1
|
Ahanger IA, Dar TA. Small molecule modulators of alpha-synuclein aggregation and toxicity: Pioneering an emerging arsenal against Parkinson's disease. Ageing Res Rev 2024; 101:102538. [PMID: 39389237 DOI: 10.1016/j.arr.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is primarily characterized by loss of dopaminergic neurons in the substantia nigra pars compacta region of the brain and accumulation of aggregated forms of alpha-synuclein (α-Syn), an intrinsically disordered protein, in the form of Lewy Bodies and Lewy Neurites. Substantial evidences point to the aggregated/fibrillar forms of α-Syn as a central event in PD pathogenesis, underscoring the modulation of α-Syn aggregation as a promising strategy for PD treatment. Consequently, numerous anti-aggregation agents, spanning from small molecules to polymers, have been scrutinized for their potential to mitigate α-Syn aggregation and its associated toxicity. Among these, small molecule modulators like osmoprotectants, polyphenols, cellular metabolites, metals, and peptides have emerged as promising candidates with significant potential in PD management. This article offers a comprehensive overview of the effects of these small molecule modulators on the aggregation propensity and associated toxicity of α-Syn and its PD-associated mutants. It serves as a valuable resource for identifying and developing potent, non-invasive, non-toxic, and highly specific small molecule-based therapeutic arsenal for combating PD. Additionally, it raises pertinent questions aimed at guiding future research endeavours in the field of α-Syn aggregation remodelling.
Collapse
Affiliation(s)
- Ishfaq Ahmad Ahanger
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
2
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
3
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
4
|
Chavarría C, Ivagnes R, Zeida A, Piñeyro MD, Souza JM. Revisiting the role of 3-nitrotyrosine residues in the formation of alpha-synuclein oligomers and fibrils. Arch Biochem Biophys 2024; 752:109858. [PMID: 38104957 DOI: 10.1016/j.abb.2023.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Nitration of tyrosine residues in alpha-synuclein (a-syn) has been detected in different synucleinopathies, including Parkinson's disease. The potential role of 3-nitrotyrosine formation in a-syn, as an oxidative post-translational modification, is still elusive. In this work, we generated well-characterized tyrosine nitrated a-syn monomers and studied their capability to form oligomers and fibrils. We constructed tyrosine to phenylalanine mutants, containing a single tyrosine residue, a-syn mutant Y(125/133/136)F and Y(39/125/133)F) and assessed the impact in a-syn biophysical properties. Nitrated wild-type a-syn and the Y-F mutants, with one 3-nitrotyrosine residue in either the protein's N-terminal or C-terminal region, showed inhibition of fibril formation but retained the capacity of oligomer formation. The inhibition of a-syn fibrillation occurs even when an important amount of unmodified a-syn is still present. We characterized oligomers from both nitrated and non-nitrated forms of the wild-type protein and the mutant forms obtained. Our results indicate that the formation of 3-nitrotyrosine in a-syn could induce an off-pathway oligomer formation which may have an important impact in the development of synucleinopathies.
Collapse
Affiliation(s)
- Cecilia Chavarría
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay
| | - Rodrigo Ivagnes
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay
| | - Ari Zeida
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay
| | - María Dolores Piñeyro
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay; Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - José M Souza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, Montevideo, 11800, Uruguay.
| |
Collapse
|
5
|
Park S, Kim M, Lin Y, Hong M, Nam G, Mieczkowski A, Kardos J, Lee YH, Lim MH. Designing multi-target-directed flavonoids: a strategic approach to Alzheimer's disease. Chem Sci 2023; 14:9293-9305. [PMID: 37712013 PMCID: PMC10498667 DOI: 10.1039/d3sc00752a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/02/2023] [Indexed: 09/16/2023] Open
Abstract
The underlying causes of Alzheimer's disease (AD) remain a mystery, with multiple pathological components, including oxidative stress, acetylcholinesterase, amyloid-β, and metal ions, all playing a role. Here we report a strategic approach to designing flavonoids that can effectively tackle multiple pathological elements involved in AD. Our systematic investigations revealed key structural features for flavonoids to simultaneously target and regulate pathogenic targets. Our findings led to the development of a highly promising flavonoid that exhibits a range of functions, based on a complete structure-activity relationship analysis. Furthermore, our mechanistic studies confirmed that this flavonoid's versatile reactivities are driven by its redox potential and direct interactions with pathogenic factors. This work highlights the potential of multi-target-directed flavonoids as a novel solution in the fight against AD.
Collapse
Affiliation(s)
- Seongmin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Mingeun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Ochang Chungbuk 28119 Republic of Korea
| | - Mannkyu Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Geewoo Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences Pawińskiego 5a 02-106 Warsaw Poland
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University Budapest 1117 Hungary
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI) Ochang Chungbuk 28119 Republic of Korea
- Bio-Analytical Science, University of Science and Technology (UST) Daejeon 34113 Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University (CAU) Gyeonggi 17546 Republic of Korea
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University Sendai Miyagi 980-8578 Japan
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
6
|
Lim JM, Sabbasani VR, Swenson RE, Levine RL. Methionine sulfoxide reductases and cholesterol transporter STARD3 constitute an efficient system for detoxification of cholesterol hydroperoxides. J Biol Chem 2023; 299:105099. [PMID: 37507014 PMCID: PMC10469991 DOI: 10.1016/j.jbc.2023.105099] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Methionine sulfoxide reductases (MSRs) are key enzymes in the cellular oxidative defense system. Reactive oxygen species oxidize methionine residues to methionine sulfoxide, and the methionine sulfoxide reductases catalyze their reduction back to methionine. We previously identified the cholesterol transport protein STARD3 as an in vivo binding partner of MSRA (methionine sulfoxide reductase A), an enzyme that reduces methionine-S-sulfoxide back to methionine. We hypothesized that STARD3 would also bind the cytotoxic cholesterol hydroperoxides and that its two methionine residues, Met307 and Met427, could be oxidized, thus detoxifying cholesterol hydroperoxide. We now show that in addition to binding MSRA, STARD3 binds all three MSRB (methionine sulfoxide reductase B), enzymes that reduce methionine-R-sulfoxide back to methionine. Using pure 5, 6, and 7 positional isomers of cholesterol hydroperoxide, we found that both Met307 and Met427 on STARD3 are oxidized by 6α-hydroperoxy-3β-hydroxycholest-4-ene (cholesterol-6α-hydroperoxide) and 7α-hydroperoxy-3β-hydroxycholest-5-ene (cholesterol-7α-hydroperoxide). MSRs reduce the methionine sulfoxide back to methionine, restoring the ability of STARD3 to bind cholesterol. Thus, the cyclic oxidation and reduction of methionine residues in STARD3 provides a catalytically efficient mechanism to detoxify cholesterol hydroperoxide during cholesterol transport, protecting membrane contact sites and the entire cell against the toxicity of cholesterol hydroperoxide.
Collapse
Affiliation(s)
- Jung Mi Lim
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.
| | - Venkata R Sabbasani
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, Rockville, Maryland, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, Rockville, Maryland, USA
| | - Rodney L Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Peña-Díaz S, García-Pardo J, Ventura S. Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 2023; 15:839. [PMID: 36986700 PMCID: PMC10059018 DOI: 10.3390/pharmaceutics15030839] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder worldwide, is characterized by the accumulation of protein deposits in the dopaminergic neurons. These deposits are primarily composed of aggregated forms of α-Synuclein (α-Syn). Despite the extensive research on this disease, only symptomatic treatments are currently available. However, in recent years, several compounds, mainly of an aromatic character, targeting α-Syn self-assembly and amyloid formation have been identified. These compounds, discovered by different approaches, are chemically diverse and exhibit a plethora of mechanisms of action. This work aims to provide a historical overview of the physiopathology and molecular aspects associated with Parkinson's disease and the current trends in small compound development to target α-Syn aggregation. Although these molecules are still under development, they constitute an important step toward discovering effective anti-aggregational therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier García-Pardo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
8
|
Uceda AB, Frau J, Vilanova B, Adrover M. On the effect of methionine oxidation on the interplay between α-synuclein and synaptic-like vesicles. Int J Biol Macromol 2023; 229:92-104. [PMID: 36584779 DOI: 10.1016/j.ijbiomac.2022.12.262] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Human alpha-synuclein (αS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, which are considered a hallmark of Parkinson's disease (PD). αS has four different Met, which are particularly sensitive to oxidation, as most of them are found as Met sulfoxide (MetO) in the αS deposits. Consequently, researchers have invested mounting efforts trying to elucidate the molecular mechanisms underlying the links between oxidative stress, αS aggregation and PD. However, it has not been described yet the effect of Met oxidation on the physiological function of αS. Trying to shed light on this aspect, we have here studied a synthetic αS that displayed all its Met replaced by MetO moieties (αS-MetO). Our study has allowed to prove that MetO diminishes the affinity of αS towards anionic micelles (SDS), although the micelle-bound fraction of αS-MetO still adopts an α-helical folding resembling that of the lipid-bound αS. MetO also diminishes the affinity of αS towards synaptic-like vesicles, and its hindering effect is much more pronounced than that displayed on the αS-micelle affinity. Additionally, we have also demonstrated that MetO impairs the physiological function of αS as a catalyst of the clustering and the fusion of synaptic vesicles (SVs). Our findings provide a new understanding on how Met oxidation affects one of the most relevant biological functions attributed to αS that is to bind and cluster SVs along the neurotransmission.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Institut de Recerca en Ciències de la Salut (IdISBa), Departament de Química, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain.
| |
Collapse
|
9
|
Pancoe SX, Wang YJ, Shimogawa M, Perez RM, Giannakoulias S, Petersson EJ. Effects of Mutations and Post-Translational Modifications on α-Synuclein In Vitro Aggregation. J Mol Biol 2022; 434:167859. [PMID: 36270580 PMCID: PMC9922159 DOI: 10.1016/j.jmb.2022.167859] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Fibrillar aggregates of the α-synuclein (αS) protein are the hallmark of Parkinson's Disease and related neurodegenerative disorders. Characterization of the effects of mutations and post-translational modifications (PTMs) on the αS aggregation rate can provide insight into the mechanism of fibril formation, which remains elusive in spite of intense study. A comprehensive collection (375 examples) of mutant and PTM aggregation rate data measured using the fluorescent probe thioflavin T is presented, as well as a summary of the effects of fluorescent labeling on αS aggregation (20 examples). A curated set of 131 single mutant de novo aggregation experiments are normalized to wild type controls and analyzed in terms of structural data for the monomer and fibrillar forms of αS. These tabulated data serve as a resource to the community to help in interpretation of aggregation experiments and to potentially be used as inputs for computational models of aggregation.
Collapse
Affiliation(s)
- Samantha X Pancoe
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Yanxin J Wang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Marie Shimogawa
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Ryann M Perez
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Sam Giannakoulias
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Sahin C, Østerlund EC, Österlund N, Costeira-Paulo J, Pedersen JN, Christiansen G, Nielsen J, Grønnemose AL, Amstrup SK, Tiwari MK, Rao RSP, Bjerrum MJ, Ilag LL, Davies MJ, Marklund EG, Pedersen JS, Landreh M, Møller IM, Jørgensen TJD, Otzen DE. Structural Basis for Dityrosine-Mediated Inhibition of α-Synuclein Fibrillization. J Am Chem Soc 2022; 144:11949-11954. [PMID: 35749730 PMCID: PMC9284551 DOI: 10.1021/jacs.2c03607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
α-Synuclein
(α-Syn) is an intrinsically disordered
protein which self-assembles into highly organized β-sheet structures
that accumulate in plaques in brains of Parkinson’s disease
patients. Oxidative stress influences α-Syn structure and self-assembly;
however, the basis for this remains unclear. Here we characterize
the chemical and physical effects of mild oxidation on monomeric α-Syn
and its aggregation. Using a combination of biophysical methods, small-angle
X-ray scattering, and native ion mobility mass spectrometry, we find
that oxidation leads to formation of intramolecular dityrosine cross-linkages
and a compaction of the α-Syn monomer by a factor of √2.
Oxidation-induced compaction is shown to inhibit ordered self-assembly
and amyloid formation by steric hindrance, suggesting an important
role of mild oxidation in preventing amyloid formation.
Collapse
Affiliation(s)
- Cagla Sahin
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| | - Eva Christina Østerlund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Nicklas Österlund
- Department of Biochemistry and Biophysics, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Joana Costeira-Paulo
- Department of Chemistry - BMC, BMC - Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Gunna Christiansen
- Department of Health Science and Technology, Medical Microbiology and Immunology, Aalborg University, Fredrik Bajers Vej 3b, DK-9220 Aalborg Ø, Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Anne Louise Grønnemose
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Søren Kirk Amstrup
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| | - Manish K Tiwari
- Department Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - R Shyama Prasad Rao
- Biostatistics and Bioinformatics Division, Yenepoya Research Center, Yenepoya University, Mangaluru-575018, Karnataka, India
| | - Morten Jannik Bjerrum
- Department Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Leopold L Ilag
- Department of Materials and Environmental Chemistry, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Erik G Marklund
- Department of Chemistry - BMC, BMC - Uppsala University, Box 576, SE-751 23 Uppsala, Sweden
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.,Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, SE-171 65 Solna, Sweden
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Sun X, Xie M, Qiu W, Wei C, Chen X, Hu Y. Spectroscopic evidence of S∴N and S∴O hemibonds in heterodimer cations. Phys Chem Chem Phys 2022; 24:19354-19361. [PMID: 35686608 DOI: 10.1039/d2cp00904h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational and condensed phase experimental evidence for the existence of S∴N and S∴O hemibonded structures has been reported previously, but no gas phase experimental evidence has been reported. To experimentally explore the existence of the S∴N and S∴O hemibonds in the gas phase, we recorded the infrared photodissociation action spectra of four cationic clusters: [CH3SH-NH3]+, [CH3SCH3-NH3]+, [CH3SCH3-H2O]+, and [CH3OCH3-H2O]+. Combined with the calculation results, it is found that the S∴N hemibonded structure is competitive with the S⋯HN H-bonded structure, though only the latter structure is actually observed in [CH3SH-NH3]+. The spectral and theoretical results show that hemibonds can form between the second- (oxygen or nitrogen) and the third-period elements (sulfur) in the heterodimer clusters of [CH3SCH3-NH3]+ and [CH3SCH3-H2O]+. However, the S∴N and S∴O hemibonded structures are found competitive with the C⋯HN and CH⋯O H-bonded structures, respectively, and both the structures coexist. On the other hand, the O∴O hemibonded structure is much less stable than other hydrogen bonded (H-bonded) structures in [CH3OCH3-H2O]+, and it shows no clear contribution to the observed spectrum. This study provides direct spectroscopic evidence for the existence of S∴N and S∴O hemibonds in the gas phase and their competition with the H-bonds, which may be also fundamentally important in biological processes.
Collapse
Affiliation(s)
- Xiaonan Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Min Xie
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Wei Qiu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Chengcheng Wei
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Xujian Chen
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
12
|
Awan MUN, Yan F, Mahmood F, Bai L, Liu J, Bai J. The Functions of Thioredoxin 1 in Neurodegeneration. Antioxid Redox Signal 2022; 36:1023-1036. [PMID: 34465198 DOI: 10.1089/ars.2021.0186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significance: Thioredoxin 1 (Trx1) is a ubiquitous protein that is found in organisms ranging from prokaryotes to eukaryotes. Trx1 acts as reductases in redox regulation and protects proteins from oxidative aggregation and inactivation. Trx1 helps the cells to cope with various environmental stresses and inhibits programmed cell death. It is beneficial to neuroregeneration and resistance against oxidative stress-associated neuron damage. Trx1 also plays important roles in suppressing neurodegenerative disorders. Recent Advances: Trx1 is a redox regulating protein involved in neuronal protection. According to a previous study, Trx1 expression is increased by nerve growth factor (NGF) and necessary for neurite outgrowth of PC12 cells. Trx1 has been shown to promote the growth of neurons. Trx1 knockout or knockdown has the worse impact on cell viability and survival. Critical Issues: Trx1 has functions in central nervous system. Trx1 plays the defensive roles against oxidative stress in neurodegenerative diseases. Future Directions: In this review, we focus on the structure of Trx1 and basic functions of Trx1. Trx1 plays a neuroprotective role by suppressing endoplasmic reticulum stress in Parkinson's disease. Neurodegenerative diseases have no cure and carry a high cost to the health care system and patient's families. Trx1 may be taken as a new target for neurodegenerative disorder therapy. Further studies of the Trx1 roles and mechanisms on neurodegenerative diseases are needed. Antioxid. Redox Signal. 36, 1023-1036.
Collapse
Affiliation(s)
- Maher Un Nisa Awan
- Laboratory of Molecular Neurobiology, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Fang Yan
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Faisal Mahmood
- Laboratory of Molecular Neurobiology, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Liping Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jingyu Liu
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
13
|
De Giorgi F, Uversky VN, Ichas F. α-Synuclein Fibrils as Penrose Machines: A Chameleon in the Gear. Biomolecules 2022; 12:biom12040494. [PMID: 35454083 PMCID: PMC9029340 DOI: 10.3390/biom12040494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
In 1957, Lionel Penrose built the first man-made self-replicating mechanical device and illustrated its function in a series of machine prototypes, prefiguring our current view of the genesis and the proliferation of amyloid fibrils. He invented and demonstrated, with the help of his son Roger, the concepts that decades later, would become the fundamentals of prion and prion-like neurobiology: nucleation, seeding and conformational templating of monomers, linear polymer elongation, fragmentation, and spread. He published his premonitory discovery in a movie he publicly presented at only two conferences in 1958, a movie we thus reproduce here. By making a 30-year-jump in the early 90’s, we evoke the studies performed by Peter Lansbury and his group in which α-Synuclein (α-Syn) was for the first time (i) compared to a prion; (ii) shown to contain a fibrillization-prone domain capable of seeding its own assembly into fibrils; (iii) identified as an intrinsically disordered protein (IDP), and which, in the early 2000s, (iv) was described by one of us as a protein chameleon. We use these temporally distant breakthroughs to propose that the combination of the chameleon nature of α-Syn with the rigid gear of the Penrose machine is sufficient to account for a phenomenon that is of current interest: the emergence and the spread of a variety of α-Syn fibril strains in α-Synucleinopathies.
Collapse
Affiliation(s)
- Francesca De Giorgi
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
- Correspondence: (F.D.G.); (V.N.U.); (F.I.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA
- Correspondence: (F.D.G.); (V.N.U.); (F.I.)
| | - François Ichas
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
- Correspondence: (F.D.G.); (V.N.U.); (F.I.)
| |
Collapse
|
14
|
Lye YS, Chen YR. TAR DNA-binding protein 43 oligomers in physiology and pathology. IUBMB Life 2022; 74:794-811. [PMID: 35229461 DOI: 10.1002/iub.2603] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/08/2022]
Abstract
TAR DNA-binding protein 43 (TDP-43) is an RNA/DNA-binding protein involved in RNA regulation and diseases. In 2006, TDP-43 inclusions were found in the disease lesions of several neurodegenerative diseases. It is the pathological hallmark in both amyotrophic lateral sclerosis and frontotemporal lobar dementia. It also presents in a large portion of patients with Alzheimer's disease. TDP-43 is prone to aggregate; however, the role of TDP-43 oligomers remains poorly understood in both physiological and pathological conditions. In this review, we emphasize the role of oligomeric TDP-43 in both physiological and pathological conditions and discuss the potential mechanisms of oligomer formation. Finally, we suggest therapeutic strategies against the TDP-43 oligomers in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuh Shen Lye
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
15
|
Simon C, Soga T, Okano HJ, Parhar I. α-Synuclein-mediated neurodegeneration in Dementia with Lewy bodies: the pathobiology of a paradox. Cell Biosci 2021; 11:196. [PMID: 34798911 PMCID: PMC8605528 DOI: 10.1186/s13578-021-00709-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is epitomized by the pathognomonic manifestation of α-synuclein-laden Lewy bodies within selectively vulnerable neurons in the brain. By virtue of prion-like inheritance, the α-synuclein protein inexorably undergoes extensive conformational metamorphoses and culminate in the form of fibrillar polymorphs, instigating calamitous damage to the brain's neuropsychological networks. This epiphenomenon is nebulous, however, by lingering uncertainty over the quasi "pathogenic" behavior of α-synuclein conformers in DLB pathobiology. Despite numerous attempts, a monolithic "α-synuclein" paradigm that is able to untangle the enigma enshrouding the clinicopathological spectrum of DLB has failed to emanate. In this article, we review conceptual frameworks of α-synuclein dependent cell-autonomous and non-autonomous mechanisms that are likely to facilitate the transneuronal spread of degeneration through the neuraxis. In particular, we describe how the progressive demise of susceptible neurons may evolve from cellular derangements perpetrated by α-synuclein misfolding and aggregation. Where pertinent, we show how these bona fide mechanisms may mutually accentuate α-synuclein-mediated neurodegeneration in the DLB brain.
Collapse
Affiliation(s)
- Christopher Simon
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Tomoko Soga
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Ishwar Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
16
|
Ray B, Mahalakshmi AM, Tuladhar S, Bhat A, Srinivasan A, Pellegrino C, Kannan A, Bolla SR, Chidambaram SB, Sakharkar MK. "Janus-Faced" α-Synuclein: Role in Parkinson's Disease. Front Cell Dev Biol 2021; 9:673395. [PMID: 34124057 PMCID: PMC8194081 DOI: 10.3389/fcell.2021.673395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/15/2021] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD) is a pathological condition characterized by the aggregation and the resultant presence of intraneuronal inclusions termed Lewy bodies (LBs) and Lewy neurites which are mainly composed of fibrillar α-synuclein (α-syn) protein. Pathogenic aggregation of α-syn is identified as the major cause of LBs deposition. Several mutations in α-syn showing varied aggregation kinetics in comparison to the wild type (WT) α-syn are reported in PD (A30P, E46K, H 50Q, G51D, A53E, and A53T). Also, the cell-to-cell spread of pathological α-syn plays a significant role in PD development. Interestingly, it has also been suggested that the pathology of PD may begin in the gastrointestinal tract and spread via the vagus nerve (VN) to brain proposing the gut-brain axis of α-syn pathology in PD. Despite multiple efforts, the behavior and functions of this protein in normal and pathological states (specifically in PD) is far from understood. Furthermore, the etiological factors responsible for triggering aggregation of this protein remain elusive. This review is an attempt to collate and present latest information on α-syn in relation to its structure, biochemistry and biophysics of aggregation in PD. Current advances in therapeutic efforts toward clearing the pathogenic α-syn via autophagy/lysosomal flux are also reviewed and reported.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Asha Srinivasan
- Division of Nanoscience & Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India
| | - Christophe Pellegrino
- Institut National de la Santé et de la Recherche Médicale, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Anbarasu Kannan
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Srinivasa Rao Bolla
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan City, Kazakhstan
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- Special Interest Group – Brain, Behaviour, and Cognitive Neurosciences Research, JSS Academy of Higher Education & Research, Mysuru, India
| | | |
Collapse
|
17
|
Maity S, Sepay N, Pal S, Sardar S, Parvej H, Pal S, Chakraborty J, Pradhan A, Halder UC. Modulation of amyloid fibrillation of bovine β-lactoglobulin by selective methionine oxidation. RSC Adv 2021; 11:11192-11203. [PMID: 35423661 PMCID: PMC8695858 DOI: 10.1039/d0ra09060c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Deposition of oxidation-modified proteins during normal aging and oxidative stress are directly associated with systemic amyloidoses. Methionine (Met) is believed to be one of the most readily oxidisable amino acid residues of protein. Bovine beta-lactoglobulin (β-lg), a model globular whey protein, has been presented as a subsequent paradigm for studies on protein aggregation and amyloid formation. Herein, we investigated the effect of t-butyl hydroperoxide (tBHP)-induced oxidation on structure, compactness and fibrillation propensity of β-lg at physiological pH. Notably, whey protein modification, specifically Met residues, plays an important role in the dairy industry during milk processing and lowering nutritional value and ultimately affecting their technological properties. Several bio-physical studies revealed enhanced structural flexibility and aggregation propensity of oxidised β-lg in a temperature dependent manner. A molecular docking study is used to predict possible interactions with tBHP and infers selective oxidation of methionine residues at 7, 24 and 107 positions. From our studies, it can be corroborated that specific orientations of Met residues directs the formation of a partially unfolded state susceptible to fibrillation with possible different cytotoxic effects. Our studies have greater implications in deciphering the underlying mechanism of different whey proteins encountering oxidative stress. Our findings are also important to elucidate the understanding of oxidation induced amyloid fibrillation of protein which may constitute a new route to pave the way for a modulatory role of oxidatively stressed proteins in neurological disorders.
Collapse
Affiliation(s)
- Sanhita Maity
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Nayim Sepay
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Sampa Pal
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Subrata Sardar
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Hasan Parvej
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Swarnali Pal
- Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Jishnu Chakraborty
- Department of Chemistry, Camellia Institute of Engineering and Technology Budbud Burdwan WB India
| | - Anirban Pradhan
- Department of Chemistry, Ramakrishna Mission Residential College (Autonomous), Vivekananda Centre for Research Narendrapur Kolkata-700103 India
| | | |
Collapse
|
18
|
D’Mello SR, Kindy MC. Overdosing on iron: Elevated iron and degenerative brain disorders. Exp Biol Med (Maywood) 2020; 245:1444-1473. [PMID: 32878460 PMCID: PMC7553095 DOI: 10.1177/1535370220953065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT Brain degenerative disorders, which include some neurodevelopmental disorders and age-associated diseases, cause debilitating neurological deficits and are generally fatal. A large body of emerging evidence indicates that iron accumulation in neurons within specific regions of the brain plays an important role in the pathogenesis of many of these disorders. Iron homeostasis is a highly complex and incompletely understood process involving a large number of regulatory molecules. Our review provides a description of what is known about how iron is obtained by the body and brain and how defects in the homeostatic processes could contribute to the development of brain diseases, focusing on Alzheimer's disease and Parkinson's disease as well as four other disorders belonging to a class of inherited conditions referred to as neurodegeneration based on iron accumulation (NBIA) disorders. A description of potential therapeutic approaches being tested for each of these different disorders is provided.
Collapse
Affiliation(s)
| | - Mark C Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Affairs Medical Center, Tampa, FL 33612, USA
| |
Collapse
|
19
|
Newberry RW, Arhar T, Costello J, Hartoularos GC, Maxwell AM, Naing ZZC, Pittman M, Reddy NR, Schwarz DMC, Wassarman DR, Wu TS, Barrero D, Caggiano C, Catching A, Cavazos TB, Estes LS, Faust B, Fink EA, Goldman MA, Gomez YK, Gordon MG, Gunsalus LM, Hoppe N, Jaime-Garza M, Johnson MC, Jones MG, Kung AF, Lopez KE, Lumpe J, Martyn C, McCarthy EE, Miller-Vedam LE, Navarro EJ, Palar A, Pellegrino J, Saylor W, Stephens CA, Strickland J, Torosyan H, Wankowicz SA, Wong DR, Wong G, Redding S, Chow ED, DeGrado WF, Kampmann M. Robust Sequence Determinants of α-Synuclein Toxicity in Yeast Implicate Membrane Binding. ACS Chem Biol 2020; 15:2137-2153. [PMID: 32786289 DOI: 10.1021/acschembio.0c00339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein conformations are shaped by cellular environments, but how environmental changes alter the conformational landscapes of specific proteins in vivo remains largely uncharacterized, in part due to the challenge of probing protein structures in living cells. Here, we use deep mutational scanning to investigate how a toxic conformation of α-synuclein, a dynamic protein linked to Parkinson's disease, responds to perturbations of cellular proteostasis. In the context of a course for graduate students in the UCSF Integrative Program in Quantitative Biology, we screened a comprehensive library of α-synuclein missense mutants in yeast cells treated with a variety of small molecules that perturb cellular processes linked to α-synuclein biology and pathobiology. We found that the conformation of α-synuclein previously shown to drive yeast toxicity-an extended, membrane-bound helix-is largely unaffected by these chemical perturbations, underscoring the importance of this conformational state as a driver of cellular toxicity. On the other hand, the chemical perturbations have a significant effect on the ability of mutations to suppress α-synuclein toxicity. Moreover, we find that sequence determinants of α-synuclein toxicity are well described by a simple structural model of the membrane-bound helix. This model predicts that α-synuclein penetrates the membrane to constant depth across its length but that membrane affinity decreases toward the C terminus, which is consistent with orthogonal biophysical measurements. Finally, we discuss how parallelized chemical genetics experiments can provide a robust framework for inquiry-based graduate coursework.
Collapse
Affiliation(s)
- Robert W. Newberry
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Taylor Arhar
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Jean Costello
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - George C. Hartoularos
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Alison M. Maxwell
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Zun Zar Chi Naing
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Maureen Pittman
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Nishith R. Reddy
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Daniel M. C. Schwarz
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Douglas R. Wassarman
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Taia S. Wu
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Daniel Barrero
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Christa Caggiano
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Adam Catching
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Taylor B. Cavazos
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Laurel S. Estes
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Bryan Faust
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Elissa A. Fink
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Miriam A. Goldman
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Yessica K. Gomez
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - M. Grace Gordon
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Laura M. Gunsalus
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Nick Hoppe
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Maru Jaime-Garza
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Matthew C. Johnson
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Matthew G. Jones
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Andrew F. Kung
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Kyle E. Lopez
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Jared Lumpe
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Calla Martyn
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Elizabeth E. McCarthy
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Lakshmi E. Miller-Vedam
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Erik J. Navarro
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Aji Palar
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Jenna Pellegrino
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Wren Saylor
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Christina A. Stephens
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Jack Strickland
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Hayarpi Torosyan
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Stephanie A. Wankowicz
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Daniel R. Wong
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Garrett Wong
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Sy Redding
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, United States
| | - Eric D. Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, United States
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Martin Kampmann
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, United States
- Institute for Neurodegenerative Disease, University of California, San Francisco, California 94143, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
20
|
Poulson BG, Szczepski K, Lachowicz JI, Jaremko L, Emwas AH, Jaremko M. Aggregation of biologically important peptides and proteins: inhibition or acceleration depending on protein and metal ion concentrations. RSC Adv 2019; 10:215-227. [PMID: 35492549 PMCID: PMC9047971 DOI: 10.1039/c9ra09350h] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/14/2019] [Indexed: 01/03/2023] Open
Abstract
The process of aggregation of proteins and peptides is dependent on the concentration of proteins, and the rate of aggregation can be altered by the presence of metal ions, but this dependence is not always a straightforward relationship. In general, aggregation does not occur under normal physiological conditions, yet it can be induced in the presence of certain metal ions. However, the extent of the influence of metal ion interactions on protein aggregation has not yet been fully comprehended. A consensus has thus been difficult to reach because the acceleration/inhibition of the aggregation of proteins in the presence of metal ions depends on several factors such as pH and the concentration of the aggregated proteins involved as well as metal concentration level of metal ions. Metal ions, like Cu2+, Zn2+, Pb2+ etc. may either accelerate or inhibit aggregation simply because the experimental conditions affect the behavior of biomolecules. It is clear that understanding the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications. This review focuses on the dependence of the aggregation of selected important biomolecules (peptides and proteins) on metal ion concentrations. We review proteins that are prone to aggregation, the result of which can cause serious neurodegenerative disorders. Furthering our understanding of the relationship between metal ion concentration and protein aggregation will prove useful for future scientific applications, such as finding therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria 09042 Monserrato Italy
| | - Lukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
21
|
Bondia P, Torra J, Tone CM, Sawazaki T, del Valle A, Sot B, Nonell S, Kanai M, Sohma Y, Flors C. Nanoscale View of Amyloid Photodynamic Damage. J Am Chem Soc 2019; 142:922-930. [DOI: 10.1021/jacs.9b10632] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Patricia Bondia
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Joaquim Torra
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Caterina M. Tone
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Taka Sawazaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adrián del Valle
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Begoña Sot
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, Barcelona 08017, Spain
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Youhei Sohma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| |
Collapse
|
22
|
Palazzi L, Leri M, Cesaro S, Stefani M, Bucciantini M, Polverino de Laureto P. Insight into the molecular mechanism underlying the inhibition of α-synuclein aggregation by hydroxytyrosol. Biochem Pharmacol 2019; 173:113722. [PMID: 31756328 DOI: 10.1016/j.bcp.2019.113722] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/15/2019] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in the elderly people. To date, drugs able to reverse the disease are not available; the gold standard is levodopa that only relieves clinical symptoms, yet with severe side effects after prolonged administration. Many efforts are underway to find alternative targets for PD prevention or treatment, the most promising being α-synuclein (Syn). Recently, we reported that oleuropein aglycone (OleA) interferes with amyloid aggregation of Syn both stabilizing its monomeric state and inducing the formation of harmless, off-pathway oligomers. This study is focused at describing the interaction between Syn and hydroxytyrosol (HT), the phenolic moiety and main metabolite of OleA, and the interferences with Syn aggregation by using biophysical and biological techniques. Our results show that HT dose-dependently inhibits Syn aggregation and that covalent and non-covalent binding mediate HT-Syn interaction. HT does not modify the natively unfolded structure of Syn, rather, it stabilizes specific regions of the molecule leading to inhibition of protein fibrillation. Cellular assays showed that HT reduces the toxicity of Syn aggregates. Moreover, Syn aggregates interaction with the cell membrane, an important factor for prion-like properties of Syn on-pathway oligomers, was reduced in cells exposed to Syn aggregates grown in the presence of HT.
Collapse
Affiliation(s)
- Luana Palazzi
- Department of Pharmaceutical Sciences, CRIBI Biotechnology Centre, University of Padova, Italy
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Firenze, Italy
| | - Samuele Cesaro
- Department of Pharmaceutical Sciences, CRIBI Biotechnology Centre, University of Padova, Italy
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, Italy
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, Italy
| | | |
Collapse
|
23
|
Coupling Multi-Angle Light Scattering to Reverse-Phase Ultra-High-Pressure Chromatography (RP-UPLC-MALS) for the characterization monoclonal antibodies. Sci Rep 2019; 9:14965. [PMID: 31628369 PMCID: PMC6800455 DOI: 10.1038/s41598-019-51233-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/26/2019] [Indexed: 11/18/2022] Open
Abstract
Multi-angle light scattering coupled with size-exclusion chromatography (SEC-MALS) is a standard approach for protein characterization. Recently MALS detection has been coupled with ion-exchange chromatography (IEX) which demonstrated the feasibility and high value of MALS in combination with non-sized-based fractionation methods. In this study we coupled reverse-phase ultra-high pressure liquid chromatography (RP-UPLC) with a low-dispersion MALS detector for the characterization of intact monoclonal antibody (mAbs) and their fragments. We confirmed a constant refractive index increment value for mAbs in RP gradients, in good agreement with the values in literature for other classes of proteins. We showed that the impurities eluting from a RP column can often be related to aggregated species and we confirmed that in most cases those oligomers are present also in SEC-MALS. Yet, in few cases small aggregates fractions in RP-UPLC are an artifact. In fact, proteins presenting thermal and physical stability not suitable for the harsh condition applied during the RP separation of mAbs (i.e. organic solvents at high temperature) can aggregate. Further, we applied RP-UPLC-MALS during a long term stability studies. The different principle of separation used in RP-UPLC- MALS provides an additional critical level of protein characterization compared to SEC-MALS and IEX-MALS.
Collapse
|
24
|
Nitroalkylation of α-Synuclein by Nitro-Oleic Acid: Implications for Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:169-179. [PMID: 31140178 DOI: 10.1007/978-3-030-11488-6_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
α-Synuclein (α-syn) represents the main component of the amyloid aggregates present in Parkinson's disease and other neurodegenerative disorders, collectively named synucleinopathies. Although α-syn is considered a natively unfolded protein, it shows great structural flexibility which allows the protein to adopt highly rich beta-sheet structures like protofibrils, oligomers and fibrils. In addition, this protein can adopt alpha-helix rich structures when interacts with fatty acids or acidic phospholipid vesicle membranes. When analyzing the toxicity of α-syn, protein oligomers are thought to be the main neurotoxic species by mechanisms that involve modification of intracellular calcium levels, mitochondrial and lysosomal function. Extracellular fibrillar α-syn promotes intracellular protein aggregation and shows many toxic effects as well. Nitro-fatty acids (nitroalkenes) represent novel pleiotropic anti-inflammatory signaling mediators that could interact with α-syn to exert unraveling actions. Herein, we demonstrated that nitro-oleic acid (NO2-OA) nitroalkylate α-syn, forming a covalent adduct at histidine-50. The nitroalkylated-α-syn exhibited strong affinity for phospholipid vesicles, moving the protein to the membrane compartment independent of composition of the membrane phospholipids. Moreover, NO2-OA-modified α-syn showed a reduced capacity to induce α-syn fibrillization compared to the non-nitrated oleic acid. From this data we hypothesize that nitroalkenes, in particular NO2-OA, may inhibit α-syn fibril formation exerting protective actions in Parkinson's disease.
Collapse
|
25
|
Marvian AT, Koss DJ, Aliakbari F, Morshedi D, Outeiro TF. In vitro models of synucleinopathies: informing on molecular mechanisms and protective strategies. J Neurochem 2019; 150:535-565. [PMID: 31004503 DOI: 10.1111/jnc.14707] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Alpha-synuclein (α-Syn) is a central player in Parkinson's disease (PD) and in a spectrum of neurodegenerative diseases collectively known as synucleinopathies. The protein was first associated with PD just over 20 years ago, when it was found to (i) be a major component of Lewy bodies and (ii) to be also associated with familial forms of PD. The characterization of α-Syn pathology has been achieved through postmortem studies of human brains. However, the identification of toxic mechanisms associated with α-Syn was only achieved through the use of experimental models. In vitro models are highly accessible, enable relatively rapid studies, and have been extensively employed to address α-Syn-associated neurodegeneration. Given the diversity of models used and the outcomes of the studies, a cumulative and comprehensive perspective emerges as indispensable to pave the way for further investigations. Here, we subdivided in vitro models of α-Syn pathology into three major types: (i) models simulating α-Syn fibrillization and the formation of different aggregated structures in vitro, (ii) models based on the intracellular expression of α-Syn, reporting on pathogenic conditions and cellular dysfunctions induced, and (iii) models using extracellular treatment with α-Syn aggregated species, reporting on sites of interaction and their downstream consequences. In summary, we review the underlying molecular mechanisms discovered and categorize protective strategies, in order to pave the way for future studies and the identification of effective therapeutic strategies. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- Amir Tayaranian Marvian
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - David J Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Farhang Aliakbari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tiago Fleming Outeiro
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.,University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
26
|
Ugalde CL, Lawson VA, Finkelstein DI, Hill AF. The role of lipids in α-synuclein misfolding and neurotoxicity. J Biol Chem 2019; 294:9016-9028. [PMID: 31064841 DOI: 10.1074/jbc.rev119.007500] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The misfolding and aggregation of α-synuclein (αsyn) in the central nervous system is associated with a group of neurodegenerative disorders referred to as the synucleinopathies. In addition to being a pathological hallmark of disease, it is now well-established that upon misfolding, αsyn acquires pathogenic properties, such as neurotoxicity, that can contribute to disease development. The mechanisms that produce αsyn misfolding and the molecular events underlying the neuronal damage caused by these misfolded species are not well-defined. A consistent observation that may be relevant to αsyn's pathogenicity is its ability to associate with lipids. This appears important not only to how αsyn aggregates, but also to the mechanism by which the misfolded protein causes intracellular damage. This review discusses the current literature reporting a role of lipids in αsyn misfolding and neurotoxicity in various synucleinopathy disorders and provides an overview of current methods to assess protein misfolding and pathogenicity both in vitro and in vivo.
Collapse
Affiliation(s)
- Cathryn L Ugalde
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia, .,the Departments of Microbiology and Immunology and.,the Howard Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia.,Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia, and
| | | | - David I Finkelstein
- the Howard Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Andrew F Hill
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia, .,Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia, and
| |
Collapse
|
27
|
Kato M, Yang YS, Sutter BM, Wang Y, McKnight SL, Tu BP. Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain. Cell 2019; 177:711-721.e8. [PMID: 30982603 DOI: 10.1016/j.cell.2019.02.044] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/28/2018] [Accepted: 02/25/2019] [Indexed: 12/16/2022]
Abstract
Yeast ataxin-2, also known as Pbp1, senses the activity state of mitochondria in order to regulate TORC1. A domain of Pbp1 required to adapt cells to mitochondrial activity is of low sequence complexity. The low-complexity (LC) domain of Pbp1 forms labile, cross-β polymers that facilitate phase transition of the protein into liquid-like or gel-like states. Phase transition for other LC domains is reliant upon widely distributed aromatic amino acids. In place of tyrosine or phenylalanine residues prototypically used for phase separation, Pbp1 contains 24 similarly disposed methionine residues. Here, we show that the Pbp1 methionine residues are sensitive to hydrogen peroxide (H2O2)-mediated oxidation in vitro and in living cells. Methionine oxidation melts Pbp1 liquid-like droplets in a manner reversed by methionine sulfoxide reductase enzymes. These observations explain how reversible formation of labile polymers by the Pbp1 LC domain enables the protein to function as a sensor of cellular redox state.
Collapse
Affiliation(s)
- Masato Kato
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Yu-San Yang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Benjamin M Sutter
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Yun Wang
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | - Steven L McKnight
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| | - Benjamin P Tu
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| |
Collapse
|
28
|
Ponzini E, De Palma A, Cerboni L, Natalello A, Rossi R, Moons R, Konijnenberg A, Narkiewicz J, Legname G, Sobott F, Mauri P, Santambrogio C, Grandori R. Methionine oxidation in α-synuclein inhibits its propensity for ordered secondary structure. J Biol Chem 2019; 294:5657-5665. [PMID: 30755483 DOI: 10.1074/jbc.ra118.001907] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/30/2019] [Indexed: 11/06/2022] Open
Abstract
α-Synuclein (AS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, a hallmark of Parkinson's disease (PD). AS is particularly exposed to oxidation of its methionine residues, both in vivo and in vitro Oxidative stress has been implicated in PD and oxidized α-synuclein has been shown to assemble into soluble, toxic oligomers, rather than amyloid fibrils. However, the structural effects of methionine oxidation are still poorly understood. In this work, oxidized AS was obtained by prolonged incubations with dopamine (DA) or epigallocatechin-3-gallate (EGCG), two inhibitors of AS aggregation, indicating that EGCG promotes the same final oxidation product as DA. The conformational transitions of the oxidized and non-oxidized protein were monitored by complementary biophysical techniques, including MS, ion mobility (IM), CD, and FTIR spectroscopy assays. Although the two variants displayed very similar structures under conditions that stabilize highly disordered or highly ordered states, differences emerged in the intermediate points of transitions induced by organic solvents, such as trifluoroethanol (TFE) and methanol (MeOH), indicating a lower propensity of the oxidized protein for forming either α- or β-type secondary structures. Furthermore, oxidized AS displayed restricted secondary-structure transitions in response to dehydration and slightly amplified tertiary-structure transitions induced by ligand binding. This difference in susceptibility to induced folding could explain the loss of fibrillation potential observed for oxidized AS. Finally, site-specific oxidation kinetics point out a minor delay in Met-127 modification, likely due to the effects of AS intrinsic structure.
Collapse
Affiliation(s)
- Erika Ponzini
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Antonella De Palma
- the Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Lucilla Cerboni
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Antonino Natalello
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Rossana Rossi
- the Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Rani Moons
- the Biomolecular and Analytical Mass Spectrometry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Albert Konijnenberg
- the Biomolecular and Analytical Mass Spectrometry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joanna Narkiewicz
- the Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) and ELETTRA-Sincrotrone Trieste S.C.p.A, 34136 Trieste, Italy
| | - Giuseppe Legname
- the Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) and ELETTRA-Sincrotrone Trieste S.C.p.A, 34136 Trieste, Italy
| | - Frank Sobott
- the Biomolecular and Analytical Mass Spectrometry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,the School of Molecular and Cellular Biology, University of Leeds, Leeds LS29JT, United Kingdom, and.,the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - PierLuigi Mauri
- the Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Carlo Santambrogio
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy,
| | - Rita Grandori
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy,
| |
Collapse
|
29
|
Oliveri V. Toward the discovery and development of effective modulators of α-synuclein amyloid aggregation. Eur J Med Chem 2019; 167:10-36. [PMID: 30743095 DOI: 10.1016/j.ejmech.2019.01.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
A host of human diseases, including Parkinson's disease and Dementia with Lewy bodies, are suspected to be directly linked to protein aggregation. Amyloid protein aggregates and oligomeric intermediates of α-synuclein are observed in synucleinopathies and considered to be mediators of cellular toxicity. Hence, α-synuclein has seen as one of the leading and most compelling targets and is receiving a great deal of attention from researchers. Nevertheless, there is no neuroprotective approach directed toward Parkinson's disease or other synucleinopathies so far. In this review, we summarize the available data concerning inhibitors of α-synuclein aggregation and their advancing towards clinical use. The compounds are grouped according to their chemical structures, providing respective insights into their mechanism of action, pharmacology, and pharmacokinetics. Overall, shared structure-activity elements are emerging, as well as specific binding modes related to the ability of the modulators to establish hydrophobic and hydrogen bonds interactions with the protein. Some molecules with encouraging in vivo data support the possibility of translation to the clinic.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
30
|
Outeiro TF, Koss DJ, Erskine D, Walker L, Kurzawa-Akanbi M, Burn D, Donaghy P, Morris C, Taylor JP, Thomas A, Attems J, McKeith I. Dementia with Lewy bodies: an update and outlook. Mol Neurodegener 2019; 14:5. [PMID: 30665447 PMCID: PMC6341685 DOI: 10.1186/s13024-019-0306-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/08/2019] [Indexed: 01/17/2023] Open
Abstract
Dementia with Lewy bodies (DLB) is an age-associated neurodegenerative disorder producing progressive cognitive decline that interferes with normal life and daily activities. Neuropathologically, DLB is characterised by the accumulation of aggregated α-synuclein protein in Lewy bodies and Lewy neurites, similar to Parkinson’s disease (PD). Extrapyramidal motor features characteristic of PD, are common in DLB patients, but are not essential for the clinical diagnosis of DLB. Since many PD patients develop dementia as disease progresses, there has been controversy about the separation of DLB from PD dementia (PDD) and consensus reports have put forward guidelines to assist clinicians in the identification and management of both syndromes. Here, we present basic concepts and definitions, based on our current understanding, that should guide the community to address open questions that will, hopefully, lead us towards improved diagnosis and novel therapeutic strategies for DLB and other synucleinopathies.
Collapse
Affiliation(s)
- Tiago Fleming Outeiro
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK. .,Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany. .,Max Planck Institute for Experimental Medicine, Göttingen, Germany.
| | - David J Koss
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Daniel Erskine
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Lauren Walker
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Marzena Kurzawa-Akanbi
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - David Burn
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Paul Donaghy
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Christopher Morris
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - John-Paul Taylor
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Alan Thomas
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Johannes Attems
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Ian McKeith
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
31
|
Iyer A, Claessens MMAE. Disruptive membrane interactions of alpha-synuclein aggregates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:468-482. [PMID: 30315896 DOI: 10.1016/j.bbapap.2018.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/14/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
Alpha synuclein (αS) is a ~14 kDa intrinsically disordered protein. Decades of research have increased our knowledge on αS yet its physiological function remains largely elusive. The conversion of monomeric αS into oligomers and amyloid fibrils is believed to play a central role of the pathology of Parkinson's disease (PD). It is becoming increasingly clear that the interactions of αS with cellular membranes are important for both αS's functional and pathogenic actions. Therefore, understanding interactions of αS with membranes seems critical to uncover functional or pathological mechanisms. This review summarizes our current knowledge of how physicochemical properties of phospholipid membranes affect the binding and aggregation of αS species and gives an overview of how post-translational modifications and point mutations in αS affect phospholipid membrane binding and protein aggregation. We discuss the disruptive effects resulting from the interaction of αS aggregate species with membranes and highlight current approaches and hypotheses that seek to understand the pathogenic and/or protective role of αS in PD.
Collapse
Affiliation(s)
- Aditya Iyer
- Membrane Enzymology Group, University of Groningen, Groningen 9747 AG, The Netherlands
| | | |
Collapse
|
32
|
Xie M, Shen Z, Wang D, Fujii A, Lee YP. Spectral Characterization of Three-Electron Two-Center (3e-2c) Bonds of Gaseous CH 3S∴S(H)CH 3 and (CH 3SH) 2+ and Enhancement of the 3e-2c Bond upon Protonation. J Phys Chem Lett 2018; 9:3725-3730. [PMID: 29920092 DOI: 10.1021/acs.jpclett.8b01491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The three-electron two-center (3e-2c) bond plays an important role in structures and electron communication in biological systems involving cationic sulfur compounds. Although the nature of 3e-2c bonds and their theoretical formalism have attracted great interest, direct spectral identifications of 3e-2c-bound molecules are scarce. We observed the infrared spectra of the weakly 3e-2c-bound CH3S∴S(H)CH3 and the strongly 3e-2c-bound (CH3SH)2+ in a supersonic jet using infrared (IR) dissociation with vacuum-ultraviolet photoionization and time-of-flight detection. Protonation of CH3S∴S(H)CH3 to form [CH3(H)S∴S(H)CH3]+ significantly enhances the 3e-2c bond, characterized by a large red shift of the SH-stretching band with enhanced IR intensity, shortening of the calculated S-S distance from 3.00 to 2.86 Å, and a dissociation energy increased from ∼23 to 162 kJ mol-1.
Collapse
Affiliation(s)
- Min Xie
- Department of Applied Chemistry and Institute of Molecular Science , National Chiao Tung University , 1001 Ta-Hsueh Road , Hsinchu 30010 , Taiwan
| | - Zhitao Shen
- Department of Applied Chemistry and Institute of Molecular Science , National Chiao Tung University , 1001 Ta-Hsueh Road , Hsinchu 30010 , Taiwan
| | - Dandan Wang
- Department of Chemistry , Graduate School of Science, Tohoku University , Sendai 980-8578 , Japan
| | - Asuka Fujii
- Department of Chemistry , Graduate School of Science, Tohoku University , Sendai 980-8578 , Japan
| | - Yuan-Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science , National Chiao Tung University , 1001 Ta-Hsueh Road , Hsinchu 30010 , Taiwan
- Center for Emergent Functional Matter Science , National Chiao Tung University , Hsinchu 30010 , Taiwan
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 10617 , Taiwan
| |
Collapse
|
33
|
Tiwari MK, Leinisch F, Sahin C, Møller IM, Otzen DE, Davies MJ, Bjerrum MJ. Early events in copper-ion catalyzed oxidation of α-synuclein. Free Radic Biol Med 2018; 121:38-50. [PMID: 29689296 DOI: 10.1016/j.freeradbiomed.2018.04.559] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
Previous studies on metal-ion catalyzed oxidation of α-synuclein oxidation have mostly used conditions that result in extensive modification precluding an understanding of the early events in this process. In this study, we have examined time-dependent oxidative events related to α-synuclein modification using six different molar ratios of Cu2+/H2O2/protein and Cu2+/H2O2/ascorbate/protein resulting in mild to moderate extents of oxidation. For a Cu2+/H2O2/protein molar ratio of 2.3:7.8:1 only low levels of carbonyls were detected (0.078 carbonyls per protein), whereas a molar ratio of 4.7:15.6:1 gave 0.22 carbonyls per α-synuclein within 15 min. With the latter conditions, rapid conversion of 3 out of 4 methionines (Met) to methionine sulfoxide, and 2 out of 4 tyrosines (Tyr) were converted to products including inter- and intra-molecular dityrosine cross-links and protein oligomers, as determined by SDS-PAGE and Western blot analysis. Limited histidine (His) modification was observed. The rapid formation of dityrosine cross-links was confirmed by fluorescence and mass-spectrometry. These data indicate that Met and Tyr oxidation are early events in Cu2+/H2O2-mediated damage, with carbonyl formation being a minor process. With the Cu2+/H2O2/ascorbate system, rapid protein carbonyl formation was detected with the first 5 min, but after this time point, little additional carbonyl formation was detected. With this system, lower levels of Met and Tyr oxidation were detected (2 Met and 1 Tyr modified with a Cu2+/H2O2/ascorbate/protein ratio of 2.3:7.8:7.8:1), but greater His oxidation. Only low levels of intra- dityrosine cross-links and no inter- dityrosine oligomers were detected under these conditions, suggesting that ascorbate limits Cu2+/H2O2-induced α-synuclein modification.
Collapse
Affiliation(s)
- Manish K Tiwari
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Leinisch
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cagla Sahin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
| | - Daniel E Otzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten J Bjerrum
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
34
|
Dissection of the deep-blue autofluorescence changes accompanying amyloid fibrillation. Arch Biochem Biophys 2018; 651:13-20. [PMID: 29803394 DOI: 10.1016/j.abb.2018.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/02/2018] [Accepted: 05/23/2018] [Indexed: 11/21/2022]
Abstract
Pathogenesis of numerous diseases is associated with the formation of amyloid fibrils. Extrinsic fluorescent dyes, including Thioflavin T (ThT), are used to follow the fibrillation kinetics. It has recently been reported that the so-called deep-blue autofluorescence (dbAF) is changing during the aggregation process. However, the origin of dbAF and the reasons for its change remain debatable. Here, the kinetics of fibril formation in model proteins were comprehensively analyzed using fluorescence lifetime and intensity of ThT, intrinsic fluorescence of proteinaceous fluorophores, and dbAF. For all systems, intensity enhancement of the dbAF band with similar spectral parameters (∼350 nm excitation; ∼450 nm emission) was observed. Although the time course of ThT lifetime (indicative of protofibrils formation) coincided with that of tyrosine residues in insulin, and the kinetic changes in the ThT fluorescence intensity (reflecting formation of mature fibrils) coincided with changes in ThT absorption spectrum, the dbAF band started to increase from the beginning of the incubation process without a lag-phase. Our mass-spectrometry data and model experiments suggested that dbAF could be at least partially related to oxidation of amino acids. This study scrutinizes the dbAF features in the context of the existing hypotheses about the origin of this spectral band.
Collapse
|
35
|
Sharma A, Kumar V, Chatrath A, Dev A, Prasad R, Sharma AK, Tomar S, Kumar P. In vitro metal catalyzed oxidative stress in DAH7PS: Methionine modification leads to structure destabilization and induce amorphous aggregation. Int J Biol Macromol 2018; 106:1089-1106. [DOI: 10.1016/j.ijbiomac.2017.08.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 11/28/2022]
|
36
|
Gallic acid induced dose dependent inhibition of lysozyme fibrillation. Int J Biol Macromol 2017; 103:1224-1231. [DOI: 10.1016/j.ijbiomac.2017.05.158] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/10/2017] [Accepted: 05/26/2017] [Indexed: 11/21/2022]
|
37
|
Nasello M, Schirò G, Crapanzano F, Balistreri CR. Stem Cells and Other Emerging Agents as Innovative "Drugs" in Neurodegenerative Diseases: Benefits and Limitations. Rejuvenation Res 2017; 21:123-140. [PMID: 28728479 DOI: 10.1089/rej.2017.1946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The brain has a limited process of repair/regeneration linked to the restricted and localized activity of neuronal stem cells. Consequently, it shows a reduced capacity to counteract the age-related loss of neural and glial cells and to repair the consequent injuries/lesions of nervous system. This progressively determines nervous dysfunction and onset/progression of neurodegenerative diseases, which represent a serious social (and economic) problem of our populations. Thus, the research of efficient treatments is encouraged. Stem cell therapy might represent a solution. Today, it, indeed, represents the object of intensive research with the hope of using it, in a near future, as effective therapy for these diseases and preventive treatment in susceptible individuals. Here, we report and discuss the data of the recent studies on this field, underling the obstacles and benefits. We also illustrate alternative measures of intervention, which represent another parallel aim for the care of neurodegenerative pathology-affected individuals. Thus, the road for delaying or retarding these diseases appears hard and long, but the advances might be different.
Collapse
Affiliation(s)
- Martina Nasello
- Department of Pathobiology and Medical Biotechnologies, University of Palermo , Palermo, Italy
| | - Giuseppe Schirò
- Department of Pathobiology and Medical Biotechnologies, University of Palermo , Palermo, Italy
| | - Floriana Crapanzano
- Department of Pathobiology and Medical Biotechnologies, University of Palermo , Palermo, Italy
| | - Carmela Rita Balistreri
- Department of Pathobiology and Medical Biotechnologies, University of Palermo , Palermo, Italy
| |
Collapse
|
38
|
DJ-1, a Parkinson's disease related protein, aggregates under denaturing conditions and co-aggregates with α-synuclein through hydrophobic interaction. Biochim Biophys Acta Gen Subj 2017; 1861:1759-1769. [DOI: 10.1016/j.bbagen.2017.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 12/29/2022]
|
39
|
Duce JA, Wong BX, Durham H, Devedjian JC, Smith DP, Devos D. Post translational changes to α-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinson's disease. Mol Neurodegener 2017; 12:45. [PMID: 28592304 PMCID: PMC5463308 DOI: 10.1186/s13024-017-0186-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease.
Collapse
Affiliation(s)
- James A Duce
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK. .,Oxidation Biology Unit, the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, VIC, Australia.
| | - Bruce X Wong
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK.,Oxidation Biology Unit, the Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Parkville, VIC, Australia
| | - Hannah Durham
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, West Yorkshire, UK
| | | | - David P Smith
- Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield, UK
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM U1171, CHU of Lille, Lille, France
| |
Collapse
|
40
|
De Franceschi G, Fecchio C, Sharon R, Schapira AHV, Proukakis C, Bellotti V, de Laureto PP. α-Synuclein structural features inhibit harmful polyunsaturated fatty acid oxidation, suggesting roles in neuroprotection. J Biol Chem 2017; 292:6927-6937. [PMID: 28232489 PMCID: PMC5409462 DOI: 10.1074/jbc.m116.765149] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/22/2017] [Indexed: 01/23/2023] Open
Abstract
α-Synuclein (aS) is a protein abundant in presynaptic nerve terminals in Parkinson disease (PD) and is a major component of intracellular Lewy bodies, the pathological hallmark of neurodegenerative disorders such as PD. Accordingly, the relationships between aS structure, its interaction with lipids, and its involvement in neurodegeneration have attracted great interest. Previously, we reported on the interaction of aS with brain polyunsaturated fatty acids, in particular docosahexaenoic acid (DHA). aS acquires an α-helical secondary structure in the presence of DHA and, in turn, affects DHA structural and aggregative properties. Moreover, aS forms a covalent adduct with DHA. Here, we provide evidence that His-50 is the main site of this covalent modification. To better understand the role of His-50, we analyzed the effect of DHA on aS-derived species: a naturally occurring variant, H50Q; an oxidized aS in which all methionines are sulfoxides (aS4ox); a fully lysine-alkylated aS (acetyl-aS); and aS fibrils, testing their ability to be chemically modified by DHA. We show, by mass spectrometry and spectroscopic techniques, that H50Q and aS4ox are modified by DHA, whereas acetyl-aS is not. We correlated this modification with aS structural features, and we suggest a possible functional role of aS in sequestering the early peroxidation products of fatty acids, thereby reducing the level of highly reactive lipid species. Finally, we show that fibrillar aS loses almost 80% of its scavenging activity, thus lacking a potentially protective function. Our findings linking aS scavenging activity with brain lipid composition suggest a possible etiological mechanism in some neurodegenerative disorders.
Collapse
Affiliation(s)
- Giorgia De Franceschi
- From the Department of Pharmaceutical Sciences, CRIBI, Biotechnology Centre, University of Padova, 35121 Padova, Italy
| | - Chiara Fecchio
- From the Department of Pharmaceutical Sciences, CRIBI, Biotechnology Centre, University of Padova, 35121 Padova, Italy
| | - Ronit Sharon
- the Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, 9112102 Jerusalem, Israel
| | - Anthony H V Schapira
- the Department of Clinical Neuroscience, Institute of Neurology, University College London, NW32PF London, United Kingdom
| | - Christos Proukakis
- the Department of Clinical Neuroscience, Institute of Neurology, University College London, NW32PF London, United Kingdom
| | - Vittorio Bellotti
- the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, United Kingdom, and.,the Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, 27100 Pavia, Italy
| | - Patrizia Polverino de Laureto
- From the Department of Pharmaceutical Sciences, CRIBI, Biotechnology Centre, University of Padova, 35121 Padova, Italy,
| |
Collapse
|
41
|
Kang J, Lee SJC, Nam JS, Lee HJ, Kang MG, Korshavn KJ, Kim HT, Cho J, Ramamoorthy A, Rhee HW, Kwon TH, Lim MH. An Iridium(III) Complex as a Photoactivatable Tool for Oxidation of Amyloidogenic Peptides with Subsequent Modulation of Peptide Aggregation. Chemistry 2017; 23:1645-1653. [PMID: 27862428 DOI: 10.1002/chem.201604751] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Indexed: 02/03/2023]
Abstract
Aggregates of amyloidogenic peptides are involved in the pathogenesis of several degenerative disorders. Herein, an iridium(III) complex, Ir-1, is reported as a chemical tool for oxidizing amyloidogenic peptides upon photoactivation and subsequently modulating their aggregation pathways. Ir-1 was rationally designed based on multiple characteristics, including 1) photoproperties leading to excitation by low-energy radiation; 2) generation of reactive oxygen species responsible for peptide oxidation upon photoactivation under mild conditions; and 3) relatively easy incorporation of a ligand on the IrIII center for specific interactions with amyloidogenic peptides. Biochemical and biophysical investigations illuminate that the oxidation of representative amyloidogenic peptides (i.e., amyloid-β, α-synuclein, and human islet amyloid polypeptide) is promoted by light-activated Ir-1, which alters the conformations and aggregation pathways of the peptides. Additionally, their potential oxidation sites are identified as methionine, histidine, or tyrosine residues. Overall, our studies on Ir-1 demonstrate the feasibility of devising metal complexes as chemical tools suitable for elucidating the nature of amyloidogenic peptides at the molecular level, as well as controlling their aggregation.
Collapse
Affiliation(s)
- Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Shin Jung C Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jung Seung Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hyuck Jin Lee
- School of Life Sciences, UNIST, Ulsan, 44919, Republic of Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kyle J Korshavn
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hyun-Tak Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.,Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hyun-Woo Rhee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
42
|
Scuderi D, Bergès J, de Oliveira P, Houée-Levin C. Methionine one-electron oxidation: Coherent contributions from radiolysis, IRMPD spectroscopy, DFT calculations and electrochemistry. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Breydo L, Redington JM, Uversky VN. Effects of Intrinsic and Extrinsic Factors on Aggregation of Physiologically Important Intrinsically Disordered Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:145-185. [PMID: 28109327 DOI: 10.1016/bs.ircmb.2016.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Misfolding and aggregation of proteins and peptides play an important role in a number of diseases as well as in many physiological processes. Many of the proteins that misfold and aggregate in vivo are intrinsically disordered. Protein aggregation is a complex multistep process, and aggregates can significantly differ in morphology, structure, stability, cytotoxicity, and self-propagation ability. The aggregation process is influenced by both intrinsic (e.g., mutations and expression levels) and extrinsic (e.g., polypeptide chain truncation, macromolecular crowding, posttranslational modifications, as well as interaction with metal ions, other small molecules, lipid membranes, and chaperons) factors. This review examines the effect of a variety of these factors on aggregation of physiologically important intrinsically disordered proteins.
Collapse
Affiliation(s)
- L Breydo
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - J M Redington
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - V N Uversky
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
44
|
Ghosh D, Mehra S, Sahay S, Singh PK, Maji SK. α-synuclein aggregation and its modulation. Int J Biol Macromol 2016; 100:37-54. [PMID: 27737778 DOI: 10.1016/j.ijbiomac.2016.10.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder marked by the presence of cytoplasmic inclusions, Lewy bodies (LBs) and Lewy neurites (LNs) as well as the degeneration of dopamine producing neurons in the substantia nigra region of the brain. The LBs and LNs in PD are mainly composed of aggregated form of a presynaptic protein, α-synuclein (α-Syn). However, the mechanisms of α-Syn aggregation and actual aggregated species responsible for the degeneration of dopaminergic neurons have not yet been resolved. Despite the fact that α-Syn aggregation in LBs and LNs is crucial and mutations of α-Syn are associated with early onset PD, it is really a challenging task to establish a correlation between α-Syn aggregation rate and PD pathogenesis. Regardless of strong genetic contribution, PD is mostly sporadic and familial forms of the disease represent only a minor part (<10%) of all cases. The complexity in PD further increases due to the involvement of several cellular factors in the pathogenesis of the disease as well as the environmental factors associated with the risk of developing PD. Therefore, effect of these factors on α-Syn aggregation pathway and how these factors modulate the properties of wild type (WT) as well as mutated α-Syn should be collectively taken into account. The present review specifically provides an overview of recent research on α-Syn aggregation pathways and its modulation by several cellular factors potentially relevant to PD pathogenesis. We also briefly discuss about effect of environmental risk factors on α-Syn aggregation.
Collapse
Affiliation(s)
- Dhiman Ghosh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Shruti Sahay
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| | - Pradeep K Singh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
45
|
Ingelsson M. Alpha-Synuclein Oligomers-Neurotoxic Molecules in Parkinson's Disease and Other Lewy Body Disorders. Front Neurosci 2016; 10:408. [PMID: 27656123 PMCID: PMC5011129 DOI: 10.3389/fnins.2016.00408] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/23/2016] [Indexed: 12/15/2022] Open
Abstract
Adverse intra- and extracellular effects of toxic α-synuclein are believed to be central to the pathogenesis in Parkinson's disease and other disorders with Lewy body pathology in the nervous system. One of the physiological roles of α-synuclein relates to the regulation of neurotransmitter release at the presynapse, although it is still unclear whether this mechanism depends on the action of monomers or smaller oligomers. As for the pathogenicity, accumulating evidence suggest that prefibrillar species, rather than the deposits per se, are responsible for the toxicity in affected cells. In particular, larger oligomers or protofibrils of α-synuclein have been shown to impair protein degradation as well as the function of several organelles, such as the mitochondria and the endoplasmic reticulum. Accumulating evidence further suggest that oligomers/protofibrils may have a toxic effect on the synapse, which may lead to disrupted electrophysiological properties. In addition, recent data indicate that oligomeric α-synuclein species can spread between cells, either as free-floating proteins or via extracellular vesicles, and thereby act as seeds to propagate disease between interconnected brain regions. Taken together, several lines of evidence suggest that α-synuclein have neurotoxic properties and therefore should be an appropriate molecular target for therapeutic intervention in Parkinson's disease and other disorders with Lewy pathology. In this context, immunotherapy with monoclonal antibodies against α-synuclein oligomers/protofibrils should be a particularly attractive treatment option.
Collapse
Affiliation(s)
- Martin Ingelsson
- Rudbeck Laboratory, Department of Public Health/Geriatrics, Uppsala University Uppsala, Sweden
| |
Collapse
|
46
|
Role of N-terminal methionine residues in the redox activity of copper bound to alpha-synuclein. J Biol Inorg Chem 2016; 21:691-702. [DOI: 10.1007/s00775-016-1376-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/06/2016] [Indexed: 01/01/2023]
|
47
|
Switchable photooxygenation catalysts that sense higher-order amyloid structures. Nat Chem 2016; 8:974-82. [PMID: 27657874 DOI: 10.1038/nchem.2550] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 05/16/2016] [Indexed: 11/08/2022]
Abstract
Proteins can misfold into amyloid structures that are associated with diseases; however, the same proteins often have important biological roles. To degrade selectively the amyloid form without affecting the fraction of functional protein is, therefore, an attractive goal. Here we report target-state-dependent photooxygenation catalysts that are active only when bound to the cross-β-sheet structure that is characteristic of pathogenic aggregated amyloid proteins. We show these catalysts can selectively oxygenate the amyloid form of amyloid β-protein (Aβ) 1-42 in the presence of non-amyloid off-target substrates. Furthermore, photooxygenation with a catalyst that bears an Aβ-binding peptide attenuated the Aβ pathogenicity in the presence of cells. We also show that selective photooxygenation is generally applicable to other amyloidogenic proteins (amylin, insulin, β2-microglobulin, transthyretin and α-synuclein) and does not affect the physiologically functional non-aggregate states of these proteins. This is the first report of an artificial catalyst that can be selectively and reversibly turned on and off depending on the structure and aggregation state of the substrate protein.
Collapse
|
48
|
Uversky VN. Under-folded proteins: Conformational ensembles and their roles in protein folding, function, and pathogenesis. Biopolymers 2016; 99:870-87. [PMID: 23754493 PMCID: PMC7161862 DOI: 10.1002/bip.22298] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 11/16/2022]
Abstract
For decades, protein function was intimately linked to the presence of a unique, aperiodic crystal‐like structure in a functional protein. The two only places for conformational ensembles of under‐folded (or partially folded) protein forms in this picture were either the end points of the protein denaturation processes or transiently populated folding intermediates. Recent years witnessed dramatic change in this perception and conformational ensembles, which the under‐folded proteins are, have moved from the shadow. Accumulated to date data suggest that a protein can exist in at least three global forms–functional and folded, functional and intrinsically disordered (nonfolded), and nonfunctional and misfolded/aggregated. Under‐folded protein states are crucial for each of these forms, serving as important folding intermediates of ordered proteins, or as functional states of intrinsically disordered proteins (IDPs) and IDP regions (IDPRs), or as pathology triggers of misfolded proteins. Based on these observations, conformational ensembles of under‐folded proteins can be classified as transient (folding and misfolding intermediates) and permanent (IDPs and stable misfolded proteins). Permanently under‐folded proteins can further be split into intentionally designed (IDPs and IDPRs) and unintentionally designed (misfolded proteins). Although intrinsic flexibility, dynamics, and pliability are crucial for all under‐folded proteins, the different categories of under‐foldedness are differently encoded in protein amino acid sequences. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 870–887, 2013.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142292, Moscow Region, Russia
| |
Collapse
|
49
|
Roles of methionine oxidation in E200K prion protein misfolding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:346-58. [DOI: 10.1016/j.bbapap.2016.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 01/20/2023]
|
50
|
Mazzulli JR, Burbulla LF, Krainc D, Ischiropoulos H. Detection of Free and Protein-Bound ortho-Quinones by Near-Infrared Fluorescence. Anal Chem 2016; 88:2399-405. [PMID: 26813311 DOI: 10.1021/acs.analchem.5b04420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging and oxidative stress are two prominent pathological mechanisms for Parkinson's disease (PD) that are strongly associated with the degeneration of dopamine (DA) neurons in the midbrain. DA and other catechols readily oxidize into highly reactive o-quinone species that are precursors of neuromelanin (NM) pigment and under pathological conditions can modify and damage macromolecules. The role of DA oxidation in PD pathogenesis remains unclear in part due to the lack of appropriate disease models and the absence of a simple method for the quantification of DA-derived oxidants. Here, we describe a rapid, simple, and reproducible method for the quantification of o-quinones in cells and tissues that relies on the near-infrared fluorescent properties of these species. Importantly, we demonstrate that catechol-derived oxidants can be quantified in human neuroblastoma cells and midbrain dopamine neurons derived from induced pluripotent stem cells, providing a novel model to study the downstream actions of o-quinones. This method should facilitate further study of oxidative stress and DA oxidation in PD and related diseases that affect the dopaminergic system.
Collapse
Affiliation(s)
- Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine , 303 East Chicago Avenue, Ward 12-144, Chicago Illinois 60611 United States
| | - Lena F Burbulla
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine , 303 East Chicago Avenue, Ward 12-144, Chicago Illinois 60611 United States
| | - Dimitri Krainc
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine , 303 East Chicago Avenue, Ward 12-144, Chicago Illinois 60611 United States
| | - Harry Ischiropoulos
- Department of Pediatrics, Children's Hospital of Philadelphia , Philadelphia, Pennsylvania 19104, United States.,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|