1
|
Sampson C, Wang Q, Otkur W, Zhao H, Lu Y, Liu X, Piao H. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin Transl Med 2023; 13:e1204. [PMID: 36881608 PMCID: PMC9991012 DOI: 10.1002/ctm2.1204] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Ubiquitination is one of the most important post-translational modifications which plays a significant role in conserving the homeostasis of cellular proteins. In the ubiquitination process, ubiquitin is conjugated to target protein substrates for degradation, translocation or activation, dysregulation of which is linked to several diseases including various types of cancers. E3 ubiquitin ligases are regarded as the most influential ubiquitin enzyme owing to their ability to select, bind and recruit target substrates for ubiquitination. In particular, E3 ligases are pivotal in the cancer hallmarks pathways where they serve as tumour promoters or suppressors. The specificity of E3 ligases coupled with their implication in cancer hallmarks engendered the development of compounds that specifically target E3 ligases for cancer therapy. In this review, we highlight the role of E3 ligases in cancer hallmarks such as sustained proliferation via cell cycle progression, immune evasion and tumour promoting inflammation, and in the evasion of apoptosis. In addition, we summarise the application and the role of small compounds that target E3 ligases for cancer treatment along with the significance of targeting E3 ligases as potential cancer therapy.
Collapse
Affiliation(s)
- Chibuzo Sampson
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiuping Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Haifeng Zhao
- Department of OrthopedicsDalian Second People's HospitalDalianChina
| | - Yun Lu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- Department of StomatologyDalian Medical UniversityDalianChina
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hai‐long Piao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Wang C, Qu R, Zong Y, Qin C, Liu L, Gao X, Sun H, Sun Y, Chang KC, Zhang R, Liu J, Pu J. Enhanced stability of M1 protein mediated by a phospho-resistant mutation promotes the replication of prevailing avian influenza virus in mammals. PLoS Pathog 2022; 18:e1010645. [PMID: 35793327 PMCID: PMC9258882 DOI: 10.1371/journal.ppat.1010645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022] Open
Abstract
Avian influenza virus (AIV) can evolve multiple strategies to combat host antiviral defenses and establish efficient infectivity in mammals, including humans. H9N2 AIV and its reassortants (such as H5N6 and H7N9 viruses) pose an increasing threat to human health; however, the mechanisms involved in their increased virulence remain poorly understood. We previously reported that the M1 mutation T37A has become predominant among chicken H9N2 isolates in China. Here, we report that, since 2010, this mutation has also been found in the majority of human isolates of H9N2 AIV and its emerging reassortants. The T37A mutation of M1 protein enhances the replication of H9N2 AIVs in mice and in human cells. Interestingly, having A37 instead of T37 increases the M1 protein stability and resistance to proteasomal degradation. Moreover, T37 of the H9N2 M1 protein is phosphorylated by protein kinase G (PKG), and this phosphorylation induces the rapid degradation of M1 and reduces viral replication. Similar effects are also observed in the novel H5N6 virus. Additionally, ubiquitination at K187 contributes to M1-37T degradation and decreased replication of the virus harboring T37 in the M1 protein. The prevailing AIVs thereby evolve a phospho-resistant mutation in the M1 protein to avoid viral protein degradation by host factors, which is advantageous in terms of replication in mammalian hosts. H9N2 avian influenza virus (AIV) and its reassortants (such as H5N6 and H7N9 viruses) pose an increasing threat to human health, but the mechanisms involved in their increased virulence remain poorly understood. Notably, the role of viral M1 protein in increasing the mammalian infection of AIV has been rarely reported. Here, we demonstrate that a phospho-resistant T37A mutation, encoded by the M1 protein of recently prevalent chicken H9N2 virus, increases M1 protein stability and viral replication in mammalian cells. The T37, but not the A37, in H9N2 M1 protein can be phosphorylated by protein kinase G (PKG). Through the T37A mutation, viral M1 protein evades phosphorylation-mediated proteasomal degradation, resulting in increased avian H9N2 virus replication in mice and in human cells. Similar effects were also observed for the novel H5N6 virus. This study provides insight into a novel strategy by which AIV evades mammalian host defenses. It is necessary to pay close attention to the epidemiological and public health implications of AIVs carrying this mutant M1 protein.
Collapse
Affiliation(s)
- Chenxi Wang
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Runkang Qu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanan Zong
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chao Qin
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Litao Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyi Gao
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Honglei Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Rui Zhang
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
3
|
Choi SI, Kim EK. Autophagy in granular corneal dystrophy type 2. Exp Eye Res 2016; 144:14-21. [DOI: 10.1016/j.exer.2015.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/28/2015] [Accepted: 09/15/2015] [Indexed: 01/07/2023]
|
4
|
Kim EK, Lee H, Choi SI. Molecular Pathogenesis of Corneal Dystrophies: Schnyder Dystrophy and Granular Corneal Dystrophy type 2. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:99-115. [PMID: 26310152 DOI: 10.1016/bs.pmbts.2015.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The International Committee for Classification of Corneal Dystrophies (IC3D) provides updated data to ophthalmologists by incorporating traditional definitions of corneal dystrophies with new genetic, clinical, and pathologic information. Recent advances in the genetics of corneal dystrophies facilitate more precise classifications and elucidate each classification's molecular mechanisms. Unfortunately, the molecular mechanisms and underlying pathogenic mechanisms have remained obscure, with the exception of Schnyder corneal dystrophy (CD), granular CD type 2 (GCD2), and Fuch's endothelial CD. Here, we review the pathogenesis of Schnyder CD and GCD2.
Collapse
Affiliation(s)
- Eung Kweon Kim
- Department of Ophthalmology, Vision Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea; BK21 Plus Project for Medical Science and Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hun Lee
- Department of Ophthalmology, Vision Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Il Choi
- Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Kiparaki M, Zarifi I, Delidakis C. bHLH proteins involved in Drosophila neurogenesis are mutually regulated at the level of stability. Nucleic Acids Res 2015; 43:2543-59. [PMID: 25694512 PMCID: PMC4357701 DOI: 10.1093/nar/gkv083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proneural bHLH activators are expressed in all neuroectodermal regions prefiguring events of central and peripheral neurogenesis. Drosophila Sc is a prototypical proneural activator that heterodimerizes with the E-protein Daughterless (Da) and is antagonized by, among others, the E(spl) repressors. We determined parameters that regulate Sc stability in Drosophila S2 cells. We found that Sc is a very labile phosphoprotein and its turnover takes place via at least three proteasome-dependent mechanisms. (i) When Sc is in excess of Da, its degradation is promoted via its transactivation domain (TAD). (ii) In a DNA-bound Da/Sc heterodimer, Sc degradation is promoted via an SPTSS phosphorylation motif and the AD1 TAD of Da; Da is spared in the process. (iii) When E(spl)m7 is expressed, it complexes with Sc or Da/Sc and promotes their degradation in a manner that requires the corepressor Groucho and the Sc SPTSS motif. Da/Sc reciprocally promotes E(spl)m7 degradation. Since E(spl)m7 is a direct target of Notch, the mutual destabilization of Sc and E(spl) may contribute in part to the highly conserved anti-neural activity of Notch. Sc variants lacking the SPTSS motif are dramatically stabilized and are hyperactive in transgenic flies. Our results propose a novel mechanism of regulation of neurogenesis, involving the stability of key players in the process.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Ioanna Zarifi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| |
Collapse
|
6
|
Fukumoto C, Nakashima D, Kasamatsu A, Unozawa M, Shida-Sakazume T, Higo M, Ogawara K, Yokoe H, Shiiba M, Tanzawa H, Uzawa K. WWP2 is overexpressed in human oral cancer, determining tumor size and poor prognosis in patients: downregulation of WWP2 inhibits the AKT signaling and tumor growth in mice. Oncoscience 2014; 1:807-20. [PMID: 25621296 PMCID: PMC4303889 DOI: 10.18632/oncoscience.101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/27/2014] [Indexed: 01/14/2023] Open
Abstract
The WW domain containing E3 ubiquitin protein ligase 2 (WWP2) encodes a member of the Nedd4 family of E3 ligases, which catalyzes the final step of the ubiquitination cascade. WWP2 is involved in tumoral growth with degradation of the tumor suppressor phosphatase and tensin homologue deleted on chromosome TEN (PTEN). However, little is known about the mechanisms and roles of WWP2 in human malignancies including oral squamous cell carcinomas (OSCCs). We found frequent WWP2 overexpression in all OSCC-derived cell lines examined that was associated with cellular growth by accelerating the cell cycle in the G1 phase via degradation of PTEN and activation of the PI3K/AKT signaling pathway. Our in vivo data of WWP2 silencing showed dramatic inhibition of tumoral growth with increased expression of PTEN. Our 104 primary OSCCs had significantly higher expression of WWP2 than their normal counterparts. Moreover, among the clinical variables analyzed, enhanced WWP2 expression was correlated with primary tumoral size and poor prognosis. These data suggested that WWP2 overexpression contributes to neoplastic promotion via the PTEN/PI3K/AKT pathway in OSCCs. WWP2 is likely to be a biomarker of tumoral progression and prognosis and a potential therapeutic target for development of anticancer drugs in OSCCs.
Collapse
Affiliation(s)
- Chonji Fukumoto
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Inohana, Chuo-ku, Chiba, Japan
| | - Motoharu Unozawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Tomomi Shida-Sakazume
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Morihiro Higo
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Inohana, Chuo-ku, Chiba, Japan
| | - Katsunori Ogawara
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Inohana, Chuo-ku, Chiba, Japan
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery Research Institute, National Defense Medical College Hospital, Tokorozawa, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan ; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Inohana, Chuo-ku, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan ; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Inohana, Chuo-ku, Chiba, Japan
| |
Collapse
|
7
|
Karouzakis E, Gay RE, Gay S, Neidhart M. Increased recycling of polyamines is associated with global DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. ACTA ACUST UNITED AC 2011; 64:1809-17. [PMID: 22170508 DOI: 10.1002/art.34340] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Global DNA hypomethylation in rheumatoid arthritis synovial fibroblasts (RASFs) contributes to their intrinsic activation. The aim of this study was to investigate whether increased polyamine metabolism is associated with a decreased level of S-adenosyl methionine (SAM), causing global DNA hypomethylation. METHODS Synovial fibroblasts were isolated from synovial tissue obtained from 12 patients with RA and from 6 patients with osteoarthritis (OA). The cells were stained for S-adenosyl methionine decarboxylase (AMD), spermidine/spermine N1-acetyltransferase (SSAT1), polyamine-modulated factor 1-binding protein 1 (PMFBP1), solute carrier family 3 member 2 (SLC3A2), DNA methyltransferase 1 (DNMT-1), α9 integrin, and β1 integrin and analyzed by flow cytometry. Nuclear 5-methylcytosine (5-MeC) was measured by flow cytometry, the expression of diacetylspermine (DASp) in cell culture supernatants and cell extracts was determined by enzyme-linked immunosorbent assay, and SAM expression in cell extracts was measured by fluorometry. RESULTS The expression of SSAT1, AMD, and PMFBP1 was significantly increased in RASFs compared with OASFs. The expression of DASp in cell culture supernatants and the expression of SLC3A2 were significantly elevated in RASFs. The levels of SAM in cell culture extracts, as well as the levels of DNMT-1 protein and 5-MeC, were significantly reduced in RASFs. Parameters of polyamine metabolism were negatively correlated with the expression of SAM, DNMT-1, and 5-MeC. CONCLUSION These data clearly show that intrinsic elevations of PMFBP1 and SSAT1 enhance the catabolism and recycling of polyamines in RASFs and suggest that high consumption of SAM via this pathway is an important factor contributing to global DNA hypomethylation in these cells.
Collapse
|
8
|
Coppotelli G, Mughal N, Marescotti D, Masucci MG. High avidity binding to DNA protects ubiquitylated substrates from proteasomal degradation. J Biol Chem 2011; 286:19565-75. [PMID: 21471195 DOI: 10.1074/jbc.m111.224782] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein domains that act as degradation and stabilization signals regulate the rate of turnover of proteasomal substrates. Here we report that the bipartite Gly-Arg repeat of the Epstein-Barr virus (EBV) nuclear antigen (EBNA)-1 acts as a stabilization signal that inhibits proteasomal degradation in the nucleus by promoting binding to cellular DNA. Protection can be transferred by grafting the domain to unrelated proteasomal substrates and does not involve changes of ubiquitylation. Protection is also afforded by other protein domains that, similar to the Gly-Arg repeat, mediate high avidity binding to DNA, as exemplified by resistance to detergent extraction. Our findings identify high avidity binding to DNA as a portable inhibitory signal that counteracts proteasomal degradation.
Collapse
Affiliation(s)
- Giuseppe Coppotelli
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
9
|
Hong EH, Lee SJ, Kim JS, Lee KH, Um HD, Kim JH, Kim SJ, Kim JI, Hwang SG. Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J Biol Chem 2009; 285:1283-95. [PMID: 19887452 DOI: 10.1074/jbc.m109.058628] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy is increasingly used in the treatment of joint diseases, but limited information is available on the effects of radiation on cartilage. Here, we characterize the molecular mechanisms leading to cellular senescence in irradiated primary cultured articular chondrocytes. Ionizing radiation (IR) causes activation of ERK, in turn generating intracellular reactive oxygen species (ROS) with induction of senescence-associated beta-galactosidase (SA-beta-gal) activity. ROS activate p38 kinase, which further promotes ROS generation, forming a positive feedback loop to sustain ROS-p38 kinase signaling. The ROS inhibitors, nordihydroguaiaretic acid and GSH, suppress phosphorylation of p38 and cell numbers positive for SA-beta-gal following irradiation. Moreover, inhibition of the ERK and p38 kinase pathways leads to blockage of IR-induced SA-beta-gal activity via reduction of ROS generation. Although JNK is activated by ROS, this pathway is not associated with cellular senescence of chondrocytes. Interestingly, IR triggers down-regulation of SIRT1 protein expression but not the transcript level, indicative of post-transcriptional cleavage of the protein. SIRT1 degradation is markedly blocked by SB203589 or MG132 after IR treatment, suggesting that cleavage occurs as a result of binding with p38 kinase, followed by processing via the 26 S proteasomal degradation pathway. Overexpression or activation of SIRT1 significantly reduces the IR-induced senescence phenotype, whereas inhibition of SIRT1 activity induces senescence. Based on these findings, we propose that IR induces cellular senescence of articular chondrocytes by negative post-translational regulation of SIRT1 via ROS-dependent p38 kinase activation.
Collapse
Affiliation(s)
- Eun-Hee Hong
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dantuma NP, Heinen C, Hoogstraten D. The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. DNA Repair (Amst) 2009; 8:449-60. [PMID: 19223247 DOI: 10.1016/j.dnarep.2009.01.005] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A protein that exemplifies the intimate link between the ubiquitin/proteasome system (UPS) and DNA repair is the yeast nucleotide excision repair (NER) protein Rad23 and its human orthologs hHR23A and hHR23B. Rad23, which was originally identified as an important factor involved in the recognition of DNA lesions, also plays a central role in targeting ubiquitylated proteins for proteasomal degradation, an activity that it shares with other ubiquitin receptors like Dsk2 and Ddi1. Although the finding that Rad23 serves as a ubiquitin receptor explains to a large extent its importance in proteasomal degradation, the precise mode of action of Rad23 in NER and the possible link with the UPS is less clear. In this review, we discuss our present knowledge on the functions of Rad23 in protein degradation and DNA repair and speculate on the importance of the dual roles of Rad23 for the cell's ability to cope with stress conditions.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology, The Medical Nobel Institute, Karolinska Institutet, Von Eulers väg 3, S-17177 Stockholm, Sweden.
| | | | | |
Collapse
|
11
|
Verhoef LGGC, Heinen C, Selivanova A, Halff EF, Salomons FA, Dantuma NP. Minimal length requirement for proteasomal degradation of ubiquitin-dependent substrates. FASEB J 2008; 23:123-33. [PMID: 18796559 DOI: 10.1096/fj.08-115055] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An erroneous transcriptional process, known as molecular misreading, gives rise to an alternative transcript of the ubiquitin B (UBB) gene. This transcript encodes the protein UBB(+1), which comprises a ubiquitin moiety and a 19-aa C-terminal extension. UBB(+1) is found in affected neurons in neurodegenerative diseases and behaves as an atypical ubiquitin fusion degradation (UFD) proteasome substrate that is poorly degraded and impedes the ubiquitin/proteasome system. Here, we show that the limited length of UBB(+1) is responsible for its inefficient degradation and inhibitory activity. Designed UFD substrates with an equally short 19-aa or a 20-aa C-terminal extension were also poorly degraded and had a general inhibitory activity on the ubiquitin/proteasome system in two unrelated cell lines. Extending the polypeptide to 25 aa sufficed to convert the protein into an efficiently degraded proteasome substrate that lacked inhibitory activity. A similar length dependency was found for degradation of two UFD substrates in Saccharomyces cerevisiae, which suggests that the mechanisms underlying this length constraint are highly conserved. Extending UBB(+1) also converted this protein into an efficient substrate of the proteasome. These observations provide an explanation for the accumulation of UBB(+1) in neurodegenerative disorders and offers new insights into the physical constraints determining proteasomal degradation.
Collapse
Affiliation(s)
- Lisette G G C Verhoef
- Department of Cell and Molecular Biology, The Medical Nobel Institute, Karolinska Institutet, Von Eulers väg 3, S-17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Daskalogianni C, Apcher S, Candeias MM, Naski N, Calvo F, Fåhraeus R. Gly-Ala repeats induce position- and substrate-specific regulation of 26 S proteasome-dependent partial processing. J Biol Chem 2008; 283:30090-100. [PMID: 18757367 DOI: 10.1074/jbc.m803290200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Partial degradation or regulated ubiquitin proteasome-dependent processing by the 26 S proteasome has been demonstrated, but the underlying molecular mechanisms and the prevalence of this phenomenon remain obscure. Here we show that the Gly-Ala repeat (GAr) sequence of EBNA1 affects processing of substrates via the ubiquitin-dependent degradation pathway in a substrate- and position-specific fashion. GAr-mediated increase in stability of proteins targeted for degradation via the 26 S proteasome was associated with a fraction of the substrates being partially processed and the release of the free GAr. The GAr did not cause a problem for the proteolytic activity of the proteasome, and its fusion to the N terminus of p53 resulted in an increase in the rate of degradation of the entire chimera. Interestingly the GAr had little effect on the stability of EBNA1 protein itself, and targeting EBNA1 for 26 S proteasome-dependent degradation led to its complete degradation. Taken together, our data suggest a model in which the GAr prevents degradation or promotes endoproteolytic processing of substrates targeted for the 26 S proteasome by interfering with the initiation step of substrate unfolding. These results will help to further understand the underlying mechanisms for partial proteasome-dependent degradation.
Collapse
Affiliation(s)
- Chrysoula Daskalogianni
- INSERM U716, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, 75010 Paris, France
| | | | | | | | | | | |
Collapse
|
13
|
Li L, Liang D, Li JY, Zhao RY. APOBEC3G-UBA2 fusion as a potential strategy for stable expression of APOBEC3G and inhibition of HIV-1 replication. Retrovirology 2008; 5:72. [PMID: 18680593 PMCID: PMC2535603 DOI: 10.1186/1742-4690-5-72] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/04/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although APOBEC3G protein is a potent and innate anti-HIV-1 cellular factor, HIV-1 Vif counteracts the effect of APOBEC3G by promoting its degradation through proteasome-mediated proteolysis. Thus, any means that could prevent APOBEC3G degradation could potentially enhance its anti-viral effect. The UBA2 domain has been identified as an intrinsic stabilization signal that protects protein from proteasomal degradation. In this pilot study, we tested whether APOBEC3G, when it is fused with UBA2, can resist Vif-mediated proteasomal degradation and further inhibit HIV-1 infection. RESULTS APOBEC3G-UBA2 fusion protein is indeed more resistant to Vif-mediated degradation than APOBEC3G. The ability of UBA2 domain to stabilize APOBEC3G was diminished when polyubiquitin was over-expressed and the APOBEC3G-UBA2 fusion protein was found to bind less polyubiquitin than APOBEC3G, suggesting that UBA2 stabilizes APOBEC3G by preventing ubiquitin chain elongation and proteasome-mediated proteolysis. Consistently, treatment of cells with a proteasome inhibitor MG132 alleviated protein degradation of APOBEC3G and APOBEC3G-UBA2 fusion proteins. Analysis of the effect of APOBEC3G-UBA2 fusion protein on viral infectivity indicated that infection of virus packaged from HEK293 cells expressing APOBEC3G-UBA2 fusion protein is significantly lower than those packaged from HEK293 cells over-producing APOBEC3G or APOBEC3G-UBA2 mutant fusion proteins. CONCLUSION Fusion of UBA2 to APOBEC3G can make it more difficult to be degraded by proteasome. Thus, UBA2 could potentially be used to antagonize Vif-mediated APOBEC3G degradation by preventing polyubiquitination. The stabilized APOBEC3G-UBA2 fusion protein gives stronger inhibitory effect on viral infectivity than APOBEC3G without UBA2.
Collapse
Affiliation(s)
- Lin Li
- Department of Pathology, University of Maryland, 10 South Pine Street, MSTF700A, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
14
|
Jariel-Encontre I, Bossis G, Piechaczyk M. Ubiquitin-independent degradation of proteins by the proteasome. Biochim Biophys Acta Rev Cancer 2008; 1786:153-77. [PMID: 18558098 DOI: 10.1016/j.bbcan.2008.05.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/15/2008] [Accepted: 05/15/2008] [Indexed: 02/08/2023]
Abstract
The proteasome is the main proteolytic machinery of the cell and constitutes a recognized drugable target, in particular for treating cancer. It is involved in the elimination of misfolded, altered or aged proteins as well as in the generation of antigenic peptides presented by MHC class I molecules. It is also responsible for the proteolytic maturation of diverse polypeptide precursors and for the spatial and temporal regulation of the degradation of many key cell regulators whose destruction is necessary for progression through essential processes, such as cell division, differentiation and, more generally, adaptation to environmental signals. It is generally believed that proteins must undergo prior modification by polyubiquitin chains to be addressed to, and recognized by, the proteasome. In reality, however, there is accumulating evidence that ubiquitin-independent proteasomal degradation may have been largely underestimated. In particular, a number of proto-oncoproteins and oncosuppressive proteins are privileged ubiquitin-independent proteasomal substrates, the altered degradation of which may have tumorigenic consequences. The identification of ubiquitin-independent mechanisms for proteasomal degradation also poses the paramount question of the multiplicity of catabolic pathways targeting each protein substrate. As this may help design novel therapeutic strategies, the underlying mechanisms are critically reviewed here.
Collapse
Affiliation(s)
- Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, IFR122, 1919 Route de Mende, Montpellier, F-34293, France
| | | | | |
Collapse
|
15
|
Dreher KA, Brown J, Saw RE, Callis J. The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. THE PLANT CELL 2006; 18:699-714. [PMID: 16489122 PMCID: PMC1383644 DOI: 10.1105/tpc.105.039172] [Citation(s) in RCA: 227] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Rapid, auxin-responsive degradation of multiple auxin/indole-3-acetic acid (Aux/IAA) proteins is essential for plant growth and development. Domain II residues were previously shown to be required for the degradation of several Arabidopsis thaliana Aux/IAA proteins. We examined the degradation of additional full-length family members and the proteolytic importance of N-terminal residues outside domain II using luciferase (LUC) fusions. Elimination of domain I did not affect degradation. However, substituting an Arg for a conserved Lys between domains I and II specifically impaired basal degradation without compromising the auxin-mediated acceleration of degradation. IAA8, IAA9, and IAA28 contain domain II and a conserved Lys, but they were degraded more slowly than previously characterized family members when expressed as LUC fusions, suggesting that sequences outside domain II influence proteolysis. We analyzed the degradation of IAA31, with a region somewhat similar to domain II but without the conserved Lys, and of IAA20, which lacks domain II and the conserved Lys. Both IAA20:LUC and epitope-tagged IAA20 were long-lived, and their longevity was not influenced by auxin. Epitope-tagged IAA31 was long-lived, like IAA20, but by contrast, it showed accelerated degradation in response to auxin. The existence of long-lived and auxin-insensitive Aux/IAA proteins suggeststhat they may play a novel role in auxin signaling.
Collapse
Affiliation(s)
- Kate A Dreher
- Plant Biology Graduate Group Program, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
16
|
Kim J, Chen CP, Rice KG. The proteasome metabolizes peptide-mediated nonviral gene delivery systems. Gene Ther 2006; 12:1581-90. [PMID: 16034460 DOI: 10.1038/sj.gt.3302575] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The proteasome is a multisubunit cytosolic protein complex responsible for degrading cytosolic proteins. Several studies have implicated its involvement in the processing of viral particles used for gene delivery, thereby limiting the efficiency of gene transfer. Peptide-based nonviral gene delivery systems are sufficiently similar to viral particles in their size and surface properties and thereby could also be recognized and metabolized by the proteasome. The present study utilized proteasome inhibitors (MG 115 and MG 132) to establish that peptide DNA condensates are metabolized by the proteasome, thereby limiting their gene transfer efficiency. Transfection of HepG2 or cystic fibrosis/T1 (CF/T1) cells with CWK18 DNA condensates in the presence of MG 115 or MG 132 resulted in significantly enhanced gene expression. MG 115 and MG 132 increased luciferase expression 30-fold in a dose-dependent manner in HepG2 and CF/T1. The enhanced gene expression correlated directly with proteasome inhibition, and was not the result of lysosomal enzyme inhibition. The enhanced transfection was specific for peptide DNA condensates, whereas Lipofectamine- and polyethylenimine-mediated gene transfer were significantly blocked. A series of novel gene transfer peptides containing intrinsic GA proteasome inhibitors (CWK18(GA)n, where n=4, 6, 8 and 10) were synthesized and found to inhibit the proteasome. The gene transfer efficiency mediated by these peptides in four different cell lines established that a GA repeat of four is sufficient to block the proteasome and significantly enhance the gene transfer. Together, these results implicate the proteasome as a previously undiscovered route of metabolism of peptide-based nonviral gene delivery systems and provide a rationale for the use of proteasome inhibition to increase gene transfer efficiency.
Collapse
Affiliation(s)
- J Kim
- Division of Medicinal and Natural Product Chemistry, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
17
|
Heessen S, Masucci MG, Dantuma NP. The UBA2 Domain Functions as an Intrinsic Stabilization Signal that Protects Rad23 from Proteasomal Degradation. Mol Cell 2005; 18:225-35. [PMID: 15837425 DOI: 10.1016/j.molcel.2005.03.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 01/11/2005] [Accepted: 03/21/2005] [Indexed: 11/26/2022]
Abstract
The proteasome-interacting protein Rad23 is a long-lived protein. Interaction between Rad23 and the proteasome is required for Rad23's functions in nucleotide excision repair and ubiquitin-dependent degradation. Here, we show that the ubiquitin-associated (UBA)-2 domain of yeast Rad23 is a cis-acting, transferable stabilization signal that protects Rad23 from proteasomal degradation. Disruption of the UBA2 domain converts Rad23 into a short-lived protein that is targeted for degradation through its N-terminal ubiquitin-like domain. UBA2-dependent stabilization is required for Rad23 function because a yeast strain expressing a mutant Rad23 that lacks a functional UBA2 domain shows increased sensitivity to UV light and, in the absence of Rpn10, severe growth defects. The C-terminal UBA domains of Dsk2, Ddi1, Ede1, and the human Rad23 homolog hHR23A have similar protective activities. Thus, the UBA2 domain of Rad23 is an evolutionarily conserved stabilization signal that allows Rad23 to interact with the proteasome without facing destruction.
Collapse
Affiliation(s)
- Stijn Heessen
- Microbiology and Tumor Biology Center, Karolinska Institutet, Nobels väg 16, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
18
|
Hwang SG, Yu SS, Ryu JH, Jeon HB, Yoo YJ, Eom SH, Chun JS. Regulation of β-Catenin Signaling and Maintenance of Chondrocyte Differentiation by Ubiquitin-independent Proteasomal Degradation of α-Catenin. J Biol Chem 2005; 280:12758-65. [PMID: 15695815 DOI: 10.1074/jbc.m413367200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Accumulation of beta-catenin and subsequent stimulation of beta-catenin-T cell-factor (Tcf)/lymphoid-enhancerfactor (Lef) transcriptional activity causes dedifferentiation of articular chondrocytes, which is characterized by decreased type II collagen expression and initiation of type I collagen expression. This study examined the mechanisms of alpha-catenin degradation, the role of alpha-catenin in beta-catenin signaling, and the physiological significance of alpha-catenin regulation of beta-catenin signaling in articular chondrocytes. We found that both alpha- and beta-catenin accumulated during dedifferentiation of chondrocytes by escaping from proteasomal degradation. Beta-catenin degradation was ubiquitination-dependent, whereas alpha-catenin was proteasomally degraded in a ubiquitination-independent fashion. The accumulated alpha- and beta-catenin existed as complexes in the cytosol and nucleus. The complex formation between alpha- and beta-catenin blocked proteasomal degradation of alpha-catenin and also inhibited beta-catenin-Tcf/Lef transcriptional activity and the suppression of type II collagen expression associated with ectopic expression of beta-catenin, the inhibition of proteasome, or Wnt signaling. Collectively, our results indicate that ubiquitin-independent degradation of alpha-catenin regulates beta-catenin signaling and maintenance of the differentiated phenotype of articular chondrocytes.
Collapse
Affiliation(s)
- Sang-Gu Hwang
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Franck N, Le Seyec J, Guguen-Guillouzo C, Erdtmann L. Hepatitis C virus NS2 protein is phosphorylated by the protein kinase CK2 and targeted for degradation to the proteasome. J Virol 2005; 79:2700-8. [PMID: 15708989 PMCID: PMC548468 DOI: 10.1128/jvi.79.5.2700-2708.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hepatitis C virus (HCV) nonstructural 2 (NS2) protein is a hydrophobic transmembrane protein, described to be involved in different functions, such as apoptosis inhibition and gene transcription modulation. We investigated here NS2 protein turnover and found that NS2 was rapidly degraded by the proteasome in different cell lines, as in primary human hepatocytes. Since posttranslational modifications can influence protein turnover, we looked for potential phosphoacceptor sites in NS2. Computational sequence analysis in combination with screening of NS2 point mutants revealed that serine residue 168 was critical for degradation. In the quest of a protein kinase for NS2, we identified by sequence analysis that the serine residue 168 was part of a consensus casein kinase 2 (CK2) recognition site (S/TXXE). This motif was highly conserved since it could be found in the NS2 primary consensus sequences from all HCV genotypes. To verify whether CK2 is involved in NS2 phosphorylation, we showed by an in vitro kinase assay that CK2 phosphorylated NS2, as far as this CK2 motif was conserved. Interestingly, NS2 became resistant to protein degradation when the CK2 motif was modified by a single point mutation. Furthermore, inhibition of CK2 activity by curcumin decreased NS2 phosphorylation in vitro and stabilized NS2 expression in HepG2 cells. Finally, we showed in Huh-7.5 replicon cells that NS2, expressed in the context of the HCV polyprotein, was also sensitive to both proteasome-mediated degradation and CK2 inhibitor treatment. We suggest that NS2 is a short-lived protein whose degradation by the proteasome is regulated in a phosphorylation-dependent manner through the protein kinase CK2.
Collapse
Affiliation(s)
- Nathalie Franck
- INSERM, U522, Hôpital de Pontchaillou, 2, Rue Henri le Guilloux, Rennes Cedex 35033, France.
| | | | | | | |
Collapse
|
20
|
Oida Y, Gopalan B, Miyahara R, Inoue S, Branch CD, Mhashilkar AM, Lin E, Bekele BN, Roth JA, Chada S, Ramesh R. Sulindac enhances adenoviral vector expressing mda-7/IL-24–mediated apoptosis in human lung cancer. Mol Cancer Ther 2005. [DOI: 10.1158/1535-7163.291.4.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Several studies have shown antitumor activities of the melanoma differentiation–associated gene 7 (mda-7) and the nonsteroidal anti-inflammatory drug sulindac when used as a monotherapies against a wide variety of human cancers. However, the combined effects of mda-7 and sulindac have not previously been tested. Therefore, we tested the antitumor activity of an adenoviral vector expressing mda-7 (Ad-mda7) in combination with sulindac against non–small cell lung cancer cells in vitro and in vivo. When treated with Ad-mda7 in combination with sulindac, human lung cancer cells (A549 and H1299) underwent growth suppression resulting in apoptosis. The growth inhibition induced by Ad-mda7 in combination with sulindac was significantly greater than that observed with Ad-mda7 or sulindac alone. Furthermore, the degree of growth inhibition induced using this combination was dose-dependent for sulindac. Treatment with Ad-mda7 in combination with sulindac had no growth inhibitory effects on human normal lung (CCD-16) fibroblasts. We then investigated the mechanism by which sulindac enhances Ad-mda7-mediated apoptosis. Sulindac increased expression of ectopic MDA-7 protein in tumor cells, thereby increasing the expression of downstream effectors RNA-dependent protein kinase, p38MAPK, caspase-9, and caspase-3 and enhancing apoptosis of non–small cell lung cancer cells. Pulse-chase experiments showed that the increased expression of MDA-7 protein in sulindac-treated cells was due to increased half-life of the MDA-7 protein. Finally, treatment of human lung tumor xenografts in nude mice with Ad-mda7 plus sulindac significantly suppressed growth (P = 0.001) compared with Ad-mda7 or sulindac alone. Our results show for the first time that combined treatment with Ad-mda7 plus sulindac enhances growth inhibition and apoptosis of human lung cancer cells. The increased antitumor activity observed with the combination treatment is a result of increased half-life of MDA-7 protein. Regulation of protein turnover is a heretofore-unrecognized mechanism of this nonsteroidal anti-inflammatory drug.
Collapse
Affiliation(s)
- Yasuhisa Oida
- 1Thoracic and Cardiovascular Surgery, Departments of
| | - Began Gopalan
- 1Thoracic and Cardiovascular Surgery, Departments of
| | - Ryo Miyahara
- 1Thoracic and Cardiovascular Surgery, Departments of
| | - Satoshi Inoue
- 1Thoracic and Cardiovascular Surgery, Departments of
| | | | | | | | | | - Jack A. Roth
- 1Thoracic and Cardiovascular Surgery, Departments of
| | - Sunil Chada
- 3Experimental Therapeutics, University of Texas M. D. Anderson Cancer, Center; and
- 4Introgen Therapeutics, Inc., Houston, Texas
| | | |
Collapse
|
21
|
Lowe J, Hand N, Mayer RJ. Application of Ubiquitin Immunohistochemistry to the Diagnosis of Disease. Methods Enzymol 2005; 399:86-119. [PMID: 16338351 DOI: 10.1016/s0076-6879(05)99007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Ubiquitin immunohistochemistry has changed understanding of the pathophysiology of many diseases, particularly chronic neurodegenerative diseases. Protein aggregates (inclusions) containing ubiquitinated proteins occur in neurones and other cell types in the central nervous system in afflicted cells. The inclusions are present in all the neurological illnesses, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, polyglutamine diseases, and rarer forms of neurodegenerative disease. A new cause of cognitive decline in the elderly, "dementia with Lewy bodies," accounting for some 15-30% of cases, was initially discovered and characterized by ubiquitin immunocytochemistry. The optimal methods for carrying out immunohistochemical analyses of paraffin-embedded tissues are described, and examples of all the types of intracellular inclusions detected by ubiquitin immunohistochemistry in the diseases are illustrated. The role of the ubiquitin proteasome system (UPS) in disease progression is being actively researched globally and increasingly, because it is now realized that the UPS controls most pathways in cellular homeostasis. Many of these regulatory mechanisms will be dysfunctional in diseased cells. The goal is to understand fully the role of the UPS in the disorders and then therapeutically intervene in the ubiquitin pathway to treat these incurable diseases.
Collapse
Affiliation(s)
- James Lowe
- School of Molecular Medical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham, United Kingdom
| | | | | |
Collapse
|
22
|
Menéndez-Benito V, Heessen S, Dantuma NP. Monitoring of ubiquitin-dependent proteolysis with green fluorescent protein substrates. Methods Enzymol 2005; 399:490-511. [PMID: 16338378 DOI: 10.1016/s0076-6879(05)99034-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A reliable and robust means of evaluating the functional status of ubiquitin-dependent proteolysis in living cells is to follow the turnover of readily detectable reporter substrates. During the past few years, several reporter substrates have been generated by use of the green fluorescent protein (GFP), which is converted for this purpose from a normally very stable protein into a short-lived substrate of the ubiquitin/proteasome system. These short-lived substrates are valuable tools providing researchers with unique information about the absence or presence of blockades in this system in living cells. We have recently generated the first transgenic mouse model for monitoring the ubiquitin/proteasome system based on the ubiquitous expression of a GFP-based proteasome substrate. Together these models can be used to study ubiquitin-dependent degradation in health and disease and for the identification of small synthetic compounds or proteins capable of modifying the activity of the system. In this chapter, we describe the basic principles of GFP-based reporter substrates, their strengths and weaknesses, and a number of protocols that can be used to study the ubiquitin/proteasome system in yeast, cell lines, and transgenic mice.
Collapse
|
23
|
Avila J, Lucas JJ, Perez M, Hernandez F. Role of tau protein in both physiological and pathological conditions. Physiol Rev 2004; 84:361-84. [PMID: 15044677 DOI: 10.1152/physrev.00024.2003] [Citation(s) in RCA: 656] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The morphology of a neuron is determined by its cytoskeletal scaffolding. Thus proteins that associate with the principal cytoskeletal components such as the microtubules have a strong influence on both the morphology and physiology of neurons. Tau is a microtubule-associated protein that stabilizes neuronal microtubules under normal physiological conditions. However, in certain pathological situations, tau protein may undergo modifications, mainly through phosphorylation, that can result in the generation of aberrant aggregates that are toxic to neurons. This process occurs in a number of neurological disorders collectively known as tauopathies, the most commonly recognized of which is Alzheimer's disease. The purpose of this review is to define the role of tau protein under normal physiological conditions and to highlight the role of the protein in different tauopathies.
Collapse
Affiliation(s)
- Jesus Avila
- Centro de Biología Molecular "Severo Ochoa", Facultad de Ciencias, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
24
|
Zhang M, Coffino P. Repeat Sequence of Epstein-Barr Virus-encoded Nuclear Antigen 1 Protein Interrupts Proteasome Substrate Processing. J Biol Chem 2004; 279:8635-41. [PMID: 14688254 DOI: 10.1074/jbc.m310449200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Epstein-Barr virus thwarts immune surveillance through a Gly-Ala repeat (GAr) within the viral Epstein-Barr virus-encoded nuclear antigen 1 protein. The GAr inhibits proteasome processing, an early step in antigen peptide presentation, but the mechanism of proteasome inhibition has been unclear. By embedding a GAr within ornithine decarboxylase, a natural proteasome substrate that does not require ubiquitin conjugation, we now demonstrate inhibition in a purified system, excluding involvement of ubiquitin conjugation or of proteins extraneous to substrate and proteasome. We show further that the GAr acts as a stop-transfer signal in proteasome substrate processing, resulting in vivo in partial proteolysis that halts just short of the GAr. Similarly, introducing a GAr into green fluorescent protein destabilized by the ornithine decarboxylase degradation domain also stops the progress of proteolysis, leading to the accumulation of partial degradation products. We postulate that the ATP motor of the proteasome slips when it encounters the GAr, impeding further insertion and, in this way, halting degradation.
Collapse
Affiliation(s)
- Mingsheng Zhang
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
25
|
Abstract
Our body contains many different protease and proteolytic systems that are involved in the recycling of proteins into amino acids, and also in a multitude of regulatory events inside and outside cells. Proteases are prominent drug targets because of their well-defined chemistry and their implication in a large number of diseases, such as cancer, neurodegeneration, arteriosclerosis, inflammation and infection. Fluorescent reporter substrates can be used to directly probe the activities of proteases in their natural environment — that is, in cells and organisms. Conceptually different strategies have been used for this purpose depending on the location and the nature of the protease of interest. Fluorescent reporters for the ubiquitin–proteasome system have been generated by linking constitutively active degradation signals to green fluorescent protein (GFP). These GFP-based substrates can be used for functional analysis of the ubiquitin–proteasome system in cells and transgenic animals. A collection of different proteases is involved in degradation of small peptide fragments. This process can be followed in real time in living cells by confocal laser scanning microscopy after microinjection of internally quenched peptide substrates. Extracellular and lysosomal proteases have the advantage that they are accessible for membrane-impermeable reporter substrates. Near-infrared fluorescence (NIRF) substrates are quenched fluorescent peptides that, because of their near-infrared excitation, can be readily detected in living animals and used for in vivo monitoring of, for example, lysosomal cathepsins or surface matrix metalloproteinases. By combining specific pairs of fluorescent proteins (GFP and its variants with shifted excitation and emission spectra) in fusion proteins, fluorescence energy transfer (FRET) reporter substrates have been generated for initiator and effector caspases. A fluorescent intracellular reporter for human immunodeficiency virus (HIV-1) protease activity was constructed by fusing a protease precursor protein composed of HIV-1 protease and GFP. Cells will only survive and emit fluorescence when the toxic protease activity is sufficiently blocked by drugs. The diffusion rate of the endoplasmic reticulum-resident peptide transporter complex TAP correlates with activity and thus cytosolic peptide levels. By measuring the diffusion of TAP–GFP fusions with fluorescence recovery after photobleaching (FRAP), the kinetics of peptide generation can be followed in living cells.
Cells contain numerous proteases, which are found at many different locations. These proteases recognize an even larger number of different substrates and are involved in almost every process in the cell. Aberrations in proteolysis are linked to a plethora of diseases, such as cancer, inflammation, arteriosclerosis, neurodegeneration and infection. Because of their well-defined chemistry and key role in pathologies, proteases have been important targets for drug development. Recent progress in the development of fluorescent probes has opened up the possibility of visualizing protease activities in the natural environment of the cell. We will describe various strategies to follow protease activities in cells and organisms.
Collapse
Affiliation(s)
- Jacques Neefjes
- Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX The Netherlands
| | - Nico P. Dantuma
- Microbiology and Tumor Biology Center, Karolinska Institutet, Nobels väg 16, Stockholm, S-17177 Sweden
| |
Collapse
|
26
|
Heessen S, Dantuma NP, Tessarz P, Jellne M, Masucci MG. Inhibition of ubiquitin/proteasome-dependent proteolysis inSaccharomyces cerevisiaeby a Gly-Ala repeat. FEBS Lett 2003; 555:397-404. [PMID: 14644450 DOI: 10.1016/s0014-5793(03)01296-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The glycine-alanine (GA) repeat of the Epstein-Barr virus nuclear antigen-1 inhibits in cis ubiquitin-dependent proteolysis in mammalian cells through a yet unknown mechanism. In the present study we demonstrate that the GA repeat targets an evolutionarily conserved step in proteolysis since it can prevent the degradation of proteasomal substrates in the yeast Saccharomyces cerevisiae. Insertion of yeast codon-optimised recombinant GA (rGA) repeats of different length in green fluorescent protein reporters harbouring N-end rule or ubiquitin fusion degradation signals resulted in efficient stabilisation of these substrates. Protection was also achieved in rpn10delta yeast suggesting that this polyubiquitin binding protein is not required for the rGA effect. The conserved effect of the GA repeat in yeast opens the possibility for the use of genetic screens to unravel its mode of action.
Collapse
Affiliation(s)
- Stijn Heessen
- Microbiology and Tumor Biology Center, Karolinska Institutet, Box 280, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
27
|
Abstract
Controlled proteolysis of regulatory or aberrant proteins by the ubiquitin/proteasome system is indispensable for cell viability. Conformational diseases such as Alzheimer's, Parkinson's and Huntington's disease are characterised by the accumulation of misfolded or aggregation-prone proteins. Since these proteins are typical substrates of the ubiquitin/proteasome system, it is not surprising that various models propose impairment of this system as a contributing factor to the pathology of conformational disorders. The complex nature of the ubiquitin/proteasome system and its universal role in cell physiology however turns evaluation of these attractive hypotheses into a major challenge. Several reporter substrates for the ubiquitin/proteasome system have recently been developed to facilitate functional studies of the system in living cells. In this review, we will discuss these new tools as well as the proteins associated with conformational disease that have been studied with these reporters.
Collapse
Affiliation(s)
- Kristina Lindsten
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|