1
|
Yu J, Leibiger B, Yang SN, Shears SB, Leibiger IB, Berggren PO, Barker CJ. Multiple Inositol Polyphosphate Phosphatase Compartmentalization Separates Inositol Phosphate Metabolism from Inositol Lipid Signaling. Biomolecules 2023; 13:885. [PMID: 37371464 DOI: 10.3390/biom13060885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple inositol polyphosphate phosphatase (MINPP1) is an enigmatic enzyme that is responsible for the metabolism of inositol hexakisphosphate (InsP6) and inositol 1,3,4,5,6 pentakisphosphate (Ins(1,3,4,5,6)P5 in mammalian cells, despite being restricted to the confines of the ER. The reason for this compartmentalization is unclear. In our previous studies in the insulin-secreting HIT cell line, we expressed MINPP1 in the cytosol to artificially reduce the concentration of these higher inositol phosphates. Undocumented at the time, we noted cytosolic MINPP1 expression reduced cell growth. We were struck by the similarities in substrate preference between a number of different enzymes that are able to metabolize both inositol phosphates and lipids, notably IPMK and PTEN. MINPP1 was first characterized as a phosphatase that could remove the 3-phosphate from inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4). This molecule shares strong structural homology with the major product of the growth-promoting Phosphatidyl 3-kinase (PI3K), phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and PTEN can degrade both this lipid and Ins(1,3,4,5)P4. Because of this similar substrate preference, we postulated that the cytosolic version of MINPP1 (cyt-MINPP1) may not only attack inositol polyphosphates but also PtdIns(3,4,5)P3, a key signal in mitogenesis. Our experiments show that expression of cyt-MINPP1 in HIT cells lowers the concentration of PtdIns(3,4,5)P3. We conclude this reflects a direct effect of MINPP1 upon the lipid because cyt-MINPP1 actively dephosphorylates synthetic, di(C4:0)PtdIns(3,4,5)P3 in vitro. These data illustrate the importance of MINPP1's confinement to the ER whereby important aspects of inositol phosphate metabolism and inositol lipid signaling can be separately regulated and give one important clarification for MINPP1's ER seclusion.
Collapse
Affiliation(s)
- Jia Yu
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Barbara Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Stephen B Shears
- Inositol Signaling Section, NIEHS, 111, Alexander Drive, Research Triangle Park, Durham, NC 27709, USA
| | - Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Christopher J Barker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| |
Collapse
|
2
|
Nguyen Trung M, Kieninger S, Fandi Z, Qiu D, Liu G, Mehendale NK, Saiardi A, Jessen H, Keller B, Fiedler D. Stable Isotopomers of myo-Inositol Uncover a Complex MINPP1-Dependent Inositol Phosphate Network. ACS CENTRAL SCIENCE 2022; 8:1683-1694. [PMID: 36589890 PMCID: PMC9801504 DOI: 10.1021/acscentsci.2c01032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Indexed: 05/04/2023]
Abstract
The water-soluble inositol phosphates (InsPs) represent a functionally diverse group of small-molecule messengers involved in a myriad of cellular processes. Despite their centrality, our understanding of human InsP metabolism is incomplete because the available analytical toolset to characterize and quantify InsPs in complex samples is limited. Here, we have synthesized and applied symmetrically and unsymmetrically 13C-labeled myo-inositol and inositol phosphates. These probes were utilized in combination with nuclear magnetic resonance spectroscopy (NMR) and capillary electrophoresis mass spectrometry (CE-MS) to investigate InsP metabolism in human cells. The labeling strategy provided detailed structural information via NMR-down to individual enantiomers-which overcomes a crucial blind spot in the analysis of InsPs. We uncovered a novel branch of InsP dephosphorylation in human cells which is dependent on MINPP1, a phytase-like enzyme contributing to cellular homeostasis. Detailed characterization of MINPP1 activity in vitro and in cells showcased the unique reactivity of this phosphatase. Our results demonstrate that metabolic labeling with stable isotopomers in conjunction with NMR spectroscopy and CE-MS constitutes a powerful tool to annotate InsP networks in a variety of biological contexts.
Collapse
Affiliation(s)
- Minh Nguyen Trung
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Institut
für Chemie, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse
2, 12489 Berlin, Germany
| | - Stefanie Kieninger
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Zeinab Fandi
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Danye Qiu
- Institut
für Organische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Guizhen Liu
- Institut
für Organische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Neelay K. Mehendale
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Adolfo Saiardi
- MRC
Laboratory for Molecular Cell Biology, University
College London, WC1E 6BT London, United Kingdom
| | - Henning Jessen
- Institut
für Organische Chemie, Albert-Ludwigs-Universität
Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Bettina Keller
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut
für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Institut
für Chemie, Humboldt-Universität
zu Berlin, Brook-Taylor-Strasse
2, 12489 Berlin, Germany
| |
Collapse
|
3
|
Elich M, Sauer K. Regulation of Hematopoietic Cell Development and Function Through Phosphoinositides. Front Immunol 2018; 9:931. [PMID: 29780388 PMCID: PMC5945867 DOI: 10.3389/fimmu.2018.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
One of the most paramount receptor-induced signal transduction mechanisms in hematopoietic cells is production of the lipid second messenger phosphatidylinositol(3,4,5)trisphosphate (PIP3) by class I phosphoinositide 3 kinases (PI3K). Defective PIP3 signaling impairs almost every aspect of hematopoiesis, including T cell development and function. Limiting PIP3 signaling is particularly important, because excessive PIP3 function in lymphocytes can transform them and cause blood cancers. Here, we review the key functions of PIP3 and related phosphoinositides in hematopoietic cells, with a special focus on those mechanisms dampening PIP3 production, turnover, or function. Recent studies have shown that beyond “canonical” turnover by the PIP3 phosphatases and tumor suppressors phosphatase and tensin homolog (PTEN) and SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1/2), PIP3 function in hematopoietic cells can also be dampened through antagonism with the soluble PIP3 analogs inositol(1,3,4,5)tetrakisphosphate (IP4) and inositol-heptakisphosphate (IP7). Other evidence suggests that IP4 can promote PIP3 function in thymocytes. Moreover, IP4 or the kinases producing it limit store-operated Ca2+ entry through Orai channels in B cells, T cells, and neutrophils to control cell survival and function. We discuss current models for how soluble inositol phosphates can have such diverse functions and can govern as distinct processes as hematopoietic stem cell homeostasis, neutrophil macrophage and NK cell function, and development and function of B cells and T cells. Finally, we will review the pathological consequences of dysregulated IP4 activity in immune cells and highlight contributions of impaired inositol phosphate functions in disorders such as Kawasaki disease, common variable immunodeficiency, or blood cancer.
Collapse
Affiliation(s)
- Mila Elich
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Karsten Sauer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,Oncology R&D, Pfizer Worldwide R&D, San Diego, CA, United States
| |
Collapse
|
4
|
Pulido R. PTEN Inhibition in Human Disease Therapy. Molecules 2018; 23:molecules23020285. [PMID: 29385737 PMCID: PMC6017825 DOI: 10.3390/molecules23020285] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor PTEN is a major homeostatic regulator, by virtue of its lipid phosphatase activity against phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], which downregulates the PI3K/AKT/mTOR prosurvival signaling, as well as by its protein phosphatase activity towards specific protein targets. PTEN catalytic activity is crucial to control cell growth under physiologic and pathologic situations, and it impacts not only in preventing tumor cell survival and proliferation, but also in restraining several cellular regeneration processes, such as those associated with nerve injury recovery, cardiac ischemia, or wound healing. In these conditions, inhibition of PTEN catalysis is being explored as a potentially beneficial therapeutic intervention. Here, an overview of human diseases and conditions in which PTEN inhibition could be beneficial is presented, together with an update on the current status of specific small molecule inhibitors of PTEN enzymatic activity, their use in experimental models, and their limitations as research or therapeutic drugs.
Collapse
Affiliation(s)
- Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
5
|
Wilson MSC, Saiardi A. Importance of Radioactive Labelling to Elucidate Inositol Polyphosphate Signalling. Top Curr Chem (Cham) 2017; 375:14. [PMID: 28101851 PMCID: PMC5396384 DOI: 10.1007/s41061-016-0099-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023]
Abstract
Inositol polyphosphates, in their water-soluble or lipid-bound forms, represent a large and multifaceted family of signalling molecules. Some inositol polyphosphates are well recognised as defining important signal transduction pathways, as in the case of the calcium release factor Ins(1,4,5)P3, generated by receptor activation-induced hydrolysis of the lipid PtdIns(4,5)P2 by phospholipase C. The birth of inositol polyphosphate research would not have occurred without the use of radioactive phosphate tracers that enabled the discovery of the “PI response”. Radioactive labels, mainly of phosphorus but also carbon and hydrogen (tritium), have been instrumental in the development of this research field and the establishment of the inositol polyphosphates as one of the most important networks of regulatory molecules present in eukaryotic cells. Advancements in microscopy and mass spectrometry and the development of colorimetric assays have facilitated inositol polyphosphate research, but have not eliminated the need for radioactive experimental approaches. In fact, such experiments have become easier with the cloning of the inositol polyphosphate kinases, enabling the systematic labelling of specific positions of the inositol ring with radioactive phosphate. This approach has been valuable for elucidating their metabolic pathways and identifying specific and novel functions for inositol polyphosphates. For example, the synthesis of radiolabelled inositol pyrophosphates has allowed the discovery of a new protein post-translational modification. Therefore, radioactive tracers have played and will continue to play an important role in dissecting the many complex aspects of inositol polyphosphate physiology. In this review we aim to highlight the historical importance of radioactivity in inositol polyphosphate research, as well as its modern usage.
Collapse
Affiliation(s)
- Miranda S C Wilson
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
6
|
Assaying PTEN catalysis in vitro. Methods 2015; 77-78:51-7. [DOI: 10.1016/j.ymeth.2014.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/13/2014] [Accepted: 11/04/2014] [Indexed: 12/15/2022] Open
|
7
|
Adikesavan AK, Karmakar S, Pardo P, Wang L, Liu S, Li W, Smith CL. Activation of p53 transcriptional activity by SMRT: a histone deacetylase 3-independent function of a transcriptional corepressor. Mol Cell Biol 2014; 34:1246-61. [PMID: 24449765 PMCID: PMC3993559 DOI: 10.1128/mcb.01216-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The silencing mediator of retinoic acid and thyroid hormone receptors (SMRT) is an established histone deacetylase 3 (HDAC3)-dependent transcriptional corepressor. Microarray analyses of MCF-7 cells transfected with control or SMRT small interfering RNA revealed SMRT regulation of genes involved in DNA damage responses, and the levels of the DNA damage marker γH2AX as well as poly(ADP-ribose) polymerase cleavage were elevated in SMRT-depleted cells treated with doxorubicin. A number of these genes are established p53 targets. SMRT knockdown decreased the activity of two p53-dependent reporter genes as well as the expression of p53 target genes, such as CDKN1A (which encodes p21). SMRT bound directly to p53 and was recruited to p53 binding sites within the p21 promoter. Depletion of GPS2 and TBL1, components of the SMRT corepressor complex, but not histone deacetylase 3 (HDAC3) decreased p21-luciferase activity. p53 bound to the SMRT deacetylase activation domain (DAD), which mediates HDAC3 binding and activation, and HDAC3 could attenuate p53 binding to the DAD region of SMRT. Moreover, an HDAC3 binding-deficient SMRT DAD mutant coactivated p53 transcriptional activity. Collectively, these data highlight a biological role for SMRT in mediating DNA damage responses and suggest a model where p53 binding to the DAD limits HDAC3 interaction with this coregulator, thereby facilitating SMRT coactivation of p53-dependent gene expression.
Collapse
Affiliation(s)
| | - Sudipan Karmakar
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Patricia Pardo
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Liguo Wang
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shuang Liu
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Li
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Carolyn L. Smith
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Barker CJ, Berggren PO. New Horizons in Cellular Regulation by Inositol Polyphosphates: Insights from the Pancreaticβ-Cell. Pharmacol Rev 2013; 65:641-69. [DOI: 10.1124/pr.112.006775] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
9
|
Abstract
Histone deacetylase enzymes (HDACs) are emerging cancer drug targets. They regulate gene expression by removing acetyl groups from lysine residues in histone tails, resulting in chromatin condensation. The enzymatic activity of most class I HDACs requires recruitment into multi-subunit co-repressor complexes, which are in turn recruited to chromatin by repressive transcription factors. Here we report the structure of a complex between an HDAC and a co-repressor, namely, human HDAC3 with the deacetylase activation domain (DAD) from the human SMRT co-repressor (also known as NCOR2). The structure reveals two remarkable features. First, the SMRT-DAD undergoes a large structural rearrangement on forming the complex. Second, there is an essential inositol tetraphosphate molecule--D-myo-inositol-(1,4,5,6)-tetrakisphosphate (Ins(1,4,5,6)P(4))--acting as an 'intermolecular glue' between the two proteins. Assembly of the complex is clearly dependent on the Ins(1,4,5,6)P(4), which may act as a regulator--potentially explaining why inositol phosphates and their kinases have been found to act as transcriptional regulators. This mechanism for the activation of HDAC3 appears to be conserved in class I HDACs from yeast to humans, and opens the way to novel therapeutic opportunities.
Collapse
|
10
|
Watson PJ, Fairall L, Santos GM, Schwabe JW. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 2012; 481:335-40. [PMID: 22230954 PMCID: PMC3272448 DOI: 10.1038/nature10728] [Citation(s) in RCA: 378] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/23/2011] [Indexed: 01/08/2023]
Abstract
Histone deacetylase enzymes (HDACs) are emerging cancer drug targets. They regulate gene expression by removing acetyl groups from lysine residues in histone tails, resulting in chromatin condensation. The enzymatic activity of most class I HDACs requires recruitment into multi-subunit co-repressor complexes, which are in turn recruited to chromatin by repressive transcription factors. Here we report the structure of a complex between an HDAC and a co-repressor, namely, human HDAC3 with the deacetylase activation domain (DAD) from the human SMRT co-repressor (also known as NCOR2). The structure reveals two remarkable features. First, the SMRT-DAD undergoes a large structural rearrangement on forming the complex. Second, there is an essential inositol tetraphosphate molecule--D-myo-inositol-(1,4,5,6)-tetrakisphosphate (Ins(1,4,5,6)P(4))--acting as an 'intermolecular glue' between the two proteins. Assembly of the complex is clearly dependent on the Ins(1,4,5,6)P(4), which may act as a regulator--potentially explaining why inositol phosphates and their kinases have been found to act as transcriptional regulators. This mechanism for the activation of HDAC3 appears to be conserved in class I HDACs from yeast to humans, and opens the way to novel therapeutic opportunities.
Collapse
Affiliation(s)
- Peter J. Watson
- Henry Wellcome Laboratories of Structural Biology Department of Biochemistry University of Leicester Leicester. LE1 9HN. UK
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology Department of Biochemistry University of Leicester Leicester. LE1 9HN. UK
| | - Guilherme M. Santos
- Henry Wellcome Laboratories of Structural Biology Department of Biochemistry University of Leicester Leicester. LE1 9HN. UK
| | - John W.R. Schwabe
- Henry Wellcome Laboratories of Structural Biology Department of Biochemistry University of Leicester Leicester. LE1 9HN. UK
| |
Collapse
|
11
|
Shears SB, Ganapathi SB, Gokhale NA, Schenk TMH, Wang H, Weaver JD, Zaremba A, Zhou Y. Defining signal transduction by inositol phosphates. Subcell Biochem 2012; 59:389-412. [PMID: 22374098 PMCID: PMC3925325 DOI: 10.1007/978-94-007-3015-1_13] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ins(1,4,5)P(3) is a classical intracellular messenger: stimulus-dependent changes in its levels elicits biological effects through its release of intracellular Ca(2+) stores. The Ins(1,4,5)P(3) response is "switched off" by its metabolism to a range of additional inositol phosphates. These metabolites have themselves come to be collectively described as a signaling "family". The validity of that latter definition is critically examined in this review. That is, we assess the strength of the hypothesis that Ins(1,4,5)P(3) metabolites are themselves "classical" signals. Put another way, what is the evidence that the biological function of a particular inositol phosphate depends upon stimulus dependent changes in its levels? In this assessment, examples of an inositol phosphate acting as a cofactor (i.e. its function is not stimulus-dependent) do not satisfy our signaling criteria. We conclude that Ins(3,4,5,6)P(4) is, to date, the only Ins(1,4,5)P(3) metabolite that has been validated to act as a second messenger.
Collapse
Key Words
- adenosine deaminase
- akt
- β-cells
- calcium
- camp
- camkii
- chloride channel
- clc3
- compartmentalization
- dna repair
- endosomes
- erk
- frizzled receptor
- gap1ip4bp
- mrna export
- ins(1,4,5)p3
- ins(1,4,5)p4 receptor
- ins(1,3,4)p3
- ins(1,3,4,5)p4
- ins(1,3,4,5)p4 receptor
- ins(1,4,5,6)p4
- ins(3,4,5,6)p4
- ins(1,3,4,5,6)p5
- insp6
- insulin
- ipmk
- ipk2
- ip5k
- itp
- itpk1
- itpkb
- lymphocytes
- ku
- neutrophils
- protein phosphatase
- ptdins(4,5)p2
- ptdins(3,4,5)p3
- ph domain
- pten
- rasa3
- transcription
- wnt ligand
Collapse
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Section, Laboratory of Signal Transduction, NIEHS, NIH, DHHS, Research Triangle Park, 27709, NC, USA, USA,
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Second messenger molecules relay, amplify, and diversify cell surface receptor signals. Two important examples are phosphorylated D-myo-inositol derivatives, such as phosphoinositide lipids within cellular membranes, and soluble inositol phosphates. Here, we review how phosphoinositide metabolism generates multiple second messengers with important roles in T-cell development and function. They include soluble inositol(1,4,5)trisphosphate, long known for its Ca(2+)-mobilizing function, and phosphatidylinositol(3,4,5)trisphosphate, whose generation by phosphoinositide 3-kinase and turnover by the phosphatases PTEN and SHIP control a key "hub" of TCR signaling. More recent studies unveiled important second messenger functions for diacylglycerol, phosphatidic acid, and soluble inositol(1,3,4,5)tetrakisphosphate (IP(4)) in immune cells. Inositol(1,3,4,5)tetrakisphosphate acts as a soluble phosphatidylinositol(3,4,5)trisphosphate analog to control protein membrane recruitment. We propose that phosphoinositide lipids and soluble inositol phosphates (IPs) can act as complementary partners whose interplay could have broadly important roles in cellular signaling.
Collapse
Affiliation(s)
- Yina H Huang
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
13
|
Sauer K, Cooke MP. Regulation of immune cell development through soluble inositol-1,3,4,5-tetrakisphosphate. Nat Rev Immunol 2010; 10:257-71. [PMID: 20336153 PMCID: PMC2922113 DOI: 10.1038/nri2745] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The membrane lipid phosphatidylinositol-3,4,5-trisphosphate (PtdInsP(3)) regulates membrane receptor signalling in many cells, including immunoreceptor signalling. Here, we review recent data that have indicated essential roles for the soluble PtdInsP(3) analogue inositol-1,3,4,5-tetrakisphosphate (InsP(4)) in T cell, B cell and neutrophil development and function. Decreased InsP(4) production in leukocytes causes immunodeficiency in mice and might contribute to inflammatory vasculitis in Kawasaki disease in humans. InsP(4)-producing kinases could therefore provide attractive drug targets for inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Karsten Sauer
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
14
|
Best MD, Zhang H, Prestwich GD. Inositol polyphosphates, diphosphoinositol polyphosphates and phosphatidylinositol polyphosphate lipids: Structure, synthesis, and development of probes for studying biological activity. Nat Prod Rep 2010; 27:1403-30. [DOI: 10.1039/b923844c] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Structural Analysis of a Multifunctional, Tandemly Repeated Inositol Polyphosphatase. J Mol Biol 2009; 392:75-86. [DOI: 10.1016/j.jmb.2009.05.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 05/26/2009] [Accepted: 05/28/2009] [Indexed: 11/21/2022]
|
16
|
Puhl AA, Gruninger RJ, Greiner R, Janzen TW, Mosimann SC, Selinger LB. Kinetic and structural analysis of a bacterial protein tyrosine phosphatase-like myo-inositol polyphosphatase. Protein Sci 2007; 16:1368-78. [PMID: 17567745 PMCID: PMC2206706 DOI: 10.1110/ps.062738307] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PhyA from Selenomonas ruminantium (PhyAsr), is a bacterial protein tyrosine phosphatase (PTP)-like inositol polyphosphate phosphatase (IPPase) that is distantly related to known PTPs. PhyAsr has a second substrate binding site referred to as a standby site and the P-loop (HCX5R) has been observed in both open (inactive) and closed (active) conformations. Site-directed mutagenesis and kinetic and structural studies indicate PhyAsr follows a classical PTP mechanism of hydrolysis and has a broad specificity toward polyphosphorylated myo-inositol substrates, including phosphoinositides. Kinetic and molecular docking experiments demonstrate PhyAsr preferentially cleaves the 3-phosphate position of Ins P6 and will produce Ins(2)P via a highly ordered series of sequential dephosphorylations: D-Ins(1,2,4,5,6)P5, Ins(2,4,5,6)P4, D-Ins(2,4,5)P3, and D-Ins(2,4)P2. The data support a distributive enzyme mechanism and suggest the PhyAsr standby site is involved in the recruitment of substrate. Structural studies at physiological pH and high salt concentrations demonstrate the "closed" or active P-loop conformation can be induced in the absence of substrate. These results suggest PhyAsr should be reclassified as a D-3 myo-inositol hexakisphosphate phosphohydrolase and suggest the PhyAsr reaction mechanism is more similar to that of PTPs than previously suspected.
Collapse
Affiliation(s)
- Aaron A Puhl
- Department of Biological Sciences, University of Lethbridge, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Zonia L, Munnik T. Cracking the green paradigm: functional coding of phosphoinositide signals in plant stress responses. Subcell Biochem 2006; 39:207-37. [PMID: 17121277 DOI: 10.1007/0-387-27600-9_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Zonia
- Section of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 318, NL-1098 SM, Amsterdam, The Netherlands
| | | |
Collapse
|
18
|
Riley AM, Trusselle M, Kuad P, Borkovec M, Cho J, Choi JH, Qian X, Shears SB, Spiess B, Potter* BVL. scyllo-inositol pentakisphosphate as an analogue of myo-inositol 1,3,4,5,6-pentakisphosphate: chemical synthesis, physicochemistry and biological applications. Chembiochem 2006; 7:1114-22. [PMID: 16755629 PMCID: PMC1892220 DOI: 10.1002/cbic.200600037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Indexed: 01/08/2023]
Abstract
myo-Inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P(5)), an inositol polyphosphate of emerging significance in cellular signalling, and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesised from the same myo-inositol-based precursor. Potentiometric and NMR titrations show that both pentakisphosphates undergo a conformational ring-flip at higher pH, beginning at pH 8 for scyllo-InsP(5) and pH 9 for Ins(1,3,4,5,6)P(5). Over the physiological pH range, however, the conformation of the inositol rings and the microprotonation patterns of the phosphate groups in Ins(1,3,4,5,6)P(5) and scyllo-InsP(5) are similar. Thus, scyllo-InsP(5) should be a useful tool for identifying biologically relevant actions of Ins(1,3,4,5,6)P(5), mediated by specific binding sites, and distinguishing them from nonspecific electrostatic effects. We also demonstrate that, although scyllo-InsP(5) and Ins(1,3,4,5,6)P(5) are both hydrolysed by multiple inositol polyphosphate phosphatase (MINPP), scyllo-InsP(5) is not dephosphorylated by PTEN or phosphorylated by Ins(1,3,4,5,6)P(5) 2-kinases. This finding both reinforces the value of scyllo-InsP(5) as a biological control and shows that the axial 2-OH group of Ins(1,3,4,5,6)P(5) plays a part in substrate recognition by PTEN and the Ins(1,3,4,5,6)P(5) 2-kinases.
Collapse
Affiliation(s)
- Andrew M. Riley
- Dr. A. M. Riley, Dr. M. Trusselle, Prof. Dr. B. V. L. Potter, Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY (UK), Fax: (+44) 1225-386114, E-mail:
| | - Melanie Trusselle
- Dr. A. M. Riley, Dr. M. Trusselle, Prof. Dr. B. V. L. Potter, Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY (UK), Fax: (+44) 1225-386114, E-mail:
| | - Paul Kuad
- Dr. P. Kuad, Prof. Dr. B. Spiess, Département de Pharmacochimie de la Communication Cellulaire, UMR 7175-LC1 du CNRS-ULP, Faculté de Pharmacie, 74, route du Rhin, B. P. 24, 67401 Illkirch Cedex (France.)
| | - Michal Borkovec
- Dr. M. Borkovec, Department of Inorganic, Analytical, and Applied Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4 (Switzerland)
| | - Jaiesoon Cho
- Dr. J. Cho, Dr. J. H. Choi, Dr. X. Qian, Dr. S. B. Shears, Inositide Signaling Group, Laboratory of Signal Transduction and National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (USA)
| | - Jae H. Choi
- Dr. J. Cho, Dr. J. H. Choi, Dr. X. Qian, Dr. S. B. Shears, Inositide Signaling Group, Laboratory of Signal Transduction and National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (USA)
| | - Xun Qian
- Dr. J. Cho, Dr. J. H. Choi, Dr. X. Qian, Dr. S. B. Shears, Inositide Signaling Group, Laboratory of Signal Transduction and National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (USA)
| | - Stephen B. Shears
- Dr. J. Cho, Dr. J. H. Choi, Dr. X. Qian, Dr. S. B. Shears, Inositide Signaling Group, Laboratory of Signal Transduction and National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (USA)
| | - Bernard Spiess
- Dr. P. Kuad, Prof. Dr. B. Spiess, Département de Pharmacochimie de la Communication Cellulaire, UMR 7175-LC1 du CNRS-ULP, Faculté de Pharmacie, 74, route du Rhin, B. P. 24, 67401 Illkirch Cedex (France.)
| | - Barry V. L. Potter*
- Dr. A. M. Riley, Dr. M. Trusselle, Prof. Dr. B. V. L. Potter, Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY (UK), Fax: (+44) 1225-386114, E-mail:
| |
Collapse
|
19
|
Morgan-Lappe S, Woods KW, Li Q, Anderson MG, Schurdak ME, Luo Y, Giranda VL, Fesik SW, Leverson JD. RNAi-based screening of the human kinome identifies Akt-cooperating kinases: a new approach to designing efficacious multitargeted kinase inhibitors. Oncogene 2006; 25:1340-8. [PMID: 16247451 DOI: 10.1038/sj.onc.1209169] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumors comprise genetically heterogeneous cell populations, whose growth and survival depend on multiple signaling pathways. This has spurred the development of multitargeted therapies, including small molecules that can inhibit multiple kinases. A major challenge in designing such molecules is to determine which kinases to inhibit in each cancer to maximize efficacy and therapeutic index. We describe an approach to this problem implementing RNA interference technology. In order to identify Akt-cooperating kinases, we screened a library of kinase-directed small interfering RNAs (siRNAs) for enhanced cancer cell killing in the presence of Akt inhibitor A-443654. siRNAs targeting casein kinase I gamma 3 (CSNK1G3) or the inositol polyphosphate multikinase (IPMK) significantly enhanced A-443654-mediated cell killing, and caused decreases in Akt Ser-473 and ribosomal protein S6 phosphorylation. Small molecules targeting CSNK1G3 and/or IPMK in addition to Akt may thus exhibit increased efficacy and have the potential for improved therapeutic index.
Collapse
Affiliation(s)
- S Morgan-Lappe
- Abbott Laboratories, Cancer Research, Abbott Park, IL 60064, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Deleu S, Choi K, Reece JM, Shears SB. Pathogenicity of Salmonella: SopE-mediated membrane ruffling is independent of inositol phosphate signals. FEBS Lett 2006; 580:1709-15. [PMID: 16500648 PMCID: PMC1892211 DOI: 10.1016/j.febslet.2006.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Accepted: 02/03/2006] [Indexed: 01/15/2023]
Abstract
Studies [Zhou, D., Chen, L.-M., Hernandez, L., Shears, S.B., and Galán, J.E. (2001) A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host-cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39, 248-259] with engineered Salmonella mutants showed that deletion of SopE attenuated the pathogen's ability to deplete host-cell InsP5 and remodel the cytoskeleton. We pursued these observations: In SopE-transfected host-cells, membrane ruffling was induced, but SopE did not dephosphorylate InsP5, nor did it recruit PTEN (a cytosolic InsP5 phosphatase) for this task. However, PTEN strengthened SopE-mediated membrane ruffling. We conclude SopE promotes host-cell InsP5 hydrolysis only with the assistance of other Salmonella proteins. Our demonstration that Salmonella-mediated cytoskeletal modifications are independent of inositolphosphates will focus future studies on elucidating alternate pathogenic consequences of InsP5 metabolism, including ion channel conductance and apoptosis.
Collapse
Affiliation(s)
- Sandrine Deleu
- Inositol Signaling Section, National Institute of Environmental Health Sciences, NIH, DHSS, Research Triangle Park, NC 27709, USA
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, DHSS, Research Triangle Park, NC 27709, USA
| | - Kuicheon Choi
- Inositol Signaling Section, National Institute of Environmental Health Sciences, NIH, DHSS, Research Triangle Park, NC 27709, USA
| | - Jeff M. Reece
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, DHSS, Research Triangle Park, NC 27709, USA
| | - Stephen B. Shears
- Inositol Signaling Section, National Institute of Environmental Health Sciences, NIH, DHSS, Research Triangle Park, NC 27709, USA
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, DHSS, Research Triangle Park, NC 27709, USA
- *Corresponding author. Fax: +919 541 0559, E-mail address: (S.B. Shears)
| |
Collapse
|
21
|
Caldwell KK, Sosa M, Buckley CT. Identification of mitogen-activated protein kinase docking sites in enzymes that metabolize phosphatidylinositols and inositol phosphates. Cell Commun Signal 2006; 4:2. [PMID: 16445858 PMCID: PMC1379644 DOI: 10.1186/1478-811x-4-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Accepted: 01/30/2006] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Reversible interactions between the components of cellular signaling pathways allow for the formation and dissociation of multimolecular complexes with spatial and temporal resolution and, thus, are an important means of integrating multiple signals into a coordinated cellular response. Several mechanisms that underlie these interactions have been identified, including the recognition of specific docking sites, termed a D-domain and FXFP motif, on proteins that bind mitogen-activated protein kinases (MAPKs). We recently found that phosphatidylinositol-specific phospholipase C-gamma1 (PLC-gamma1) directly binds to extracellular signal-regulated kinase 2 (ERK2), a MAPK, via a D-domain-dependent mechanism. In addition, we identified D-domain sequences in several other PLC isozymes. In the present studies we sought to determine whether MAPK docking sequences could be recognized in other enzymes that metabolize phosphatidylinositols (PIs), as well as in enzymes that metabolize inositol phosphates (IPs). RESULTS We found that several, but not all, of these enzymes contain identifiable D-domain sequences. Further, we found a high degree of conservation of these sequences and their location in human and mouse proteins; notable exceptions were PI 3-kinase C2-gamma, PI 4-kinase type IIbeta, and inositol polyphosphate 1-phosphatase. CONCLUSION The results indicate that there may be extensive crosstalk between MAPK signaling and signaling pathways that are regulated by cellular levels of PIs or IPs.
Collapse
Affiliation(s)
- Kevin K Caldwell
- Department of Neurosciences University of New Mexico Health Sciences Center Albuquerque, NM 87131 USA
| | - Marcos Sosa
- Department of Neurosciences University of New Mexico Health Sciences Center Albuquerque, NM 87131 USA
| | - Colin T Buckley
- Department of Neurosciences University of New Mexico Health Sciences Center Albuquerque, NM 87131 USA
| |
Collapse
|
22
|
Deleu S, Choi K, Pesesse X, Cho J, Sulis ML, Parsons R, Shears SB. Physiological levels of PTEN control the size of the cellular Ins(1,3,4,5,6)P(5) pool. Cell Signal 2005; 18:488-98. [PMID: 15979280 DOI: 10.1016/j.cellsig.2005.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 05/17/2005] [Accepted: 05/24/2005] [Indexed: 12/27/2022]
Abstract
To understand how a signaling molecule's activities are regulated, we need insight into the processes controlling the dynamic balance between its synthesis and degradation. For the Ins(1,3,4,5,6)P5 signal, this information is woefully inadequate. For example, the only known cytosolic enzyme with the capacity to degrade Ins(1,3,4,5,6)P5 is the tumour-suppressor PTEN [J.J. Caffrey, T. Darden, M.R. Wenk, S.B. Shears, FEBS Lett. 499 (2001) 6 ], but the biological relevance has been questioned by others [E.A. Orchiston, D. Bennett, N.R. Leslie, R.G. Clarke, L. Winward, C.P. Downes, S.T. Safrany, J. Biol. Chem. 279 (2004) 1116 ]. The current study emphasizes the role of physiological levels of PTEN in Ins(1,3,4,5,6)P5 homeostasis. We employed two cell models. First, we used a human U87MG glioblastoma PTEN-null cell line that hosts an ecdysone-inducible PTEN expression system. Second, the human H1299 bronchial cell line, in which PTEN is hypomorphic due to promoter methylation, has been stably transfected with physiologically relevant levels of PTEN. In both models, a novel consequence of PTEN expression was to increase Ins(1,3,4,5,6)P5 pool size by 30-40% (p<0.01); this response was wortmannin-insensitive and, therefore, independent of the PtdIns 3-kinase pathway. In U87MG cells, induction of the G129R catalytically inactive PTEN mutant did not affect Ins(1,3,4,5,6)P(5) levels. PTEN induction did not alter the expression of enzymes participating in Ins(1,3,4,5,6)P5 synthesis. Another effect of PTEN expression in U87MG cells was to decrease InsP6 levels by 13% (p<0.02). The InsP6-phosphatase, MIPP, may be responsible for the latter effect; we show that recombinant human MIPP dephosphorylates InsP6 to D/L-Ins(1,2,4,5,6)P5, levels of which increased 60% (p<0.05) following PTEN expression in U87MG cells. Overall, our data add higher inositol phosphates to the list of important cellular regulators [Y. Huang, R.P. Wernyj, D.D. Norton, P. Precht, M.C. Seminario, R.L. Wange, Oncogene, 24 (2005) 3819 ] the levels of which are modulated by expression of the highly pleiotropic PTEN protein.
Collapse
Affiliation(s)
- Sandrine Deleu
- Inositol Signaling Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, DHSS, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Leslie N, Downes C. PTEN function: how normal cells control it and tumour cells lose it. Biochem J 2005; 382:1-11. [PMID: 15193142 PMCID: PMC1133909 DOI: 10.1042/bj20040825] [Citation(s) in RCA: 329] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 06/10/2004] [Accepted: 06/11/2004] [Indexed: 01/26/2023]
Abstract
The PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour suppressor is a PI (phosphoinositide) 3-phosphatase that can inhibit cellular proliferation, survival and growth by inactivating PI 3-kinase-dependent signalling. It also suppresses cellular motility through mechanisms that may be partially independent of phosphatase activity. PTEN is one of the most commonly lost tumour suppressors in human cancer, and its deregulation is also implicated in several other diseases. Here we discuss recent developments in our understanding of how the cellular activity of PTEN is regulated, and the closely related question of how this activity is lost in tumours. Cellular PTEN function appears to be regulated by controlling both the expression of the enzyme and also its activity through mechanisms including oxidation and phosphorylation-based control of non-substrate membrane binding. Therefore mutation of PTEN in tumours disrupts not only the catalytic function of PTEN, but also its regulatory aspects. However, although mutation of PTEN is uncommon in many human tumour types, loss of PTEN expression seems to be more frequent. It is currently unclear how these tumours lose PTEN expression in the absence of mutation, and while some data implicate other potential tumour suppressors and oncogenes in this process, this area seems likely to be a key focus of future research.
Collapse
Affiliation(s)
- Nick R. Leslie
- Division of Cell Signalling, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
- email
| | - C. Peter Downes
- Division of Cell Signalling, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
- email
| |
Collapse
|
24
|
Barker CJ, Wright J, Hughes PJ, Kirk CJ, Michell RH. Complex changes in cellular inositol phosphate complement accompany transit through the cell cycle. Biochem J 2004; 380:465-73. [PMID: 14992690 PMCID: PMC1224188 DOI: 10.1042/bj20031872] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 02/20/2004] [Accepted: 03/02/2004] [Indexed: 11/17/2022]
Abstract
Inositol polyphosphates other than Ins(1,4,5)P3 are involved in several aspects of cell regulation. For example, recent evidence has implicated InsP6, Ins(1,3,4,5,6)P5 and their close metabolic relatives, which are amongst the more abundant intracellular inositol polyphosphates, in chromatin organization, DNA maintenance, gene transcription, nuclear mRNA transport, membrane trafficking and control of cell proliferation. However, little is known of how the intracellular concentrations of inositol polyphosphates change through the cell cycle. Here we show that the concentrations of several inositol polyphosphates fluctuate in synchrony with the cell cycle in proliferating WRK-1 cells. InsP6, Ins(1,3,4,5,6)P5 and their metabolic relatives behave similarly: concentrations are high during G1-phase, fall to much lower levels during S-phase and rise again late in the cycle. The Ins(1,2,3)P3 concentration shows especially large fluctuations, and PP-InsP5 fluctuations are also very marked. Remarkably, Ins(1,2,3)P3 turns over fastest during S-phase, when its concentration is lowest. These results establish that several fairly abundant intracellular inositol polyphosphates, for which important biological roles are emerging, display dynamic behaviour that is synchronized with cell-cycle progression.
Collapse
|
25
|
Abstract
The PI-3 kinase pathway is a major driving force for human cancer. One common way of stimulating the PI-3 kinase pathway occurs through inactivation of the PTEN tumor suppressor. The mechanisms of PTEN inactivation include mutation, epigenetic silencing and post-translational modification. Improved insight into the regulation of PTEN is leading to a richer understanding of the contribution of PTEN and the PI-3 kinase pathway to human tumors. Understanding the pathology of PI-3 kinase signaling in tumors improves knowledge of cancer etiology and provides novel therapeutic targets.
Collapse
Affiliation(s)
- Ramon Parsons
- Department of Pathology and Medicine, Institute for Cancer Genetics, Columbia University, 1150 St. Nicholas Avenue, RBP 302, New York, NY, USA.
| |
Collapse
|
26
|
Shears SB. How versatile are inositol phosphate kinases? Biochem J 2004; 377:265-80. [PMID: 14567754 PMCID: PMC1223885 DOI: 10.1042/bj20031428] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 10/14/2003] [Accepted: 10/20/2003] [Indexed: 01/31/2023]
Abstract
This review assesses the extent and the significance of catalytic versatility shown by several inositol phosphate kinases: the inositol phosphate multikinase, the reversible Ins(1,3,4) P (3)/Ins(3,4,5,6) P (4) kinase, and the kinases that synthesize diphosphoinositol polyphosphates. Particular emphasis is placed upon data that are relevant to the situation in vivo. It will be shown that catalytic promiscuity towards different inositol phosphates is not typically an evolutionary compromise, but instead is sometimes exploited to facilitate tight regulation of physiological processes. This multifunctionality can add to the complexity with which inositol signalling pathways interact. This review also assesses some proposed additional functions for the catalytic domains, including transcriptional regulation, protein kinase activity and control by molecular 'switching', all in the context of growing interest in 'moonlighting' (gene-sharing) proteins.
Collapse
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Section, Laboratory of Signal Transduction, NIEHS/NIH/DHSS Research Triangle Park, NC 27709, USA.
| |
Collapse
|
27
|
Orchiston EA, Bennett D, Leslie NR, Clarke RG, Winward L, Downes CP, Safrany ST. PTEN M-CBR3, a versatile and selective regulator of inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5). Evidence for Ins(1,3,4,5,6)P5 as a proliferative signal. J Biol Chem 2003; 279:1116-22. [PMID: 14561749 DOI: 10.1074/jbc.m310933200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumor suppressor is a phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) 3-phosphatase that plays a crucial role in regulating many cellular processes by antagonizing the phosphoinositide 3-kinase signaling pathway. Although able to metabolize soluble inositol phosphates in vitro, the question of their significance as physiological substrates is unresolved. We show that inositol phosphates are not regulated by wild type PTEN, but that a synthetic mutant, PTEN M-CBR3, previously thought to be inactive toward inositides, can selectively regulate inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5). Transfection of U87-MG cells with PTEN M-CBR3 lowered Ins(1,3,4,5,6)P5 levels by 60% without detectable effect on PtdInsP3. Although PTEN M-CBR3 is a 3-phosphatase, levels of myo-inositol 1,4,5,6-tetrakisphosphate were not increased, whereas myo-inositol 1,3,4,6-tetrakisphospate levels increased by 80%. We have used PTEN M-CBR3 to study the physiological function of Ins(1,3,4,5,6)P5 and have found that Ins(1,3,4,5,6)P5 does not modulate PKB phosphorylation, nor does it regulate clathrin-mediated epidermal growth factor receptor internalization. By contrast, PTEN M-CBR3 expression, and the subsequent lowering of Ins(1,3,4,5,6)P5, are associated with reduced anchorage-independent colony formation and anchorage-dependent proliferation in U87-MG cells. Our results, together with previously published data, suggest that Ins(1,3,4,5,6)P5 has a role in proliferation.
Collapse
Affiliation(s)
- Elaine A Orchiston
- Division of Cell Signalling, Faculty of Life Sciences, MSI/WTB Complex, Dow St., The University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
28
|
Lu Y, Yu Q, Liu JH, Zhang J, Wang H, Koul D, McMurray JS, Fang X, Yung WKA, Siminovitch KA, Mills GB. Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem 2003; 278:40057-66. [PMID: 12869565 DOI: 10.1074/jbc.m303621200] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Src family protein-tyrosine kinases, which play an important role in signal integration, have been implicated in tumorigenesis in multiple lineages, including breast cancer. We demonstrate, herein, that Src kinases regulate the phosphatidylinositol 3-kinase (PI3K) signaling cascade via altering the function of the PTEN tumor suppressor. Overexpression of activated Src protein-tyrosine kinases in PTEN-deficient breast cancer cells does not alter AKT phosphorylation, an indicator of signal transduction through the PI3K pathway. However, in the presence of functional PTEN, Src reverses the activity of PTEN, resulting in an increase in AKT phosphorylation. Activated Src reduces the ability of PTEN to dephosphorylate phosphatidylinositols in micelles and promotes AKT translocation to cellular plasma membranes but does not alter PTEN activity toward water-soluble phosphatidylinositols. Thus, Src may alter the capacity of the PTEN C2 domain to bind cellular membranes rather than directly interfering with PTEN enzymatic activity. Tyrosine phosphorylation of PTEN is increased in breast cancer cells treated with pervanadate, suggesting that PTEN contains sites for tyrosine phosphorylation. Src kinase inhibitors markedly decreased pervanadate-mediated tyrosine phosphorylation of PTEN. Further, expression of activated Src results in marked tyrosine phosphorylation of PTEN. SHP-1, a SH2 domain-containing protein-tyrosine phosphatase, selectively binds and dephosphorylates PTEN in Src transfected cells. Both Src inhibitors and SHP-1 overexpression reverse Src-induced loss of PTEN function. Coexpression of PTEN with activated Src reduces the stability of PTEN. Taken together, the data indicate that activated Src inhibits PTEN function leading to alterations in signaling through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yiling Lu
- Department of Molecular Therapeutics, Division of Cancer Medicine, M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
McConnachie G, Pass I, Walker SM, Downes CP. Interfacial kinetic analysis of the tumour suppressor phosphatase, PTEN: evidence for activation by anionic phospholipids. Biochem J 2003; 371:947-55. [PMID: 12534371 PMCID: PMC1223325 DOI: 10.1042/bj20021848] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2002] [Revised: 01/09/2003] [Accepted: 01/20/2003] [Indexed: 02/04/2023]
Abstract
We investigated the kinetic behaviour and substrate specificity of PTEN (phosphatase and tensin homologue deleted on chromosome 10) using unilamellar vesicles containing substrate lipids in a background of phosphatidylcholine. PTEN displays the characteristics expected of an interfacial enzyme, since the rate of enzyme activity is dependent on the surface concentration of the substrate lipids used (mol fraction), as well as the bulk concentration. Surface-dilution analysis revealed the catalytic efficiency of PTEN for PtdIns(3,4,5) P (3) to be 200-fold greater than for either PtdIns(3,4) P (2) or PtdIns(3,5) P (2), and 1000-fold greater than for PtdIns3 P. The interfacial K (m) value of PTEN for PtdIns(3,4,5) P (3) was very low, reflecting the small proportions of this lipid that are present in cellular membranes. The catalytic-centre activity ( k (cat)) for PtdIns(3,4,5) P (3) was at least 200-fold greater than that for the water-soluble substrate Ins(1,3,4,5) P (4). The preference for lipid substrates may result from an interfacial activation of the enzyme, rather than processive catalysis of vesicular substrates. Moreover, both PtdIns(4,5) P (2) and univalent salts stimulated the activity of PTEN for PtdIns(3,4,5) P (3), but profoundly inhibited activity against Ins(1,3,4,5) P (4). The stimulatory effect of PtdIns(4,5) P (2) was greater in magnitude and more potent in comparison with other anionic phospholipid species. A mutation in the lipid-binding C2 domain (M-CBR3) that is biologically inactive did not alter overall catalytic efficiency in this model, but decreased the efficiency of the interfacial binding step, demonstrating its importance in the catalytic mechanism of PTEN.
Collapse
Affiliation(s)
- George McConnachie
- Division of Cell Signalling, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Brian Q Phillippy
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA
| |
Collapse
|
31
|
Ho MWY, Yang X, Carew MA, Zhang T, Hua L, Kwon YU, Chung SK, Adelt S, Vogel G, Riley AM, Potter BVL, Shears SB. Regulation of Ins(3,4,5,6)P(4) signaling by a reversible kinase/phosphatase. Curr Biol 2002; 12:477-82. [PMID: 11909533 DOI: 10.1016/s0960-9822(02)00713-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of Cl(-) channel conductance by Ins(3,4,5,6)P(4) provides receptor-dependent control over salt and fluid secretion, cell volume homeostasis, and electrical excitability of neurones and smooth muscle. Ignorance of how Ins(3,4,5,6)P(4) is synthesized has long hindered our understanding of this signaling pathway. We now show Ins(3,4,5,6)P(4) synthesis by Ins(1,3,4,5,6)P(5) 1-phosphatase activity by an enzyme previously characterized as an Ins(3,4,5,6)P(4) 1-kinase. Rationalization of these phenomena with a ligand binding model unveils Ins(1,3,4)P(3) as not simply an alternative kinase substrate, but also an activator of Ins(1,3,4,5,6)P(5) 1-phosphatase. Stable overexpression of the enzyme in epithelial monolayers verifies its physiological role in elevating Ins(3,4,5,6)P(4) levels and inhibiting secretion. It is exceptional for a single enzyme to catalyze two opposing signaling reactions (1-kinase/1-phosphatase) under physiological conditions. Reciprocal coordination of these opposing reactions offers an alternative to general doctrine that intracellular signals are regulated by integrating multiple, distinct phosphatases and kinases.
Collapse
Affiliation(s)
- Melisa W Y Ho
- Inositide Signaling Group, Laboratory of Signal Transduction and National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ho MW, Shears SB. Regulation of calcium-activated chloride channels by inositol 3,4,5,6 tetrakisphosphate. CURRENT TOPICS IN MEMBRANES 2002. [DOI: 10.1016/s1063-5823(02)53041-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Abstract
The PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour suppressor is a phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] 3-phosphatase that plays a critical role in regulating many cellular processes by antagonizing the phosphoinositide 3-kinase signalling pathway. We have identified and characterized two human homologues of PTEN, which differ with respect to their subcellular localization and lipid phosphatase activities. The previously cloned, but uncharacterized, TPTE (transmembrane phosphatase with tensin homology) is localized to the plasma membrane, but lacks detectable phosphoinositide 3-phosphatase activity. TPIP (TPTE and PTEN homologous inositol lipid phosphatase) is a novel phosphatase that occurs in several differentially spliced forms of which two, TPIP alpha and TPIP beta, appear to be functionally distinct. TPIP alpha displays similar phosphoinositide 3-phosphatase activity compared with PTEN against PtdIns(3,4,5)P(3), PtdIns(3,5)P(2), PtdIns(3,4)P(2) and PtdIns(3)P, has N-terminal transmembrane domains and appears to be localized on the endoplasmic reticulum. This is unusual as most signalling-lipid-metabolizing enzymes are not integral membrane proteins. TPIP beta, however, lacks detectable phosphatase activity and is cytosolic. TPIP has a wider tissue distribution than the testis-specific TPTE, with specific splice variants being expressed in testis, brain and stomach. TPTE and TPIP do not appear to be functional orthologues of the Golgi-localized and more distantly related murine PTEN2. We suggest that TPIP alpha plays a role in regulating phosphoinositide signalling on the endoplasmic reticulum, and might also represent a tumour suppressor and functional homologue of PTEN in some tissues.
Collapse
Affiliation(s)
- S M Walker
- Division of Cell Signalling, School of Life Sciences, University of Dundee, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, Scotland, UK
| | | | | |
Collapse
|