel G Yafarova
- Laboratory of Neurorehabilitation of Motor Disorders, Institute of Fundamental Medicine and Biology, Kazan Federal UniversityKazan, Russia.,Laboratory of Spin Physics and Spin Chemistry, Zavoisky Physical-Technical Institute of the Russian Academy of SciencesKazan, Russia
| | - Sergey V Buravkov
- Research Laboratory of Cellular Structure and Tissue Imaging Analysis, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| | - Vladimir B Koshelev
- Department of Physiology and General Pathology, Medical Faculty, Lomonosov Moscow State UniversityMoscow, Russia
| |
Collapse
|
10
|
Abstract
Cytochrome bd is a unique prokaryotic respiratory terminal oxidase that does not belong to the extensively investigated family of haem-copper oxidases (HCOs). The enzyme catalyses the four-electron reduction of O2 to 2H2O, using quinols as physiological reducing substrates. The reaction is electrogenic and cytochrome bd therefore sustains bacterial energy metabolism by contributing to maintain the transmembrane proton motive force required for ATP synthesis. As compared to HCOs, cytochrome bd displays several distinctive features in terms of (i) metal composition (it lacks Cu and harbours a d-type haem in addition to two haems b), (ii) overall three-dimensional structure, that only recently has been solved, and arrangement of the redox cofactors, (iii) lesser energetic efficiency (it is not a proton pump), (iv) higher O2 affinity, (v) higher resistance to inhibitors such as cyanide, nitric oxide (NO) and hydrogen sulphide (H2S) and (vi) ability to efficiently metabolize potentially toxic reactive oxygen and nitrogen species like hydrogen peroxide (H2O2) and peroxynitrite (ONOO-). Compelling evidence suggests that, beyond its bioenergetic role, cytochrome bd plays multiple functions in bacterial physiology and affords protection against oxidative and nitrosative stress. Relevant to human pathophysiology, thanks to its peculiar properties, the enzyme has been shown to promote virulence in several bacterial pathogens, being currently recognized as a target for the development of new antibiotics. This review aims to give an update on our current understanding of bd-type oxidases with a focus on their reactivity with gaseous ligands and its potential impact on bacterial physiology and human pathophysiology.
Collapse
|
11
|
Shalimu D, Sun J, Baskin CC, Baskin JM, Sun L, Liu Y. Changes in oxidative patterns during dormancy break by warm and cold stratification in seeds of an edible fruit tree. AOB PLANTS 2016; 8:plw024. [PMID: 27154624 PMCID: PMC4925924 DOI: 10.1093/aobpla/plw024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 04/06/2016] [Indexed: 05/30/2023]
Abstract
The transition from seed dormancy to germination is triggered by environmental factors, and in pomegranate (Punica granatum) seeds higher germination percentages are achieved by warm + cold stratification rather than by cold stratification alone. Our objective was to define the pattern of internal oxidative changes in pomegranate seeds as dormancy was being broken by warm + cold stratification and by cold stratification alone. Embryos isolated from seeds after 1-42 days of warm stratification, after 56 days of warm stratification + 7, 28 or 56 days of cold stratification, and after 1-84 days of cold stratification alone, were used in biochemical tests. Hydrogen peroxide (H2O2), nitric oxide (NO), proline, lipid peroxidation, protein carbonylation, and activities of the scavenging enzymes superoxide dismutase (SOD), hydrogen peroxide enzyme and peroxidase in the embryos were assessed by colorimetric methods. Our results indicated that warm + cold stratification had a stronger dormancy-breaking effect than cold stratification (85% versus 50% germination), which may be attributed to a higher yield of H2O2, NO, lipid peroxidation and protein carbonylation in warm + cold stratification. Furthermore, warm + cold stratification-induced H2O2 change led to greater changes (elevation followed by attenuation) in activities of the scavenging enzymes than that induced by cold stratification alone. These results indicated that restriction of the level of reactive oxygen species change within a positive and safe range by such enzymes promoted seed germination. In addition, a relatively strong elevation of proline during warm + cold stratification also contributed to dormancy breakage and subsequent germination. In conclusion, the strong dormancy alleviating effect of warm + cold stratification on pomegranate seeds may be attributed to the corresponding active oxidative change via H2O2, NO, proline, malondialdehyde, protein carbonylation and scavenging enzymes.
Collapse
Affiliation(s)
- Dilinuer Shalimu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jia Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Carol C Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Jerry M Baskin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Liwei Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
12
|
Hematian S, Garcia-Bosch I, Karlin KD. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides. Acc Chem Res 2015; 48:2462-74. [PMID: 26244814 DOI: 10.1021/acs.accounts.5b00265] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our long-time niche in synthetic biological inorganic chemistry has been to design ligands and generate coordination complexes of copper or iron ions or both, those reacting with dioxygen (O2) or nitrogen oxides (e.g., nitric oxide (NO(g)) and nitrite (NO2(-))) or both. As inspiration for this work, we turn to mitochondrial cytochrome c oxidase, which is responsible for dioxygen consumption and is also the predominant target for NO(g) and nitrite within mitochondria. In this Account, we highlight recent advances in studying synthetic heme/Cu complexes in two respects. First, there is the design, synthesis, and characterization of new O2 adducts whose further study will add insights into O2 reductive cleavage chemistry. Second, we describe how related heme/Cu constructs reduce nitrite ion to NO(g) or the reverse, oxidize NO(g) to nitrite. The reactions of nitrogen oxides occur as part of CcO's function, which is intimately tied to cellular O2 balance. We had first discovered that reduced heme/Cu compounds react with O2 giving μ-oxo heme-Fe(III)-O-Cu(II)(L) products; their properties are discussed. The O-atom is derived from dioxygen, and interrogations of these systems led to the construction and characterization of three distinctive classes of heme-peroxo complexes, two high-spin and one low-spin species. Recent investigations include a new approach to the synthesis of low-spin heme-peroxo-Cu complexes, employing a "naked" synthon, where the copper ligand denticity and geometric types can be varied. The result is a collection of such complexes; spectroscopic and structural features (by DFT calculations) are described. Some of these compounds are reactive toward reductants/protons effecting subsequent O-O cleavage. This points to how subtle improvements in ligand environment lead to a desired local structure and resulting optimized reactivity, as known to occur at enzyme active sites. The other sector of research is focused on heme/Cu assemblies mediating the redox interplay between nitrite and NO(g). In the nitrite reductase chemistry, the cupric center serves as a Lewis acid, while the heme is the redox active center providing the electron. The orientation of nitrite in approaching the ferrous heme center and N-atom binding are important. Also, detailed spectroscopic and kinetic studies of the NO(g) oxidase chemistry, in excellent agreement with theoretical calculations, reveal the intermediates and key mechanistic steps. Thus, we suggest that both chemical and biochemical heme/Cu-mediated nitrite reductase and NO(g) oxidase chemistry require N-atom binding to a ferrous heme along with cupric ion O-atom coordination, proceeding via a three-membered O-Fe-N chelate ring transition state. These important mechanistic features of heme/Cu systems interconverting NO(g) and nitrite are discussed for the first time.
Collapse
Affiliation(s)
- Shabnam Hematian
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21211, United States
| | - Isaac Garcia-Bosch
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21211, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21211, United States
| |
Collapse
|
13
|
Hematian S, Kenkel I, Shubina TE, Dürr M, Liu JJ, Siegler MA, Ivanovic-Burmazovic I, Karlin KD. Nitrogen Oxide Atom-Transfer Redox Chemistry; Mechanism of NO(g) to Nitrite Conversion Utilizing μ-oxo Heme-Fe(III)-O-Cu(II)(L) Constructs. J Am Chem Soc 2015; 137:6602-15. [PMID: 25974136 DOI: 10.1021/jacs.5b02174] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
While nitric oxide (NO, nitrogen monoxide) is a critically important signaling agent, its cellular concentrations must be tightly controlled, generally through its oxidative conversion to nitrite (NO2(-)) where it is held in reserve to be reconverted as needed. In part, this reaction is mediated by the binuclear heme a3/CuB active site of cytochrome c oxidase. In this report, the oxidation of NO(g) to nitrite is shown to occur efficiently in new synthetic μ-oxo heme-Fe(III)-O-Cu(II)(L) constructs (L being a tridentate or tetradentate pyridyl/alkylamino ligand), and spectroscopic and kinetic investigations provide detailed mechanistic insights. Two new X-ray structures of μ-oxo complexes have been determined and compared to literature analogs. All μ-oxo complexes react with 2 mol equiv NO(g) to give 1:1 mixtures of discrete [(L)Cu(II)(NO2(-))](+) plus ferrous heme-nitrosyl compounds; when the first NO(g) equiv reduces the heme center and itself is oxidized to nitrite, the second equiv of NO(g) traps the ferrous heme thus formed. For one μ-oxo heme-Fe(III)-O-Cu(II)(L) compound, the reaction with NO(g) reveals an intermediate species ("intermediate"), formally a bis-NO adduct, [(NO)(porphyrinate)Fe(II)-(NO2(-))-Cu(II)(L)](+) (λmax = 433 nm), confirmed by cryo-spray ionization mass spectrometry and EPR spectroscopy, along with the observation that cooling a 1:1 mixture of [(L)Cu(II)(NO2(-))](+) and heme-Fe(II)(NO) to -125 °C leads to association and generation of the key 433 nm UV-vis feature. Kinetic-thermodynamic parameters obtained from low-temperature stopped-flow measurements are in excellent agreement with DFT calculations carried out which describe the sequential addition of NO(g) to the μ-oxo complex.
Collapse
Affiliation(s)
- Shabnam Hematian
- †Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21211, United States
| | - Isabell Kenkel
- ‡Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Tatyana E Shubina
- ‡Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Maximilian Dürr
- ‡Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Jeffrey J Liu
- †Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21211, United States
| | - Maxime A Siegler
- †Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21211, United States
| | | | - Kenneth D Karlin
- †Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21211, United States
| |
Collapse
|
14
|
Kalita A, Kumar V, Mondal B. Nitric oxide reactivity of copper(II) complexes of bidentate amine ligands. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Bailey JC, Feelisch M, Horowitz JD, Frenneaux MP, Madhani M. Pharmacology and therapeutic role of inorganic nitrite and nitrate in vasodilatation. Pharmacol Ther 2014; 144:303-20. [PMID: 24992304 DOI: 10.1016/j.pharmthera.2014.06.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 02/07/2023]
Abstract
Nitrite has emerged as an important bioactive molecule that can be biotransformed to nitric oxide (NO) related metabolites in normoxia and reduced to NO under hypoxic and acidic conditions to exert vasodilatory effects and confer a variety of other benefits to the cardiovascular system. Abundant research is currently underway to understand the mechanisms involved and define the role of nitrite in health and disease. In this review we discuss the impact of nitrite and dietary nitrate on vascular function and the potential therapeutic role of nitrite in acute heart failure.
Collapse
Affiliation(s)
- J C Bailey
- Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - M Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - J D Horowitz
- The Queen Elizabeth Hospital, Adelaide, Australia
| | - M P Frenneaux
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - M Madhani
- Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, UK.
| |
Collapse
|
16
|
Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1178-87. [PMID: 24486503 DOI: 10.1016/j.bbabio.2014.01.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 12/28/2022]
Abstract
Cytochrome bd is a prokaryotic respiratory quinol:O2 oxidoreductase, phylogenetically unrelated to the extensively studied heme-copper oxidases (HCOs). The enzyme contributes to energy conservation by generating a proton motive force, though working with a lower energetic efficiency as compared to HCOs. Relevant to patho-physiology, members of the bd-family were shown to promote virulence in some pathogenic bacteria, which makes these enzymes of interest also as potential drug targets. Beyond its role in cell bioenergetics, cytochrome bd accomplishes several additional physiological functions, being apparently implicated in the response of the bacterial cell to a number of stress conditions. Compelling experimental evidence suggests that the enzyme enhances bacterial tolerance to oxidative and nitrosative stress conditions, owing to its unusually high nitric oxide (NO) dissociation rate and a notable catalase activity; the latter has been recently documented in one of the two bd-type oxidases of Escherichia coli. Current knowledge on cytochrome bd and its reactivity with O2, NO and H2O2 is summarized in this review in the light of the hypothesis that the preferential (over HCOs) expression of cytochrome bd in pathogenic bacteria may represent a strategy to evade the host immune attack based on production of NO and reactive oxygen species (ROS). This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
|
17
|
Nitric oxide generation from heme/copper assembly mediated nitrite reductase activity. J Biol Inorg Chem 2014; 19:515-28. [PMID: 24430198 DOI: 10.1007/s00775-013-1081-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/18/2013] [Indexed: 01/03/2023]
Abstract
Nitric oxide (NO) as a cellular signaling molecule and vasodilator regulates a range of physiological and pathological processes. Nitrite (NO2 (-)) is recycled in vivo to generate nitric oxide, particularly in physiologic hypoxia and ischemia. The cytochrome c oxidase binuclear heme a 3/CuB active site is one entity known to be responsible for conversion of cellular nitrite to nitric oxide. We recently reported that a partially reduced heme/copper assembly reduces nitrite ion, producing nitric oxide; the heme serves as the reductant and the cupric ion provides a Lewis acid interaction with nitrite, facilitating nitrite (N-O) bond cleavage (Hematian et al., J. Am. Chem. Soc. 134:18912-18915, 2012). To further investigate this nitrite reductase chemistry, copper(II)-nitrito complexes with tridentate and tetradentate ligands were used in this study, where either O,O'-bidentate or O-unidentate modes of nitrite binding to the cupric center are present. To study the role of the reducing ability of the ferrous heme center, two different tetraarylporphyrinate-iron(II) complexes, one with electron-donating para-methoxy peripheral substituents and the other with electron-withdrawing 2,6-difluorophenyl substituents, were used. The results show that differing modes of nitrite coordination to the copper(II) ion lead to differing kinetic behavior. Here, also, the ferrous heme is in all cases the source of the reducing equivalent required to convert nitrite to nitric oxide, but the reduction ability of the heme center does not play a key role in the observed overall reaction rate. On the basis of our observations, reaction mechanisms are proposed and discussed in terms of heme/copper heterobinuclear structures.
Collapse
|
18
|
Kumar P, Kalita A, Mondal B. Nitric oxide reactivity of Cu(ii) complexes of tetra- and pentadentate ligands: structural influence in deciding the reduction pathway. Dalton Trans 2013; 42:5731-9. [DOI: 10.1039/c3dt32580f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Hematian S, Siegler MA, Karlin KD. Heme/copper assembly mediated nitrite and nitric oxide interconversion. J Am Chem Soc 2012; 134:18912-5. [PMID: 23130610 DOI: 10.1021/ja3083818] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The heme(a3)/Cu(B) active site of cytochrome c oxidase is responsible for cellular nitrite reduction to nitric oxide; the same center can return NO to the nitrite pool via oxidative chemistry. Here, we show that a partially reduced heme/Cu assembly reduces NO(2)(-) ion, producing nitric oxide. The heme serves as the reductant, but the Cu(II) ion is also required. In turn, a μ-oxo heme-Fe(III)-O-Cu(II) complex facilitates NO oxidation to nitrite; the final products are the reduced heme and Cu(II)-nitrito complexes.
Collapse
Affiliation(s)
- Shabnam Hematian
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
20
|
The Chemical Interplay between Nitric Oxide and Mitochondrial Cytochrome c Oxidase: Reactions, Effectors and Pathophysiology. Int J Cell Biol 2012; 2012:571067. [PMID: 22811713 PMCID: PMC3395247 DOI: 10.1155/2012/571067] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/23/2012] [Indexed: 01/20/2023] Open
Abstract
Nitric oxide (NO) reacts with Complex I and cytochrome c oxidase (CcOX, Complex IV), inducing detrimental or cytoprotective effects. Two alternative reaction pathways (PWs) have been described whereby NO reacts with CcOX, producing either a relatively labile nitrite-bound derivative (CcOX-NO2
−, PW1) or a more stable nitrosyl-derivative (CcOX-NO, PW2). The two derivatives are both inhibited, displaying different persistency and O2 competitiveness. In the mitochondrion, during turnover with O2, one pathway prevails over the other one depending on NO, cytochrome c2+ and O2 concentration. High cytochrome c2+, and low O2 proved to be crucial in favoring CcOX nitrosylation, whereas under-standard cell-culture conditions formation of the nitrite derivative prevails. All together, these findings suggest that NO can modulate physiologically the mitochondrial respiratory/OXPHOS efficiency, eventually being converted to nitrite by CcOX, without cell detrimental effects. It is worthy to point out that nitrite, far from being a simple oxidation byproduct, represents a source of NO particularly important in view of the NO cell homeostasis, the NO production depends on the NO synthases whose activity is controlled by different stimuli/effectors; relevant to its bioavailability, NO is also produced by recycling cell/body nitrite. Bioenergetic parameters, such as mitochondrial ΔΨ, lactate, and ATP production, have been assayed in several cell lines, in the presence of endogenous or exogenous NO and the evidence collected suggests a crucial interplay between CcOX and NO with important energetic implications.
Collapse
|
21
|
Nitric oxide inactivation mechanisms in the brain: role in bioenergetics and neurodegeneration. Int J Cell Biol 2012; 2012:391914. [PMID: 22719764 PMCID: PMC3376480 DOI: 10.1155/2012/391914] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/18/2012] [Indexed: 10/28/2022] Open
Abstract
During the last decades nitric oxide ((•)NO) has emerged as a critical physiological signaling molecule in mammalian tissues, notably in the brain. (•)NO may modify the activity of regulatory proteins via direct reaction with the heme moiety, or indirectly, via S-nitrosylation of thiol groups or nitration of tyrosine residues. However, a conceptual understanding of how (•)NO bioactivity is carried out in biological systems is hampered by the lack of knowledge on its dynamics in vivo. Key questions still lacking concrete and definitive answers include those related with quantitative issues of its concentration dynamics and diffusion, summarized in the how much, how long, and how far trilogy. For instance, a major problem is the lack of knowledge of what constitutes a physiological (•)NO concentration and what constitutes a pathological one and how is (•)NO concentration regulated. The ambient (•)NO concentration reflects the balance between the rate of synthesis and the rate of breakdown. Much has been learnt about the mechanism of (•)NO synthesis, but the inactivation pathways of (•)NO has been almost completely ignored. We have recently addressed these issues in vivo on basis of microelectrode technology that allows a fine-tuned spatial and temporal measurement (•)NO concentration dynamics in the brain.
Collapse
|
22
|
Alemany M. Regulation of adipose tissue energy availability through blood flow control in the metabolic syndrome. Free Radic Biol Med 2012; 52:2108-19. [PMID: 22542444 DOI: 10.1016/j.freeradbiomed.2012.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 12/25/2022]
Abstract
Maintenance of blood flow rate is a critical factor for tissue oxygen and substrate supply. The potentially large mass of adipose tissue deeply influences the body distribution of blood flow. This is due to increased peripheral resistance in obesity and the role of this tissue as the ultimate destination of unused excess of dietary energy. However, adipose tissue cannot grow indefinitely, and the tissue must defend itself against the avalanche of nutrients provoking inordinate growth and inflammation. In the obese, large adipose tissue masses show lower blood flow, limiting the access of excess circulating substrates. Blood flow restriction is achieved by vasoconstriction, despite increased production of nitric oxide, the vasodilatation effects of which are overridden by catecholamines (and probably also by angiotensin II and endothelin). Decreased blood flow reduces the availability of oxygen, provoking massive glycolysis (hyperglycemic conditions), which results in the production of lactate, exported to the liver for processing. However, this produces local acidosis, which elicits the rapid dissociation of oxyhemoglobin, freeing bursts of oxygen in localized zones of the tissue. The excess of oxygen (and of nitric oxide) induces the production of reactive oxygen species, which deeply affect the endothelial, blood, and adipose cells, inducing oxidative and nitrosative damage and eliciting an increased immune response, which translates into inflammation. The result of the defense mechanism for adipose tissue, localized vasoconstriction, may thus help develop a more generalized pathologic response within the metabolic syndrome parameters, extending its effects to the whole body.
Collapse
Affiliation(s)
- Marià Alemany
- Department of Nutrition and Food Science, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
23
|
Abstract
Amino-N is preserved because of the scarcity and nutritional importance of protein. Excretion requires its conversion to ammonia, later incorporated into urea. Under conditions of excess dietary energy, the body cannot easily dispose of the excess amino-N against the evolutively adapted schemes that prevent its wastage; thus ammonia and glutamine formation (and urea excretion) are decreased. High lipid (and energy) availability limits the utilisation of glucose, and high glucose spares the production of ammonium from amino acids, limiting the synthesis of glutamine and its utilisation by the intestine and kidney. The amino acid composition of the diet affects the production of ammonium depending on its composition and the individual amino acid catabolic pathways. Surplus amino acids enhance protein synthesis and growth, and the synthesis of non-protein-N-containing compounds. But these outlets are not enough; consequently, less-conventional mechanisms are activated, such as increased synthesis of NO∙ followed by higher nitrite (and nitrate) excretion and changes in the microbiota. There is also a significant production of N(2) gas, through unknown mechanisms. Health consequences of amino-N surplus are difficult to fathom because of the sparse data available, but it can be speculated that the effects may be negative, largely because the fundamental N homeostasis is stretched out of normalcy, forcing the N removal through pathways unprepared for that task. The unreliable results of hyperproteic diets, and part of the dysregulation found in the metabolic syndrome may be an unwanted consequence of this N disposal conflict.
Collapse
|
24
|
Cytochrome-c mediated a bystander response dependent on inducible nitric oxide synthase in irradiated hepatoma cells. Br J Cancer 2012; 106:889-95. [PMID: 22274409 PMCID: PMC3305951 DOI: 10.1038/bjc.2012.9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Radiation-induced bystander effect (RIBE) has important implication in tumour radiotherapy, but the bystander signals are still not well known. METHODS The role of cytochrome-c (cyt-c) and free radicals in RIBE on human hepatoma cells HepG2 was investigated by detecting the formation of bystander micronuclei (MN) and the generation of endogenous cyt-c, inducible nitric oxide (NO) synthase (iNOS), NO, and reactive oxygen species (ROS) molecules. RESULTS When HepG2 cells were cocultured with an equal number of irradiated HepG2 cells, the yield of MN in the nonirradiated bystander cells was increased in a manner depended on radiation dose and cell coculture time, but it was diminished when the cells were treated with cyclosporin A (CsA), an inhibitor of cyt-c release. Meanwhile the CsA treatment inhibited radiation-induced NO but not ROS. Both of the depressed bystander effect and NO generation in the CsA-treated cells were reversed when 5 μM cyt-c was added in the cell coculture medium. But these exogenous cyt-c-mediated overproductions of NO and bystander MN were abolished when the cells were pretreated with s-methylisothiourea sulphate, an iNOS inhibitor. CONCLUSION Radiation-induced cyt-c has a profound role in regulating bystander response through an iNOS-triggered NO signal but not ROS in HepG2 cells.
Collapse
|
25
|
Sarma M, Mondal B. Nitric oxide reactivity of copper(II) complexes of bidentate amine ligands: effect of substitution on ligand nitrosation. Dalton Trans 2012; 41:2927-34. [PMID: 22266544 DOI: 10.1039/c2dt11082b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three copper(ii) complexes with bidentate ligands L(1), L(2) and L(3) [L(1), N,N(/)-dimethylethylenediamine; L(2), N,N(/)-diethylethylenediamine and L(3), N,N(/)-diisobutylethylenediamine], respectively, were synthesized as their perchlorate salts. The single crystal structures for all the complexes were determined. The nitric oxide reactivity of the complexes was studied in acetonitrile solvent. The formation of thermally unstable [Cu(II)-NO] intermediate on reaction of the complexes with nitric oxide in acetonitrile solution was observed prior to the reduction of copper(II) centres to copper(I). The reduction was found to result with a simultaneous mono- and di-nitrosation at the secondary amine sites of the ligand. All the nitrosation products were isolated and characterized. The ratio of the yield of mono- and di-nitrosation product was found to be dependent on the N-substitution present in the ligand framework.
Collapse
Affiliation(s)
- Moushumi Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, India
| | | |
Collapse
|
26
|
Sarma M, Kumar V, Kalita A, Deka RC, Mondal B. Nitric oxide reactivity of copper(ii) complexes of bidentate amine ligands: effect of chelate ring size on the stability of a [CuII–NO] intermediate. Dalton Trans 2012; 41:9543-52. [DOI: 10.1039/c2dt30721a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Silkstone RS, Mason MG, Nicholls P, Cooper CE. Nitrogen dioxide oxidizes mitochondrial cytochrome c. Free Radic Biol Med 2012; 52:80-7. [PMID: 22101009 PMCID: PMC3277883 DOI: 10.1016/j.freeradbiomed.2011.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 09/13/2011] [Accepted: 09/20/2011] [Indexed: 11/24/2022]
Abstract
We previously reported that high micromolar concentrations of nitric oxide were able to oxidize mitochondrial cytochrome c at physiological pH, producing nitroxyl anion (Sharpe and Cooper, 1998 Biochem. J. 332, 9-19). However, the subsequent re-evaluation of the redox potential of the NO/NO(-) couple suggests that this reaction is thermodynamically unfavored. We now show that the oxidation is oxygen-concentration dependent and non stoichiometric. We conclude that the effect is due to an oxidant species produced during the aerobic decay of nitric oxide to nitrite and nitrate. The species is most probably nitrogen dioxide, NO(2)(•) a well-known biologically active oxidant. A simple kinetic model of NO autoxidation is able to explain the extent of cytochrome c oxidation assuming a rate constant of 3×10(6)M(-1)s(-1) for the reaction of NO(2)(•) with ferrocytochrome c. The importance of NO(2)(•) was confirmed by the addition of scavengers such as urate and ferrocyanide. These convert NO(2)(•) into products (urate radical and ferricyanide) that rapidly oxidize cytochrome c and hence greatly enhance the extent of oxidation observed. The present study does not support the previous hypothesis that NO and cytochrome c can generate appreciable amounts of nitroxyl ions (NO(-) or HNO) or of peroxynitrite.
Collapse
Affiliation(s)
| | | | | | - Chris E. Cooper
- Corresponding author. Tel.: + 44 1206 872752; fax: + 44 1206872592.
| |
Collapse
|
28
|
Sarti P, Arese M, Forte E, Giuffrè A, Mastronicola D. Mitochondria and nitric oxide: chemistry and pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:75-92. [PMID: 22399419 DOI: 10.1007/978-94-007-2869-1_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell respiration is controlled by nitric oxide (NO) reacting with respiratory chain complexes, particularly with Complex I and IV. The functional implication of these reactions is different owing to involvement of different mechanisms. Inhibition of complex IV is rapid (milliseconds) and reversible, and occurs at nanomolar NO concentrations, whereas inhibition of complex I occurs after a prolonged exposure to higher NO concentrations. The inhibition of Complex I involves the reversible S-nitrosation of a key cysteine residue on the ND3 subunit. The reaction of NO with cytochrome c oxidase (CcOX) directly involves the active site of the enzyme: two mechanisms have been described leading to formation of either a relatively stable nitrosyl-derivative (CcOX-NO) or a more labile nitrite-derivative (CcOX-NO (2) (-) ). Both adducts are inhibited, though with different K(I); one mechanism prevails on the other depending on the turnover conditions and availability of substrates, cytochrome c and O(2). SH-SY5Y neuroblastoma cells or lymphoid cells, cultured under standard O(2) tension, proved to follow the mechanism leading to degradation of NO to nitrite. Formation of CcOX-NO occurred upon rising the electron flux level at this site, artificially or in the presence of higher amounts of endogenous reduced cytochrome c. Taken together, the observations suggest that the expression level of mitochondrial cytochrome c may be crucial to determine the respiratory chain NO inhibition pathway prevailing in vivo under nitrosative stress conditions. The putative patho-physiological relevance of the interaction between NO and the respiratory complexes is addressed.
Collapse
Affiliation(s)
- Paolo Sarti
- Department of Biochemical Sciences, University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
29
|
Kalita A, Kumar P, Deka RC, Mondal B. Role of Ligand to Control the Mechanism of Nitric Oxide Reduction of Copper(II) Complexes and Ligand Nitrosation. Inorg Chem 2011; 50:11868-76. [DOI: 10.1021/ic201582w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Apurba Kalita
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati,
Assam 781039, India
| | - Pankaj Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati,
Assam 781039, India
| | - Ramesh C. Deka
- Department
of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Biplab Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati,
Assam 781039, India
| |
Collapse
|
30
|
Dyson A, Bryan NS, Fernandez BO, Garcia-Saura MF, Saijo F, Mongardon N, Rodriguez J, Singer M, Feelisch M. An integrated approach to assessing nitroso-redox balance in systemic inflammation. Free Radic Biol Med 2011; 51:1137-45. [PMID: 21718783 DOI: 10.1016/j.freeradbiomed.2011.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/23/2011] [Accepted: 06/07/2011] [Indexed: 11/17/2022]
Abstract
Most studies examining the metabolic fate of NO during systemic inflammation have focused on measuring the quantitatively predominating, stable anions nitrite and nitrate within the circulation. However, these are not necessarily the NO-related products that govern NO metabolism and signaling in tissues. We assessed all major NO derivatives temporally in blood and vital organs during inflammation and explored their relationship to insult severity and redox status. Male rats receiving intraperitoneal endotoxin or vehicle were sacrificed for organ and blood sampling between 0 and 24 h. Endotoxin induced transient and organ-specific changes in a variety of NO metabolites. Nitrite and nitrate increased, peaking at 8 and 12 h, respectively. S- and N-nitrosation and heme-nitrosylation products also peaked at 8 h; these posttranslational protein modifications were associated with decreased myocardial function (echocardiography). Evidence of oxidative stress and systemic inflammation was also obtained. The rise in most NO derivatives was proportional to insult severity. All metabolite levels normalized within 24 h, despite evidence of persisting myocardial dysfunction and clinical unwellness. Our findings point to a complex interplay between NO production, antioxidant defense, and redox status. Although the precise (patho)physiologic roles of specific NO derivatives and their diagnostic/prognostic utility await further investigation, nitroso species in erythrocytes are the most sensitive markers of NO in systemic inflammation, detectable before clinical symptoms manifest.
Collapse
Affiliation(s)
- Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, University College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sarti P, Forte E, Mastronicola D, Giuffrè A, Arese M. Cytochrome c oxidase and nitric oxide in action: molecular mechanisms and pathophysiological implications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:610-9. [PMID: 21939634 DOI: 10.1016/j.bbabio.2011.09.002] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND The reactions between Complex IV (cytochrome c oxidase, CcOX) and nitric oxide (NO) were described in the early 60's. The perception, however, that NO could be responsible for physiological or pathological effects, including those on mitochondria, lags behind the 80's, when the identity of the endothelial derived relaxing factor (EDRF) and NO synthesis by the NO synthases were discovered. NO controls mitochondrial respiration, and cytotoxic as well as cytoprotective effects have been described. The depression of OXPHOS ATP synthesis has been observed, attributed to the inhibition of mitochondrial Complex I and IV particularly, found responsible of major effects. SCOPE OF REVIEW The review is focused on CcOX and NO with some hints about pathophysiological implications. The reactions of interest are reviewed, with special attention to the molecular mechanisms underlying the effects of NO observed on cytochrome c oxidase, particularly during turnover with oxygen and reductants. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE The NO inhibition of CcOX is rapid and reversible and may occur in competition with oxygen. Inhibition takes place following two pathways leading to formation of either a relatively stable nitrosyl-derivative (CcOX-NO) of the enzyme reduced, or a more labile nitrite-derivative (CcOX-NO(2)(-)) of the enzyme oxidized, and during turnover. The pathway that prevails depends on the turnover conditions and concentration of NO and physiological substrates, cytochrome c and O(2). All evidence suggests that these parameters are crucial in determining the CcOX vs NO reaction pathway prevailing in vivo, with interesting physiological and pathological consequences for cells.
Collapse
Affiliation(s)
- Paolo Sarti
- Department of Biochemical Sciences, Sapienza University of Rome, Italy.
| | | | | | | | | |
Collapse
|
32
|
Siervo M, Stephan BCM, Feelisch M, Bluck LJC. Measurement of in vivo nitric oxide synthesis in humans using stable isotopic methods: a systematic review. Free Radic Biol Med 2011; 51:795-804. [PMID: 21672626 DOI: 10.1016/j.freeradbiomed.2011.05.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 04/22/2011] [Accepted: 05/25/2011] [Indexed: 11/16/2022]
Abstract
Stable isotopic methods are considered the "gold standard" for the measurement of rates of in vivo NO production. However, values reported for healthy human individuals differ by more than 1 order of magnitude. The reason for the apparent variability in NO production is unclear. The primary aim of this review was to evaluate and compare the rates of in vivo NO production in health and disease using stable isotope methods. Articles were retrieved using the PubMed electronic database. Information on concentrations, isotopic enrichments of fluxes, and conversion rates of molecules involved in the NO metabolic pathway was extracted from selected articles; 35 articles were included in the final analysis. Three protocols were identified, including the arginine-citrulline, the arginine-nitrate, and the oxygen-nitrate protocols. The arginine-citrulline protocol showed a wider variability compared to the arginine-nitrate and oxygen-nitrate protocols. The direction of the association between disease state and rate of NO production was essentially determined by the etiopathogenesis of the disorder (inflammatory, metabolic, vascular). Considerable variation in methodologies used to assess whole-body NO synthesis in humans exists. The precision of several aspects of the techniques and the validity of some assumptions made remain unknown, and there is a paucity of information about physiological rates of NO production from childhood over adolescence to old age.
Collapse
Affiliation(s)
- M Siervo
- Elsie Widdowson Laboratory, MRC Human Nutrition Research, Cambridge CB1 9NL, UK.
| | | | | | | |
Collapse
|
33
|
Giuffrè A, Borisov VB, Mastronicola D, Sarti P, Forte E. Cytochromebdoxidase and nitric oxide: From reaction mechanisms to bacterial physiology. FEBS Lett 2011; 586:622-9. [DOI: 10.1016/j.febslet.2011.07.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 07/20/2011] [Accepted: 07/26/2011] [Indexed: 11/27/2022]
|
34
|
Sarma M, Mondal B. Nitric Oxide Reduction of Copper(II) Complexes: Spectroscopic Evidence of Copper(II)−Nitrosyl Intermediate. Inorg Chem 2011; 50:3206-12. [DOI: 10.1021/ic1011988] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Moushumi Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Biplab Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
35
|
Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 102:182-91. [DOI: 10.1016/j.jphotobiol.2010.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/03/2010] [Accepted: 12/01/2010] [Indexed: 12/14/2022]
|
36
|
Abstract
The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy.
Collapse
|
37
|
Shiva S. Mitochondria as metabolizers and targets of nitrite. Nitric Oxide 2010; 22:64-74. [PMID: 19788924 PMCID: PMC2819587 DOI: 10.1016/j.niox.2009.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 08/28/2009] [Accepted: 09/17/2009] [Indexed: 12/18/2022]
Abstract
Mitochondrial function is integral to maintaining cellular homeostasis through the production of ATP, the generation of reactive oxygen species (ROS) for signaling, and the regulation of the apoptotic cascade. A number of small molecules, including nitric oxide (NO), are well-characterized regulators of mitochondrial function. Nitrite, an NO metabolite, has recently been described as an endocrine reserve of NO that is reduced to bioavailable NO during hypoxia to mediate physiological responses. Accumulating data suggests that mitochondria may play a role in metabolizing nitrite and that nitrite is a regulator of mitochondrial function. Here, what is known about the interactions of nitrite with the mitochondria is reviewed, with a focus on the role of the mitochondrion as a metabolizer and target of nitrite.
Collapse
Affiliation(s)
- Sruti Shiva
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh School of Medicine, 3501 Biomedical Science Tower III, Pittsburgh, PA 15260, USA.
| |
Collapse
|
38
|
Aguirre E, Rodríguez-Juárez F, Bellelli A, Gnaiger E, Cadenas S. Kinetic model of the inhibition of respiration by endogenous nitric oxide in intact cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:557-65. [PMID: 20144583 DOI: 10.1016/j.bbabio.2010.01.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 11/24/2022]
Abstract
Nitric oxide (NO) inhibits mitochondrial respiration by decreasing the apparent affinity of cytochrome c oxidase (CcO) for oxygen. Using iNOS-transfected HEK 293 cells to achieve regulated intracellular NO production, we determined NO and O(2) concentrations and mitochondrial O(2) consumption by high-resolution respirometry over a range of O(2) concentrations down to nanomolar. Inhibition of respiration by NO was reversible, and complete NO removal recovered cell respiration above its routine reference values. Respiration was observed even at high NO concentrations, and the dependence of IC(50) on [O(2)] exhibits a characteristic but puzzling parabolic shape; both these features imply that CcO is protected from complete inactivation by NO and are likely to be physiologically relevant. We present a kinetic model of CcO inhibition by NO that efficiently predicts experimentally determined respiration at physiological O(2) and NO concentrations and under hypoxia, and accurately predicts the respiratory responses under hyperoxia. The model invokes competitive and uncompetitive inhibition by binding of NO to the reduced and oxidized forms of CcO, respectively, and suggests that dissociation of NO from reduced CcO may involve its O(2)-dependent oxidation. It also explains the non-linear dependence of IC(50) on O(2) concentration, and the hyperbolic increase of c(50) as a function of NO concentration.
Collapse
Affiliation(s)
- Enara Aguirre
- Department of Regenerative Cardiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fenández Almagro 3, Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, Tarr J, Benjamin N, Jones AM. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol (1985) 2009; 107:1144-55. [PMID: 19661447 DOI: 10.1152/japplphysiol.00722.2009] [Citation(s) in RCA: 518] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pharmacological sodium nitrate supplementation has been reported to reduce the O2 cost of submaximal exercise in humans. In this study, we hypothesized that dietary supplementation with inorganic nitrate in the form of beetroot juice (BR) would reduce the O2 cost of submaximal exercise and enhance the tolerance to high-intensity exercise. In a double-blind, placebo (PL)-controlled, crossover study, eight men (aged 19-38 yr) consumed 500 ml/day of either BR (containing 11.2 +/- 0.6 mM of nitrate) or blackcurrant cordial (as a PL, with negligible nitrate content) for 6 consecutive days and completed a series of "step" moderate-intensity and severe-intensity exercise tests on the last 3 days. On days 4-6, plasma nitrite concentration was significantly greater following dietary nitrate supplementation compared with PL (BR: 273 +/- 44 vs. PL: 140 +/- 50 nM; P < 0.05), and systolic blood pressure was significantly reduced (BR: 124 +/- 2 vs. PL: 132 +/- 5 mmHg; P < 0.01). During moderate exercise, nitrate supplementation reduced muscle fractional O2 extraction (as estimated using near-infrared spectroscopy). The gain of the increase in pulmonary O2 uptake following the onset of moderate exercise was reduced by 19% in the BR condition (BR: 8.6 +/- 0.7 vs. PL: 10.8 +/- 1.6 ml.min(-1).W(-1); P < 0.05). During severe exercise, the O2 uptake slow component was reduced (BR: 0.57 +/- 0.20 vs. PL: 0.74 +/- 0.24 l/min; P < 0.05), and the time-to-exhaustion was extended (BR: 675 +/- 203 vs. PL: 583 +/- 145 s; P < 0.05). The reduced O2 cost of exercise following increased dietary nitrate intake has important implications for our understanding of the factors that regulate mitochondrial respiration and muscle contractile energetics in humans.
Collapse
Affiliation(s)
- Stephen J Bailey
- Exeter Univ., Sport and Health Sciences, St. Luke's Campus, Heavitree Rd., Exeter, EX1 2LU UK
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Laraspata D, Gorgoglione V, La Piana G, Palmitessa V, Marzulli D, Lofrumento NE. Interaction of nitric oxide with the activity of cytosolic NADH/cytochrome c electron transport system. Arch Biochem Biophys 2009; 489:99-109. [PMID: 19653993 DOI: 10.1016/j.abb.2009.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/28/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
Nitric oxide ((.)NO) generated by the dissociation of S-nitrosoglutathione or added as gaseous solution, inhibits the oxidation of exogenous NADH supported by the activity of the cytosolic NADH/cyto-c electron transport pathway. The inhibition is immediate, very strong, higher at lower oxygen concentration, independent on the (.)NO concentration and remains constant as long as (.)NO is no more available and then is spontaneously removed. The data obtained, not in contrast with those reported with isolated cytochrome oxidase (Cox), strengthen a new concept: reduced cytochrome c (cyto-c) and (.)NO behave as two substrates of Cox, which promotes their oxidation with molecular oxygen as a co-substrate. In the presence of (.)NO, Cox exhibits the property of switching from cyto-c oxidase to (.)NO oxidase activity. With an "all or nothing" process Cox becomes an efficient (.)NO scavenger. The persistence of membrane potential, even in the presence of high inhibition of oxygen uptake, could be tentatively correlated to the protective effect of (.)NO on the ischaemic-reperfusion injury.
Collapse
Affiliation(s)
- Daniela Laraspata
- Department of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Hall CN, Garthwaite J. What is the real physiological NO concentration in vivo? Nitric Oxide 2009; 21:92-103. [PMID: 19602444 PMCID: PMC2779337 DOI: 10.1016/j.niox.2009.07.002] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/06/2009] [Indexed: 01/10/2023]
Abstract
Clarity about the nitric oxide (NO) concentrations existing physiologically is essential for developing a quantitative understanding of NO signalling, for performing experiments with NO that emulate reality, and for knowing whether or not NO concentrations become abnormal in disease states. A decade ago, a value of about 1 μM seemed reasonable based on early electrode measurements and a provisional estimate of the potency of NO for its guanylyl cyclase-coupled receptors, which mediate physiological NO signal transduction. Since then, numerous efforts to measure NO concentrations directly using electrodes in cells and tissues have yielded an irreconcilably large spread of values. In compensation, data from several alternative approaches have now converged to provide a more coherent picture. These approaches include the quantitative analysis of NO-activated guanylyl cyclase, computer modelling based on the type, activity and amount of NO synthase enzyme contained in cells, the use of novel biosensors to monitor NO release from single endothelial cells and neurones, and the use of guanylyl cyclase as an endogenous NO biosensor in tissue subjected to a variety of challenges. All these independent lines of evidence suggest the physiological NO concentration range to be 100 pM (or below) up to ∼5 nM, orders of magnitude lower than was once thought.
Collapse
Affiliation(s)
- Catherine N Hall
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | | |
Collapse
|
42
|
Pearce LL, Lopez Manzano E, Martinez-Bosch S, Peterson J. Antagonism of nitric oxide toward the inhibition of cytochrome c oxidase by carbon monoxide and cyanide. Chem Res Toxicol 2009; 21:2073-81. [PMID: 18956847 DOI: 10.1021/tx800140y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The principle mitochondrial target where the respiratory inhibitors CO, CN(-), and NO act in the execution of their acute toxic effects is complex IV of the electron-transport chain, cytochrome c oxidase. However, there is a paucity of studies in the literature regarding the concerted effects of such poisons. Accordingly, the combined inhibitory effects of CO + CN(-), NO + CN(-), and NO + CO on the activity of cytochrome c oxidase preparations are reported. Only in the case of CO + CN(-) do the effects of the two inhibitors seem to be additive as expected. NO appears to be antagonistic toward the effects of the other two inhibitors; that is, the effects of both CO an CN(-) on enzyme activity are ameliorated by NO when present. To further clarify these observations, the ligand substitutions of heme-bound CN(-) by NO in cytochrome c oxidase and hemoglobin have also been briefly investigated. These results suggest that displacement of CN(-) from the ferric hemoproteins by NO is rate-limited by heme reduction-and in the case of the enzyme, the presence of nonligand-binding electron-transfer centers facilitates the reaction. The findings are discussed in relation to the idea that NO does not behave as a classic reversible (by dissociation) inhibitor.
Collapse
Affiliation(s)
- Linda L Pearce
- Department of Environmental and Occupational Health, Graduate School of Public Health, The University of Pittsburgh, 130 DeSoto Street, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | |
Collapse
|
43
|
Halligan KE, Jourd'heuil FL, Jourd'heuil D. Cytoglobin is expressed in the vasculature and regulates cell respiration and proliferation via nitric oxide dioxygenation. J Biol Chem 2009; 284:8539-47. [PMID: 19147491 DOI: 10.1074/jbc.m808231200] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disposition of the second messenger nitric oxide (NO) in mammalian tissues occurs through multiple pathways including dioxygenation by erythrocyte hemoglobin and red muscle myoglobin. Metabolism by a putative NO dioxygenase activity in non-striated tissues has also been postulated, but the exact nature of this activity is unknown. In the present study, we tested the hypothesis that cytoglobin, a newly discovered hexacoordinated globin, participates in cell-mediated NO consumption. Stable expression of small hairpin RNA targeting cytoglobin in fibroblasts resulted in decreased NO consumption and intracellular nitrate production. These cells were more sensitive to NO-induced inhibition of cell respiration and proliferation, which could be restored by re-expression of human cytoglobin. We also demonstrated cytoglobin expression in adventitial fibroblasts as well as vascular smooth muscle cells from various species including human and found that cytoglobin was expressed in the adventitia and media of intact rat aorta. These results indicate that cytoglobin contributes to cell-mediated NO dioxygenation and represents an important NO sink in the vascular wall.
Collapse
Affiliation(s)
- Katharine E Halligan
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | | | | |
Collapse
|
44
|
Igamberdiev AU, Hill RD. Plant mitochondrial function during anaerobiosis. ANNALS OF BOTANY 2009; 103:259-68. [PMID: 18586697 PMCID: PMC2707300 DOI: 10.1093/aob/mcn100] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 04/29/2008] [Accepted: 05/21/2008] [Indexed: 05/17/2023]
Abstract
BACKGROUND Under hypoxic conditions, plant mitochondria preserve the capacity to oxidize external NADH, NADPH and tricarboxylic acid cycle substrates. Nitrite serves as an alternative electron acceptor at the level of cytochrome oxidase, with possibly complex III and the alternative oxidase also being involved. Nitric oxide is a significant product of the reaction, which has a high affinity for cytochrome c oxidase, inhibiting it. The excess NO is scavenged by hypoxically induced class 1 haemoglobin in the reaction involving ascorbate. SCOPE By using nitrite, mitochondria retain a limited capacity for ATP synthesis. NADH, produced from glycolysis during anaerobiosis and oxidized in the mitochondrial electron transport chain, should shift the composition of metabolites formed during anaerobiosis with increased conversion of pyruvate to alanine and greater involvement of other transamination reactions, such as those involving gamma-aminobutyric acid formation. CONCLUSIONS Anaerobic mitochondrial metabolism may have a more significant role than previously thought in alleviating the effects of anoxia on plant cells. There is a need to re-examine mitochondrial carbon and nitrogen metabolism under anoxia to establish the extent of this involvement.
Collapse
Affiliation(s)
- Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| | - Robert D. Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| |
Collapse
|
45
|
Starkenburg SR, Arp DJ, Bottomley PJ. Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in Nitrobacter winogradskyi Nb-255. Environ Microbiol 2008; 10:3036-42. [PMID: 18973623 DOI: 10.1111/j.1462-2920.2008.01763.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The nitrite oxidizing Alphaproteobacterium, Nitrobacter winogradskyi, primarily conserves energy from the oxidation of nitrite (NO(2)(-))to nitrate (NO(3)(-)) through aerobic respiration. Almost 20 years ago, NO-dependent NADH formation was reported to occur in both aerobic and anaerobic cell suspensions of N. winogradskyi strain 'agilis', suggesting that NO oxidation might contribute to energy conservation by Nitrobacter. Recently, the N. winogradskyi Nb-255 genome was found to contain a gene (Nwin_2648) that encodes a putative copper-containing nitrite reductase (NirK), which may reduce NO(2)(-) to NO. In this study, the putative nirK was found to be maximally transcribed under low O(2) (between zero and 4% O(2)) in the presence of NO(2)(-). Transcription of nirK was not detected under anaerobic conditions in the absence of NO(2)(-) or in the presence of NO(3)(-) and pyruvate. Although net production of NO could not be detected from either aerobically grown or anaerobically incubated cells, exogenous NO was consumed by viable cells and concomitantly inhibited NO(2)(-)-dependent O(2) uptake in a reversible, concentration dependent manner. Both NO(2(-)-dependent O(2) uptake and NO consumption were inhibited by 1 mM cyanide suggesting involvement of cytochrome oxidase with NO consumption. Abiotic consumption of NO was measured, yet, both the rates and kinetics of NO transformation in buffer alone, or by heat killed, or cyanide-treated cells differed from those of viable cells. In light of this new information, a modified model is proposed to explain how NirK and NO manage electron flux in Nitrobacter.
Collapse
Affiliation(s)
- Shawn R Starkenburg
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA.
| | | | | |
Collapse
|
46
|
Cooper CE, Brown GC. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 2008; 40:533-9. [PMID: 18839291 DOI: 10.1007/s10863-008-9166-6] [Citation(s) in RCA: 495] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 08/01/2008] [Indexed: 12/21/2022]
Abstract
The four gases, nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H(2)S) and hydrogen cyanide (HCN) all readily inhibit oxygen consumption by mitochondrial cytochrome oxidase. This inhibition is responsible for much of their toxicity when they are applied externally to the body. However, recently these gases have all been implicated, to greater or lesser extents, in normal cellular signalling events. In this review we analyse the chemistry of this inhibition, comparing and contrasting mechanism and discussing physiological consequences. The inhibition by NO and CO is dependent on oxygen concentration, but that of HCN and H(2)S is not. NO and H(2)S are readily metabolised by oxidative processes within cytochrome oxidase. In these cases the enzyme may act as a physiological detoxifier of these gases. CO oxidation is much slower and unlikely to be as physiologically important. The evidence for normal physiological levels of these gases interacting with cytochrome oxidase is equivocal, in part because there is little robust data about their steady state concentrations. A reasonable case can be made for NO, and perhaps CO and H(2)S, inhibiting cytochrome oxidase in vivo, but endogenous levels of HCN seem unlikely to be high enough.
Collapse
Affiliation(s)
- Chris E Cooper
- Department of Biological Sciences, University of Essex, Colchester, UK.
| | | |
Collapse
|
47
|
Benamar A, Rolletschek H, Borisjuk L, Avelange-Macherel MH, Curien G, Mostefai HA, Andriantsitohaina R, Macherel D. Nitrite-nitric oxide control of mitochondrial respiration at the frontier of anoxia. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:1268-75. [PMID: 18602886 DOI: 10.1016/j.bbabio.2008.06.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/14/2008] [Accepted: 06/01/2008] [Indexed: 11/16/2022]
Abstract
Actively respiring animal and plant tissues experience hypoxia because of mitochondrial O(2) consumption. Controlling oxygen balance is a critical issue that involves in mammals hypoxia-inducible factor (HIF) mediated transcriptional regulation, cytochrome oxidase (COX) subunit adjustment and nitric oxide (NO) as a mediator in vasodilatation and oxygen homeostasis. In plants, NO, mainly derived from nitrite, is also an important signalling molecule. We describe here a mechanism by which mitochondrial respiration is adjusted to prevent a tissue to reach anoxia. During pea seed germination, the internal atmosphere was strongly hypoxic due to very active mitochondrial respiration. There was no sign of fermentation, suggesting a down-regulation of O(2) consumption near anoxia. Mitochondria were found to finely regulate their surrounding O(2) level through a nitrite-dependent NO production, which was ascertained using electron paramagnetic resonance (EPR) spin trapping of NO within membranes. At low O(2), nitrite is reduced into NO, likely at complex III, and in turn reversibly inhibits COX, provoking a rise to a higher steady state level of oxygen. Since NO can be re-oxidized into nitrite chemically or by COX, a nitrite-NO pool is maintained, preventing mitochondrial anoxia. Such an evolutionarily conserved mechanism should have an important role for oxygen homeostasis in tissues undergoing hypoxia.
Collapse
Affiliation(s)
- Abdelilah Benamar
- UMR 1191 Physiologie Moléculaire des Semences, Université d'Angers/INH/INRA, Angers, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Oxygen-regulated isoforms of cytochrome c oxidase have differential effects on its nitric oxide production and on hypoxic signaling. Proc Natl Acad Sci U S A 2008; 105:8203-8. [PMID: 18388202 DOI: 10.1073/pnas.0709461105] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, it has been reported that mitochondria possess a novel pathway for nitric oxide (NO) synthesis. This pathway is induced when cells experience hypoxia, is nitrite (NO(2)(-))-dependent, is independent of NO synthases, and is catalyzed by cytochrome c oxidase (Cco). It has been proposed that this mitochondrially produced NO is a component of hypoxic signaling and the induction of nuclear hypoxic genes. In this study, we examine the NO(2)(-)-dependent NO production in yeast engineered to contain alternative isoforms, Va or Vb, of Cco subunit V. Previous studies have shown that these isoforms have differential effects on oxygen reduction by Cco, and that their genes (COX5a and COX5b, respectively) are inversely regulated by oxygen. Here, we find that the Vb isozyme has a higher turnover rate for NO production than the Va isozyme and that the Vb isozyme produces NO at much higher oxygen concentrations than the Va isozyme. We have also found that the hypoxic genes CYC7 and OLE1 are induced to higher levels in a strain carrying the Vb isozyme than in a strain carrying the Va isozyme. Together, these results demonstrate that the subunit V isoforms have differential effects on NO(2)(-)-dependent NO production by Cco and provide further support for a role of Cco in hypoxic signaling. These findings also suggest a positive feedback mechanism in which mitochondrially produced NO induces expression of COX5b, whose protein product then functions to enhance the ability of Cco to produce NO in hypoxic/anoxic cells.
Collapse
|
49
|
A dynamic model of nitric oxide inhibition of mitochondrial cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:867-76. [PMID: 18424259 DOI: 10.1016/j.bbabio.2008.03.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/12/2008] [Accepted: 03/19/2008] [Indexed: 11/22/2022]
Abstract
Nitric oxide can inhibit mitochondrial cytochrome oxidase in both oxygen competitive and uncompetitive modes. A previous model described these interactions assuming equilibrium binding to the reduced and oxidised enzyme respectively (Mason, et al. Proc. Natl. Acad. Sci. U S A 103 (2006) 708-713). Here we demonstrate that the equilibrium assumption is inappropriate as it requires unfeasibly high association constants for NO to the oxidised enzyme. Instead we develop a model which explicitly includes NO binding and its enzyme-bound conversion to nitrite. Removal of the nitrite complex requires electron transfer to the binuclear centre from haem a. This revised model fits the inhibition constants at any value of substrate concentration (ferrocytochrome c or oxygen). It predicts that the inhibited steady state should be a mixture of the reduced haem nitrosyl complex and the oxidized-nitrite complex. Unlike the previous model, binding to the oxidase is always proportional to the degree of inhibition of oxygen consumption. The model is consistent with data and models from a recent paper suggesting that the primary effect of NO binding to the oxidised enzyme is to convert NO to nitrite, rather than to inhibit enzyme activity (Antunes et al. Antioxid. Redox Signal. 9 (2007) 1569-1579).
Collapse
|
50
|
Palacios-Callender M, Hollis V, Mitchison M, Frakich N, Unitt D, Moncada S. Cytochrome c oxidase regulates endogenous nitric oxide availability in respiring cells: a possible explanation for hypoxic vasodilation. Proc Natl Acad Sci U S A 2007; 104:18508-13. [PMID: 18003892 PMCID: PMC2141807 DOI: 10.1073/pnas.0709440104] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Indexed: 01/07/2023] Open
Abstract
One of the many routes proposed for the cellular inactivation of endogenous nitric oxide (NO) is by the cytochrome c oxidase of the mitochondrial respiratory chain. We have studied this possibility in human embryonic kidney cells engineered to generate controlled amounts of NO. We have used visible light spectroscopy to monitor continuously the redox state of cytochrome c oxidase in an oxygen-tight chamber, at the same time as which we measure cell respiration and the concentrations of oxygen and NO. Pharmacological manipulation of cytochrome c oxidase indicates that this enzyme, when it is in turnover and in its oxidized state, inactivates physiological amounts of NO, thus regulating its intra- and extracellular concentrations. This inactivation is prevented by blocking the enzyme with inhibitors, including NO. Furthermore, when cells generating low concentrations of NO respire toward hypoxia, the redox state of cytochrome c oxidase changes from oxidized to reduced, leading to a decrease in NO inactivation. The resultant increase in NO concentration could explain hypoxic vasodilation.
Collapse
Affiliation(s)
- Miriam Palacios-Callender
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Veronica Hollis
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Miriam Mitchison
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Nanci Frakich
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - David Unitt
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Salvador Moncada
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|