1
|
Peterson A, Baskett C, Ratcliff WC, Burnetti A. Transforming yeast into a facultative photoheterotroph via expression of vacuolar rhodopsin. Curr Biol 2024; 34:648-654.e3. [PMID: 38218181 DOI: 10.1016/j.cub.2023.12.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/03/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024]
Abstract
Phototrophic metabolism, the capture of light for energy, was a pivotal biological innovation that greatly increased the total energy available to the biosphere. Chlorophyll-based photosynthesis is the most familiar phototrophic metabolism, but retinal-based microbial rhodopsins transduce nearly as much light energy as chlorophyll does,1 via a simpler mechanism, and are found in far more taxonomic groups. Although this system has apparently spread widely via horizontal gene transfer,2,3,4 little is known about how rhodopsin genes (with phylogenetic origins within prokaryotes5,6) are horizontally acquired by eukaryotic cells with complex internal membrane architectures or the conditions under which they provide a fitness advantage. To address this knowledge gap, we sought to determine whether Saccharomyces cerevisiae, a heterotrophic yeast with no known evolutionary history of phototrophy, can function as a facultative photoheterotroph after acquiring a single rhodopsin gene. We inserted a rhodopsin gene from Ustilago maydis,7 which encodes a proton pump localized to the vacuole, an organelle normally acidified via a V-type rotary ATPase, allowing the rhodopsin to supplement heterotrophic metabolism. Probes of the physiology of modified cells show that they can deacidify the cytoplasm using light energy, demonstrating the ability of rhodopsins to ameliorate the effects of starvation and quiescence. Further, we show that yeast-bearing rhodopsins gain a selective advantage when illuminated, proliferating more rapidly than their non-phototrophic ancestor or rhodopsin-bearing yeast cultured in the dark. These results underscore the ease with which rhodopsins may be horizontally transferred even in eukaryotes, providing novel biological function without first requiring evolutionary optimization.
Collapse
Affiliation(s)
- Autumn Peterson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30309, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30309, USA
| | - Carina Baskett
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30309, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30309, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30309, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30309, USA.
| | - Anthony Burnetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30309, USA; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30309, USA.
| |
Collapse
|
2
|
Targeting the ATP synthase in bacterial and fungal pathogens – beyond Mycobacterium tuberculosis. J Glob Antimicrob Resist 2022; 29:29-41. [DOI: 10.1016/j.jgar.2022.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022] Open
|
3
|
Vestergaard M, Roshanak S, Ingmer H. Targeting the ATP Synthase in Staphylococcus aureus Small Colony Variants, Streptococcus pyogenes and Pathogenic Fungi. Antibiotics (Basel) 2021; 10:antibiotics10040376. [PMID: 33918382 PMCID: PMC8067178 DOI: 10.3390/antibiotics10040376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
The ATP synthase has been validated as a druggable target with the approval of the ATP synthase inhibitor, bedaquiline, for treatment of drug-resistant Mycobacterium tuberculosis, a bacterial species in which the ATP synthase is essential for viability. Gene inactivation studies have also shown that the ATP synthase is essential among Streptococci, and some studies even suggest that inhibition of the ATP synthase is a strategy for the elimination of Staphylococcus aureus small colony variants with deficiencies in the electron transport chain, as well as pathogenic fungi, such as Candida albicans. Here we investigated five structurally diverse ATP synthase inhibitors, namely N,N′-dicyclohexylcarbodiimide (DCCD), oligomycin A, tomatidine, resveratrol and piceatannol, for their growth inhibitory activity against the bacterial strains Streptococcus pyogenes, S. aureus and two isogenic small colony variants, as well as the pathogenic fungal species, C. albicans and Aspergillus niger. DCCD showed broad-spectrum inhibitory activity against all the strains (minimum inhibitory concentration (MIC) 2–16 µg/mL), except for S. aureus, where the ATP synthase is dispensable for growth. Contrarily, oligomycin A selectively inhibited the fungal strains (MIC 1–8 µg/mL), while tomatidine showed very potent, but selective, activity against small colony variants of S. aureus with compromised electron transport chain activity (MIC 0.0625 µg/mL). Small colony variants of S. aureus were also more sensitive to resveratrol and piceatannol than the wild-type strain, and piceatannol inhibited S. pyogenes at 16–32 µg/mL. We previously showed that transposon inactivation of the ATP synthase sensitizes S. aureus towards polymyxin B and colistin, and here we demonstrate that treatment with structurally diverse ATP synthase inhibitors sensitized S. aureus towards polymyxin B. Collectively, our data show that ATP synthase inhibitors can have selective inhibitory activity against pathogenic microorganisms in which the ATP synthase is essential. The data also show that the inhibition of the ATP synthase in Streptococcus pyogenes may be a new strategy for development of a narrow-spectrum antibiotic class. In other major bacterial pathogens, such as S. aureus and potentially Escherichia coli, where the ATP synthase is dispensable, the ATP synthase inhibitors may be applied in combination with antimicrobial peptides to provide new therapeutic options.
Collapse
Affiliation(s)
- Martin Vestergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark; (M.V.); (S.R.)
| | - Sahar Roshanak
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark; (M.V.); (S.R.)
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark; (M.V.); (S.R.)
- Correspondence:
| |
Collapse
|
4
|
Abou Anni IS, Zebral YD, Afonso SB, Moreno Abril SI, Lauer MM, Bianchini A. Life-time exposure to waterborne copper III: Effects on the energy metabolism of the killifish Poecilia vivipara. CHEMOSPHERE 2019; 227:580-588. [PMID: 31009864 DOI: 10.1016/j.chemosphere.2019.04.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Copper ions (Cu) are essential to life maintenance, nonetheless, elevated concentrations can be hazardous. Acute and sub-chronic toxic effects of this metal are well known and are usually related to enzymatic inhibition, elevated ROS production and dysfunction of energy metabolism. Despite that, chronic studies are extremely rare. Therefore, the aim of this study was to assess the effects of chronic exposure to 5, 9 and 20 μg/L Cu (28 ad 345 days) on the energy metabolism and survival of the killifish Poecilia vivipara. To accomplish that, we evaluated the activity of enzymes related to aerobic (pyruvate kinase (PK); citrate synthase (CS)) and anaerobic metabolism (lactate dehydrogenase (LDH)) in whole-body (28 days) or in gills, liver and muscle (345 days) of exposed fish. Additionally, whole-body oxygen consumption was evaluated in fish exposed for 28 days and hepatic and muscular expression of genes involved in mitochondrial metabolism (cox I, II and III and atp5a1) was assessed in animals exposed for 345 days. Finally, final survival was evaluated. Following 28 days, Cu did not affect survival neither enzyme activities. However, increased whole-body oxygen consumption was observed in comparison to control condition. After 345 days, 76.8%, 63.9%, 60.9% and 0% survival were observed for control, 5, 9 and 20 μg/L groups, respectively. Animals exposed to 5 and 9 μg/L had a significant reduction in branchial and muscular LDH activity and in hepatic PK activity. Also, exposure to 9 μg/L significantly increased hepatic CS activity. For gene expression, Cu down-regulated muscular cox II (9 μg/L) and III (5 and 9 μg/L), and up-regulated hepatic atp5a1 (9 μg/L). Findings reported in the present study indicate that chronic exposure to Cu induces tissue-specific responses in key aspects of the energetic metabolism. In gills and muscle, Cu leads to reduced energy production through inhibition of anaerobic pathways and mitochondrial respiratory chain. This effect is paralleled by an increased ATP consumption in the liver, characterized by the augmented CS activity and atp5a1 expression. Finally, reduced PK activity indicate that oxidative stress may be involved with the observed outcomes.
Collapse
Affiliation(s)
- Iuri Salim Abou Anni
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Yuri Dornelles Zebral
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Sidnei Braz Afonso
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Sandra Isabel Moreno Abril
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Mariana Machado Lauer
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
5
|
Challenges and Adaptations of Life in Alkaline Habitats. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 172:85-133. [DOI: 10.1007/10_2019_97] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Comparative protein profiles of Butea superba tubers under seasonal changes. Mol Biol Rep 2016; 43:719-36. [PMID: 27198528 DOI: 10.1007/s11033-016-4010-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
Seasonal changes are major factors affecting environmental conditions which induce multiple stresses in plants, leading to changes in protein relative abundance in the complex cellular plant metabolic pathways. Proteomics was applied to study variations in proteome composition of Butea. superba tubers during winter, summer and rainy season throughout the year using two-dimensional polyacrylamide gel electrophoresis coupled with a nanoflow liquid chromatography coupled to electrospray ionization quadrupole-time-of-flight tandem mass spectrometry. A total of 191 protein spots were identified and also classified into 12 functional groups. The majority of these were mainly involved in carbohydrate and energy metabolism (30.37 %) and defense and stress (18.32 %). The results exhibited the highest numbers of identified proteins in winter-harvested samples. Forty-five differential proteins were found in different seasons, involving important metabolic pathways. Further analysis indicated that changes in the protein levels were due mainly to temperature stress during summer and to water stress during winter, which affected cellular structure, photosynthesis, signal transduction and homeostasis, amino-acid biosynthesis, protein destination and storage, protein biosynthesis and stimulated defense and stress mechanisms involving glycolytic enzymes and relative oxygen species catabolizing enzymes. The proteins with differential relative abundances might induce an altered physiological status within plant tubers for survival. The work provided new insights into the better understanding of the molecular basis of plant proteomes and stress tolerance mechanisms, especially during seasonal changes. The finding suggested proteins that might potentially be used as protein markers in differing seasons in other plants and aid in selecting B. superba tubers with the most suitable medicinal properties in the future.
Collapse
|
7
|
Preiss L, Hicks DB, Suzuki S, Meier T, Krulwich TA. Alkaliphilic Bacteria with Impact on Industrial Applications, Concepts of Early Life Forms, and Bioenergetics of ATP Synthesis. Front Bioeng Biotechnol 2015; 3:75. [PMID: 26090360 PMCID: PMC4453477 DOI: 10.3389/fbioe.2015.00075] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/10/2015] [Indexed: 12/28/2022] Open
Abstract
Alkaliphilic bacteria typically grow well at pH 9, with the most extremophilic strains growing up to pH values as high as pH 12–13. Interest in extreme alkaliphiles arises because they are sources of useful, stable enzymes, and the cells themselves can be used for biotechnological and other applications at high pH. In addition, alkaline hydrothermal vents represent an early evolutionary niche for alkaliphiles and novel extreme alkaliphiles have also recently been found in alkaline serpentinizing sites. A third focus of interest in alkaliphiles is the challenge raised by the use of proton-coupled ATP synthases for oxidative phosphorylation by non-fermentative alkaliphiles. This creates a problem with respect to tenets of the chemiosmotic model that remains the core model for the bioenergetics of oxidative phosphorylation. Each of these facets of alkaliphilic bacteria will be discussed with a focus on extremely alkaliphilic Bacillus strains. These alkaliphilic bacteria have provided a cogent experimental system to probe adaptations that enable their growth and oxidative phosphorylation at high pH. Adaptations are clearly needed to enable secreted or partially exposed enzymes or protein complexes to function at the high external pH. Also, alkaliphiles must maintain a cytoplasmic pH that is significantly lower than the pH of the outside medium. This protects cytoplasmic components from an external pH that is alkaline enough to impair their stability or function. However, the pH gradient across the cytoplasmic membrane, with its orientation of more acidic inside than outside, is in the reverse of the productive orientation for bioenergetic work. The reversed gradient reduces the trans-membrane proton-motive force available to energize ATP synthesis. Multiple strategies are hypothesized to be involved in enabling alkaliphiles to circumvent the challenge of a low bulk proton-motive force energizing proton-coupled ATP synthesis at high pH.
Collapse
Affiliation(s)
- Laura Preiss
- Department of Structural Biology, Max Planck Institute of Biophysics , Frankfurt , Germany
| | - David B Hicks
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Shino Suzuki
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology , Nankoku , Japan ; Microbial and Environmental Genomics, J. Craig Venter Institutes , La Jolla, CA , USA
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics , Frankfurt , Germany
| | - Terry Ann Krulwich
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
8
|
Preiss L, Langer JD, Hicks DB, Liu J, Yildiz O, Krulwich TA, Meier T. The c-ring ion binding site of the ATP synthase from Bacillus pseudofirmus OF4 is adapted to alkaliphilic lifestyle. Mol Microbiol 2014; 92:973-84. [PMID: 24707994 DOI: 10.1111/mmi.12605] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 11/30/2022]
Abstract
In the c-ring rotor of ATP synthases ions are shuttled across the membrane during ATP synthesis by a unique rotary mechanism. We investigated characteristics of the c-ring from the alkaliphile Bacillus pseudofirmus OF4 with respect to evolutionary adaptations to operate with protons at high environmental pH. The X-ray structures of the wild-type c13 ring at pH 9.0 and a 'neutralophile-like' mutant (P51A) at pH 4.4, at 2.4 and 2.8 Å resolution, respectively, reveal a dependency of the conformation and protonation state of the proton-binding glutamate (E(54) ) on environmental hydrophobicity. Faster labelling kinetics with the inhibitor dicyclohexylcarbodiimide (DCCD) demonstrate a greater flexibility of E(54) in the mutant due to reduced water occupancy within the H(+) binding site. A second 'neutralophile-like' mutant (V21N) shows reduced growth at high pH, which is explained by restricted conformational freedom of the mutant's E(54) carboxylate. The study directly connects subtle structural adaptations of the c-ring ion binding site to in vivo effects of alkaliphile cell physiology.
Collapse
Affiliation(s)
- Laura Preiss
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Seidel T, Siek M, Marg B, Dietz KJ. Energization of vacuolar transport in plant cells and its significance under stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:57-131. [PMID: 23809435 DOI: 10.1016/b978-0-12-407696-9.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | | | |
Collapse
|
10
|
Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 2011; 33:2327-33. [PMID: 22182745 DOI: 10.1016/j.biomaterials.2011.11.057] [Citation(s) in RCA: 438] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/22/2011] [Indexed: 11/17/2022]
Abstract
This work examines the molecular mechanism of action of a class of bactericidal gold nanoparticles (NPs) which show potent antibacterial activities against multidrug-resistant Gram-negative bacteria by transcriptomic and proteomic approaches. Gold NPs exert their antibacterial activities mainly by two ways: one is to collapse membrane potential, inhibiting ATPase activities to decrease the ATP level; the other is to inhibit the subunit of ribosome from binding tRNA. Gold NPs enhance chemotaxis in the early-phase reaction. The action of gold NPs did not include reactive oxygen species (ROS)-related mechanism, the cause for cellular death induced by most bactericidal antibiotics and nanomaterials. Our investigation would allow the development of antibacterial agents that target the energy-metabolism and transcription of bacteria without triggering the ROS reaction, which may be at the same time harmful for the host when killing bacteria.
Collapse
Affiliation(s)
- Yan Cui
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Si Pailou, Nanjing 210096, China
| | | | | | | | | | | |
Collapse
|
11
|
Liu J, Fackelmayer OJ, Hicks DB, Preiss L, Meier T, Sobie EA, Krulwich TA. Mutations in a helix-1 motif of the ATP synthase c-subunit of Bacillus pseudofirmus OF4 cause functional deficits and changes in the c-ring stability and mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry 2011; 50:5497-506. [PMID: 21568349 DOI: 10.1021/bi2005009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ATP synthase of the alkaliphile Bacillus pseudofirmus OF4 has a tridecameric c-subunit rotor ring. Each c-subunit has an AxAxAxA motif near the center of the inner helix, where neutralophilic bacteria generally have a GxGxGxG motif. Here, we studied the impact of four single and six multiple Ala-to-Gly chromosomal mutations in the A16xAxAxA22 motif on the capacity for nonfermentative growth and, for most of the mutants, on ATP synthesis by ADP- and P(i)-loaded membrane vesicles at pH 7.5 and 10.5. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses of the holo-ATP synthases were used to probe stability of the mutant c-rotors and mobility properties of the c-rotors as well as the monomeric c-subunits that are released from them by trichloroacetic acid treatment. Mutants containing an Ala16-to-Gly mutation exhibited the most severe functional defects. Via SDS-PAGE, most of the mutant c-monomers exhibited increased mobility relative to the wild-type (WT) c-subunit, but among the intact c-rings, only Ala16-to-Gly mutants exhibited significantly increased mobility relative to that of the WT c-ring. The hypothesis that these c-rings have a decreased c-subunit stoichiometry is still untested, but the functional impact of an Ala16-to-Gly mutation clearly depended upon additional Ala-to-Gly mutation(s) and their positions. The A16/20G double mutant exhibited a larger functional deficit than both the A16G and A16/18G mutants. Most of the mutant c-rings showed in vitro instability relative to that of the WT c-ring. However, the functional deficits of mutants did not correlate well with the extent of c-ring stability loss, so this property is unlikely to be a major factor in vivo.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1362-77. [PMID: 20193659 DOI: 10.1016/j.bbabio.2010.02.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 12/14/2022]
Abstract
This review focuses on the ATP synthases of alkaliphilic bacteria and, in particular, those that successfully overcome the bioenergetic challenges of achieving robust H+-coupled ATP synthesis at external pH values>10. At such pH values the protonmotive force, which is posited to provide the energetic driving force for ATP synthesis, is too low to account for the ATP synthesis observed. The protonmotive force is lowered at a very high pH by the need to maintain a cytoplasmic pH well below the pH outside, which results in an energetically adverse pH gradient. Several anticipated solutions to this bioenergetic conundrum have been ruled out. Although the transmembrane sodium motive force is high under alkaline conditions, respiratory alkaliphilic bacteria do not use Na+- instead of H+-coupled ATP synthases. Nor do they offset the adverse pH gradient with a compensatory increase in the transmembrane electrical potential component of the protonmotive force. Moreover, studies of ATP synthase rotors indicate that alkaliphiles cannot fully resolve the energetic problem by using an ATP synthase with a large number of c-subunits in the synthase rotor ring. Increased attention now focuses on delocalized gradients near the membrane surface and H+ transfers to ATP synthases via membrane-associated microcircuits between the H+ pumping complexes and synthases. Microcircuits likely depend upon proximity of pumps and synthases, specific membrane properties and specific adaptations of the participating enzyme complexes. ATP synthesis in alkaliphiles depends upon alkaliphile-specific adaptations of the ATP synthase and there is also evidence for alkaliphile-specific adaptations of respiratory chain components.
Collapse
|
13
|
Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 2009; 55:1-79, 317. [PMID: 19573695 DOI: 10.1016/s0065-2911(09)05501-5] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Of all the molecular determinants for growth, the hydronium and hydroxide ions are found naturally in the widest concentration range, from acid mine drainage below pH 0 to soda lakes above pH 13. Most bacteria and archaea have mechanisms that maintain their internal, cytoplasmic pH within a narrower range than the pH outside the cell, termed "pH homeostasis." Some mechanisms of pH homeostasis are specific to particular species or groups of microorganisms while some common principles apply across the pH spectrum. The measurement of internal pH of microbes presents challenges, which are addressed by a range of techniques under varying growth conditions. This review compares and contrasts cytoplasmic pH homeostasis in acidophilic, neutralophilic, and alkaliphilic bacteria and archaea under conditions of growth, non-growth survival, and biofilms. We present diverse mechanisms of pH homeostasis including cell buffering, adaptations of membrane structure, active ion transport, and metabolic consumption of acids and bases.
Collapse
|
14
|
Liu J, Fujisawa M, Hicks DB, Krulwich TA. Characterization of the Functionally Critical AXAXAXA and PXXEXXP Motifs of the ATP Synthase c-Subunit from an Alkaliphilic Bacillus. J Biol Chem 2009; 284:8714-25. [PMID: 19176524 DOI: 10.1074/jbc.m808738200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The membrane-embedded rotor in the F(0) sector of proton-translocating ATP synthases is formed from hairpin-like c-subunits that are protonated and deprotonated during energization of ATP synthesis. This study focuses on two c-subunit motifs that are unique to synthases of extremely alkaliphilic Bacillus species. One motif is the AXAXAXA sequence found in the N-terminal helix-1 instead of the GXGXGXG of non-alkaliphiles. Quadruple A-->G chromosomal mutants of alkaliphilic Bacillus pseudofirmus OF4 retain 50% of the wild-type hydrolytic activity (ATPase) but <18% of the ATP synthase capacity at high pH. Consistent with a structural impact of the four alanine replacements, the mutant ATPase activity showed enhanced inhibition by dicyclohexylcarbodiimide, which blocks the helix-2 carboxylate. Single, double, or triple A-->G mutants exhibited more modest defects, as monitored by malate growth. The key carboxylate is in the second motif, which is P(51)XXE(54)XXP in extreme alkaliphiles instead of the (A/G)XX(E/D)XXP found elsewhere. Mutation of Pro(51) to alanine had been shown to severely reduce malate growth and ATP synthesis at high pH. Here, two Pro(51) to glycine mutants of different severities retained ATP synthase capacity but exhibited growth deficits and proton leakiness. A Glu(54) to Asp(54) change increased proton leakiness and reduced malate growth 79-90%. The Pro(51) and the Glu(54) mutants were both more dicyclohexylcarbodiimide-sensitive than wild type. The results highlight the requirement for c-subunit adaptations to achieve alkaliphile ATP synthesis with minimal cytoplasmic proton loss and suggest partial suppression of some mutations by changes outside the atp operon.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
15
|
Seidel T, Schnitzer D, Golldack D, Sauer M, Dietz KJ. Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis. BMC Cell Biol 2008; 9:28. [PMID: 18507826 PMCID: PMC2424043 DOI: 10.1186/1471-2121-9-28] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 05/28/2008] [Indexed: 11/10/2022] Open
Abstract
Background The V-ATPase (VHA) is a protein complex of 13 different VHA-subunits. It functions as an ATP driven rotary-motor that electrogenically translocates H+ into endomembrane compartments. In Arabidopsis thaliana V-ATPase is encoded by 23 genes posing the question of specific versus redundant function of multigene encoded isoforms. Results The transmembrane topology and stoichiometry of the proteolipid VHA-c" as well as the stoichiometry of the membrane integral subunit VHA-e within the V-ATPase complex were investigated by in vivo fluorescence resonance energy transfer (FRET). VHA-c", VHA-e1 and VHA-e2, VHA-a, VHA-c3, truncated variants of VHA-c3 and a chimeric VHA-c/VHA-c" hybrid were fused to cyan (CFP) and yellow fluorescent protein (YFP), respectively. The constructs were employed for transfection experiments with Arabidopsis thaliana mesophyll protoplasts. Subcellular localization and FRET analysis by confocal laser scanning microscopy (CLSM) demonstrated that (i.) the N- and C-termini of VHA-c" are localised in the vacuolar lumen, (ii.) one copy of VHA-c" is present within the VHA-complex, and (iii.) VHA-c" is localised at the ER and associated Golgi bodies. (iv.) A similar localisation was observed for VHA-e2, whereas (v.) the subcellular localisation of VHA-e1 indicated the trans Golgi network (TGN)-specifity of this subunit. Conclusion The plant proteolipid ring is a highly flexible protein subcomplex, tolerating the incorporation of truncated and hybrid proteolipid subunits, respectively. Whereas the membrane integral subunit VHA-e is present in two copies within the complex, the proteolipid subunit VHA-c" takes part in complex formation with only one copy. However, neither VHA-c" isoform 1 nor any of the two VHA-e isoforms were identified at the tonoplast. This suggest a function in endomembrane specific VHA-assembly or targeting rather than proton transport.
Collapse
Affiliation(s)
- Thorsten Seidel
- Department of Biochemistry and Physiology of Plants, W5, University of Bielefeld, 33501 Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
16
|
Reconstitution of mitochondrial ATP synthase into lipid bilayers for structural analysis. J Struct Biol 2007; 160:287-94. [PMID: 17959389 DOI: 10.1016/j.jsb.2007.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/10/2007] [Accepted: 09/12/2007] [Indexed: 11/21/2022]
Abstract
Mitochondrial F(1)F(o)-ATP synthase is a molecular motor that couples the energy generated by oxidative metabolism to the synthesis of ATP. Direct visualization of the rotary action of the bacterial ATP synthase has been well characterized. However, direct observation of rotation of the mitochondrial enzyme has not been reported yet. Here, we describe two methods to reconstitute mitochondrial F(1)F(o)-ATP synthase into lipid bilayers suitable for structure analysis by electron and atomic force microscopy (AFM). Proteoliposomes densely packed with bovine heart mitochondria F(1)F(o)-ATP synthase were obtained upon detergent removal from ternary mixtures (lipid, detergent and protein). Two-dimensional crystals of recombinant hexahistidine-tagged yeast F(1)F(o)-ATP synthase were grown using the supported monolayer technique. Because the hexahistidine-tag is located at the F(1) catalytic subcomplex, ATP synthases were oriented unidirectionally in such two-dimensional crystals, exposing F(1) to the lipid monolayer and the F(o) membrane region to the bulk solution. This configuration opens a new avenue for the determination of the c-ring stoichiometry of unknown hexahistidine-tagged ATP synthases and the organization of the membrane intrinsic subunits within F(o) by electron microscopy and AFM.
Collapse
|
17
|
Wolschin F, Amdam GV. Comparative proteomics reveal characteristics of life-history transitions in a social insect. Proteome Sci 2007; 5:10. [PMID: 17634121 PMCID: PMC1964756 DOI: 10.1186/1477-5956-5-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 07/17/2007] [Indexed: 02/01/2023] Open
Abstract
Background Honey bee (Apis mellifera) workers are characterized by complex social behavior. Their life-history is dominated by a period of within-nest activity followed by a phase of long-distance flights and foraging. General insights into insect metabolism imply that foraging onset is associated with fundamental metabolic changes, and theory on social evolution suggests metabolic adaptations that are advantageous for the colony as a whole. Results Here we address the life-history characteristics of workers with LC-MS/MS based relative quantification of major proteins. Our approach includes: i. Calculation of a false positive rate for the identifications, ii. Support of relative protein quantification results obtained from spectral count by non-parametric statistics, and iii. Correction for Type 1 error inflation using a bootstrap iteration analysis. Our data are consistent with the use of glucose as the main fuel for honey bee flight. Moreover, the data delivers information on the expression of ATPsynthases/ATPases, and provide new insights into nurse- and forager-specific patterns of protection against oxidative stress. Conclusion The results show the suitability of this approach to investigate fundamental biochemical changes in an insect, and provide new evidence for metabolic specializations that occur during the social ontogeny of worker honey bees.
Collapse
Affiliation(s)
- Florian Wolschin
- Arizona State University, School of Life Sciences, PO Box 874501, Tempe, Arizona 85287, USA
| | - Gro V Amdam
- Arizona State University, School of Life Sciences, PO Box 874501, Tempe, Arizona 85287, USA
- Norwegian University of Life Sciences, Dept. of Animal and Aquacultural Sciences, PO Box 5003, Aas N-1432, Norway
| |
Collapse
|
18
|
Ackerman SH, Tzagoloff A. Function, structure, and biogenesis of mitochondrial ATP synthase. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:95-133. [PMID: 16164973 DOI: 10.1016/s0079-6603(05)80003-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sharon H Ackerman
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
19
|
Smeulders MJ, Keer J, Gray KM, Williams HD. S-Nitrosoglutathione cytotoxicity toMycobacterium smegmatisand its use to isolate stationary phase survival mutants. FEMS Microbiol Lett 2004; 239:221-8. [PMID: 15476969 DOI: 10.1016/j.femsle.2004.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 08/16/2004] [Accepted: 08/23/2004] [Indexed: 10/26/2022] Open
Abstract
We report that stationary phase Mycobacterium smegmatis is more sensitive than exponential phase cells to the nitric oxide donor S-Nitrosoglutathione (GSNO). This finding was used to select for both spontaneous and transposon mutants of M. smegmatis with increased resistance to GSNO in stationary phase. Some of these mutants were also defective in stationary phase survival, demonstrating a link between sensitivity to GSNO and stationary phase survival. Transduction of the disrupted region from seven selected mutants indicated that the transposon insertion was linked to the GSNO-resistance and stationary phase survival phenotypes. For five mutants, the disrupted genes were identified. Three were homologous to genes with possible roles in nutrient scavenging, including: (i) a putative amino acid efflux pump, (ii) a putative thioesterase and (iii) an enoyl-CoA-hydratase. One mutant was disrupted in the atpD gene, encoding the beta chain of F1 F0 ATP synthase. We independently isolated a stationary phase survival mutant disrupted in the atpA gene (encoding the alpha chain) of the F1 F0 ATP synthase of the same operon, suggesting an important role for efficient ATP synthesis in stationary phase survival.
Collapse
Affiliation(s)
- Marjan J Smeulders
- Department of Biological Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
20
|
Wang Z, Hicks DB, Guffanti AA, Baldwin K, Krulwich TA. Replacement of amino acid sequence features of a- and c-subunits of ATP synthases of Alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and non-fermentative growth at pH 10.5. J Biol Chem 2004; 279:26546-54. [PMID: 15024007 DOI: 10.1074/jbc.m401206200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitchell's (Mitchell, P. (1961) Nature 191, 144-148) chemiosmotic model of energy coupling posits a bulk electrochemical proton gradient (Deltap) as the sole driving force for proton-coupled ATP synthesis via oxidative phosphorylation (OXPHOS) and for other bioenergetic work. Two properties of proton-coupled OXPHOS by alkaliphilic Bacillus species pose a challenge to this tenet: robust ATP synthesis at pH 10.5 that does not correlate with the magnitude of the Deltap and the failure of artificially imposed potentials to substitute for respiration-generated potentials in energizing ATP synthesis at high pH (Krulwich, T. (1995) Mol. Microbiol. 15, 403-410). Here we show that these properties, in alkaliphilic Bacillus pseudofirmus OF4, depend upon alkaliphile-specific features in the proton pathway through the a- and c-subunits of ATP synthase. Site-directed changes were made in six such features to the corresponding sequence in Bacillus megaterium, which reflects the consensus sequence for non-alkaliphilic Bacillus. Five of the six single mutants assembled an active ATPase/ATP synthase, and four of these mutants exhibited a specific defect in non-fermentative growth at high pH. Most of these mutants lost the ability to generate the high phosphorylation potentials at low bulk Deltap that are characteristic of alkaliphiles. The aLys(180) and aGly(212) residues that are predicted to be in the proton uptake pathway of the a-subunit were specifically implicated in pH-dependent restriction of proton flux through the ATP synthase to and from the bulk phase. The evidence included greatly enhanced ATP synthesis in response to an artificially imposed potential at high pH. The findings demonstrate that the ATP synthase of extreme alkaliphiles has special features that are required for non-fermentative growth and OXPHOS at high pH.
Collapse
Affiliation(s)
- ZhenXiong Wang
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
21
|
Kobayashi H. Computer simulation of cytoplasmic pH regulation mediated by the F-type H+-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1607:211-6. [PMID: 14670611 DOI: 10.1016/j.bbabio.2003.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytoplasmic pH regulation mediated by the H(+)-ATPase was examined with the aid of computer simulation. The data obtained with our simulation model were consistent with the experimental data and the simulation clarified the following points that may be difficult to be clarified with experimental studies. (1) The change in the enzyme amount controlled by cytoplasmic pH was essential for the pH regulation. (2) No significant change in internal pH was observed in acidic surroundings even if the proton transport activity of the H(+)-ATPase changed greater than sixfold. (3) The cytoplasmic pH homeostasis can be maintained even when the biosynthetic rate of the enzyme decreased by 50%. These results suggested that this regulatory system has an ability to maintain the pH in homeostasis even under harsh conditions that decrease cellular metabolic activities.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi-cho, Inage, Chiba 263-8522, Japan.
| |
Collapse
|
22
|
Kuhnert WL, Quivey RG. Genetic and biochemical characterization of the F-ATPase operon from Streptococcus sanguis 10904. J Bacteriol 2003; 185:1525-33. [PMID: 12591869 PMCID: PMC148061 DOI: 10.1128/jb.185.5.1525-1533.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oral streptococci utilize an F-ATPase to regulate cytoplasmic pH. Previous studies have shown that this enzyme is a principal determinant of aciduricity in the oral streptococcal species Streptococcus sanguis and Streptococcus mutans. Differences in the pH optima of the respective ATPases appears to be the main reason that S. mutans is more tolerant of low pH values than S. sanguis and hence pathogenic. We have recently reported the genetic arrangement for the S. mutans operon. For purposes of comparative structural biology we have also investigated the F-ATPase from S. sanguis. Here, we report the genetic characterization and expression in Escherichia coli of the S. sanguis ATPase operon. Sequence analysis showed a gene order of atpEBFHAGDC and that a large intergenic space existed upstream of the structural genes. Activity data demonstrate that ATPase activity is induced under acidic conditions in both S. sanguis and S. mutans; however, it is not induced to the same extent in the nonpathogenic S. sanguis. Expression studies with an atpD deletion strain of E. coli showed that S. sanguis-E. coli hybrid enzymes were able to degrade ATP but were not sufficiently functional to permit growth on succinate minimal media. Hybrid enzymes were found to be relatively insensitive to inhibition by dicyclohexylcarbodiimide, indicating loss of productive coupling between the membrane and catalytic subunits.
Collapse
Affiliation(s)
- Wendi L Kuhnert
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
23
|
Van Walraven HS, Scholts MJC, Lill H, Matthijs HCP, Dilley RA, Kraayenhof R. Introduction of a carboxyl group in the loop of the F0 c-subunit affects the H+/ATP coupling ratio of the ATP synthase from Synechocystis 6803. J Bioenerg Biomembr 2002; 34:445-54. [PMID: 12678436 DOI: 10.1023/a:1022566025300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The proton translocation stoichiometry (H+/ATP ratio) was investigated in membrane vesicles from a Synechocystis 6803 mutant in which the serine at position 37 in the hydrophilic loop of the c-subunit from the wild type was replaced by a negatively charged glutamic acid residue (strain plc37). At this position the c-subunit of chloroplasts and the cyanobacterium Synechococcus 6716 already contains glutamic acid. H+/ATP ratios were determined with active ATP synthase in thermodynamic equilibrium between phosphate potential (deltaGp) and the proton gradient (deltamuH+) induced by acid-base transition. The mutant displayed a significantly higher H+/ATP ratio than the control strain (wild type with kanamycin resistance) at pH 8 (4.3 vs. 3.3); the higher ratio also being observed in chloroplasts and Synechococcus 6716. Furthermore, the pH dependence of the H+/ATP of strain plc37 resembles that of Synechococcus 6716. When the pH was increased from 7.6 to 8.4, the H+/ATP of the mutant increased from 4.2 to 4.6 whereas in the control strain the ratio decreased from 3.8 to 2.8. Differences in H+/ATP between the mutant and the control strain were confirmed by measuring the light-induced phosphorylation efficiency (P/2e), which changed as expected, i.e., the P/2e ratio in the mutant was significantly less than that in the wild type. The need for more H+ ions used per ATP in the mutant was also reflected by the significantly lower growth rate of the mutant strain. The results are discussed against the background of the present structural and functional models of proton translocation coupled to catalytic activity of the ATP synthase.
Collapse
Affiliation(s)
- Hendrika S Van Walraven
- Department of Structural Biology, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Nelson N, Sacher A, Nelson H. The significance of molecular slips in transport systems. Nat Rev Mol Cell Biol 2002; 3:876-81. [PMID: 12415305 DOI: 10.1038/nrm955] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The advantage of precision in biological processes is obvious; however, in many cases, deviations from the faithful mechanisms occur. Here, we discuss how in-built operating imperfections in transport systems can actually benefit a cell.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | |
Collapse
|