1
|
Mackrill JJ. Histidine-rich calcium-binding protein: a molecular integrator of cardiac excitation-contraction coupling. J Exp Biol 2024; 227:jeb247640. [PMID: 39440591 DOI: 10.1242/jeb.247640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
During mammalian cardiomyocyte excitation-contraction coupling, Ca2+ influx through voltage-gated Ca2+ channels triggers Ca2+ release from the sarcoplasmic reticulum (SR) through ryanodine receptor channels. This Ca2+-induced Ca2+ release mechanism controls cardiomyocyte contraction and is exquisitely regulated by SR Ca2+ levels. The histidine-rich calcium-binding protein (HRC) and its aspartic acid-rich paralogue aspolin are high-capacity, low-affinity Ca2+-binding proteins. Aspolin also acts as a trimethylamine N-oxide demethylase. At low intraluminal Ca2+ concentrations, HRC binds to the SR Ca2+-ATPase 2, inhibiting its Ca2+-pumping activity. At high intraluminal Ca2+ levels, HRC interacts with triadin to reduce Ca2+ release through ryanodine receptor channels. This Review analyses the evolution of these Ca2+-regulatory proteins, to gain insights into their roles. It reveals that HRC homologues are present in chordates, annelid worms, molluscs, corals and sea anemones. In contrast, triadin appears to be a chordate innovation. Furthermore, HRC is evolving more rapidly than other cardiac excitation-contraction coupling proteins. This positive selection (or relaxed negative selection) occurs along most of the mammalian HRC protein sequence, with the exception being the C-terminal cysteine-rich region, which is undergoing negative selection. The histidine-rich region of HRC might be involved in pH sensing, as an adaptation to air-breathing, endothermic and terrestrial life. In addition, a cysteine-rich pattern within HRC and aspolin is also found in a wide range of iron-sulfur cluster proteins, suggesting roles in redox reactions and metal binding. The polyaspartic regions of aspolins are likely to underlie their trimethylamine N-oxide demethylase activity, which might be mimicked by the acidic regions of HRCs. These potential roles of HRCs and aspolins await experimental verification.
Collapse
Affiliation(s)
- John James Mackrill
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, T12 XF62, Ireland
| |
Collapse
|
2
|
Gamberucci A, Nanni C, Pierantozzi E, Serano M, Protasi F, Rossi D, Sorrentino V. TAM-associated CASQ1 mutants diminish intracellular Ca 2+ content and interfere with regulation of SOCE. J Muscle Res Cell Motil 2024:10.1007/s10974-024-09681-9. [PMID: 39126637 DOI: 10.1007/s10974-024-09681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Tubular aggregate myopathy (TAM) is a rare myopathy characterized by muscle weakness and myalgia. Muscle fibers from TAM patients show characteristic accumulation of membrane tubules that contain proteins from the sarcoplasmic reticulum (SR). Gain-of-function mutations in STIM1 and ORAI1, the key proteins participating in the Store-Operated Ca2+ Entry (SOCE) mechanism, were identified in patients with TAM. Recently, the CASQ1 gene was also found to be mutated in patients with TAM. CASQ1 is the main Ca2+ buffer of the SR and a negative regulator of SOCE. Previous characterization of CASQ1 mutants in non-muscle cells revealed that they display altered Ca2+dependent polymerization, reduced Ca2+storage capacity and alteration in SOCE inhibition. We thus aimed to assess how mutations in CASQ1 affect calcium regulation in skeletal muscles, where CASQ1 is naturally expressed. We thus expressed CASQ1 mutants in muscle fibers from Casq1 knockout mice, which provide a valuable model for studying the Ca2+ storage capacity of TAM-associated mutants. Moreover, since Casq1 knockout mice display a constitutively active SOCE, the effect of CASQ1 mutants on SOCE inhibition can be also properly examined in fibers from these mice. Analysis of intracellular Ca2+ confirmed that CASQ1 mutants have impaired ability to store Ca2+and lose their ability to inhibit skeletal muscle SOCE; this is in agreement with the evidence that alterations in Ca2+entry due to mutations in either STIM1, ORAI1 or CASQ1 represents a hallmark of TAM.
Collapse
Affiliation(s)
- Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy
| | - Claudio Nanni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy
| | - Matteo Serano
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy
| | - Feliciano Protasi
- Center for Advanced Studies and Technology, CAST, University G. d'Annunzio of Chieti-Pescara, Chieti, I-66100, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, I-66100, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, I-53100, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, I-53100, Italy.
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, I-53100, Italy.
| |
Collapse
|
3
|
Marabelli C, Santiago DJ, Priori SG. The Structural-Functional Crosstalk of the Calsequestrin System: Insights and Pathological Implications. Biomolecules 2023; 13:1693. [PMID: 38136565 PMCID: PMC10741413 DOI: 10.3390/biom13121693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Calsequestrin (CASQ) is a key intra-sarcoplasmic reticulum Ca2+-handling protein that plays a pivotal role in the contraction of cardiac and skeletal muscles. Its Ca2+-dependent polymerization dynamics shape the translation of electric excitation signals to the Ca2+-induced contraction of the actin-myosin architecture. Mutations in CASQ are linked to life-threatening pathological conditions, including tubular aggregate myopathy, malignant hyperthermia, and Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). The variability in the penetrance of these phenotypes and the lack of a clear understanding of the disease mechanisms associated with CASQ mutations pose a major challenge to the development of effective therapeutic strategies. In vitro studies have mainly focused on the polymerization and Ca2+-buffering properties of CASQ but have provided little insight into the complex interplay of structural and functional changes that underlie disease. In this review, the biochemical and structural natures of CASQ are explored in-depth, while emphasizing their direct and indirect consequences for muscle Ca2+ physiology. We propose a novel functional classification of CASQ pathological missense mutations based on the structural stability of the monomer, dimer, or linear polymer conformation. We also highlight emerging similarities between polymeric CASQ and polyelectrolyte systems, emphasizing the potential for the use of this paradigm to guide further research.
Collapse
Affiliation(s)
- Chiara Marabelli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Cardiology, IRCCS ICS Maugeri, 27100 Pavia, Italy
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| | - Demetrio J. Santiago
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| | - Silvia G. Priori
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Laboratory of Molecular Cardiology, IRCCS ICS Maugeri, 27100 Pavia, Italy
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| |
Collapse
|
4
|
Protasi F, Girolami B, Serano M, Pietrangelo L, Paolini C. Ablation of Calsequestrin-1, Ca 2+ unbalance, and susceptibility to heat stroke. Front Physiol 2022; 13:1033300. [PMID: 36311237 PMCID: PMC9598425 DOI: 10.3389/fphys.2022.1033300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction: Ca2+ levels in adult skeletal muscle fibers are mainly controlled by excitation-contraction (EC) coupling, a mechanism that translates action potentials in release of Ca2+ from the sarcoplasmic reticulum (SR) release channels, i.e. the ryanodine receptors type-1 (RyR1). Calsequestrin (Casq) is a protein that binds large amounts of Ca2+ in the lumen of the SR terminal cisternae, near sites of Ca2+ release. There is general agreement that Casq is not only important for the SR ability to store Ca2+, but also for modulating the opening probability of the RyR Ca2+ release channels. The initial studies: About 20 years ago we generated a mouse model lacking Casq1 (Casq1-null mice), the isoform predominantly expressed in adult fast twitch skeletal muscle. While the knockout was not lethal as expected, lack of Casq1 caused a striking remodeling of membranes of SR and of transverse tubules (TTs), and mitochondrial damage. Functionally, CASQ1-knockout resulted in reduced SR Ca2+ content, smaller Ca2+ transients, and severe SR depletion during repetitive stimulation. The myopathic phenotype of Casq1-null mice: After the initial studies, we discovered that Casq1-null mice were prone to sudden death when exposed to halogenated anaesthetics, heat and even strenuous exercise. These syndromes are similar to human malignant hyperthermia susceptibility (MHS) and environmental-exertional heat stroke (HS). We learned that mechanisms underlying these syndromes involved excessive SR Ca2+ leak and excessive production of oxidative species: indeed, mortality and mitochondrial damage were significantly prevented by administration of antioxidants and reduction of oxidative stress. Though, how Casq1-null mice could survive without the most important SR Ca2+ binding protein was a puzzling issue that was not solved. Unravelling the mystery: The mystery was finally solved in 2020, when we discovered that in Casq1-null mice the SR undergoes adaptations that result in constitutively active store-operated Ca2+ entry (SOCE). SOCE is a mechanism that allows skeletal fibers to use external Ca2+ when SR stores are depleted. The post-natal compensatory mechanism that allows Casq1-null mice to survive involves the assembly of new SR-TT junctions (named Ca2+ entry units) containing Stim1 and Orai1, the two proteins that mediate SOCE.
Collapse
Affiliation(s)
- Feliciano Protasi
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Barbara Girolami
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Matteo Serano
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Cecilia Paolini
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
6
|
Rossi D, Pierantozzi E, Amadsun DO, Buonocore S, Rubino EM, Sorrentino V. The Sarcoplasmic Reticulum of Skeletal Muscle Cells: A Labyrinth of Membrane Contact Sites. Biomolecules 2022; 12:488. [PMID: 35454077 PMCID: PMC9026860 DOI: 10.3390/biom12040488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
The sarcoplasmic reticulum of skeletal muscle cells is a highly ordered structure consisting of an intricate network of tubules and cisternae specialized for regulating Ca2+ homeostasis in the context of muscle contraction. The sarcoplasmic reticulum contains several proteins, some of which support Ca2+ storage and release, while others regulate the formation and maintenance of this highly convoluted organelle and mediate the interaction with other components of the muscle fiber. In this review, some of the main issues concerning the biology of the sarcoplasmic reticulum will be described and discussed; particular attention will be addressed to the structure and function of the two domains of the sarcoplasmic reticulum supporting the excitation-contraction coupling and Ca2+-uptake mechanisms.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (E.P.); (D.O.A.); (S.B.); (E.M.R.); (V.S.)
| | | | | | | | | | | |
Collapse
|
7
|
Quantification of the calcium signaling deficit in muscles devoid of triadin. PLoS One 2022; 17:e0264146. [PMID: 35213584 PMCID: PMC8880904 DOI: 10.1371/journal.pone.0264146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Triadin, a protein of the sarcoplasmic reticulum (SR) of striated muscles, anchors the calcium-storing protein calsequestrin to calcium release RyR channels at the junction with t-tubules, and modulates these channels by conformational effects. Triadin ablation induces structural SR changes and alters the expression of other proteins. Here we quantify alterations of calcium signaling in single skeletal myofibers of constitutive triadin-null mice. We find higher resting cytosolic and lower SR-luminal [Ca2+], 40% lower calsequestrin expression, and more CaV1.1, RyR1 and SERCA1. Despite the increased CaV1.1, the mobile intramembrane charge was reduced by ~20% in Triadin-null fibers. The initial peak of calcium release flux by pulse depolarization was minimally altered in the null fibers (revealing an increase in peak calcium permeability). The “hump” phase that followed, attributable to calcium detaching from calsequestrin, was 25% lower, a smaller change than expected from the reduced calsequestrin content and calcium saturation. The exponential decay rate of calcium transients was 25% higher, consistent with the higher SERCA1 content. Recovery of calcium flux after a depleting depolarization was faster in triadin-null myofibers, consistent with the increased uptake rate and lower SR calsequestrin content. In sum, the triadin knockout determines an increased RyR1 channel openness, which depletes the SR, a substantial loss of calsequestrin and gains in other couplon proteins. Powerful functional compensations ensue: activation of SOCE that increases [Ca2+]cyto; increased SERCA1 activity, which limits the decrease in [Ca2+]SR and a restoration of SR calcium storage of unknown substrate. Together, they effectively limit the functional loss in skeletal muscles.
Collapse
|
8
|
Brandenburg S, Pawlowitz J, Steckmeister V, Subramanian H, Uhlenkamp D, Scardigli M, Mushtaq M, Amlaz SI, Kohl T, Wegener JW, Arvanitis DA, Sanoudou D, Sacconi L, Hasenfuss G, Voigt N, Nikolaev VO, Lehnart SE. A junctional cAMP compartment regulates rapid Ca 2+ signaling in atrial myocytes. J Mol Cell Cardiol 2022; 165:141-157. [PMID: 35033544 DOI: 10.1016/j.yjmcc.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/15/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
Abstract
Axial tubule junctions with the sarcoplasmic reticulum control the rapid intracellular Ca2+-induced Ca2+ release that initiates atrial contraction. In atrial myocytes we previously identified a constitutively increased ryanodine receptor (RyR2) phosphorylation at junctional Ca2+ release sites, whereas non-junctional RyR2 clusters were phosphorylated acutely following β-adrenergic stimulation. Here, we hypothesized that the baseline synthesis of 3',5'-cyclic adenosine monophosphate (cAMP) is constitutively augmented in the axial tubule junctional compartments of atrial myocytes. Confocal immunofluorescence imaging of atrial myocytes revealed that junctin, binding to RyR2 in the sarcoplasmic reticulum, was densely clustered at axial tubule junctions. Interestingly, a new transgenic junctin-targeted FRET cAMP biosensor was exclusively co-clustered in the junctional compartment, and hence allowed to monitor cAMP selectively in the vicinity of junctional RyR2 channels. To dissect local cAMP levels at axial tubule junctions versus subsurface Ca2+ release sites, we developed a confocal FRET imaging technique for living atrial myocytes. A constitutively high adenylyl cyclase activity sustained increased local cAMP levels at axial tubule junctions, whereas β-adrenergic stimulation overcame this cAMP compartmentation resulting in additional phosphorylation of non-junctional RyR2 clusters. Adenylyl cyclase inhibition, however, abolished the junctional RyR2 phosphorylation and decreased L-type Ca2+ channel currents, while FRET imaging showed a rapid cAMP decrease. In conclusion, FRET biosensor imaging identified compartmentalized, constitutively augmented cAMP levels in junctional dyads, driving both the locally increased phosphorylation of RyR2 clusters and larger L-type Ca2+ current density in atrial myocytes. This cell-specific cAMP nanodomain is maintained by a constitutively increased adenylyl cyclase activity, contributing to the rapid junctional Ca2+-induced Ca2+ release, whereas β-adrenergic stimulation overcomes the junctional cAMP compartmentation through cell-wide activation of non-junctional RyR2 clusters.
Collapse
Affiliation(s)
- Sören Brandenburg
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.
| | - Jan Pawlowitz
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Vanessa Steckmeister
- Heart Research Center Göttingen, Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Dennis Uhlenkamp
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Marina Scardigli
- Department of Physics and Astronomy, University of Florence, Florence, Italy; European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy
| | - Mufassra Mushtaq
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Saskia I Amlaz
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Tobias Kohl
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Jörg W Wegener
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Demetrios A Arvanitis
- Molecular Biology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy; Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Gerd Hasenfuss
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Niels Voigt
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; Heart Research Center Göttingen, Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; BioMET, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Rossi D, Lorenzini S, Pierantozzi E, Van Petegem F, Amadsun DO, Sorrentino V. Multiple regions of junctin drive interaction with calsequestrin-1 and localization at triads in skeletal muscle. J Cell Sci 2021; 135:274105. [PMID: 34913055 DOI: 10.1242/jcs.259185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
Junctin is a transmembrane protein of striated muscles, localized at the junctional sarcoplasmic reticulum (j-SR). It is characterized by a luminal C-terminal tail, through which it functionally interacts with calsequestrin and the ryanodine receptor. Interaction with calsequestrin was ascribed to the presence of stretches of charged amino acids. However, the regions able to bind calsequestrin have not been defined in detail. We report here that, in non-muscle cells, junctin and calsequestrin assemble in long linear regions within the endoplasmic reticulum, mirroring the formation of calsequestrin polymers. In differentiating myotubes, the two proteins co-localize at triads, where they assemble with other j-SR proteins. By performing GST pull-down assays with distinct regions of the junctin tail, we identified two KEKE motifs able to bind calsequestrin. In addition, stretches of charged amino acids downstream these motifs were found to be also able to bind calsequestrin and the ryanodine receptor. Deletion of even one of these regions impaired the ability of junctin to localize at the j-SR, suggesting that interaction with other proteins at this site represents a key element in junctin targeting.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Stefania Lorenzini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
10
|
Powell LE, Foster PA. Protein disulphide isomerase inhibition as a potential cancer therapeutic strategy. Cancer Med 2021; 10:2812-2825. [PMID: 33742523 PMCID: PMC8026947 DOI: 10.1002/cam4.3836] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
The protein disulphide isomerase (PDI) gene family is a large, diverse group of enzymes recognised for their roles in disulphide bond formation within the endoplasmic reticulum (ER). PDI therefore plays an important role in ER proteostasis, however, it also shows involvement in ER stress, a characteristic recognised in multiple disease states, including cancer. While the exact mechanisms by which PDI contributes to tumorigenesis are still not fully understood, PDI exhibits clear involvement in the unfolded protein response (UPR) pathway. The UPR acts to alleviate ER stress through the activation of ER chaperones, such as PDI, which act to refold misfolded proteins, promoting cell survival. PDI also acts as an upstream regulator of the UPR pathway, through redox regulation of UPR stress receptors. This demonstrates the pro‐protective roles of PDI and highlights PDI as a potential therapeutic target for cancer treatment. Recent research has explored the use of PDI inhibitors with PACMA 31 in particular, demonstrating promising anti‐cancer effects in ovarian cancer. This review discusses the properties and functions of PDI family members and focuses on their potential as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Lauren E Powell
- Institute of Metabolism and Systems Research (IMSR), Medical and Dental School, University of Birmingham, Birmingham, UK
| | - Paul A Foster
- Institute of Metabolism and Systems Research (IMSR), Medical and Dental School, University of Birmingham, Birmingham, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
11
|
Woo JS, Jeong SY, Park JH, Choi JH, Lee EH. Calsequestrin: a well-known but curious protein in skeletal muscle. Exp Mol Med 2020; 52:1908-1925. [PMID: 33288873 PMCID: PMC8080761 DOI: 10.1038/s12276-020-00535-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Calsequestrin (CASQ) was discovered in rabbit skeletal muscle tissues in 1971 and has been considered simply a passive Ca2+-buffering protein in the sarcoplasmic reticulum (SR) that provides Ca2+ ions for various Ca2+ signals. For the past three decades, physiologists, biochemists, and structural biologists have examined the roles of the skeletal muscle type of CASQ (CASQ1) in skeletal muscle and revealed that CASQ1 has various important functions as (1) a major Ca2+-buffering protein to maintain the SR with a suitable amount of Ca2+ at each moment, (2) a dynamic Ca2+ sensor in the SR that regulates Ca2+ release from the SR to the cytosol, (3) a structural regulator for the proper formation of terminal cisternae, (4) a reverse-directional regulator of extracellular Ca2+ entries, and (5) a cause of human skeletal muscle diseases. This review is focused on understanding these functions of CASQ1 in the physiological or pathophysiological status of skeletal muscle.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 10833, USA
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Ji Hee Park
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
12
|
Ali N, Rezvani HR, Motei D, Suleman S, Mahfouf W, Marty I, Ronkainen VP, Vainio SJ. Trisk 95 as a novel skin mirror for normal and diabetic systemic glucose level. Sci Rep 2020; 10:12246. [PMID: 32699238 PMCID: PMC7376074 DOI: 10.1038/s41598-020-68972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/03/2020] [Indexed: 11/21/2022] Open
Abstract
Developing trustworthy, cost effective, minimally or non-invasive glucose sensing strategies is of great need for diabetic patients. In this study, we used an experimental type I diabetic mouse model to examine whether the skin would provide novel means for identifying biomarkers associated with blood glucose level. We first showed that skin glucose levels are rapidly influenced by blood glucose concentrations. We then conducted a proteomic screen of murine skin using an experimental in vivo model of type I diabetes and wild-type controls. Among the proteins that increased expression in response to high blood glucose, Trisk 95 expression was significantly induced independently of insulin signalling. A luciferase reporter assay demonstrated that the induction of Trisk 95 expression occurs at a transcriptional level and is associated with a marked elevation in the Fluo-4AM signal, suggesting a role for intracellular calcium changes in the signalling cascade. Strikingly, these changes lead concurrently to fragmentation of the mitochondria. Moreover, Trisk 95 knockout abolishes both the calcium flux and the mitochondrial phenotype changes indicating dependency of glucose flux in the skin on Trisk 95 function. The data demonstrate that the skin reacts robustly to systemic blood changes, and that Trisk 95 is a promising biomarker for a glucose monitoring assembly.
Collapse
Affiliation(s)
- Nsrein Ali
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 5A, 90220, Oulu, Finland. .,Infotech Oulu, University of Oulu, 90220, Oulu, Finland.
| | - Hamid Reza Rezvani
- Inserm, BMGIC, UMR 1035, University of Bordeaux, Bordeaux, France.,Centre de Référence pour les Maladies Rares de la Peau, CHU de Bordeaux, Bordeaux, France
| | - Diana Motei
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Sufyan Suleman
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 5A, 90220, Oulu, Finland
| | - Walid Mahfouf
- Inserm, BMGIC, UMR 1035, University of Bordeaux, Bordeaux, France
| | - Isabelle Marty
- Inserm U1216, Grenoble Institut des Neurosciences, University Grenoble, La Tronche, France
| | | | - Seppo J Vainio
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 5A, 90220, Oulu, Finland.,Infotech Oulu, University of Oulu, 90220, Oulu, Finland.,Borealis Biobank of Northern Finland, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
13
|
Aloisi I, Distefano G, Antognoni F, Potente G, Parrotta L, Faleri C, Gentile A, Bennici S, Mareri L, Cai G, Del Duca S. Temperature-Dependent Compatible and Incompatible Pollen-Style Interactions in Citrus clementina Hort. ex Tan. Show Different Transglutaminase Features and Polyamine Pattern. FRONTIERS IN PLANT SCIENCE 2020; 11:1018. [PMID: 32733518 PMCID: PMC7360793 DOI: 10.3389/fpls.2020.01018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/22/2020] [Indexed: 05/27/2023]
Abstract
In clementine, failure of fertilization can result in parthenocarpic fruit development, which has several advantages, such as seedless fruit, longer shelf-life, and greater consumer appeal. Recently, S-RNases have been identified in Citrus grandis, thus revealing that the self-incompatibility (SI) reaction relies on the S-RNase gametophytic mechanism. The fundamental role of environmental factors, mostly temperature, in determining the numbers of pollen tubes reaching the ovary is also well established in Citrus. In the present work, temperature-dependent pollen-pistil interactions in C. clementina were analyzed, focusing on several morphological aspects, as well as on polyamine (PA) content and the activity and distribution of transglutaminase (TGase), both reported to be involved in the SI response in pear and in pummelo. Results clearly indicate that temperature contributed to a different activation of the SI response, which occurs at optimal temperature of 25°C but was by-passed at 15°C. TGase activity was stimulated during the SI response, and it localized differently in the compatible and incompatible interaction: in compatible pollinated styles, TGase localized inside the style canal, while it was detected all around it in incompatible crosses. TGase localization and activity were congruent with the levels of soluble and insoluble conjugated PAs and with morphological evidences, which highlighted cell wall modification occurring as a result of SI.
Collapse
Affiliation(s)
- Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Gaetano Distefano
- Department of Agricultural and Food Production Sciences, University of Catania, Catania, Italy
| | - Fabiana Antognoni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Giulia Potente
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Alessandra Gentile
- Department of Agricultural and Food Production Sciences, University of Catania, Catania, Italy
| | - Stefania Bennici
- Department of Agricultural and Food Production Sciences, University of Catania, Catania, Italy
| | - Lavinia Mareri
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
14
|
Rossi D, Gamberucci A, Pierantozzi E, Amato C, Migliore L, Sorrentino V. Calsequestrin, a key protein in striated muscle health and disease. J Muscle Res Cell Motil 2020; 42:267-279. [PMID: 32488451 DOI: 10.1007/s10974-020-09583-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
Calsequestrin (CASQ) is the most abundant Ca2+ binding protein localized in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. The genome of vertebrates contains two genes, CASQ1 and CASQ2. CASQ1 and CASQ2 have a high level of homology, but show specific patterns of expression. Fast-twitch skeletal muscle fibers express only CASQ1, both CASQ1 and CASQ2 are present in slow-twitch skeletal muscle fibers, while CASQ2 is the only protein present in cardiomyocytes. Depending on the intraluminal SR Ca2+ levels, CASQ monomers assemble to form large polymers, which increase their Ca2+ binding ability. CASQ interacts with triadin and junctin, two additional SR proteins which contribute to localize CASQ to the junctional region of the SR (j-SR) and also modulate CASQ ability to polymerize into large macromolecular complexes. In addition to its ability to bind Ca2+ in the SR, CASQ appears also to be able to contribute to regulation of Ca2+ homeostasis in muscle cells. Both CASQ1 and CASQ2 are able to either activate and inhibit the ryanodine receptors (RyRs) calcium release channels, likely through their interactions with junctin and triadin. Additional evidence indicates that CASQ1 contributes to regulate the mechanism of store operated calcium entry in skeletal muscle via a direct interaction with the Stromal Interaction Molecule 1 (STIM1). Mutations in CASQ2 and CASQ1 have been identified, respectively, in patients with catecholamine-induced polymorphic ventricular tachycardia and in patients with some forms of myopathy. This review will highlight recent developments in understanding CASQ1 and CASQ2 in health and diseases.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy.
| | - Alessandra Gamberucci
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Caterina Amato
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Loredana Migliore
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Via A. Moro, 2, 53100, Siena, Italy
| |
Collapse
|
15
|
Furlan S, Campione M, Murgia M, Mosole S, Argenton F, Volpe P, Nori A. Calsequestrins New Calcium Store Markers of Adult Zebrafish Cerebellum and Optic Tectum. Front Neuroanat 2020; 14:15. [PMID: 32372920 PMCID: PMC7188384 DOI: 10.3389/fnana.2020.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Calcium stores in neurons are heterogeneous in compartmentalization and molecular composition. Danio rerio (zebrafish) is an animal model with a simply folded cerebellum similar in cellular organization to that of mammals. The aim of the study was to identify new endoplasmic reticulum (ER) calcium store markers in zebrafish adult brain with emphasis on cerebellum and optic tectum. By quantitative polymerase chain reaction, we found three RNA transcripts coding for the intra-ER calcium binding protein calsequestrin: casq1a, casq1b, and casq2. In brain homogenates, two isoforms were detected by mass spectrometry and western blotting. Fractionation experiments of whole brain revealed that Casq1a and Casq2 were enriched in a heavy fraction containing ER microsomes and synaptic membranes. By in situ hybridization, we found the heterogeneous expression of casq1a and casq2 mRNA to be compatible with the cellular localization of calsequestrins investigated by immunofluorescence. Casq1 was expressed in neurogenic differentiation 1 expressing the granule cells of the cerebellum and the periventricular zone of the optic tectum. Casq2 was concentrated in parvalbumin expressing Purkinje cells. At a subcellular level, Casq1 was restricted to granular cell bodies, and Casq2 was localized in cell bodies, dendrites, and axons. Data are discussed in relation to the differential cellular and subcellular distribution of other cerebellum calcium store markers and are evaluated with respect to the putative relevance of calsequestrins in the neuron-specific functional activity.
Collapse
Affiliation(s)
- Sandra Furlan
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Padova, Italy
| | - Marina Campione
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Padova, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Istituto Interuniversitario di Miologia, Padova, Italy.,Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Simone Mosole
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | | | - Pompeo Volpe
- Department of Biomedical Sciences, University of Padova, Istituto Interuniversitario di Miologia, Padova, Italy
| | - Alessandra Nori
- Department of Biomedical Sciences, University of Padova, Istituto Interuniversitario di Miologia, Padova, Italy
| |
Collapse
|
16
|
Federico M, Valverde CA, Mattiazzi A, Palomeque J. Unbalance Between Sarcoplasmic Reticulum Ca 2 + Uptake and Release: A First Step Toward Ca 2 + Triggered Arrhythmias and Cardiac Damage. Front Physiol 2020; 10:1630. [PMID: 32038301 PMCID: PMC6989610 DOI: 10.3389/fphys.2019.01630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
The present review focusses on the regulation and interplay of cardiac SR Ca2+ handling proteins involved in SR Ca2+ uptake and release, i.e., SERCa2/PLN and RyR2. Both RyR2 and SERCA2a/PLN are highly regulated by post-translational modifications and/or different partners' proteins. These control mechanisms guarantee a precise equilibrium between SR Ca2+ reuptake and release. The review then discusses how disruption of this balance alters SR Ca2+ handling and may constitute a first step toward cardiac damage and malignant arrhythmias. In the last part of the review, this concept is exemplified in different cardiac diseases, like prediabetic and diabetic cardiomyopathy, digitalis intoxication and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Marilén Federico
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina.,Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Buenos Aires, Argentina
| |
Collapse
|
17
|
Pollak AJ, Liu C, Gudlur A, Mayfield JE, Dalton ND, Gu Y, Chen J, Heller Brown J, Hogan PG, Wiley SE, Peterson KL, Dixon JE. A secretory pathway kinase regulates sarcoplasmic reticulum Ca 2+ homeostasis and protects against heart failure. eLife 2018; 7:41378. [PMID: 30520731 PMCID: PMC6298778 DOI: 10.7554/elife.41378] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
Ca2+ signaling is important for many cellular and physiological processes, including cardiac function. Although sarcoplasmic reticulum (SR) proteins involved in Ca2+ signaling have been shown to be phosphorylated, the biochemical and physiological roles of protein phosphorylation within the lumen of the SR remain essentially uncharacterized. Our laboratory recently identified an atypical protein kinase, Fam20C, which is uniquely localized to the secretory pathway lumen. Here, we show that Fam20C phosphorylates several SR proteins involved in Ca2+ signaling, including calsequestrin2 and Stim1, whose biochemical activities are dramatically regulated by Fam20C mediated phosphorylation. Notably, phosphorylation of Stim1 by Fam20C enhances Stim1 activation and store-operated Ca2+ entry. Physiologically, mice with Fam20c ablated in cardiomyocytes develop heart failure following either aging or induced pressure overload. We extended these observations to show that non-muscle cells lacking Fam20C display altered ER Ca2+ signaling. Overall, we show that Fam20C plays an overarching role in ER/SR Ca2+ homeostasis and cardiac pathophysiology.
Collapse
Affiliation(s)
- Adam J Pollak
- Department of Pharmacology, University of California, San Diego, San Diego, United States
| | - Canzhao Liu
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Aparna Gudlur
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, San Diego, United States
| | - Joshua E Mayfield
- Department of Pharmacology, University of California, San Diego, San Diego, United States
| | - Nancy D Dalton
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Yusu Gu
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Ju Chen
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, San Diego, United States
| | - Patrick G Hogan
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, San Diego, United States.,Program in Immunology, University of California, San Diego, San Diego, United States.,Moores Cancer Center, University of California, San Diego, San Diego, United States
| | - Sandra E Wiley
- Department of Pharmacology, University of California, San Diego, San Diego, United States
| | - Kirk L Peterson
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Jack E Dixon
- Department of Pharmacology, University of California, San Diego, San Diego, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States.,Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, United States
| |
Collapse
|
18
|
Abstract
The protein disulfide isomerase (PDI) family is a group of multifunctional endoplasmic reticulum (ER) enzymes that mediate the formation of disulfide bonds, catalyze the cysteine-based redox reactions and assist the quality control of client proteins. Recent structural and functional studies have demonstrated that PDI members not only play an essential role in the proteostasis in the ER but also exert diverse effects in numerous human disorders including cancer and neurodege-nerative diseases. Increasing evidence suggests that PDI is actively involved in the proliferation, survival, and metastasis of several types of cancer cells. Although the molecular mechanism by which PDI contributes to tumorigenesis and metastasis remains to be understood, PDI is now emerging as a new therapeutic target for cancer treatment. In fact, several attempts have been made to develop PDI inhibitors as anti-cancer drugs. In this review, we discuss the properties and diverse functions of human PDI proteins and focus on recent findings regarding their roles in the state of diseases including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Eunyoug Lee
- Department of Bio and Environmental Technology, Seoul Women's University, Seoul 01797, Korea
| | - Do Hee Lee
- Department of Bio and Environmental Technology, Seoul Women's University, Seoul 01797, Korea
| |
Collapse
|
19
|
Guo W, Zhu C, Yin Z, Wang Q, Sun M, Cao H, Greaser ML. Splicing Factor RBM20 Regulates Transcriptional Network of Titin Associated and Calcium Handling Genes in The Heart. Int J Biol Sci 2018; 14:369-380. [PMID: 29725258 PMCID: PMC5930469 DOI: 10.7150/ijbs.24117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/27/2018] [Indexed: 01/28/2023] Open
Abstract
RNA binding motif 20 (RBM20) regulates pre-mRNA splicing of over thirty genes, among which titin is a major target. With RBM20 expression, titin expresses a larger isoform at fetal stage to a smaller isoform at adult resulting from alternative splicing, while, without RBM20, titin expresses exclusively a larger isoform throughout all ages. In addition to splicing regulation, it is unknown whether RBM20 also regulates gene expression. In this study, we employed Rbm20 knockout rats to investigate gene expression profile using Affymetrix expression array. We compared wild type to Rbm20 knockout at day1, 20 and 49. Bioinformatics analysis showed RBM20 regulates fewer genes expression at younger age and more at older age and commonly expressed genes have the same trends. GSEA indicated up-regulated genes are associated with heart failure. We examined titin binding partners. All titin direct binding partners are up-regulated and their increased expression is associated with dilated cardiomyopathy. Particularly, we found that genes involving calcium handling and muscle contraction are changed by RBM20. Intracellular calcium level measurement with individual cardiomyocytes further confirmed that changes of these proteins impact calcium handling. Selected genes from titin binding partners and calcium handling were validated with QPCR and western blotting. These data demonstrate that RBM20 regulates gene splicing as well as gene expression. Altered gene expression by RBM20 influences protein-protein interaction, calcium releasing and thus muscle contraction. Our results first reported gene expression impacted by RBM20 with heart maturation, and provided new insights into the role of RBM20 in the progression of heart failure.
Collapse
Affiliation(s)
- Wei Guo
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Chaoqun Zhu
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Zhiyong Yin
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.,Department of Cardiology, Xi Jing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qiurong Wang
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Mingming Sun
- Animal Science, University of Wyoming, Laramie, WY 82071, USA.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA
| | - Huojun Cao
- Iowa Institute for Oral Health Research, College of Dentistry.,Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Marion L Greaser
- Animal Science, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
20
|
Meissner G. The structural basis of ryanodine receptor ion channel function. J Gen Physiol 2017; 149:1065-1089. [PMID: 29122978 PMCID: PMC5715910 DOI: 10.1085/jgp.201711878] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/12/2017] [Indexed: 01/25/2023] Open
Abstract
Large-conductance Ca2+ release channels known as ryanodine receptors (RyRs) mediate the release of Ca2+ from an intracellular membrane compartment, the endo/sarcoplasmic reticulum. There are three mammalian RyR isoforms: RyR1 is present in skeletal muscle; RyR2 is in heart muscle; and RyR3 is expressed at low levels in many tissues including brain, smooth muscle, and slow-twitch skeletal muscle. RyRs form large protein complexes comprising four 560-kD RyR subunits, four ∼12-kD FK506-binding proteins, and various accessory proteins including calmodulin, protein kinases, and protein phosphatases. RyRs share ∼70% sequence identity, with the greatest sequence similarity in the C-terminal region that forms the transmembrane, ion-conducting domain comprising ∼500 amino acids. The remaining ∼4,500 amino acids form the large regulatory cytoplasmic "foot" structure. Experimental evidence for Ca2+, ATP, phosphorylation, and redox-sensitive sites in the cytoplasmic structure have been described. Exogenous effectors include the two Ca2+ releasing agents caffeine and ryanodine. Recent work describing the near atomic structures of mammalian skeletal and cardiac muscle RyRs provides a structural basis for the regulation of the RyRs by their multiple effectors.
Collapse
Affiliation(s)
- Gerhard Meissner
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
21
|
Hanna AD, Lam A, Thekkedam C, Willemse H, Dulhunty AF, Beard NA. The Anthracycline Metabolite Doxorubicinol Abolishes RyR2 Sensitivity to Physiological Changes in Luminal Ca2+ through an Interaction with Calsequestrin. Mol Pharmacol 2017; 92:576-587. [DOI: 10.1124/mol.117.108183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 09/07/2017] [Indexed: 12/31/2022] Open
|
22
|
Calsequestrin depolymerizes when calcium is depleted in the sarcoplasmic reticulum of working muscle. Proc Natl Acad Sci U S A 2017; 114:E638-E647. [PMID: 28069951 DOI: 10.1073/pnas.1620265114] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Calsequestrin, the only known protein with cyclical storage and supply of calcium as main role, is proposed to have other functions, which remain unproven. Voluntary movement and the heart beat require this calcium flow to be massive and fast. How does calsequestrin do it? To bind large amounts of calcium in vitro, calsequestrin must polymerize and then depolymerize to release it. Does this rule apply inside the sarcoplasmic reticulum (SR) of a working cell? We answered using fluorescently tagged calsequestrin expressed in muscles of mice. By FRAP and imaging we monitored mobility of calsequestrin as [Ca2+] in the SR--measured with a calsequestrin-fused biosensor--was lowered. We found that calsequestrin is polymerized within the SR at rest and that it depolymerized as [Ca2+] went down: fully when calcium depletion was maximal (a condition achieved with an SR calcium channel opening drug) and partially when depletion was limited (a condition imposed by fatiguing stimulation, long-lasting depolarization, or low drug concentrations). With fluorescence and electron microscopic imaging we demonstrated massive movements of calsequestrin accompanied by drastic morphological SR changes in fully depleted cells. When cells were partially depleted no remodeling was found. The present results support the proposed role of calsequestrin in termination of calcium release by conformationally inducing closure of SR channels. A channel closing switch operated by calsequestrin depolymerization will limit depletion, thereby preventing full disassembly of the polymeric calsequestrin network and catastrophic structural changes in the SR.
Collapse
|
23
|
Handhle A, Ormonde CE, Thomas NL, Bralesford C, Williams AJ, Lai FA, Zissimopoulos S. Calsequestrin interacts directly with the cardiac ryanodine receptor luminal domain. J Cell Sci 2016; 129:3983-3988. [PMID: 27609834 PMCID: PMC5117208 DOI: 10.1242/jcs.191643] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/05/2016] [Indexed: 11/20/2022] Open
Abstract
Cardiac muscle contraction requires sarcoplasmic reticulum (SR) Ca2+ release mediated by the quaternary complex comprising the ryanodine receptor 2 (RyR2), calsequestrin 2 (CSQ2), junctin (encoded by ASPH) and triadin. Here, we demonstrate that a direct interaction exists between RyR2 and CSQ2. Topologically, CSQ2 binding occurs at the first luminal loop of RyR2. Co-expression of RyR2 and CSQ2 in a human cell line devoid of the other quaternary complex proteins results in altered Ca2+-release dynamics compared to cells expressing RyR2 only. These findings provide a new perspective for understanding the SR luminal Ca2+ sensor and its involvement in cardiac physiology and disease.
Collapse
Affiliation(s)
- Ahmed Handhle
- Sir Geraint Evans Wales Heart Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Chloe E Ormonde
- Sir Geraint Evans Wales Heart Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - N Lowri Thomas
- Sir Geraint Evans Wales Heart Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Catherine Bralesford
- Sir Geraint Evans Wales Heart Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Alan J Williams
- Sir Geraint Evans Wales Heart Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - F Anthony Lai
- Sir Geraint Evans Wales Heart Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Spyros Zissimopoulos
- Sir Geraint Evans Wales Heart Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
24
|
Three residues in the luminal domain of triadin impact on Trisk 95 activation of skeletal muscle ryanodine receptors. Pflugers Arch 2016; 468:1985-1994. [PMID: 27595738 DOI: 10.1007/s00424-016-1869-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/02/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
Triadin isoforms, splice variants of one gene, maintain healthy Ca2+ homeostasis in skeletal muscle by subserving several functions including an influence on Ca2+ release through the ligand-gated ryanodine receptor (RyR1) ion channels. The predominant triadin isoform in skeletal muscle, Trisk 95, activates RyR1 in vitro via binding to previously unidentified amino acids between residues 200 and 232. Here, we identify three amino acids that influence Trisk 95 binding to RyR1 and ion channel activation, using peptides encompassing residues 200-232. Selective alanine substitutions show that K218, K220, and K224 together facilitate normal Trisk 95 binding to RyR1 and channel activation. Neither RyR1 binding nor activation are altered by alanine substitution of K220 alone or of K218 and K224. Therefore K218, K220, and K224 contribute to a robust binding and activation site that is disrupted only when the charge on all three residues is neutralized. We suggest that charged pair interactions between acidic RyR1 residues D4878, D4907, and E4908 and Trisk 95 residues K218, K220, and K224 facilitate Trisk 95 binding to RyR1 and channel activation. Since K218, K220, and K224 are also required for CSQ binding to RyRs (Kobayashi et al. 17, J Biol Chem 275, 17639-17646), the results suggest that Trisk 95 may not simultaneously bind to RyR1 and CSQ, contrary to the widely held belief that triadin monomers form a quaternary complex with junctin, CSQ and RyR1. Therefore, the in vivo role of triadin monomers in modulating RyR1 activity is likely unrelated to CSQ.
Collapse
|
25
|
Mosca B, Eckhardt J, Bergamelli L, Treves S, Bongianino R, De Negri M, Priori SG, Protasi F, Zorzato F. Role of the JP45-Calsequestrin Complex on Calcium Entry in Slow Twitch Skeletal Muscles. J Biol Chem 2016; 291:14555-65. [PMID: 27189940 PMCID: PMC4938177 DOI: 10.1074/jbc.m115.709071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 12/27/2022] Open
Abstract
We exploited a variety of mouse models to assess the roles of JP45-CASQ1 (CASQ, calsequestrin) and JP45-CASQ2 on calcium entry in slow twitch muscles. In flexor digitorum brevis (FDB) fibers isolated from JP45-CASQ1-CASQ2 triple KO mice, calcium transients induced by tetanic stimulation rely on calcium entry via La3+- and nifedipine-sensitive calcium channels. The comparison of excitation-coupled calcium entry (ECCE) between FDB fibers from WT, JP45KO, CASQ1KO, CASQ2KO, JP45-CASQ1 double KO, JP45-CASQ2 double KO, and JP45-CASQ1-CASQ2 triple KO shows that ECCE enhancement requires ablation of both CASQs and JP45. Calcium entry activated by ablation of both JP45-CASQ1 and JP45-CASQ2 complexes supports tetanic force development in slow twitch soleus muscles. In addition, we show that CASQs interact with JP45 at Ca2+ concentrations similar to those present in the lumen of the sarcoplasmic reticulum at rest, whereas Ca2+ concentrations similar to those present in the SR lumen after depolarization-induced calcium release cause the dissociation of JP45 from CASQs. Our results show that the complex JP45-CASQs is a negative regulator of ECCE and that tetanic force development in slow twitch muscles is supported by the dynamic interaction between JP45 and CASQs.
Collapse
Affiliation(s)
- Barbara Mosca
- Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy
| | - Jan Eckhardt
- From the Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Leda Bergamelli
- Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy
| | - Susan Treves
- Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy From the Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Rossana Bongianino
- Molecular Cardiology Laboratories Fondazione Salvatore Maugeri, Via Maugeri 10/10°, 27100, Pavia Italy
| | - Marco De Negri
- Molecular Cardiology Laboratories Fondazione Salvatore Maugeri, Via Maugeri 10/10°, 27100, Pavia Italy
| | - Silvia G Priori
- Molecular Cardiology Laboratories Fondazione Salvatore Maugeri, Via Maugeri 10/10°, 27100, Pavia Italy, Department of Molecular Medicine, University of Pavia, Pavia Italy, and
| | - Feliciano Protasi
- Center for Research on Ageing and Translational Medicine and DNICS (Department of Neuroscience, Imaging, and Clinical Sciences), University G. d'Annunzio, 66100 Chieti, Italy
| | - Francesco Zorzato
- From the Departments of Anaesthesia and Biomedicine, Basel University Hospital, Hebelstrasse 20, 4031 Basel, Switzerland, Department of Life Science and Biotechnology, University of Ferrara, Via Borsari 46, 44100, Ferrara, Italy
| |
Collapse
|
26
|
Rani S, Park CS, Sreenivasaiah PK, Kim DH. Characterization of Ca(2+)-Dependent Protein-Protein Interactions within the Ca(2+) Release Units of Cardiac Sarcoplasmic Reticulum. Mol Cells 2016; 39:149-55. [PMID: 26674963 PMCID: PMC4757803 DOI: 10.14348/molcells.2016.2284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 02/04/2023] Open
Abstract
In the heart, excitation-contraction (E-C) coupling is mediated by Ca(2+) release from sarcoplasmic reticulum (SR) through the interactions of proteins forming the Ca(2+) release unit (CRU). Among them, calsequestrin (CSQ) and histidine-rich Ca(2+) binding protein (HRC) are known to bind the charged luminal region of triadin (TRN) and thus directly or indirectly regulate ryanodine receptor 2 (RyR2) activity. However, the mechanisms of CSQ and HRC mediated regulation of RyR2 activity through TRN have remained unclear. We first examined the minimal KEKE motif of TRN involved in the interactions with CSQ2, HRC and RyR2 using TRN deletion mutants and in vitro binding assays. The results showed that CSQ2, HRC and RyR2 share the same KEKE motif region on the distal part of TRN (aa 202-231). Second, in vitro binding assays were conducted to examine the Ca(2+) dependence of protein-protein interactions (PPI). The results showed that TRN-HRC interaction had a bell-shaped Ca(2+) dependence, which peaked at pCa4, whereas TRN-CSQ2 or TRN-RyR2 interaction did not show such Ca(2+) dependence pattern. Third, competitive binding was conducted to examine whether CSQ2, HRC, or RyR2 affects the TRN-HRC or TRN-CSQ2 binding at pCa4. Among them, only CSQ2 or RyR2 competitively inhibited TRN-HRC binding, suggesting that HRC can confer functional refractoriness to CRU, which could be beneficial for reloading of Ca(2+) into SR at intermediate Ca(2+) concentrations.
Collapse
Affiliation(s)
- Shilpa Rani
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712,
Korea
| | - Chang Sik Park
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712,
Korea
| | - Pradeep Kumar Sreenivasaiah
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712,
Korea
| | - Do Han Kim
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology, Gwangju 500-712,
Korea
| |
Collapse
|
27
|
Organization of junctional sarcoplasmic reticulum proteins in skeletal muscle fibers. J Muscle Res Cell Motil 2015; 36:501-15. [DOI: 10.1007/s10974-015-9421-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/08/2015] [Indexed: 01/24/2023]
|
28
|
Beard NA, Dulhunty AF. C-terminal residues of skeletal muscle calsequestrin are essential for calcium binding and for skeletal ryanodine receptor inhibition. Skelet Muscle 2015; 5:6. [PMID: 25861445 PMCID: PMC4389316 DOI: 10.1186/s13395-015-0029-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/14/2015] [Indexed: 02/05/2023] Open
Abstract
Background Skeletal muscle function depends on calcium signaling proteins in the sarcoplasmic reticulum (SR), including the calcium-binding protein calsequestrin (CSQ), the ryanodine receptor (RyR) calcium release channel, and skeletal triadin 95 kDa (trisk95) and junctin, proteins that bind to calsequestrin type 1 (CSQ1) and ryanodine receptor type 1 (RyR1). CSQ1 inhibits RyR1 and communicates store calcium load to RyR1 channels via trisk95 and/or junctin. Methods In this manuscript, we test predictions that CSQ1’s acidic C-terminus contains binding sites for trisk95 and junctin, the major calcium binding domain, and that it determines CSQ1’s ability to regulate RyR1 activity. Results Progressive alanine substitution of C-terminal acidic residues of CSQ1 caused a parallel reduction in the calcium binding capacity but did not significantly alter CSQ1’s association with trisk95/junctin or influence its inhibition of RyR1 activity. Deletion of the final seven residues in the C-terminus significantly hampered calcium binding, significantly reduced CSQ’s association with trisk95/junctin and decreased its inhibition of RyR1. Deletion of the full C-terminus further reduced calcium binding to CSQ1 altered its association with trisk95 and junctin and abolished its inhibition of RyR1. Conclusions The correlation between the number of residues mutated/deleted and binding of calcium, trisk95, and junctin suggests that binding of each depends on diffuse ionic interactions with several C-terminal residues and that these interactions may be required for CSQ1 to maintain normal muscle function.
Collapse
Affiliation(s)
- Nicole A Beard
- John Curtin School of Medical Research, Australian National University, Garran Road, Canberra, ACT 2601 Australia ; Discipline of Biomedical Sciences, Centre for Research in Therapeutic Solutions, Faculty of Education Science, Technology and Maths, University of Canberra, Kirinari Street, Bruce, ACT 2601 Australia
| | - Angela F Dulhunty
- John Curtin School of Medical Research, Australian National University, Garran Road, Canberra, ACT 2601 Australia
| |
Collapse
|
29
|
Marty I. Triadin regulation of the ryanodine receptor complex. J Physiol 2014; 593:3261-6. [PMID: 26228554 DOI: 10.1113/jphysiol.2014.281147] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/19/2014] [Indexed: 11/08/2022] Open
Abstract
The calcium release complex is the major player in excitation-contraction coupling, both in cardiac and skeletal muscle. The core of the complex is the ryanodine receptor, and triadin is a regulating protein. Nevertheless, the precise function of triadin is only partially understood. Besides its function in the anchoring of calsequestrin at the triad/dyad, our recent results allow us to propose hypotheses on new triadin scaffolding functions, based on the studies performed using different models, from triadin knockout mice to human patients, and expression in non-muscle cells, taking into account the presence of multiple triadin isoforms.
Collapse
Affiliation(s)
- Isabelle Marty
- Grenoble Institut des Neurosciences, Inserm U836, Université Joseph Fourier-Bat EJ Safra, Chemin Fortuné Ferrini, 38700, La Tronche, France
| |
Collapse
|
30
|
Distinct regions of triadin are required for targeting and retention at the junctional domain of the sarcoplasmic reticulum. Biochem J 2014; 458:407-17. [DOI: 10.1042/bj20130719] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three regions contribute to triadin localization to the junctional sarcoplasmic reticulum. Dynamics studies revealed that TR3 mediates triadin stability at junctional sites. The stable association of triadin at the junctional sites is facilitated by interactions with calsequestrin-1.
Collapse
|
31
|
Gaburjakova M, Bal NC, Gaburjakova J, Periasamy M. Functional interaction between calsequestrin and ryanodine receptor in the heart. Cell Mol Life Sci 2013; 70:2935-45. [PMID: 23109100 PMCID: PMC11113811 DOI: 10.1007/s00018-012-1199-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/02/2012] [Accepted: 10/15/2012] [Indexed: 11/25/2022]
Abstract
Evidence obtained in the last two decades indicates that calsequestrin (CSQ2), as the major Ca(2+)-binding protein in the sarcoplasmic reticulum of cardiac myocytes, communicates changes in the luminal Ca(2+) concentration to the cardiac ryanodine receptor (RYR2) channel. This review summarizes the major aspects in the interaction between CSQ2 and the RYR2 channel. The single channel properties of RYR2 channels, discussed here in the context of structural changes in CSQ2 after Ca(2+) binding, are particularly important. We focus on five important questions concerning: (1) the method for reliable detection of CSQ2 on the reconstituted RYR2 channel complex; (2) the power of the procedure to strip CSQ2 from the RYR2 channel complex; (3) structural changes in CSQ2 upon binding of Ca(2+) which cause CSQ2 dissociation; (4) the potential role of CSQ2-independent regulation of the RYR2 activity by luminal Ca(2+); and (5) the vizualization of CSQ2 dissociation from the RYR2 channel complex on the single channel level. We discuss the potential sources of the conflicting experimental results which may aid detailed understanding of the CSQ2 regulatory role. Although we mainly focus on the cardiac isoform of the proteins, some aspects of more extensive work carried out on the skeletal isoform are also discussed.
Collapse
Affiliation(s)
- Marta Gaburjakova
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
32
|
A skeletal muscle ryanodine receptor interaction domain in triadin. PLoS One 2012; 7:e43817. [PMID: 22937102 PMCID: PMC3427183 DOI: 10.1371/journal.pone.0043817] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/26/2012] [Indexed: 11/19/2022] Open
Abstract
Excitation-contraction coupling in skeletal muscle depends, in part, on a functional interaction between the ligand-gated ryanodine receptor (RyR1) and integral membrane protein Trisk 95, localized to the sarcoplasmic reticulum membrane. Various domains on Trisk 95 can associate with RyR1, yet the domain responsible for regulating RyR1 activity has remained elusive. We explored the hypothesis that a luminal Trisk 95 KEKE motif (residues 200-232), known to promote RyR1 binding, may also form the RyR1 activation domain. Peptides corresponding to Trisk 95 residues 200-232 or 200-231 bound to RyR1 and increased the single channel activity of RyR1 by 1.49 ± 0.11-fold and 1.8 ± 0.15-fold respectively, when added to its luminal side. A similar increase in [(3)H]ryanodine binding, which reflects open probability of the channels, was also observed. This RyR1 activation is similar to activation induced by full length Trisk 95. Circular dichroism showed that both peptides were intrinsically disordered, suggesting a defined secondary structure is not necessary to mediate RyR1 activation. These data for the first time demonstrate that Trisk 95's 200-231 region is responsible for RyR1 activation. Furthermore, it shows that no secondary structure is required to achieve this activation, the Trisk 95 residues themselves are critical for the Trisk 95-RyR1 interaction.
Collapse
|
33
|
Caruso M, Merelo P, Distefano G, La Malfa S, Lo Piero AR, Tadeo FR, Talon M, Gentile A. Comparative transcriptome analysis of stylar canal cells identifies novel candidate genes implicated in the self-incompatibility response of Citrus clementina. BMC PLANT BIOLOGY 2012; 12:20. [PMID: 22333138 PMCID: PMC3305554 DOI: 10.1186/1471-2229-12-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/14/2012] [Indexed: 05/09/2023]
Abstract
BACKGROUND Reproductive biology in citrus is still poorly understood. Although in recent years several efforts have been made to study pollen-pistil interaction and self-incompatibility, little information is available about the molecular mechanisms regulating these processes. Here we report the identification of candidate genes involved in pollen-pistil interaction and self-incompatibility in clementine (Citrus clementina Hort. ex Tan.). These genes have been identified comparing the transcriptomes of laser-microdissected stylar canal cells (SCC) isolated from two genotypes differing for self-incompatibility response ('Comune', a self-incompatible cultivar and 'Monreal', a self- compatible mutation of 'Comune'). RESULTS The transcriptome profiling of SCC indicated that the differential regulation of few specific, mostly uncharacterized transcripts is associated with the breakdown of self-incompatibility in 'Monreal'. Among them, a novel F-box gene showed a drastic up-regulation both in laser microdissected stylar canal cells and in self-pollinated whole styles with stigmas of 'Comune' in concomitance with the arrest of pollen tube growth. Moreover, we identify a non-characterized gene family as closely associated to the self-incompatibility genetic program activated in 'Comune'. Three different aspartic-acid rich (Asp-rich) protein genes, located in tandem in the clementine genome, were over-represented in the transcriptome of 'Comune'. These genes are tightly linked to a DELLA gene, previously found to be up-regulated in the self-incompatible genotype during pollen-pistil interaction. CONCLUSION The highly specific transcriptome survey of the stylar canal cells identified novel genes which have not been previously associated with self-pollen rejection in citrus and in other plant species. Bioinformatic and transcriptional analyses suggested that the mutation leading to self-compatibility in 'Monreal' affected the expression of non-homologous genes located in a restricted genome region. Also, we hypothesize that the Asp-rich protein genes may act as Ca2+ "entrapping" proteins, potentially regulating Ca2+ homeostasis during self-pollen recognition.
Collapse
Affiliation(s)
- Marco Caruso
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Paz Merelo
- Institut Valencià d'Investigacions Agràries - Centre de Genómica, Carretera Montcada de l'Horta-Náquera Km. 4,5, 46113 Montcada de l'Horta (València), Spain
| | - Gaetano Distefano
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Stefano La Malfa
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Angela Roberta Lo Piero
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | - Francisco R Tadeo
- Institut Valencià d'Investigacions Agràries - Centre de Genómica, Carretera Montcada de l'Horta-Náquera Km. 4,5, 46113 Montcada de l'Horta (València), Spain
| | - Manuel Talon
- Institut Valencià d'Investigacions Agràries - Centre de Genómica, Carretera Montcada de l'Horta-Náquera Km. 4,5, 46113 Montcada de l'Horta (València), Spain
| | - Alessandra Gentile
- Dipartimento di Scienze delle Produzioni Agrarie e Alimentari, Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy
| |
Collapse
|
34
|
Wang L, Ruiz-Agudo E, Putnis CV, Menneken M, Putnis A. Kinetics of calcium phosphate nucleation and growth on calcite: implications for predicting the fate of dissolved phosphate species in alkaline soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:834-42. [PMID: 22136106 DOI: 10.1021/es202924f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Unraveling the kinetics of calcium orthophosphate (Ca-P) precipitation and dissolution is important for our understanding of the transformation and mobility of dissolved phosphate species in soils. Here we use an in situ atomic force microscopy (AFM) coupled with a fluid reaction cell to study the interaction of phosphate-bearing solutions with calcite surfaces. We observe that the mineral surface-induced formation of Ca-P phases is initiated with the aggregation of clusters leading to the nucleation and subsequent growth of Ca-P phases on calcite, at various pH values and ionic strengths relevant to soil solution conditions. A significant decrease in the dissolved phosphate concentration occurs due to the promoted nucleation of Ca-P phases on calcite surfaces at elevated phosphate concentrations and more significantly at high salt concentrations. Also, kinetic data analyses show that low concentrations of citrate caused an increase in the nucleation rate of Ca-P phases. However, at higher concentrations of citrate, nucleation acceleration was reversed with much longer induction times to form Ca-P nuclei. These results demonstrate that the nucleation-modifying properties of small organic molecules may be scaled up to analyze Ca-P dissolution-precipitation processes that are mediated by a more complex soil environment. This in situ observation, albeit preliminary, may contribute to an improved understanding of the fate of dissolved phosphate species in diverse soil systems.
Collapse
Affiliation(s)
- Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | | | | | | | | |
Collapse
|
35
|
Sztretye M, Yi J, Figueroa L, Zhou J, Royer L, Allen P, Brum G, Ríos E. Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca(2+) release in skeletal muscle. ACTA ACUST UNITED AC 2012; 138:231-47. [PMID: 21788611 PMCID: PMC3149434 DOI: 10.1085/jgp.201010592] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mechanisms that terminate Ca2+ release from the sarcoplasmic reticulum are not fully understood. D4cpv-Casq1 (Sztretye et al. 2011. J. Gen. Physiol. doi:10.1085/jgp.201010591) was used in mouse skeletal muscle cells under voltage clamp to measure free Ca2+ concentration inside the sarcoplasmic reticulum (SR), [Ca2+]SR, simultaneously with that in the cytosol, [Ca2+]c, during the response to long-lasting depolarization of the plasma membrane. The ratio of Ca2+ release flux (derived from [Ca2+]c(t)) over the gradient that drives it (essentially equal to [Ca2+]SR) provided directly, for the first time, a dynamic measure of the permeability to Ca2+ of the releasing SR membrane. During maximal depolarization, flux rapidly rises to a peak and then decays. Before 0.5 s, [Ca2+]SR stabilized at ∼35% of its resting level; depletion was therefore incomplete. By 0.4 s of depolarization, the measured permeability decayed to ∼10% of maximum, indicating ryanodine receptor channel closure. Inactivation of the t tubule voltage sensor was immeasurably small by this time and thus not a significant factor in channel closure. In cells of mice null for Casq1, permeability did not decrease in the same way, indicating that calsequestrin (Casq) is essential in the mechanism of channel closure and termination of Ca2+ release. The absence of this mechanism explains why the total amount of calcium releasable by depolarization is not greatly reduced in Casq-null muscle (Royer et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.201010454). When the fast buffer BAPTA was introduced in the cytosol, release flux became more intense, and the SR emptied earlier. The consequent reduction in permeability accelerated as well, reaching comparable decay at earlier times but comparable levels of depletion. This observation indicates that [Ca2+]SR, sensed by Casq and transmitted to the channels presumably via connecting proteins, is determinant to cause the closure that terminates Ca2+ release.
Collapse
Affiliation(s)
- Monika Sztretye
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Protasi F, Paolini C, Canato M, Reggiani C, Quarta M. Lessons from calsequestrin-1 ablation in vivo: much more than a Ca(2+) buffer after all. J Muscle Res Cell Motil 2011; 32:257-70. [PMID: 22130610 DOI: 10.1007/s10974-011-9277-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
Abstract
Calsequestrin type-1 (CASQ1), the main sarcoplasmic reticulum (SR) Ca(2+) binding protein, plays a dual role in skeletal fibers: a) it provides a large pool of rapidly-releasable Ca(2+) during excitation-contraction (EC) coupling; and b) it modulates the activity of ryanodine receptors (RYRs), the SR Ca(2+) release channels. We have generated a mouse lacking CASQ1 in order to further characterize the role of CASQ1 in skeletal muscle. Contrary to initial expectations, CASQ1 ablation is compatible with normal motor activity, in spite of moderate muscle atrophy. However, CASQ1 deficiency results in profound remodeling of the EC coupling apparatus: shrinkage of junctional SR lumen; proliferation of SR/transverse-tubule contacts; and increased density of RYRs. While force development during a twitch is preserved, it is nevertheless characterized by a prolonged time course, likely reflecting impaired Ca(2+) re-uptake by the SR. Finally, lack of CASQ1 also results in increased rate of SR Ca(2+) depletion and inability of muscle to sustain tension during a prolonged tetani. All modifications are more pronounced (or only found) in fast-twitch extensor digitorum longus muscle compared to slow-twitch soleus muscle, likely because the latter expresses higher amounts of calsequestrin type-2 (CASQ2). Surprisingly, male CASQ1-null mice also exhibit a marked increased rate of spontaneous mortality suggestive of a stress-induced phenotype. Consistent with this idea, CASQ1-null mice exhibit an increased susceptibility to undergo a hypermetabolic syndrome characterized by whole body contractures, rhabdomyolysis, hyperthermia and sudden death in response to halothane- and heat-exposure, a phenotype remarkably similar to human malignant hyperthermia and environmental heat-stroke. The latter findings validate the CASQ1 gene as a candidate for linkage analysis in human muscle disorders.
Collapse
Affiliation(s)
- Feliciano Protasi
- CeSI-Center for Research on Ageing & DNI-Department of Neuroscience and Imaging, University Gabriele d’Annunzioof Chieti, Via Colle dell’Ara, 66100 Chieti, Italy.
| | | | | | | | | |
Collapse
|
37
|
Sztretye M, Yi J, Figueroa L, Zhou J, Royer L, Ríos E. D4cpv-calsequestrin: a sensitive ratiometric biosensor accurately targeted to the calcium store of skeletal muscle. J Gen Physiol 2011; 138:211-29. [PMID: 21788610 PMCID: PMC3149433 DOI: 10.1085/jgp.201010591] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/28/2011] [Indexed: 01/28/2023] Open
Abstract
Current fluorescent monitors of free [Ca(2+)] in the sarcoplasmic reticulum (SR) of skeletal muscle cells are of limited quantitative value. They provide either a nonratio signal that is difficult to calibrate and is not specific or, in the case of Forster resonant energy transfer (FRET) biosensors, a signal of small dynamic range, which may be degraded further by imperfect targeting and interference from endogenous ligands of calsequestrin. We describe a novel tool that uses the cameleon D4cpv, which has a greater dynamic range and lower susceptibility to endogenous ligands than earlier cameleons. D4cpv was targeted to the SR by fusion with the cDNA of calsequestrin 1 or a variant that binds less Ca(2+). "D4cpv-Casq1," expressed in adult mouse at concentrations up to 22 µmole/liter of muscle cell, displayed the accurate targeting of calsequestrin and stayed inside cells after permeabilization of surface and t system membranes, which confirmed its strict targeting. FRET ratio changes of D4cpv-Casq1 were calibrated inside cells, with an effective K(D) of 222 µM and a dynamic range [(R(max) - R(min))/R(min)] of 2.5, which are improvements over comparable sensors. Both the maximal ratio, R(max), and its resting value were slightly lower in areas of high expression, a variation that was inversely correlated to distance from the sites of protein synthesis. The average [Ca(2+)](SR) in 74 viable cells at rest was 416 µM. The distribution of individual ratio values was Gaussian, but that of the calculated [Ca(2+)](SR) was skewed, with a tail of very large values, up to 6 mM. Model calculations reproduce this skewness as the consequence of quantifiably small variations in biosensor performance. Local variability, a perceived weakness of biosensors, thus becomes quantifiable. It is demonstrably small in D4cpv. D4cpv-Casq1 therefore provides substantial improvements in sensitivity, specificity, and reproducibility over existing monitors of SR free Ca(2+) concentration.
Collapse
Affiliation(s)
- Monika Sztretye
- Section of Cellular Signaling, Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kinoshita S, Katsumi E, Yamamoto H, Takeuchi K, Watabe S. Molecular and functional analyses of aspolin, a fish-specific protein extremely rich in aspartic acid. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:517-526. [PMID: 20878432 DOI: 10.1007/s10126-010-9322-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 09/07/2010] [Indexed: 05/29/2023]
Abstract
Aspolin is a muscular protein having unique structural characteristics where the most part of its primary structure is occupied by aspartic acid. Aspolin has been found exceptionally in fish muscle, suggesting its specific role in this tissue. However, biological functions of aspolin have remained unknown. In the present study, we cloned full-length cDNAs encoding zebrafish Danio rerio aspolins 1 and 2, revealed their genomic organization, and examined in vivo function using knockdown techniques. Genomic analysis clearly showed that aspolin is a paralog of the histidine-rich calcium binding protein gene, which encodes a calcium binding protein in sarcoplasmic reticulum (SR). Expression analysis showed that the transcripts and their translated products, aspolins 1 and 2, are distributed in myotomal skeletal muscle, but not in cardiac muscle. Injection of antisense morpholino oligo targeting both aspolins 1 and 2 increased the mRNA levels of calsequestrin 1, another calcium binding protein in SR. These lines of evidence suggest that aspolins regulate calcium concentrations in SR.
Collapse
Affiliation(s)
- Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo, 113-8657, Japan
| | | | | | | | | |
Collapse
|
39
|
Capes EM, Loaiza R, Valdivia HH. Ryanodine receptors. Skelet Muscle 2011; 1:18. [PMID: 21798098 PMCID: PMC3156641 DOI: 10.1186/2044-5040-1-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/04/2011] [Indexed: 12/31/2022] Open
Abstract
Excitation-contraction coupling involves the faithful conversion of electrical stimuli to mechanical shortening in striated muscle cells, enabled by the ubiquitous second messenger, calcium. Crucial to this process are ryanodine receptors (RyRs), the sentinels of massive intracellular calcium stores contained within the sarcoplasmic reticulum. In response to sarcolemmal depolarization, RyRs release calcium into the cytosol, facilitating mobilization of the myofilaments and enabling cell contraction. In order for the cells to relax, calcium must be rapidly resequestered or extruded from the cytosol. The sustainability of this cycle is crucially dependent upon precise regulation of RyRs by numerous cytosolic metabolites and by proteins within the lumen of the sarcoplasmic reticulum and those directly associated with the receptors in a macromolecular complex. In addition to providing the majority of the calcium necessary for contraction of cardiac and skeletal muscle, RyRs act as molecular switchboards that integrate a multitude of cytosolic signals such as dynamic and steady calcium fluctuations, β-adrenergic stimulation (phosphorylation), nitrosylation and metabolic states, and transduce these signals to the channel pore to release appropriate amounts of calcium. Indeed, dysregulation of calcium release via RyRs is associated with life-threatening diseases in both skeletal and cardiac muscle. In this paper, we briefly review some of the most outstanding structural and functional attributes of RyRs and their mechanism of regulation. Further, we address pathogenic RyR dysfunction implicated in cardiovascular disease and skeletal myopathies.
Collapse
Affiliation(s)
- E Michelle Capes
- Department of Cellular and Regenerative Biology, University of Wisconsin Medical School, Madison, WI 53711, USA.
| | | | | |
Collapse
|
40
|
Song DW, Lee JG, Youn HS, Eom SH, Kim DH. Ryanodine receptor assembly: A novel systems biology approach to 3D mapping. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 105:145-61. [DOI: 10.1016/j.pbiomolbio.2010.09.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/14/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
|
41
|
Infante C, Ponce M, Manchado M. Duplication of calsequestrin genes in teleosts: Molecular characterization in the Senegalese sole (Solea senegalensis). Comp Biochem Physiol B Biochem Mol Biol 2011; 158:304-14. [PMID: 21256971 DOI: 10.1016/j.cbpb.2011.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/16/2011] [Accepted: 01/17/2011] [Indexed: 01/20/2023]
|
42
|
Mishra S, Chander V, Banerjee P, Oh JG, Lifirsu E, Park WJ, Kim DH, Bandyopadhyay A. Interaction of annexin A6 with alpha actinin in cardiomyocytes. BMC Cell Biol 2011; 12:7. [PMID: 21272378 PMCID: PMC3037912 DOI: 10.1186/1471-2121-12-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/28/2011] [Indexed: 01/28/2023] Open
Abstract
Background Annexins are calcium dependent phospholipid binding proteins that are expressed in a wide variety of tissues and implicated in various extra- and intracellular processes. In myocardial tissue, annexins A2, A5 and A6 are particularly abundant, of which the expression levels of annexin A6 has been found to be maximal. Conflicting reports from transgenic mice overexpressing annexin A6 or null mice lacking annexin A6 showed imbalances in intracellular calcium turnover and disturbed cardiac contractility. However, few studies have focussed on the signalling module of annexin A6 in the heart either in normal or in pathological state. Results To identify the putative binding partners of annexin A6 in the heart, ventricular extracts were subjected to glutathione S-transferase (GST)- annexin A6 pull down assay and the GST- annexin A6 bound proteins were identified by mass spectrometry. The pull down fractions of ventricular extracts with GST-full length annexin A6 as well as GST-C terminus deleted annexin A6 when immunoblotted with anti sarcomeric alpha (α)-actinin antibody showed the presence of α-actinin in the immunoblot which was absent when GST-N terminus deleted annexin A6 was used for pull down. Overexpression of green fluorescent protein (GFP) tagged full length annexin A6 showed z-line like appearance in cardiomyocytes whereas GFP-N termimus deleted annexin A6 was mostly localized to the nucleus. Overexpression of GFP-C terminus deleted annexin A6 in cardiomyocytes showed aggregate like appearance in the cytoplasm. Double immunofluorescent staining of cardiomyocytes with anti annexin A6 and anti sarcomeric α-actinin antibodies showed perfect co-localization of these two proteins with annexin A6 appearing like a component of sarcomere. Transient knockdown of annexin A6 in cardiomyocytes by shRNA significantly enhances the contractile functions but does not affect the z-band architecture, as revealed by α-actinin immunostaining in shRNA treated cells. Conclusions In overall, the present study demonstrated for the first time that annexin A6 physically interacts with sarcomeric α-actinin and alters contractility of cardiomyocytes suggesting that it might play important role in excitation and contraction process.
Collapse
Affiliation(s)
- Sumita Mishra
- Indian Institute of Chemical Biology, 4 Raja SC Mullick Road, Kolkata, India
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Oddoux S, Brocard J, Schweitzer A, Szentesi P, Giannesini B, Brocard J, Fauré J, Pernet-Gallay K, Bendahan D, Lunardi J, Csernoch L, Marty I. Triadin deletion induces impaired skeletal muscle function. J Biol Chem 2009; 284:34918-29. [PMID: 19843516 PMCID: PMC2787354 DOI: 10.1074/jbc.m109.022442] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 10/14/2009] [Indexed: 01/27/2023] Open
Abstract
Triadin is a multiple proteins family, some isoforms being involved in muscle excitation-contraction coupling, and some having still unknown functions. To obtain clues on triadin functions, we engineered a triadin knock-out mouse line and characterized the physiological effect of triadin ablation on skeletal muscle function. These mice presented a reduced muscle strength, which seemed not to alter their survival and has been characterized in the present work. We first checked in these mice the expression level of the different proteins involved in calcium homeostasis and observed in fast muscles an increase in expression of dihydropyridine receptor, with a large reduction in calsequestrin expression. Electron microscopy analysis of KO muscles morphology demonstrated the presence of triads in abnormal orientation and a reduction in the sarcoplasmic reticulum terminal cisternae volume. Using calcium imaging on cultured myotubes, we observed a reduction in the total amount of calcium stored in the sarcoplasmic reticulum. Physiological studies have been performed to evaluate the influence of triadin deletion on skeletal muscle function. Muscle strength has been measured both on the whole animal model, using hang test or electrical stimulation combined with NMR analysis and strength measurement, or on isolated muscle using electrical stimulation. All the results obtained demonstrate an important reduction in muscle strength, indicating that triadin plays an essential role in skeletal muscle function and in skeletal muscle structure. These results indicate that triadin alteration leads to the development of a myopathy, which could be studied using this new animal model.
Collapse
Affiliation(s)
- Sarah Oddoux
- From INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble F-38000, France
- the Université Joseph Fourier, Grenoble F-38000, France
| | - Julie Brocard
- From INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble F-38000, France
- the Université Joseph Fourier, Grenoble F-38000, France
| | - Annie Schweitzer
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Physiopathologie du Cytosquelette, Grenoble F-38000, France
| | - Peter Szentesi
- the Department of Physiology, Medical School and Health Science Center, University of Debrecen, H-4012 Debrecen, Hungary
| | - Benoit Giannesini
- the Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Faculté de Médecine de la Timone, Marseille 13000, France, and
| | - Jacques Brocard
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Physiopathologie du Cytosquelette, Grenoble F-38000, France
| | - Julien Fauré
- From INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble F-38000, France
- the Université Joseph Fourier, Grenoble F-38000, France
- Centre Hospitalier Regional Universitaire de Grenoble, Hopital Michallon, Biochimie et Génétique Moléculaire, Grenoble F-38000, France
| | - Karine Pernet-Gallay
- INSERM U836, Grenoble Institut des Neurosciences, Equipe Physiopathologie du Cytosquelette, Grenoble F-38000, France
| | - David Bendahan
- the Centre de Résonance Magnétique Biologique et Médicale, UMR CNRS 6612, Faculté de Médecine de la Timone, Marseille 13000, France, and
| | - Joël Lunardi
- From INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble F-38000, France
- the Université Joseph Fourier, Grenoble F-38000, France
- Centre Hospitalier Regional Universitaire de Grenoble, Hopital Michallon, Biochimie et Génétique Moléculaire, Grenoble F-38000, France
| | - Laszlo Csernoch
- the Department of Physiology, Medical School and Health Science Center, University of Debrecen, H-4012 Debrecen, Hungary
| | - Isabelle Marty
- From INSERM U836, Grenoble Institut des Neurosciences, Equipe Muscle et Pathologies, Grenoble F-38000, France
- the Université Joseph Fourier, Grenoble F-38000, France
| |
Collapse
|
44
|
Qin J, Valle G, Nani A, Chen H, Ramos-Franco J, Nori A, Volpe P, Fill M. Ryanodine receptor luminal Ca2+ regulation: swapping calsequestrin and channel isoforms. Biophys J 2009; 97:1961-70. [PMID: 19804727 DOI: 10.1016/j.bpj.2009.07.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 07/10/2009] [Accepted: 07/21/2009] [Indexed: 11/20/2022] Open
Abstract
Sarcoplasmic reticulum (SR) Ca(2+) release in striated muscle is mediated by a multiprotein complex that includes the ryanodine receptor (RyR) Ca(2+) channel and the intra-SR Ca(2+) buffering protein calsequestrin (CSQ). Besides its buffering role, CSQ is thought to regulate RyR channel function. Here, CSQ-dependent luminal Ca(2+) regulation of skeletal (RyR1) and cardiac (RyR2) channels is explored. Skeletal (CSQ1) or cardiac (CSQ2) calsequestrin were systematically added to the luminal side of single RyR1 or RyR2 channels. The luminal Ca(2+) dependence of open probability (Po) over the physiologically relevant range (0.05-1 mM Ca(2+)) was defined for each of the four RyR/CSQ isoform pairings. We found that the luminal Ca(2+) sensitivity of single RyR2 channels was substantial when either CSQ isoform was present. In contrast, no significant luminal Ca(2+) sensitivity of single RyR1 channels was detected in the presence of either CSQ isoform. We conclude that CSQ-dependent luminal Ca(2+) regulation of single RyR2 channels lacks CSQ isoform specificity, and that CSQ-dependent luminal Ca(2+) regulation in skeletal muscle likely plays a relatively minor (if any) role in regulating the RyR1 channel activity, indicating that the chief role of CSQ1 in this tissue is as an intra-SR Ca(2+) buffer.
Collapse
Affiliation(s)
- Jia Qin
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Calvel P, Kervarrec C, Lavigne R, Vallet-Erdtmann V, Guerrois M, Rolland AD, Chalmel F, Jégou B, Pineau C. CLPH, a novel casein kinase 2-phosphorylated disordered protein, is specifically associated with postmeiotic germ cells in rat spermatogenesis. J Proteome Res 2009; 8:2953-65. [PMID: 19271754 DOI: 10.1021/pr900082m] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a recent proteomic study of rat spermatogenesis, we identified CLPH (for Casein-Like PHosphoprotein), a new testis-specific protein expressed exclusively in postmeiotic germ cells. In situ hybridization showed that the CLPH transcript was mainly present in round spermatids, whereas the protein was specifically detected by immunohistochemistry in elongated spermatids and in residual bodies. Electron microscopy showed the protein to be mostly cytoplasmic, but also frequently associated with the mitochondrial inner membrane during the last steps of spermatid differentiation. The Clph gene was found to be present solely in mammalian genomes, in a chromosomal region syntenic to the mammalian cluster of secretory calcium-binding phosphoprotein (SCPP) genes. CLPH has several distinctive properties in common with SCPPs: calcium overlay experiments showed that CLPH was a calcium-binding protein, whereas trypsin digestion assay, circular dichroism and fluorescence experiments demonstrated its intrinsically disordered structure. We also showed that CLPH was phosphorylated in vitro and in vivo by casein kinase 2, an enzyme critical for spermatid elongation. Given the specific and strong production of CLPH during rat spermiogenesis, together with the particular biochemical properties of this protein, we suggest that CLPH is involved in the extremely complex structural rearrangements occurring in haploid germ cells during spermiogenesis.
Collapse
Affiliation(s)
- Pierre Calvel
- Inserm, U625, Rennes, Universite Rennes I, Campus de Beaulieu, IFR-140, GERHM, Rennes, F-35042, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Junctin and triadin each activate skeletal ryanodine receptors but junctin alone mediates functional interactions with calsequestrin. Int J Biochem Cell Biol 2009; 41:2214-24. [PMID: 19398037 DOI: 10.1016/j.biocel.2009.04.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 04/12/2009] [Accepted: 04/20/2009] [Indexed: 11/23/2022]
Abstract
Normal Ca(2+) signalling in skeletal muscle depends on the membrane associated proteins triadin and junctin and their ability to mediate functional interactions between the Ca(2+) binding protein calsequestrin and the type 1 ryanodine receptor in the lumen of the sarcoplasmic reticulum. This important mechanism conserves intracellular Ca(2+) stores, but is poorly understood. Triadin and junctin share similar structures and are lumped together in models of interactions between skeletal muscle calsequestrin and ryanodine receptors, however their individual roles have not been examined at a molecular level. We show here that purified skeletal ryanodine receptors are similarly activated by purified triadin or purified junctin added to their luminal side, although a lack of competition indicated that the proteins act at independent sites. Surprisingly, triadin and junctin differed markedly in their ability to transmit information between skeletal calsequestrin and ryanodine receptors. Purified calsequestrin inhibited junctin/triadin-associated, or junctin-associated, ryanodine receptors and the calsequestrin re-associated channel complexes were further inhibited when luminal Ca(2+) fell from 1mM to <or=100 microM, as seen with native channels (containing endogenous calsequestrin/triadin/junctin). In contrast, skeletal calsequestrin had no effect on the triadin/ryanodine receptor complex and the channel activity of this complex increased when luminal Ca(2+) fell, as seen with purified channels prior to triadin/calsequestrin re-association. Therefore in this cell free system, junctin alone mediates signals between luminal Ca(2+), skeletal calsequestrin and skeletal ryanodine receptors and may curtail resting Ca(2+) leak from the sarcoplasmic reticulum. We suggest that triadin serves a different function which may dominate during excitation-contraction coupling.
Collapse
|
47
|
Pritchard TJ, Kranias EG. Junctin and the histidine-rich Ca2+ binding protein: potential roles in heart failure and arrhythmogenesis. J Physiol 2009; 587:3125-33. [PMID: 19403607 DOI: 10.1113/jphysiol.2009.172171] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Contractile dysfunction and ventricular arrhythmias associated with heart failure have been attributed to aberrant sarcoplasmic reticulum (SR) Ca(2+) cycling. The study of junctin (JCN) and histidine-rich Ca(2+) binding protein (HRC) becomes of particular importance since these proteins have been shown to be critical regulators of Ca(2+) cycling. Specifically, JCN is a SR membrane protein, which is part of the SR Ca(2+) release quaternary structure that also includes the ryanodine receptor, triadin and calsequestrin. Functionally, JCN serves as a bridge between calsequestrin and the Ca(2+) release channel, ryanodine receptor. HRC is a SR luminal Ca(2+) binding protein known to associate with both triadin and the sarcoplasmic reticulum Ca(2+)-ATPase, and may thus mediate the crosstalk between SR Ca(2+) uptake and release. Indeed, evidence from genetic models of JCN and HRC indicate that they are important in cardiophysiology as alterations in these proteins affect SR Ca(2+) handling and cardiac function. In addition, downregulation of JCN and HRC may contribute to Ca(2+) cycling perturbations manifest in the failing heart, where their protein levels are significantly reduced. This review examines the roles of JCN and HRC in SR Ca(2+) cycling and their potential significance in heart failure.
Collapse
Affiliation(s)
- Tracy J Pritchard
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH 45267-0575, USA
| | | |
Collapse
|
48
|
Beard NA, Wei L, Cheung SN, Kimura T, Varsányi M, Dulhunty AF. Phosphorylation of skeletal muscle calsequestrin enhances its Ca2+ binding capacity and promotes its association with junctin. Cell Calcium 2009; 44:363-73. [PMID: 19230141 DOI: 10.1016/j.ceca.2008.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Calcium signaling, intrinsic to skeletal and cardiac muscle function, is critically dependent on the amount of calcium stored within the sarcoplasmic reticulum. Calsequestrin, the main calcium buffer in the sarcoplasmic reticulum, provides a pool of calcium for release through the ryanodine receptor and acts as a luminal calcium sensor for the channel via its interactions with triadin and junctin. We examined the influence of phosphorylation of calsequestrin on its ability to store calcium, to polymerise and to regulate ryanodine receptors by binding to triadin and junctin. Our hypothesis was that these parameters might be altered by phosphorylation of threonine 353, which is located near the calcium and triadin/junctin binding sites. Although phosphorylation increased the calcium binding capacity of calsequestrin nearly 2-fold, it did not alter calsequestrin polymerisation, its binding to triadin or junctin or inhibition of ryanodine receptor activity at 1 mM luminal calcium. Phosphorylation was required for calsequestrin binding to junctin when calcium concentration was low (100 nM), and ryanodine receptors were activated by dephosphorylated calsequestrin when it bound to triadin alone. These novel data shows that phosphorylated calsequestrin is required for high capacity calcium buffering and suggest that ryanodine receptor inhibition by calsequestrin is mediated by junctin.
Collapse
Affiliation(s)
- Nicole A Beard
- John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | | | |
Collapse
|
49
|
Yuan Q, Han P, Dong M, Ren X, Zhou X, Chen S, Jones WK, Chu G, Wang HS, Kranias EG. Partial downregulation of junctin enhances cardiac calcium cycling without eliciting ventricular arrhythmias in mice. Am J Physiol Heart Circ Physiol 2009; 296:H1484-90. [PMID: 19286959 DOI: 10.1152/ajpheart.00229.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human failing hearts exhibit significant decreases in junctin expression levels with almost nondetectable levels, which may be associated with premature death, induced by lethal cardiac arrhythmias, based on mouse models. However, the specific contribution of junctin to the delayed afterdepolarizations has been difficult to delineate in the phase of increased Na(+)-Ca(2+) exchanger activity accompanying junctin ablation. Thus we characterized the heterozygous junctin-deficient hearts, which expressed 54% of junctin levels and similar increases in Na(+)-Ca(2+) exchanger activity, as the null model. Cardiac contractile parameters, Ca(2+) transients, and sarcoplasmic reticulum Ca(2+) content were significantly increased in junctin heterozygous hearts, although they did not reach the levels of null hearts. However, Ca(2+) spark properties were not altered in heterozygous cardiomyocytes, compared with wild-types, and there were no aftercontractions elicited by the increased frequency of stimulation in the presence of isoproterenol, unlike the junctin-deficient cells. Furthermore, heterozygous mice did not exhibit an increased susceptibility to arrhythmia upon catecholamine challenge in vivo, and there were no premature deaths up to 1 yr of age. These findings suggest that a partial downregulation of junctin enhances sarcoplasmic reticulum Ca(2+) cycling but does not elicit cardiac arrhythmias even in the context of increased Na(+)-Ca(2+) exchanger activity.
Collapse
Affiliation(s)
- Qunying Yuan
- Dept. of Pharmacology and Cell Biophysics, Univ. of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Beard NA, Wei L, Dulhunty AF. CONTROL OF MUSCLE RYANODINE RECEPTOR CALCIUM RELEASE CHANNELS BY PROTEINS IN THE SARCOPLASMIC RETICULUM LUMEN. Clin Exp Pharmacol Physiol 2009; 36:340-5. [DOI: 10.1111/j.1440-1681.2008.05094.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|