1
|
Nagar H, Kim S, Lee I, Choi SJ, Piao S, Jeon BH, Shong M, Kim CS. CRIF1 deficiency suppresses endothelial cell migration via upregulation of RhoGDI2. PLoS One 2021; 16:e0256646. [PMID: 34437633 PMCID: PMC8389428 DOI: 10.1371/journal.pone.0256646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/11/2021] [Indexed: 11/22/2022] Open
Abstract
Rho GDP-dissociation inhibitor (RhoGDI), a downregulator of Rho family GTPases, prevents nucleotide exchange and membrane association. It is responsible for the activation of Rho GTPases, which regulate a variety of cellular processes, such as migration. Although RhoGDI2 has been identified as a tumor suppressor gene involved in cellular migration and invasion, little is known about its role in vascular endothelial cell (EC) migration. CR6-interacting factor 1 (CRIF1) is a CR6/GADD45-interacting protein with important mitochondrial functions and regulation of cell growth. We examined the expression of RhoGDI2 in CRIF1-deficient human umbilical vein endothelial cells (HUVECs) and its role in cell migration. Expression of RhoGDI2 was found to be considerably higher in CRIF1-deficient HUVECs along with suppression of cell migration. Moreover, the phosphorylation levels of Akt and CREB were decreased in CRIF1-silenced cells. The Akt-CREB signaling pathway was implicated in the changes in endothelial cell migration caused by CRIF1 downregulation. In addition to RhoGDI2, we identified another factor that promotes migration and invasion of ECs. Adrenomedullin2 (ADM2) is an autocrine/paracrine factor that regulates vascular tone and other vascular functions. Endogenous ADM2 levels were elevated in CRIF1-silenced HUVECs with no effect on cell migration. However, siRNA-mediated depletion of RhoGDI2 or exogenous ADM2 administration significantly restored cell migration via the Akt-CREB signaling pathway. In conclusion, RhoGDI2 and ADM2 play important roles in the migration of CRIF1-deficient endothelial cells.
Collapse
Affiliation(s)
- Harsha Nagar
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seonhee Kim
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21 Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ikjun Lee
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of BK21 Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Su-Jeong Choi
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Shuyu Piao
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology and Medical Science, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
2
|
Cui N, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Tanaka M, Tanaka M, Wei Y, Kakihara S, Zhao Y, Aruga K, Kawagishi H, Nakada T, Yamada M, Shindo T. Adrenomedullin-RAMP2 and -RAMP3 Systems Regulate Cardiac Homeostasis during Cardiovascular Stress. Endocrinology 2021; 162:6129198. [PMID: 33545715 DOI: 10.1210/endocr/bqab001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Indexed: 12/26/2022]
Abstract
Adrenomedullin (AM) is a peptide hormone with multiple physiological functions, which are regulated by its receptor activity-modifying proteins, RAMP2 and RAMP3. We previously reported that AM or RAMP2 knockout (KO) (AM-/-, RAMP2-/-) is embryonically lethal in mice, whereas RAMP3-/- mice are apparently normal. AM, RAMP2, and RAMP3 are all highly expressed in the heart; however, their functions there are not fully understood. Here, we analyzed the pathophysiological functions of the AM-RAMP2 and AM-RAMP3 systems in hearts subjected to cardiovascular stress. Cardiomyocyte-specific RAMP2-/- (C-RAMP2-/-) and RAMP3-/- showed no apparent heart failure at base line. After 1 week of transverse aortic constriction (TAC), however, C-RAMP2-/- exhibited significant cardiac hypertrophy, decreased ejection fraction, and increased fibrosis compared with wild-type mice. Both dP/dtmax and dP/dtmin were significantly reduced in C-RAMP2-/-, indicating reduced ventricular contractility and relaxation. Exposing C-RAMP2-/- cardiomyocytes to isoproterenol enhanced their hypertrophy and oxidative stress compared with wild-type cells. C-RAMP2-/- cardiomyocytes also contained fewer viable mitochondria and showed reduced mitochondrial membrane potential and respiratory capacity. RAMP3-/- also showed reduced systolic function and enhanced fibrosis after TAC, but those only became apparent after 4 weeks. A reduction in cardiac lymphatic vessels was the characteristic feature in RAMP3-/-. These observations indicate the AM-RAMP2 system is necessary for early adaptation to cardiovascular stress through regulation of cardiac mitochondria. AM-RAMP3 is necessary for later adaptation through regulation of lymphatic vessels. The AM-RAMP2 and AM-RAMP3 systems thus play separate critical roles in the maintenance of cardiovascular homeostasis against cardiovascular stress.
Collapse
Affiliation(s)
- Nanqi Cui
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Megumu Tanaka
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masaaki Tanaka
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yangxuan Wei
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shinji Kakihara
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yunlu Zhao
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kohsuke Aruga
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyuki Kawagishi
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Biotechnology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Tsutomu Nakada
- Department of Instrumental Analysis, Research Center for Supports to Advanced Science, Shinshu University, Matsumoto, Japan
| | - Mitsuhiko Yamada
- Department of Molecular Pharmacology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Japan
- Department of Life Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| |
Collapse
|
3
|
Natural and synthetic peptides in the cardiovascular diseases: An update on diagnostic and therapeutic potentials. Arch Biochem Biophys 2018; 662:15-32. [PMID: 30481494 DOI: 10.1016/j.abb.2018.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Several peptides play an important role in physiological and pathological conditions into the cardiovascular system. In addition to well-known vasoactive agents such as angiotensin II, endothelin, serotonin or natriuretic peptides, the vasoconstrictor Urotensin-II (Uro-II) and the vasodilators Urocortins (UCNs) and Adrenomedullin (AM) have been implicated in the control of vascular tone and blood pressure as well as in cardiovascular disease states including congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Therefore these peptides, together with their receptors, become important therapeutic targets in cardiovascular diseases (CVDs). Circulating levels of these agents in the blood are markedly modified in patients with specific CVDs compared with those in healthy patients, becoming also potential biomarkers for these pathologies. This review will provide an overview of current knowledge about the physiological roles of Uro-II, UCN and AM in the cardiovascular system and their implications in cardiovascular diseases. It will further focus on the structural modifications carried out on original peptide sequences in the search of analogues with improved physiochemical properties as well as in the delivery methods. Finally, we have overviewed the possible application of these peptides and/or their precursors as biomarkers of CVDs.
Collapse
|
4
|
Adrenomedullin promotes the growth of pancreatic ductal adenocarcinoma through recruitment of myelomonocytic cells. Oncotarget 2018; 7:55043-55056. [PMID: 27391260 PMCID: PMC5342400 DOI: 10.18632/oncotarget.10393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/17/2016] [Indexed: 12/20/2022] Open
Abstract
Stromal infiltration of myelomonocytic cells is a hallmark of pancreatic ductal adenocarcinoma (PDAC) and is related to a poor prognosis. However, the detailed mechanism for the recruitment of myelomonocytic cells to pancreatic cancer tissue remains unclear. In the present study, pancreatic cancer cells secreted high levels of adrenomedullin (ADM), and CD11b+ myelomonocytic cells expressed all components of ADM receptors, including GPR182, CRLR, RAMP2 and RAMP3. ADM enhanced the migration and invasion of myelomonocytic cells through activation of the MAPK, PI3K/Akt and eNOS signaling pathways, as well as the expression and activity of MMP-2. ADM also promoted the adhesion and trans-endothelial migration of myelomonocytic cells by increasing expression of VCAM-1 and ICAM-1 in endothelial cells. In addition, ADM induced macrophages and myeloid-derived suppressor cells (MDSCs) to express pro-tumor phenotypes. ADM knockdown in tumor-bearing mice or administration of AMA, an ADM antagonist, significantly inhibited the recruitment of myelomonocytic cells and tumor angiogenesis. Moreover, in vivo depletion of myelomonocytic cells using clodronate liposomes suppressed the progression of PDAC. These results reveal a novel function of ADM in PDAC, and suggest ADM is a promising target in the treatment of PDAC.
Collapse
|
5
|
Menon RT, Shrestha AK, Shivanna B. Hyperoxia exposure disrupts adrenomedullin signaling in newborn mice: Implications for lung development in premature infants. Biochem Biophys Res Commun 2017; 487:666-671. [PMID: 28438602 DOI: 10.1016/j.bbrc.2017.04.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 11/25/2022]
Abstract
Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD), a chronic lung disease of human infants that is characterized by disrupted lung angiogenesis. Adrenomedullin (AM) is a multifunctional peptide with angiogenic and vasoprotective properties. AM signals via its cognate receptors, calcitonin receptor-like receptor (Calcrl) and receptor activity-modifying protein 2 (RAMP2). Whether hyperoxia affects the pulmonary AM signaling pathway in neonatal mice and whether AM promotes lung angiogenesis in human infants are unknown. Therefore, we tested the following hypotheses: (1) hyperoxia exposure will disrupt AM signaling during the lung development period in neonatal mice; and (2) AM will promote angiogenesis in fetal human pulmonary artery endothelial cells (HPAECs) via extracellular signal-regulated kinases (ERK) 1/2 activation. We initially determined AM, Calcrl, and RAMP2 mRNA levels in mouse lungs on postnatal days (PND) 3, 7, 14, and 28. Next we determined the mRNA expression of these genes in neonatal mice exposed to hyperoxia (70% O2) for up to 14 d. Finally, using HPAECs, we evaluated if AM activates ERK1/2 and promotes tubule formation and cell migration. Lung AM, Calcrl, and RAMP2 mRNA expression increased from PND 3 and peaked at PND 14, a time period during which lung development occurs in mice. Interestingly, hyperoxia exposure blunted this peak expression in neonatal mice. In HPAECs, AM activated ERK1/2 and promoted tubule formation and cell migration. These findings support our hypotheses, emphasizing that AM signaling axis is a potential therapeutic target for human infants with BPD.
Collapse
Affiliation(s)
- Renuka T Menon
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, United States
| | - Amrit Kumar Shrestha
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, United States
| | - Binoy Shivanna
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
6
|
Wang MM, Xue M, Miao Y, Kou N, Xu YG, Yang L, Zhang Y, Shi DZ. Panax quinquefolium saponin combined with dual antiplatelet drugs inhibits platelet adhesion to injured HUVECs via PI3K/AKT and COX pathways. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:10-19. [PMID: 27401285 DOI: 10.1016/j.jep.2016.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax quinquefolium saponin (PQS) is the active component extracted from traditional Chinese medicine Panax quinquefolius L. and has been widely used as a supplement to dual antiplatelet drugs (DA) for treatment of coronary artery disease (CAD) for two decades; however, the efficacy of PQS combined with DA against platelet adhesion to endothelial cells (ECs), an essential step in thrombosis, remains unclear. AIM OF THE STUDY To compare PQS combined with DA and DA alone in inhibiting platelet adhesion to injured human umbilical vein endothelial cells (HUVECs) and to explore the possible mechanisms focusing on PI3K/AKT, COX-2/6-keto-PGF1α, and COX-1/TXB2 pathways. METHODS HUVECs injured by oxidized low-density lipoprotein (ox-LDL) were randomly allocated into control, model, DA, PQS+DA (P+DA), LY294002 (a PI3K inhibitor)+DA (L+DA), and LY294002+PQS+DA (LP+DA) groups. HUVEC apoptosis, platelet adhesion to injured HUVECs, and platelet CD62p expression were assayed by fluorescence activated cell sorting (FACS). The concentrations of 6-keto-PGF1α and TXB2 in the supernatant were measured by radioimmunoassay. Protein expression of phosphorylated-PI3K, PI3K, phosphorylated-AKT, AKT, COX-1, and COX-2 in both platelets and HUVECs was evaluated by western blot. RESULTS Compared to DA alone, PQS combined with DA reduced platelet adhesion to HUVECs and HUVEC apoptosis more potently, increased the concentration of supernatant 6-keto-PGF1α and up-regulated phospho-AKT protein in HUVECs. LY294002 mitigated the effects of PQS on HUVEC apoptosis and platelet adhesion. CONCLUSIONS These findings show that PQS as a powerful supplement to DA, attenuated HUVEC apoptosis and improved the DA-mediated reduction of platelet adhesion to injured HUVECs and the underlying mechanisms may be associated with PI3K/AKT and COX pathways in HUVECs and platelets. PQS might provide a new complementary approach to improve the prognosis of thrombotic diseases in future.
Collapse
Affiliation(s)
- Ming-Ming Wang
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mei Xue
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| | - Yu Miao
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Na Kou
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yong-Gang Xu
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lin Yang
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ying Zhang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Da-Zhuo Shi
- Center for Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
7
|
García-Ponce A, Chánez Paredes S, Castro Ochoa KF, Schnoor M. Regulation of endothelial and epithelial barrier functions by peptide hormones of the adrenomedullin family. Tissue Barriers 2016; 4:e1228439. [PMID: 28123925 DOI: 10.1080/21688370.2016.1228439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 01/16/2023] Open
Abstract
The correct regulation of tissue barriers is of utmost importance for health. Barrier dysfunction accompanies inflammatory disorders and, if not controlled properly, can contribute to the development of chronic diseases. Tissue barriers are formed by monolayers of epithelial cells that separate organs from their environment, and endothelial cells that cover the vasculature, thus separating the blood stream from underlying tissues. Cells within the monolayers are connected by intercellular junctions that are linked by adaptor molecules to the cytoskeleton, and the regulation of these interactions is critical for the maintenance of tissue barriers. Many endogenous and exogenous molecules are known to regulate barrier functions in both ways. Proinflammatory cytokines weaken the barrier, whereas anti-inflammatory mediators stabilize barriers. Adrenomedullin (ADM) and intermedin (IMD) are endogenous peptide hormones of the same family that are produced and secreted by many cell types during physiologic and pathologic conditions. They activate certain G-protein-coupled receptor complexes to regulate many cellular processes such as cytokine production, actin dynamics and junction stability. In this review, we summarize current knowledge about the barrier-stabilizing effects of ADM and IMD in health and disease.
Collapse
Affiliation(s)
- Alexander García-Ponce
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Sandra Chánez Paredes
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Karla Fabiola Castro Ochoa
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) , Mexico City, Mexico
| |
Collapse
|
8
|
Khalfaoui-Bendriss G, Dussault N, Fernandez-Sauze S, Berenguer-Daizé C, Sigaud R, Delfino C, Cayol M, Metellus P, Chinot O, Mabrouk K, Martin PM, Ouafik L. Adrenomedullin blockade induces regression of tumor neovessels through interference with vascular endothelial-cadherin signalling. Oncotarget 2016; 6:7536-53. [PMID: 25924235 PMCID: PMC4480698 DOI: 10.18632/oncotarget.3167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/19/2015] [Indexed: 11/25/2022] Open
Abstract
The cellular and molecular mechanisms by which adrenomedullin (AM) blockade suppresses tumor neovessels are not well defined. Herein, we show that AM blockade using anti-AM and anti-AM receptors antibodies targets vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and induces regression of unstable nascent tumor neovessels. The underlying mechanism involved, and shown in vitro and in vivo in mice, is the disruption of the molecular engagement of the endothelial cell-specific junctional molecules vascular endothelial-cadherin (VE-cadherin)/β-catenin complex. AM blockade increases endothelial cell permeability by inhibiting cell-cell contacts predominantly through disruption of VE-cadherin/β-catenin/Akt signalling pathway, thereby leading to vascular collapse and regression of tumor neovessels. At a molecular level, we show that AM blockade induces tyrosine phosphorylation of VE-cadherin at a critical tyrosine, Tyr731, which is sufficient to prevent the binding of β-catenin to the cytoplasmic tail of VE-cadherin leading to the inhibition of cell barrier function. Furthermore, we demonstrate activation of Src kinase by phosphorylation on Tyr416, supporting a role of Src to phosphorylate Tyr731-VE-cadherin. In this model, Src inhibition impairs αAM and αAMR-induced Tyr731-VE-cadherin phosphorylation in a dose-dependent manner, indicating that Tyr731-VE-cadherin phosphorylation state is dependent on Src activation. We found that AM blockade induces β-catenin phosphorylation on Ser33/Ser37/Thr41 sites in both ECs and VSMCs both in vitro and in vivo in mice. These data suggest that AM blockade selectively induces regression of unstable tumor neovessels, through disruption of VE-cadherin signalling. Targeting AM system may present a novel therapeutic target to selectively disrupt assembly and induce regression of nascent tumor neovessels, without affecting normal stabilized vasculature.
Collapse
Affiliation(s)
- Ghizlane Khalfaoui-Bendriss
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Nadège Dussault
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Samantha Fernandez-Sauze
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Caroline Berenguer-Daizé
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Romain Sigaud
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Christine Delfino
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Mylène Cayol
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Philippe Metellus
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Olivier Chinot
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France
| | - Kamel Mabrouk
- Aix-Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire (ICR) Marseille, France
| | - Pierre-Marie Martin
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France.,AP-HM, CHU Nord, Service de Transfert d'Oncologie Biologique, Marseille, France
| | - L'Houcine Ouafik
- Aix Marseille Université, CRO2, UMR_S 911, Faculté de Médecine, Marseille, France.,Inserm, U911-CRO2, Marseille, France.,AP-HM, CHU Nord, Service de Transfert d'Oncologie Biologique, Marseille, France
| |
Collapse
|
9
|
Adrenomedullin: A potential therapeutic target for retinochoroidal disease. Prog Retin Eye Res 2016; 52:112-29. [DOI: 10.1016/j.preteyeres.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 11/22/2022]
|
10
|
The Renal Protective Effect of Jiangya Tongluo Formula, through Regulation of Adrenomedullin and Angiotensin II, in Rats with Hypertensive Nephrosclerosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:428106. [PMID: 26557147 PMCID: PMC4628676 DOI: 10.1155/2015/428106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/23/2015] [Accepted: 03/12/2015] [Indexed: 01/13/2023]
Abstract
We investigated the effect of Jiangya Tongluo (JYTL) formula on renal function in rats with hypertensive nephrosclerosis. A total of 21 spontaneously hypertensive rats (SHRs) were randomized into 3 groups: valsartan (10 mg/kg/d valsartan), JYTL (14.2 g/kg/d JYTL), and a model group (5 mL/kg/d distilled water); Wistar Kyoto rats comprised the control group (n = 7, 5 mL/kg/d distilled water). Treatments were administered by gavage every day for 8 weeks. Blood pressure, 24-h urine protein, pathological changes in the kidney, serum creatinine, and blood urea nitrogen (BUN) levels were estimated. The contents of adrenomedullin (ADM) and angiotensin II (Ang II) in both the kidney and plasma were evaluated. JYTL lowered BP, 24-h urine protein, serum creatinine, and BUN. ADM content in kidneys increased and negatively correlated with BP, while Ang II decreased and negatively correlated with ADM, but there was no statistically significant difference of plasma ADM between the model and the treatment groups. Possibly, activated intrarenal renin-angiotensin system (RAS) plays an important role in hypertensive nephrosclerosis and the protective function of ADM via local paracrine. JYTL may upregulate endogenous ADM level in the kidneys and antagonize Ang II during vascular injury by dilating renal blood vessels.
Collapse
|
11
|
Kato J, Kitamura K. Bench-to-bedside pharmacology of adrenomedullin. Eur J Pharmacol 2015; 764:140-148. [PMID: 26144371 DOI: 10.1016/j.ejphar.2015.06.061] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 01/01/2023]
Abstract
The bioactive peptide adrenomedullin (AM) exerts pleiotropic actions in various organs and tissues. In the heart, AM has an inhibitory effect on ventricular remodeling, suppressing cardiomyocyte hypertrophy and the proliferation of cardiac fibroblasts. This pharmacological property was shown not only in rat models of acute myocardial infarction, but also clinically in patients with this cardiac disease. An originally characterized feature of AM was a potent vasodilatory effect, but this peptide was found to be important for vascular integrity and angiogenesis. AM-induced angiogenesis is involved in tumor growth, while AM inhibits apoptosis of some types of tumor cell. A unique pharmacological property is anti-inflammatory activity, which has been characterized in sepsis and inflammatory bowel diseases; thus, there is an ongoing clinical trial to test the efficacy of AM for patients with intractable ulcerative colitis. These activities are assumed to be mediated via the specific receptor formed by calcitonin receptor-like receptor and receptor activity-modifying protein 2 or 3, while some questions remain to be answered about the molecular mechanisms of this signal transduction system. Taking these findings together, AM is a bioactive peptide with pleiotropic effects, with potential as a therapeutic tool for a wide range of human diseases from myocardial infarction to malignant tumors or inflammatory bowel diseases.
Collapse
Affiliation(s)
- Johji Kato
- Frontier Science Research Center, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan.
| | - Kazuo Kitamura
- Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
12
|
Yamauchi A, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Igarashi K, Toriyama Y, Tanaka M, Liu T, Xian X, Imai A, Zhai L, Owa S, Arai T, Shindo T. Functional differentiation of RAMP2 and RAMP3 in their regulation of the vascular system. J Mol Cell Cardiol 2014; 77:73-85. [DOI: 10.1016/j.yjmcc.2014.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 01/08/2023]
|
13
|
Iesato Y, Toriyama Y, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Yoshizawa T, Koyama T, Uetake R, Yang L, Yamauchi A, Tanaka M, Igarashi K, Murata T, Shindo T. Adrenomedullin-RAMP2 system is crucially involved in retinal angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2380-90. [PMID: 23562442 DOI: 10.1016/j.ajpath.2013.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/23/2013] [Accepted: 02/04/2013] [Indexed: 01/19/2023]
Abstract
Adrenomedullin (ADM) is an endogenous peptide first identified as a strong vasodilating molecule. We previously showed that in mice, homozygous knockout of ADM (ADM(-/-)) or its receptor regulating protein, RAMP2 (RAMP2(-/-)), is embryonically lethal due to abnormal vascular development, thereby demonstrating the importance of ADM and its receptor signaling to vascular development. ADM expression in the retina is strongly induced by ischemia; however, its role in retinal pathophysiology remains unknown. Here, we analyzed oxygen-induced retinopathy (OIR) using heterozygous ADM and RAMP2 knockout mice models (ADM(+/-) or RAMP2(+/-), respectively). In addition, we analyzed the role of the ADM-RAMP2 system during earlier stages of retinal angiogenesis using an inducible endothelial cell-specific RAMP2 knockout mouse line (DI-E-RAMP2(-/-)). Finally, we assessed the ability of antibody-induced ADM blockade to control pathological retinal angiogenesis in OIR. In OIR, neovascular tufts, avascular zones, and hypoxic areas were all smaller in ADM(+/-) retinas compared with wild-type mice. ADM(+/-) retinas also exhibited reduced levels of VEGF and eNOS expression. DI-E-RAMP2(-/-) showed abnormal retinal vascular patterns in the early stages of development. However, ADM enhanced the proliferation and migration of retinal endothelial cells. Finally, we found intravitreal injection of anti-ADM antibody reduced pathological retinal angiogenesis. In conclusion, the ADM-RAMP2 system is crucially involved in retinal angiogenesis. ADM and its receptor system are potential therapeutic targets for controlling pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Yasuhiro Iesato
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Choudhery MS, Khan M, Mahmood R, Mehmood A, Khan SN, Riazuddin S. Bone marrow derived mesenchymal stem cells from aged mice have reduced wound healing, angiogenesis, proliferation and anti-apoptosis capabilities. Cell Biol Int 2012; 36:747-53. [PMID: 22352320 DOI: 10.1042/cbi20110183] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Decline in the function of stem cells with age, such as other cells of the body, results in an imbalance between loss and renewal. Increasing age of the donor thus diminishes the effectiveness of MSCs (mesenchymal stem cells) transplantation in age-related diseases. The clinical use of stem cell therapies needs autologous stem cell transplantation; it is essential therefore to study the repair ability and survivability of cells before transplantation. Bone marrow derived MSCs possess multi-lineage differentiation potential, but aging adversely affects their therapeutic efficacy. MSCs from young (2-3 months) and aged (23-24 months) GFP (green fluorescent protein)-expressing C57BL/6 mice were isolated and their regenerative potential was assessed in vitro. Real-time RT-PCR (reverse transcriptase-PCR) showed significantly higher expression of Sirt1 in MSCs isolated from young than older animals. Down-regulation of VEGF (vascular endothelial growth factor), SDF-1 (stromal-cell-derived factor 1), AKT (also known as protein kinase B) and up-regulation of p53, p21, Bax and p16 occurred in aged cells. Tube formation, wound healing and proliferative abilities of the young MSCs were better than the aged MSCs. The results suggest that age-related increased expression of apoptotic and senescent genes, with concomitant decrease in Sirt1 gene expression, inhibits to some extent stem cell functioning.
Collapse
Affiliation(s)
- Mahmood Saba Choudhery
- National Center of Excellence in Molecular Biology, 87 West Canal Bank Road, University of the Punjab, Lahore, Pakistan
| | | | | | | | | | | |
Collapse
|
15
|
Hagner S, Welz H, Kicic A, Alrifai M, Marsh LM, Sutanto EN, Ling KM, Stick SM, Müller B, Weissmann N, Renz H. Suppression of adrenomedullin contributes to vascular leakage and altered epithelial repair during asthma. Allergy 2012; 67:998-1006. [PMID: 22686590 DOI: 10.1111/j.1398-9995.2012.02851.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND The anti-inflammatory peptide, adrenomedullin (AM), and its cognate receptor are expressed in lung tissue, but its pathophysiological significance in airway inflammation is unknown. OBJECTIVES This study investigated whether allergen-induced airway inflammation involves an impaired local AM response. METHODS Airway AM expression was measured in acute and chronically sensitized mice following allergen inhalation and in airway epithelial cells of asthmatic and nonasthmatic patients. The effects of AM on experimental allergen-induced airway inflammation and of AM on lung epithelial repair in vitro were investigated. RESULTS Adrenomedullin mRNA levels were significantly (P < 0.05) reduced in acute ovalbumin (OVA)-sensitized mice after OVA challenge, by over 60% at 24 h and for up to 6 days. Similarly, reduced AM expression was observed in two models of chronic allergen-induced inflammation, OVA- and house dust mite-sensitized mice. The reduced AM expression was restricted to airway epithelial and endothelial cells, while AM expression in alveolar macrophages was unaltered. Intranasal AM completely attenuated the OVA-induced airway hyperresponsiveness and mucosal plasma leakage but had no effect on inflammatory cells or cytokines. The effects of inhaled AM were reversed by pre-inhalation of the putative AM receptor antagonist, AM ((22-52)) . AM mRNA levels were significantly (P < 0.05) lower in human asthmatic airway epithelial samples than in nonasthmatic controls. In vitro, AM dose-dependently (10(-11) -10(-7) M) accelerated experimental wound healing in human and mouse lung epithelial cell monolayers and stimulated epithelial cell migration. CONCLUSION Adrenomedullin suppression in T(H) 2-related inflammation is of pathophysiological significance and represents loss of a factor that maintains tissue integrity during inflammation.
Collapse
Affiliation(s)
- S. Hagner
- Institute of Laboratory Medicine; Medical Faculty - Philipps University of Marburg; Biomedical Research Center (BMFZ); Marburg; Germany
| | - H. Welz
- Institute of Laboratory Medicine; Medical Faculty - Philipps University of Marburg; Biomedical Research Center (BMFZ); Marburg; Germany
| | | | - M. Alrifai
- Institute of Laboratory Medicine; Medical Faculty - Philipps University of Marburg; Biomedical Research Center (BMFZ); Marburg; Germany
| | - L. M. Marsh
- Institute of Laboratory Medicine; Medical Faculty - Philipps University of Marburg; Biomedical Research Center (BMFZ); Marburg; Germany
| | | | - K.-M. Ling
- Telethon Institute for Child Health Research; Centre for Health Research; The University of Western Australia; Nedlands; WA; Australia
| | | | - B. Müller
- Laboratory of Respiratory Cell Biology; Department of Internal Medicine; Medical Faculty - Philipps University of Marburg; Marburg; Germany
| | - N. Weissmann
- University of Giessen Lung Center; Giessen; Germany
| | - H. Renz
- Institute of Laboratory Medicine; Medical Faculty - Philipps University of Marburg; Biomedical Research Center (BMFZ); Marburg; Germany
| |
Collapse
|
16
|
Karpinich NO, Hoopes SL, Kechele DO, Lenhart PM, Caron KM. Adrenomedullin Function in Vascular Endothelial Cells: Insights from Genetic Mouse Models. Curr Hypertens Rev 2011; 7:228-239. [PMID: 22582036 PMCID: PMC3349984 DOI: 10.2174/157340211799304761] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/18/2011] [Accepted: 08/21/2011] [Indexed: 01/29/2023]
Abstract
Adrenomedullin is a highly conserved peptide implicated in a variety of physiological processes ranging from pregnancy and embryonic development to tumor progression. This review highlights past and present studies that have contributed to our current appreciation of the important roles adrenomedullin plays in both normal and disease conditions. We provide a particular emphasis on the functions of adrenomedullin in vascular endothelial cells and how experimental approaches in genetic mouse models have helped to drive the field forward.
Collapse
Affiliation(s)
- Natalie O Karpinich
- Department of Cell and Molecular Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
17
|
Hipólito UV, Rocha JT, Martins-Oliveira A, Tirapelli DPC, Jacob-Ferreira A, Batalhão ME, Tanus-Santos JE, Carnio EC, Cunha TM, Queiroz RH, Tirapelli CR. Chronic ethanol consumption reduces adrenomedullin-induced relaxation in the isolated rat aorta. Alcohol 2011; 45:805-14. [PMID: 21824741 DOI: 10.1016/j.alcohol.2011.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/14/2011] [Accepted: 06/24/2011] [Indexed: 12/28/2022]
Abstract
Adrenomedullin (AM) is a peptide that displays cardiovascular protective activity. We investigated the effects of chronic ethanol consumption on vascular reactivity to AM and the expression of AM system components in the rat aorta. Male Wistar rats were treated with ethanol (20% vol/vol) for 6 weeks. Vascular reactivity experiments were performed in the isolated rat aorta. Metalloproteinase-2 (MMP-2) levels were determined by gelatin zymography. Nitrite and nitrate generation was measured by chemiluminescence. Protein and mRNA levels of pre-pro-AM, calcitonin receptor-like receptor (CRLR) and RAMP1, 2, and 3 (receptor-activity-modifying proteins) were assessed by western blot and quantitative real-time polymerase chain reaction, respectively. Ethanol intake reduced AM-induced relaxation in endothelium-intact rat aortas, whereas calcitonin gene-related peptide-, acetylcholine-, and sodium nitroprusside-induced relaxation were not affected by ethanol intake. N(G)-nitro-l-arginine-methyl-ester (l-NAME), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, and tetraethylammonium reduced AM-induced relaxation in aortic rings from both control and ethanol-treated rats. Ethanol consumption did not alter basal levels of nitrate and nitrite, nor did it affect the expression of MMP-2 in the rat aorta. Ethanol consumption increased mRNA levels of pre-pro-AM and RAMP1. Protein levels of AM, CRLR, and RAMP1, 2, and 3 were not affected by ethanol consumption. The major findings of the present study are that ethanol consumption reduces the vascular relaxation induced by AM and changes the mRNA expression of the components of the AM system in the vasculature. This response could be one of the mechanisms by which ethanol predisposes individuals to vascular dysfunction and hypertension.
Collapse
Affiliation(s)
- Ulisses V Hipólito
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sustained-release adrenomedullin ointment accelerates wound healing of pressure ulcers. ACTA ACUST UNITED AC 2011; 168:21-6. [DOI: 10.1016/j.regpep.2011.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 02/03/2011] [Accepted: 02/18/2011] [Indexed: 11/23/2022]
|
19
|
Hermansen SE, Lund T, Kalstad T, Ytrehus K, Myrmel T. Adrenomedullin augments the angiogenic potential of late outgrowth endothelial progenitor cells. Am J Physiol Cell Physiol 2011; 300:C783-91. [DOI: 10.1152/ajpcell.00044.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The therapeutic utility of endothelial progenitor cells (EPCs) in cardiovascular disease is potentially hampered by their low numbers in the circulation, impaired functional activity, and inhibitory factors in the recipient. These obstacles can possibly be circumvented by the use of proangiogenic cytokines and peptides. We sought to examine the effect of the endogenous vasoactive peptide adrenomedullin (AM) on the angiogenic potential of late outgrowth EPCs and their release of proangiogenic and proinflammatory cytokines/chemokines. Human peripheral blood mononuclear cells were cultured until the appearance of typical late outgrowth EPC colonies. The effect of AM on EPC proliferation was assessed using a colorimetric MTS proliferation assay while differentiation and formation of tubular structures in an EPC/fibroblast coculture or matrigel assay was used to assess the angiogenic potential of the cells. Finally, the release and mRNA transcripts of cytokines/chemokines were quantified in stimulated vs. nonstimulated EPCs using real-time PCR and a bead-based multiplex assay. The cultured EPCs possessed an endothelial phenotype and expressed the AM receptor (calcitonin receptor-like receptor/receptor activity modifying protein-2). AM stimulation induced proliferation of EPCs compared with controls ( P < 0.05). Furthermore, AM produced a 36% and 80% increase in the formation of tubular networks in the EPC/fibroblast coculture and matrigel assay, respectively ( P < 0.05). These effects seemed to be mediated through the phosphatidylinositol 3-kinase/Akt signaling pathway. AM did not seem to significantly influence the release or production of IL-6, IL-8, VEGF, stromal cell-derived factor 1, or the expression of CXCR-4 or VEGF receptor 2. In conclusion, adrenomedullin augmented the growth and angiogenic properties of late outgrowth EPCs, but did not influence their paracrine properties.
Collapse
Affiliation(s)
- Stig Eggen Hermansen
- Department of Clinical Medicine, The Health Faculty, University of Tromsø, Tromsø, Norway
- Department of Cardiothoracic and Vascular Surgery, University Hospital of North Norway, Tromsø, Norway
| | - Trine Lund
- Department of Medical Biology, The Health Faculty, University of Tromsø, Tromsø, Norway; and
| | - Trine Kalstad
- Department of Clinical Medicine, The Health Faculty, University of Tromsø, Tromsø, Norway
| | - Kirsti Ytrehus
- Department of Medical Biology, The Health Faculty, University of Tromsø, Tromsø, Norway; and
| | - Truls Myrmel
- Department of Clinical Medicine, The Health Faculty, University of Tromsø, Tromsø, Norway
- Department of Cardiothoracic and Vascular Surgery, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
20
|
MacManus CF, Campbell EL, Keely S, Burgess A, Kominsky DJ, Colgan SP. Anti-inflammatory actions of adrenomedullin through fine tuning of HIF stabilization. FASEB J 2011; 25:1856-64. [PMID: 21350119 DOI: 10.1096/fj.10-170316] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In intact mucosal tissues, epithelial cells are anatomically positioned in proximity to a number of subepithelial cell types, including endothelia. A number of recent studies have suggested that imbalances between energy supply and demand can result in "inflammatory hypoxia." Given these associations, we hypothesized that endothelial-derived, hypoxia-inducible mediators might influence epithelial function. Guided by cDNA microarray analysis of human microvascular endothelial cells (HMEC-1 line) subjected to hypoxia (pO(2) 20 torr, 8 h), we identified adrenomedullin (ADM) as a prominent hypoxia-inducible factor (HIF) that acts on epithelial cells through cell surface receptors. We assessed the functional ability for exogenous ADM to signal in human intestinal Caco2 cells in vitro by demonstrating a dose-dependent induction of Erk1/2phosphorylation. Further analysis revealed that ADM deneddylates cullin-2 (Cul2), whose action has been demonstrated to control the activity of HIF. Caco2 cells stably expressing a hypoxic response element (HRE)-driven luciferase promoter confirmed that ADM activates the HIF signaling pathway. Extensions of these studies revealed an increase in canonical HIF-1-dependent genes following stimulation with ADM. To define physiological relevance, we investigated the effect of ADM in a DSS model of murine colitis. Administration of ADM resulted in reduced inflammatory indices and less severe histological inflammation compared to vehicle controls. Analysis of tissue and serum cytokines showed a marked and significant inhibition of colitis-associated TNF-α, IL-1β, and KC. Analysis of circulating ADM demonstrated an increase in serum ADM in murine models of colitis. Taken together, these results identify ADM as an endogenously generated vascular mediator that functions as a mucosal protective factor through fine tuning of HIF activity.
Collapse
Affiliation(s)
- Christopher F MacManus
- Department of Medicine, University of Colorado Health Sciences Center, Aurora, Colorado, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kaimoto T, Yasuda O, Ohishi M, Mogi M, Takemura Y, Suhara T, Ogihara T, Fukuo K, Rakugi H. Nifedipine inhibits vascular smooth muscle cell dedifferentiation via downregulation of Akt signaling. Hypertension 2010; 56:247-52. [PMID: 20530298 DOI: 10.1161/hypertensionaha.110.149781] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calcium is an essential signaling molecule that controls vascular smooth muscle cell (VSMC) contraction, proliferation, and differentiation. Here, we show that the calcium antagonist nifedipine inhibits VSMC dedifferentiation in vitro and in vivo. Differentiated VSMCs cultured on laminin-coated dishes were transferred to laminin-free dishes to induce dedifferentiation. Induction of dedifferentiation resulted in the upregulation of nonmuscle myosin heavy chain expression, a marker of dedifferentiation, and the downregulation of smooth muscle myosin heavy chain expression, a marker of differentiation. Nifedipine significantly inhibited both the induction of these phenotypic changes and upregulation of Akt signaling in these cells. Administration of nifedipine at a low concentration that did not affect blood pressure could inhibit the increase in nonmuscle myosin heavy chain expression and decrease in smooth muscle myosin heavy chain expression in a rat balloon-injury model. Furthermore, nifedipine suppressed neointimal hyperplasia and upregulation of Akt signaling. However, phospho-Akt expression was not suppressed in the regenerating arterial endothelium of the nifedipine-treated rats. The inhibitory effect of the downregulation of Akt signaling by dominant-negative Akt on the induction of VSMC dedifferentiation in the intima was identical to that of nifedipine. In contrast, upregulation of Akt signaling by transfection of the cells with a constitutively active Akt reversed the nifedipine-induced inhibition of VSMC dedifferentiation. In conclusion, nifedipine inhibits VSMC dedifferentiation by suppressing Akt signaling, thereby preventing neointimal thickening.
Collapse
Affiliation(s)
- Taeko Kaimoto
- Department of Cardiovascular Clinical and Translational Research, Kumamoto University Hospital, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Homma K, Sone M, Taura D, Yamahara K, Suzuki Y, Takahashi K, Sonoyama T, Inuzuka M, Fukunaga Y, Tamura N, Itoh H, Yamanaka S, Nakao K. Sirt1 plays an important role in mediating greater functionality of human ES/iPS-derived vascular endothelial cells. Atherosclerosis 2010; 212:42-7. [PMID: 20488443 DOI: 10.1016/j.atherosclerosis.2010.04.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/18/2010] [Accepted: 04/14/2010] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We previously succeeded in inducing and isolating vascular endothelial cells (ECs) from both human embryonic stem (ES) and induced pluripotent stem (iPS) cells. Here, we compared the functionality of human adult ECs (HAECs), human ES-derived ECs (ESECs) and human iPS-derived ECs (iPSECs). METHODS AND RESULTS We compared the cell proliferative potential, potential for migration, and tolerance to oxidative stress. ESECs were significantly superior to HAECs in all of these cell functions. The cell functions of iPSECs were comparable to those of ESECSs and also superior to HAECs. We then analyzed the gene expressions of HAECs, ESECs and iPSECs, and observed that the expression level of Sirt1, a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase, is higher in ESECs and iPSECs than in HAECs. The inhibition of Sirt1 with a Sirt1-specific inhibitor and siRNA antagonized these differences between the three types of cells. CONCLUSIONS Sirt1 plays a key role in the high cellular function of ESECs and iPSECs. Although further in vivo investigations are required, this study initially demonstrated the potential of ESECs and iPSECs as the cell source for regenerative medicine, and also showed the potential of ES cells as a useful tool for elucidating the molecular mechanism of cell aging.
Collapse
Affiliation(s)
- Koichiro Homma
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Guidolin D, Albertin G, Sorato E, Oselladore B, Mascarin A, Ribatti D. Mathematical modeling of the capillary-like pattern generated by adrenomedullin-treated human vascular endothelial cells in vitro. Dev Dyn 2009; 238:1951-63. [PMID: 19618467 DOI: 10.1002/dvdy.22022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A recently proposed approach was used to model the self-organization into capillary-like structures of human vascular endothelial cells cultured on Matrigel. The model combines a Cellular Potts Model, considering cell adhesion, cytoskeletal rearrangement and chemotaxis, and a Partial Differential Equation model describing the release and the diffusion of a chemoattractant. The results were compared with the data from real in vitro experiments to establish the capability of the model to accurately reproduce both the spontaneous self-assembly of unstimulated cells and their self-organization in the presence of the pro-angiogenic factor adrenomedullin. The results showed that the model can accurately reproduce the self-assembly of unstimulated cells, but it failed in reproducing the adrenomedullin-induced self-organization of the cells. The extension of the model to include cell proliferation led to a good match between simulated and experimental patterns in both cases with predicted proliferation rates in agreement with the data of cell proliferation experiments.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Human Anatomy and Physiology, Section of Anatomy, University of Padova Medical School, Padova, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Wang SM, Yang WL. Circulating hormone adrenomedullin and its binding protein protect neural cells from hypoxia-induced apoptosis. Biochim Biophys Acta Gen Subj 2009; 1790:361-7. [PMID: 19306911 DOI: 10.1016/j.bbagen.2009.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/13/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
Abstract
BACKGROUND Brain ischemia is the underlying cause of neuron death during stroke and brain trauma. Neural cells exposed to ischemia can undergo apoptosis. Adrenomedullin (AM) in combination with its enhancing binding protein, AMBP-1, has been shown to reduce tissue damage in inflammation. METHODS To evaluate a beneficial effect of AM/AMBP-1 administration in brain ischemia, we employed an in vitro model of neuronal hypoxia using differentiated human neuroblastoma SH-SY5Y cells. RESULTS After exposure to 1% O(2) for 20 h, neural cells were injured with decreased ATP levels and increased LDH release. Pre-administration of AM/AMBP-1 significantly reduced hypoxia-induced cell injury. Moreover, AM/AMBP-1 treatment reduced the number of TUNEL-positive cells and activation of caspase-3, compared to cells exposed to hypoxia alone. AM/AMBP-1 prevented a reduction of cAMP levels and protein kinase A (PKA) activity in neural cells after hypoxia exposure. Correspondingly, an elevation of cAMP levels by forskolin protected neural cells from hypoxia-induced injury. Inhibition of PKA by KT5720 abolished the protective effect of AM/AMBP-1 on hypoxia-induced apoptosis. CONCLUSIONS AM/AMBP-1 elevates cAMP levels, followed by activating PKA, to protect neural cells from the injury caused by hypoxia. GENERAL SIGNIFICANCE AM/AMBP-1 may be used as therapeutic agents to prevent neuron damage from brain ischemia.
Collapse
Affiliation(s)
- Stephanie M Wang
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | |
Collapse
|
25
|
Guidolin D, Albertin G, Spinazzi R, Sorato E, Mascarin A, Cavallo D, Antonello M, Ribatti D. Adrenomedullin stimulates angiogenic response in cultured human vascular endothelial cells: involvement of the vascular endothelial growth factor receptor 2. Peptides 2008; 29:2013-23. [PMID: 18692535 DOI: 10.1016/j.peptides.2008.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/12/2008] [Accepted: 07/14/2008] [Indexed: 12/01/2022]
Abstract
In recent years, evidence has accumulated that many endogenous peptides play an important regulatory role in angiogenesis by modulating endothelial cell behavior. Adrenomedullin (AM), one such factor, was previously shown to exert a clearcut proangiogenic effect in vitro when tested on specialized human endothelial cells, such as HUVECs and immortalized endothelial cell lines. In the present study we used normal adult vascular endothelial cells isolated from human saphenous vein to analyze in vitro the role of AM, related to both early (increased cell proliferation) and late (differentiation and self-organization into capillary-like structures) angiogenic events and their relationship with the vascular endothelial growth factor (VEGF) signaling cascade. The results indicated that also in this endothelial cell phenotype AM promoted cell proliferation and differentiation into cord-like structures. These actions resulted specific and were mediated by the binding of AM to its AM1 (CRLR/RAMP2) receptor. Neither the administration of a VEGF receptor 2 (VEGFR-2) antagonist nor the downregulation of VEGF production by gene silencing were able to suppress the proangiogenic effect of AM. However, when the experiments were performed in the presence of SU5416 (a selective inhibitor of the VEGFR-2 receptor at the level of the intra-cellular tyrosine kinase domain) the proangiogenic effect of AM was abolished. This result suggests that in vascular endothelial cells the binding of AM to its AM1 receptor could trigger a transactivation of the VEGFR-2 receptor, leading to a signaling cascade inducing proangiogenic events in the cells.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Human Anatomy and Physiology (Anatomy Section), University of Padova Medical School, Via Gabelli, 65, I-35121 Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jin D, Harada K, Ohnishi S, Yamahara K, Kangawa K, Nagaya N. Adrenomedullin induces lymphangiogenesis and ameliorates secondary lymphoedema. Cardiovasc Res 2008; 80:339-45. [PMID: 18708640 DOI: 10.1093/cvr/cvn228] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Adrenomedullin (AM) is a multifunctional peptide hormone that plays a significant role in vasodilation and angiogenesis. Lymphoedema is a common but refractory disorder that is difficult to be treated with conventional therapy. We therefore investigated whether AM promotes lymphangiogenesis and improves lymphoedema. METHODS AND RESULTS The effects of AM on lymphatic endothelial cells (LEC) were investigated. AM promoted proliferation, migration, and network formation of cultured human lymphatic microvascular endothelial cells (HLMVEC). AM increased intracellular cyclic adenosine monophosphate (cAMP) level in HLMVEC. The cell proliferation induced by AM was inhibited by a cAMP antagonist and mitogen-activated protein kinase kinase (MEK) inhibitors. Phosphorylated extracellular signal-regulated kinase (ERK) in HLMVEC was increased by AM. Continuous administration of AM (0.05 microg/kg/min) to BALB/c mice with tail lymphoedema resulted in a decrease in lymphoedema thickness. AM treatment increased the number of lymphatic vessels and blood vessels in the injury site. CONCLUSION AM promoted LEC proliferation at least in part through the cAMP/MEK/ERK pathway, and infusion of AM induced lymphangiogenesis and improved lymphoedema in mice.
Collapse
Affiliation(s)
- Donghao Jin
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Jackson LN, Larson SD, Silva SR, Rychahou PG, Chen LA, Qiu S, Rajaraman S, Evers BM. PI3K/Akt activation is critical for early hepatic regeneration after partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1401-10. [PMID: 18388186 PMCID: PMC2427188 DOI: 10.1152/ajpgi.00062.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic resection is associated with rapid proliferation and regeneration of the remnant liver. Phosphatidylinositol 3-kinase (PI3K), composed of a p85alpha regulatory and a p110alpha catalytic subunit, participates in multiple cellular processes, including cell growth and survival; however, the role of PI3K in liver regeneration has not been clearly delineated. In this study, we used the potent PI3K inhibitor wortmannin and small interfering RNA (siRNA) targeting the p85alpha and p110alpha subunits to determine whether total or selective PI3K inhibition would abrogate the proliferative response of the liver after partial hepatectomy in mice. Hepatic resection is associated with an induction in PI3K activity; total PI3K blockade with wortmannin and selective inhibition of p85alpha or p110alpha with siRNA resulted in a significant decrease in hepatocyte proliferation, especially at the earliest time points. Fewer macrophages and Kupffer cells were present in the regenerating liver of mice treated with wortmannin or siRNA to p85alpha or p110alpha, as reflected by a paucity of F4/80-positive cells. Additionally, PI3K inhibition led to an aberrant architecture in the regenerating hepatocytes characterized by vacuolization, lipid deposition, and glycogen accumulation; these changes were not noted in the sham livers. Our data demonstrate that PI3K/Akt pathway activation plays a critical role in the early regenerative response of the liver after resection; inhibition of this pathway markedly abrogates the normal hepatic regenerative response, most likely by inhibiting macrophage infiltration and cytokine elaboration and thus hepatocyte priming for replication.
Collapse
Affiliation(s)
- Lindsey N. Jackson
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | - Shawn D. Larson
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | | | - Piotr G. Rychahou
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | - L. Andy Chen
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | - Suimin Qiu
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - Srinivasan Rajaraman
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas
| | - B. Mark Evers
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas, Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
28
|
Geambasu A, Krukoff TL. Adrenomedullin acts in the lateral parabrachial nucleus to increase arterial blood pressure through mechanisms mediated by glutamate and nitric oxide. Am J Physiol Regul Integr Comp Physiol 2008; 295:R38-44. [PMID: 18495835 DOI: 10.1152/ajpregu.00172.2008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenomedullin (ADM) acts in a site-specific manner within autonomic centers of the brain to modulate mean arterial pressure (MAP). To determine the role of ADM in the pontine autonomic center, the lateral parabrachial nucleus (LPBN), we used urethane-anesthetized adult Sprague-Dawley male rats to test the hypothesis that ADM increases MAP at this site through glutamate- and nitric oxide (NO)-dependent mechanisms. ADM microinjected into the LPBN increased MAP in a dose-dependent manner. The pressor effect of ADM (0.01 pmol) had a peak value of 11.9 +/- 1.9 mmHg at 2 min and lasted for 7 min. We demonstrated that ADM's effect is receptor mediated by blocking the effect with the ADM receptor antagonist, ADM22-52. We showed that glutamate mediates ADM's pressor response, as this response was blocked using coinjections of ADM with dizolcipine hydrogen maleate or 6-cyano-7-nitroquinoxaline-2,3-dione, N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptor antagonists, respectively. We tested the roles of NO with coinjections of ADM with either N5-(1-iminoethyl)-L-ornithine or 7-nitroindazole monosodium salt, nonspecific and neuronal NO synthase (NOS) inhibitors, respectively; both inhibitors blocked ADM's pressor effect. Finally, we studied the role of calcium influx in ADM's pressor effect, as intracellular calcium is important in both glutamate and NO neurotransmission. ADM's effect was blocked when nifedipine, an L-type calcium channel blocker, was coinjected with ADM into the LPBN. This study is the first to show that ADM acts in the LPBN to increase MAP through mechanisms dependent on activation of ionotropic glutamate receptors, neuronal and endothelial NOS-mediated NO synthesis, and L-type calcium channel activation.
Collapse
Affiliation(s)
- Adrian Geambasu
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
29
|
Fritz-Six KL, Dunworth WP, Li M, Caron KM. Adrenomedullin signaling is necessary for murine lymphatic vascular development. J Clin Invest 2008; 118:40-50. [PMID: 18097475 DOI: 10.1172/jci33302] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 10/17/2007] [Indexed: 11/17/2022] Open
Abstract
The lymphatic vascular system mediates fluid homeostasis, immune defense, and tumor metastasis. Only a handful of genes are known to affect the development of the lymphatic vasculature, and even fewer represent therapeutic targets for lymphatic diseases. Adrenomedullin (AM) is a multifunctional peptide vasodilator that transduces its effects through the calcitonin receptor-like receptor (calcrl) when the receptor is associated with a receptor activity-modifying protein (RAMP2). Here we report on the involvement of these genes in lymphangiogenesis. AM-, calcrl-, or RAMP2-null mice died mid-gestation after development of interstitial lymphedema. This conserved phenotype provided in vivo evidence that these components were required for AM signaling during embryogenesis. A conditional knockout line with loss of calcrl in endothelial cells confirmed an essential role for AM signaling in vascular development. Loss of AM signaling resulted in abnormal jugular lymphatic vessels due to reduction in lymphatic endothelial cell proliferation. Furthermore, AM caused enhanced activation of ERK signaling in human lymphatic versus blood endothelial cells, likely due to induction of CALCRL gene expression by the lymphatic transcriptional regulator Prox1. Collectively, our studies identify a class of genes involved in lymphangiogenesis that represent a pharmacologically tractable system for the treatment of lymphedema or inhibition of tumor metastasis.
Collapse
Affiliation(s)
- Kimberly L Fritz-Six
- Department of Cell and Molecular Physiology, The University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
30
|
Zhang Y, Li Y, Shibahara S, Takahashi K. Synergistic activation of the human adrenomedullin gene promoter by Sp1 and AP-2alpha. Peptides 2008; 29:465-72. [PMID: 17719138 DOI: 10.1016/j.peptides.2007.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 10/23/2022]
Abstract
Adrenomedullin (AM) is a potent vasodilator peptide, which is ubiquitously expressed and has various biological actions, such as proliferative action and anti-oxidative stress action. AM expression is induced by various stresses, such as hypoxia and inflammatory cytokines, and during cell differentiation. The human AM gene promoter region (-70/-29) contains binding sites for stimulatory protein 1 (Sp1) and activator protein-2alpha (AP-2alpha), and has been shown to be important for the AM gene expression during cell differentiation to macrophages or adipocytes. We here show that Sp1 and AP-2alpha synergistically activate the AM gene promoter. Co-transfection of the reporter plasmid containing the AM promoter region (-103/-29) with Sp1 and AP-2alpha expression plasmids showed that Sp1 and AP-2alpha synergistically increased the promoter activity in HeLa cells. Sp1 or AP-2alpha alone caused only small increases in the promoter activity. EMSA showed that Sp1 bound to the promoter region (-70/-29), whereas AP-2alpha bound to a more upstream promoter region (-103/-71). Thus, the synergistic activation of the human AM gene promoter by Sp1 and AP-2alpha may be mediated by the binding of Sp1 to the promoter region (-70/-29) and the interaction with AP-2alpha, which binds to the promoter region (-103/-71).
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | | | | | | |
Collapse
|
31
|
Miyashita K, Itoh H, Nakao K. The anti-inflammatory and vasculo-neuro-regenerative roles of adrenomedullin in ischemic brain. Inflamm Regen 2008. [DOI: 10.2492/inflammregen.28.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
32
|
Horio T, Kawano Y. Bio-Molecular Markers for Cardiovascular Disease: Significance of Natriuretic Peptides and Adrenomedullin. Korean Circ J 2008. [DOI: 10.4070/kcj.2008.38.10.507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Takeshi Horio
- Division of Hypertension and Nephrology, Department of Medicine, National Cardiovascular Center, Osaka, Japan
| | - Yuhei Kawano
- Division of Hypertension and Nephrology, Department of Medicine, National Cardiovascular Center, Osaka, Japan
| |
Collapse
|
33
|
Sone M, Itoh H, Yamahara K, Yamashita JK, Yurugi-Kobayashi T, Nonoguchi A, Suzuki Y, Chao TH, Sawada N, Fukunaga Y, Miyashita K, Park K, Oyamada N, Sawada N, Taura D, Tamura N, Kondo Y, Nito S, Suemori H, Nakatsuji N, Nishikawa SI, Nakao K. Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration. Arterioscler Thromb Vasc Biol 2007; 27:2127-34. [PMID: 17872458 DOI: 10.1161/atvbaha.107.143149] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We demonstrated previously that mouse embryonic stem (ES) cell-derived vascular endothelial growth factor receptor-2 (VEGF-R2)-positive cells can differentiate into both vascular endothelial cells and mural cells. This time, we investigated kinetics of differentiation of human ES cells to vascular cells and examined their potential as a source for vascular regeneration. METHODS AND RESULTS Unlike mouse ES cells, undifferentiated human ES cells already expressed VEGF-R2, but after differentiation, a VEGF-R2-positive but tumor rejection antigen 1-60 (TRA1-60)-negative population emerged. These VEGF-R2-positive but tumor rejection antigen 1-60-negative cells were also positive for platelet-derived growth factor receptor alpha and beta chains and could be effectively differentiated into both VE-cadherin+ endothelial cell and alpha-smooth muscle actin+ mural cell. VE-cadherin+ cells, which were also CD34+ and VEGF-R2+ and thought to be endothelial cells in the early differentiation stage, could be expanded while maintaining their maturity. Their transplantation to the hindlimb ischemia model of immunodeficient mice contributed to the construction of new blood vessels and improved blood flow. CONCLUSIONS We could identify the differentiation process from human ES cells to vascular cell components and demonstrate that expansion and transplantation of vascular cells at the appropriate differentiation stage may constitute a novel strategy for vascular regenerative medicine.
Collapse
MESH Headings
- Actins/metabolism
- Angiogenic Proteins/metabolism
- Animals
- Antigens, CD/metabolism
- Antigens, Neoplasm/metabolism
- Cadherins/metabolism
- Cell Differentiation
- Cell Line
- Cell Proliferation
- Cell Transformation, Neoplastic/metabolism
- Disease Models, Animal
- Embryonic Stem Cells/immunology
- Embryonic Stem Cells/metabolism
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Endothelial Cells/transplantation
- Hindlimb/blood supply
- Humans
- Ischemia/metabolism
- Ischemia/physiopathology
- Ischemia/surgery
- Kinetics
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Myocytes, Smooth Muscle/immunology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/transplantation
- Neovascularization, Physiologic
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Regeneration
- Regional Blood Flow
- Stem Cell Transplantation
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
Affiliation(s)
- Masakatsu Sone
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jo JI, Nagaya N, Miyahara Y, Kataoka M, Harada-Shiba M, Kangawa K, Tabata Y. Transplantation of genetically engineered mesenchymal stem cells improves cardiac function in rats with myocardial infarction: benefit of a novel nonviral vector, cationized dextran. ACTA ACUST UNITED AC 2007; 13:313-22. [PMID: 17518565 DOI: 10.1089/ten.2006.0133] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
It is expected that mesenchymal stem cells (MSCs) will be a cell source for cardiac reconstruction because of their differentiation potential and ability to supply growth factors. However, poor viability at the transplanted site often hinders the therapeutic potential of MSCs. Here, in a trial designed to address this problem, a non-viral carrier of cationized polysaccharide is introduced for genetic engineering of MSCs. Spermine-introduced dextran of cationized polysaccharide (spermine-dextran) was internalized into MSCs by way of a sugar-recognizable receptor to enhance the expression level of plasmid deoxyribonucleic acid (DNA). When genetically engineered by the spermine-dextran complex with plasmid DNA of adrenomedullin (AM), MSCs secreted a large amount of AM, an anti-apoptotic and angiogenic peptide. Transplantation of AM gene-engineered MSCs improved cardiac function after myocardial infarction significantly more than MSCs alone. Thus, this genetic engineering technology using the non-viral spermine-dextran is a promising strategy to improve MSC therapy for ischemic heart disease.
Collapse
Affiliation(s)
- Jun-Ichiro Jo
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Ribatti D, Conconi MT, Nussdorfer GG. Nonclassic Endogenous Novel Regulators of Angiogenesis. Pharmacol Rev 2007; 59:185-205. [PMID: 17540906 DOI: 10.1124/pr.59.2.3] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Angiogenesis, the process through which new blood vessels arise from preexisting ones, is regulated by several "classic" factors, among which the most studied are vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2). In recent years, investigations showed that, in addition to the classic factors, numerous endogenous peptides play a relevant regulatory role in angiogenesis. Such regulatory peptides, each of which exerts well-known specific biological activities, are present, along with their receptors, in the blood vessels and may take part in the control of the "angiogenic switch." An in vivo and in vitro proangiogenic effect has been demonstrated for erythropoietin, angiotensin II (ANG-II), endothelins (ETs), adrenomedullin (AM), proadrenomedullin N-terminal 20 peptide (PAMP), urotensin-II, leptin, adiponectin, resistin, neuropeptide-Y, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP), and substance P. There is evidence that the angiogenic action of some of these peptides is at least partly mediated by their stimulating effect on VEGF (ANG-II, ETs, PAMP, resistin, VIP and PACAP) and/or FGF-2 systems (PAMP and leptin). AM raises the expression of VEGF in endothelial cells, but VEGF blockade does not affect the proangiogenic action of AM. Other endogenous peptides have been reported to exert an in vivo and in vitro antiangiogenic action. These include somatostatin and natriuretic peptides, which suppress the VEGF system, and ghrelin, that antagonizes FGF-2 effects. Investigations on "nonclassic" regulators of angiogenesis could open new perspectives in the therapy of diseases coupled to dysregulation of angiogenesis.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, School of Medicine, University of Bari, Bari, Italy.
| | | | | |
Collapse
|
36
|
Li Y, Jiang C, Wang X, Zhang Y, Shibahara S, Takahashi K. Adrenomedullin is a novel adipokine: adrenomedullin in adipocytes and adipose tissues. Peptides 2007; 28:1129-43. [PMID: 17433499 DOI: 10.1016/j.peptides.2007.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 01/23/2023]
Abstract
Adrenomedullin (AM) is a multifunctional regulatory peptide that is produced and secreted by various types of cells. The production and the secretion of AM have been demonstrated in cultured adipocytes and adipose tissues. Inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and lipopolysaccharide are strong stimulators for AM expression in adipocytes. Furthermore, AM expression in the adipose tissue is increased in obesity, and plasma concentrations of AM are increased in obese subjects. One possible (patho)physiological role of AM secreted by adipose tissue may be actions against complications of the metabolic syndrome characterized by obesity, type 2 diabetic mellitus and hypertension, via its antioxidant and potent vasodilator effects. These findings indicate that AM is a new member of the adipokine family.
Collapse
Affiliation(s)
- Yin Li
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100083, PR China
| | | | | | | | | | | |
Collapse
|
37
|
Abe M, Sata M, Suzuki E, Takeda R, Takahashi M, Nishimatsu H, Nagata D, Kangawa K, Matsuo H, Nagai R, Hirata Y. Effects of adrenomedullin on acute ischaemia-induced collateral development and mobilization of bone-marrow-derived cells. Clin Sci (Lond) 2006; 111:381-7. [PMID: 16922679 DOI: 10.1042/cs20060137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adrenomedullin exerts not only vasodilatory effects, but also angiogenic effects. In the present study, we investigated the effects of adrenomedullin on collateral formation and circulating bone-marrow-derived cells after acute tissue ischaemia. Bone marrow of 8–10-week-old female C57BL/6J mice was replaced with that from GFP (green fluorescent protein) transgenic mice (GFP mice). At 8 weeks after transplantation, hindlimb ischaemia was induced by resecting the right femoral artery and a plasmid expressing human adrenomedullin (50 μg) was injected into the ischaemic muscle, followed by in vivo electroporation on a weekly basis. Overexpression of adrenomedullin significantly enhanced the blood flow recovery compared with controls (blood flow ratio, 1.0±0.2 compared with 0.6±0.3 respectively, at week 4; P<0.05) and increased capillary density in the ischaemic leg as determined by anti-CD31 immunostaining of the ischaemic muscle (567±40 compared with 338±65 capillaries/mm2 respectively, at week 5; P<0.05). There were more GFP-positive cells in the thigh muscle of the mice injected with adrenomedullin than in that of the control mice (29.6±4.5 compared with 16.5±3.3 capillaries/mm2 respectively, at week 5; P<0.05). We repeated the same experiments using LacZ-knock-in mice instead of GFP mice, and obtained similar results. These findings suggest that adrenomedullin may augment ischaemia-induced collateral formation with some effects on circulating bone-marrow-derived cells.
Collapse
Affiliation(s)
- Minami Abe
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Yurugi-Kobayashi T, Itoh H, Schroeder T, Nakano A, Narazaki G, Kita F, Yanagi K, Hiraoka-Kanie M, Inoue E, Ara T, Nagasawa T, Just U, Nakao K, Nishikawa SI, Yamashita JK. Adrenomedullin/cyclic AMP pathway induces Notch activation and differentiation of arterial endothelial cells from vascular progenitors. Arterioscler Thromb Vasc Biol 2006; 26:1977-84. [PMID: 16809546 DOI: 10.1161/01.atv.0000234978.10658.41] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The acquisition of arterial or venous identity is highlighted in vascular development. Previously, we have reported an embryonic stem (ES) cell differentiation system that exhibits early vascular development using vascular endothelial growth factor (VEGF) receptor-2 (VEGFR2)-positive cells as common vascular progenitors. In this study, we constructively induced differentiation of arterial and venous endothelial cells (ECs) in vitro to elucidate molecular mechanisms of arterial-venous specification. METHODS AND RESULTS ECs were induced from VEGFR2+ progenitor cells with various conditions. VEGF was essential to induce ECs. Addition of 8bromo-cAMP or adrenomedullin (AM), an endogenous ligand-elevating cAMP, enhanced VEGF-induced EC differentiation. Whereas VEGF alone mainly induced venous ECs, 8bromo-cAMP (or AM) with VEGF supported substantial induction of arterial ECs. Stimulation of cAMP pathway induced Notch signal activation in ECs. The arterializing effect of VEGF and cAMP was abolished in recombination recognition sequence binding protein at the Jkappa site deficient ES cells lacking Notch signal activation or in ES cells treated with gamma-secretase inhibitor. Nevertheless, forced Notch activation by the constitutively active Notch1 alone did not induce arterial ECs. CONCLUSIONS Adrenomedullin/cAMP is a novel signaling pathway to activate Notch signaling in differentiating ECs. Coordinated signaling of VEGF, Notch, and cAMP is required to induce arterial ECs from vascular progenitors.
Collapse
Affiliation(s)
- Takami Yurugi-Kobayashi
- Laboratory of Stem Cell Differentiation, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ishimitsu T, Ono H, Minami J, Matsuoka H. Pathophysiologic and therapeutic implications of adrenomedullin in cardiovascular disorders. Pharmacol Ther 2006; 111:909-27. [PMID: 16616959 DOI: 10.1016/j.pharmthera.2006.02.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Adrenomedullin (AM) is a vasodilator peptide that originally isolated from pheochromocytoma tissue. However, the mRNA is expressed in the normal adrenal gland, heart, kidney and blood vessels. The human AM gene is located in the short arm of chromosome 11 and is composed of 4 exons. There are 2 single nucleotide polymorphisms in introns 1 and 3, and the 3'-end of the AM gene is flanked by a microsatellite marker of cytosine-adenine repeats that is associated with an increased risk of developing hypertension and diabetic nephropathy. AM gene expression is promoted by various stimuli, including inflammation, hypoxia, oxidative stress, mechanical stress and activation of the renin-angiotensin and sympathetic nervous systems. The AM gene promoter region possessed binding site for several transcription factors, including nuclear factor for interleukin-6 expression (NF-IL6) and activator protein 2 (AP-2). Further, plasma AM levels are increased in patients with various cardiovascular diseases, including hypertension, heart failure and renal failure. These findings suggest that AM plays a role in the development of or response to cardiovascular disease. Indeed, experimental and clinical studies have demonstrated that systemic infusion of AM may have a therapeutic effect on myocardial infarction, heart failure and renal failure. Further, vasopeptidase inhibitors which augment the bioactivity of endogenous AM may benefit patients with hypertension and arteriosclerosis. Finally, the angiogenic and cytoprotective properties of AM may have utility in revascularization and infarcted myocardium and ischemic limbs. Because of the potential clinical benefits of AM, indications for use and optimal dosing strategies should be established.
Collapse
Affiliation(s)
- Toshihiko Ishimitsu
- Department of Hypertension and Cardiorenal Medicine, Dokkyo University School of Medicine, Mibu, Tochigi 321-0293, Japan.
| | | | | | | |
Collapse
|
41
|
Miyashita K, Itoh H, Arai H, Suganami T, Sawada N, Fukunaga Y, Sone M, Yamahara K, Yurugi-Kobayashi T, Park K, Oyamada N, Sawada N, Taura D, Tsujimoto H, Chao TH, Tamura N, Mukoyama M, Nakao K. The neuroprotective and vasculo-neuro-regenerative roles of adrenomedullin in ischemic brain and its therapeutic potential. Endocrinology 2006; 147:1642-53. [PMID: 16384868 DOI: 10.1210/en.2005-1038] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adrenomedullin (AM) is a vasodilating hormone secreted mainly from vascular wall, and its expression is markedly enhanced after stroke. We have revealed that AM promotes not only vasodilation but also vascular regeneration. In this study, we focused on the roles of AM in the ischemic brain and examined its therapeutic potential. We developed novel AM-transgenic (AM-Tg) mice that overproduce AM in the liver and performed middle cerebral artery occlusion for 20 min (20m-MCAO) to examine the effects of AM on degenerative or regenerative processes in ischemic brain. The infarct area and gliosis after 20m-MCAO was reduced in AM-Tg mice in association with suppression of leukocyte infiltration, oxidative stress, and apoptosis in the ischemic core. In addition, vascular regeneration and subsequent neurogenesis were enhanced in AM-Tg mice, preceded by increase in mobilization of CD34(+) mononuclear cells, which can differentiate into endothelial cells. The vasculo-neuro-regenerative actions observed in AM-Tg mice in combination with neuroprotection resulted in improved recovery of motor function. Brain edema was also significantly reduced in AM-Tg mice via suppression of vascular permeability. In vitro, AM exerted direct antiapoptotic and neurogenic actions on neuronal cells. Exogenous administration of AM in mice after 20m-MCAO also reduced the infarct area, and promoted vascular regeneration and functional recovery. In summary, this study suggests the neuroprotective and vasculo-neuro-regenerative roles of AM and provides basis for a new strategy to rescue ischemic brain through its multiple hormonal actions.
Collapse
Affiliation(s)
- Kazutoshi Miyashita
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Sakyo-ku, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Honda M, Nakagawa S, Hayashi K, Kitagawa N, Tsutsumi K, Nagata I, Niwa M. Adrenomedullin improves the blood-brain barrier function through the expression of claudin-5. Cell Mol Neurobiol 2006; 26:109-18. [PMID: 16763778 DOI: 10.1007/s10571-006-9028-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 11/08/2005] [Indexed: 12/14/2022]
Abstract
AIMS Brain vascular endothelial cells secret Adrenomedullin (AM) has multifunctional biological properties. AM affects cerebral blood flow and blood-brain barrier (BBB) function. We studied the role of AM on the permeability and tight junction proteins of brain microvascular endothelial cells (BMEC). METHODS BMEC were isolated from rats and a BBB in vitro model was generated. The barrier functions were studied by measuring the transendothelial electrical resistance (TEER) and the permeability of sodium fluorescein and Evans' blue albumin. The expressions of tight junction proteins were analyzed using immunocytochemistry and immunoblotting. RESULTS AM increased TEER of BMEC monolayer dose-dependently. Immunocytochemistry revealed that AM enhanced the claudin-5 expression at a cell-cell contact site in a dose-dependent manner. Immunoblotting also showed an overexpression of claudin-5 in AM exposure. CONCLUSIONS AM therefore inhibits the paracellular transport in a BBB in vitro model through claudin-5 overexpression.
Collapse
Affiliation(s)
- Masaru Honda
- Department of Neurosurgery, Nagasaki University School of Medicine, Nagasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Tso CL, Freije WA, Day A, Chen Z, Merriman B, Perlina A, Lee Y, Dia EQ, Yoshimoto K, Mischel PS, Liau LM, Cloughesy TF, Nelson SF. Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res 2006; 66:159-67. [PMID: 16397228 DOI: 10.1158/0008-5472.can-05-0077] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastomas are invasive and aggressive tumors of the brain, generally considered to arise from glial cells. A subset of these cancers develops from lower-grade gliomas and can thus be clinically classified as "secondary," whereas some glioblastomas occur with no prior evidence of a lower-grade tumor and can be clinically classified as "primary." Substantial genetic differences between these groups of glioblastomas have been identified previously. We used large-scale expression analyses to identify glioblastoma-associated genes (GAG) that are associated with a more malignant phenotype via comparison with lower-grade astrocytomas. We have further defined gene expression differences that distinguish primary and secondary glioblastomas. GAGs distinct to primary or secondary tumors provided information on the heterogeneous properties and apparently distinct oncogenic mechanisms of these tumors. Secondary GAGs primarily include mitotic cell cycle components, suggesting the loss of function in prominent cell cycle regulators, whereas primary GAGs highlight genes typical of a stromal response, suggesting the importance of extracellular signaling. Immunohistochemical staining of glioblastoma tissue arrays confirmed expression differences. These data highlight that the development of gene pathway-targeted therapies may need to be specifically tailored to each subtype of glioblastoma.
Collapse
Affiliation(s)
- Cho-Lea Tso
- Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ribatti D, Nico B, Spinazzi R, Vacca A, Nussdorfer GG. The role of adrenomedullin in angiogenesis. Peptides 2005; 26:1670-5. [PMID: 16112409 DOI: 10.1016/j.peptides.2005.02.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 02/12/2005] [Accepted: 02/15/2005] [Indexed: 01/14/2023]
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide originally isolated from human pheochromocytoma. It was initially demonstrated to have profound effects in vascular cell biology, since AM protects endothelial cells from apoptosis, promotes angiogenesis and affects vascular tone and permeability. This review article summarizes the literature data concerning the relationship between AM and angiogenesis and describes the relationship between vascular endothelial growth factor, hypoxia and AM and tumor angiogenesis. Finally, the role of AM as a potential target of antiangiogenic therapy is discussed.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, Piazza Giulio Cesare, 11, Policlinico, I-70124 Bari, Italy.
| | | | | | | | | |
Collapse
|
45
|
Kato J, Tsuruda T, Kita T, Kitamura K, Eto T. Adrenomedullin: a protective factor for blood vessels. Arterioscler Thromb Vasc Biol 2005; 25:2480-7. [PMID: 16141406 DOI: 10.1161/01.atv.0000184759.91369.f8] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adrenomedullin (AM) is a vasodilator peptide having a wide range of biological actions such as reduction of oxidative stress and inhibition of endothelial cell apoptosis. The AM gene is expressed in vascular walls, and AM was found to be secreted from cultured vascular endothelial cells, smooth muscle cells, and adventitial fibroblasts. Plasma AM levels in patients with arteriosclerotic vascular diseases are elevated in possible association with the severity of the disease. When administered over a relatively short period, AM dilates blood vessels via an endothelium-dependent or independent mechanism. Experiments in vitro have shown that AM exerts multiple actions on cultured vascular cells, which are mostly protective or inhibitory against vascular damage and progression of arteriosclerosis. Either prolonged infusion or overexpression of AM suppressed intimal thickening, fatty streak formation, and perivascular hyperplasia in rodent models for vascular remodeling or atherosclerosis. Intimal thickening induced by periarterial cuff was more severe in AM gene-knockout mice than their littermates, suggesting a protective role for endogenous AM. Moreover, AM has recently been suggested to possess angiogenetic properties. Collectively, a body of evidence suggests that AM participates in the mechanism against progression of vascular damage and remodeling, thereby alleviating the ischemia of tissues and organs.
Collapse
Affiliation(s)
- Johji Kato
- First Department of Internal Medicine, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
| | | | | | | | | |
Collapse
|
46
|
Nagaya N, Mori H, Murakami S, Kangawa K, Kitamura S. Adrenomedullin: angiogenesis and gene therapy. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1432-7. [PMID: 15886352 DOI: 10.1152/ajpregu.00662.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adrenomedullin (AM) is a potent, long-lasting vasodilator peptide that was originally isolated from human pheochromocytoma. AM signaling is of particular significance in endothelial cell biology since the peptide protects cells from apoptosis, promotes angiogenesis, and affects vascular tone and permeability. The angiogenic effect of AM is mediated by activation of Akt, mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2, and focal adhesion kinase in endothelial cells. Both AM and its receptor, calcitonin receptor-like receptor, are upregulated through a hypoxia-inducible factor-1-dependent pathway under hypoxic conditions. Thus AM signaling plays an important role in the regulation of angiogenesis in hypoxic conditions. Recently, we have developed a nonviral vector, gelatin. Positively charged gelatin holds negatively charged plasmid DNA in its lattice structure. DNA-gelatin complexes can delay gene degradation, leading to efficient gene transfer. Administration of AM DNA-gelatin complexes induces potent angiogenic effects in a rabbit model of hindlimb ischemia. Thus gelatin-mediated AM gene transfer may be a new therapeutic strategy for the treatment of tissue ischemia. Endothelial progenitor cells (EPCs) play an important role in endothelial regeneration. Interestingly, EPCs phagocytose ionically linked DNA-gelatin complexes in coculture, which allows nonviral gene transfer into EPCs. AM gene transfer into EPCs inhibits cell apoptosis and induces proliferation and migration, suggesting that AM gene transfer strengthens the therapeutic potential of EPCs. Intravenous administration of AM gene-modified EPCs regenerate pulmonary endothelium, resulting in improvement of pulmonary hypertension. These results suggest that in vivo and in vitro transfer of AM gene using gelatin may be applicable for intractable cardiovascular disease.
Collapse
Affiliation(s)
- Noritoshi Nagaya
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | |
Collapse
|
47
|
Xu Y, Krukoff TL. Adrenomedullin stimulates nitric oxide release from SK-N-SH human neuroblastoma cells by modulating intracellular calcium mobilization. Endocrinology 2005; 146:2295-305. [PMID: 15677761 DOI: 10.1210/en.2004-1354] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We used SK-N-SH human neuroblastoma cells to test the hypothesis that adrenomedullin (ADM), a multifunctional neuropeptide, stimulates nitric oxide (NO) release by modulating intracellular free calcium concentration ([Ca2+]i) in neuron-like cells. We used a nitrite assay to demonstrate that ADM (10 pM to 100 nM) stimulated NO release from the cells, with a maximal response observed with 1 nM at 30 min. This response was blocked by 1 nM ADM(22-52), an ADM receptor antagonist or 2 microM vinyl-L-NIO, a neuronal NO synthase inhibitor. In addition, 5 microM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, an intracellular calcium chelator, eliminated the ADM-induced NO release. Similar results were observed when the cells were incubated in calcium-free medium or when L-type calcium channels were inhibited with 5 microM nifedipine or 10 microM nitrendipine. Depletion of calcium stores in the endoplasmic reticulum (ER) with 1 microM cyclopiazonic acid or 150 nM thapsigargin, or inhibition of ryanodine-sensitive receptors in the ER with 10 microM ryanodine attenuated the ADM-induced NO release. NO responses to ADM were mimicked by 1 mM dibutyryl cAMP, a cAMP analog, and were abrogated by 5 microM H-89, a protein kinase A inhibitor. Furthermore, Fluo-4 fluorescence-activated cell sorter analysis showed that ADM (1 nM) significantly increased [Ca2+]i at 30 min. This response was blocked by nifedipine (5 microM) or H-89 (5 microM) and was reduced by ryanodine (10 microM). These results suggest that ADM stimulates calcium influx through L-type calcium channels and ryanodine-sensitive calcium release from the ER, probably via cAMP-protein kinase A-dependent mechanisms. These elevations in [Ca2+)]i cause activation of neuronal NO synthase and NO release.
Collapse
Affiliation(s)
- Yong Xu
- Department of Cell Biology and Center for Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | |
Collapse
|
48
|
Fujii T, Nagaya N, Iwase T, Murakami S, Miyahara Y, Nishigami K, Ishibashi-Ueda H, Shirai M, Itoh T, Ishino K, Sano S, Kangawa K, Mori H. Adrenomedullin enhances therapeutic potency of bone marrow transplantation for myocardial infarction in rats. Am J Physiol Heart Circ Physiol 2005; 288:H1444-50. [PMID: 15539427 DOI: 10.1152/ajpheart.00266.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenomedullin (AM), a potent vasodilator, induces angiogenesis and inhibits cell apoptosis through the phosphatidylinositol 3-kinase/Akt pathway. Transplantation of bone marrow-derived mononuclear cells (MNC) induces angiogenesis. We investigated whether infusion of AM enhances the therapeutic potency of MNC transplantation in a rat model of myocardial infarction. Immediately after coronary ligation, bone marrow-derived MNC (5 × 106 cells) were injected into the ischemic myocardium, followed by subcutaneous administration of 0.05 μg·kg−1·min−1 AM (AM-MNC group) or saline (MNC group) for 3 days. Another two groups of rats received subcutaneous administration of AM alone (AM group) or saline (control group). Hemodynamic and histological analyses were performed 4 wk after treatment. Cardiac infarct size was significantly smaller in the MNC and AM groups than in the control group. A combination of AM infusion and MNC transplantation demonstrated a further decrease in infarct size. Left ventricular (LV) maximum change in pressure over time and LV fractional shortening were significantly improved only in the AM-MNC group. AM significantly increased capillary density in ischemic myocardium, suggesting the angiogenic potency of AM. AM infusion plus MNC transplantation demonstrated a further increase in capillary density compared with AM or MNC alone. Although MNC apoptosis was frequently observed 72 h after transplantation, AM markedly decreased the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells among the transplanted MNC. In conclusion, AM enhanced the angiogenic potency of MNC transplantation and improved cardiac function in rats with myocardial infarction. This beneficial effect may be mediated partly by the angiogenic property of AM itself and by its antiapoptotic effect on MNC.
Collapse
Affiliation(s)
- Takafumi Fujii
- Department of Cardiac Physiology, National Cardiovascular Center, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Iwase T, Nagaya N, Fujii T, Itoh T, Ishibashi-Ueda H, Yamagishi M, Miyatake K, Matsumoto T, Kitamura S, Kangawa K. Adrenomedullin enhances angiogenic potency of bone marrow transplantation in a rat model of hindlimb ischemia. Circulation 2005; 111:356-62. [PMID: 15655128 DOI: 10.1161/01.cir.0000153352.29335.b9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Previous studies have shown that adrenomedullin (AM) inhibits vascular endothelial cell apoptosis and induces angiogenesis. We investigated whether AM enhances bone marrow cell-induced angiogenesis. METHODS AND RESULTS Immediately after hindlimb ischemia was created, rats were randomized to receive AM infusion plus bone marrow-derived mononuclear cell (MNC) transplantation (AM+MNC group), AM infusion alone (AM group), MNC transplantation alone (MNC group), or vehicle infusion (control group). The laser Doppler perfusion index was significantly higher in the AM and MNC groups than in the control group (0.74+/-0.11 and 0.69+/-0.07 versus 0.59+/-0.07, respectively, P<0.01), which suggests the angiogenic potency of AM and MNC. Importantly, improvement in blood perfusion was marked in the AM+MNC group (0.84+/-0.08). Capillary density was highest in the AM+MNC group, followed by the AM and MNC groups. In vitro, AM inhibited MNC apoptosis, promoted MNC adhesiveness to a human umbilical vein endothelial cell monolayer, and increased the number of MNC-derived endothelial progenitor cells. In vivo, AM administration not only enhanced the differentiation of MNC into endothelial cells but also produced mature vessels that included smooth muscle cells. CONCLUSIONS A combination of AM infusion and MNC transplantation caused significantly greater improvement in hindlimb ischemia than MNC transplantation alone. This effect may be mediated in part by the angiogenic potency of AM itself and the beneficial effects of AM on the survival, adhesion, and differentiation of transplanted MNCs.
Collapse
Affiliation(s)
- Takashi Iwase
- Department of Regenerative Medicine and Tissue Engineering, National Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wilson C, Nikitenko LL, Sargent IL, Rees MCP. Adrenomedullin: Multiple functions in human pregnancy. Angiogenesis 2004; 7:203-12. [PMID: 15609075 DOI: 10.1007/s10456-004-4183-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 09/25/2004] [Indexed: 10/26/2022]
Abstract
Adrenomedullin is a 52 amino acid peptide originally isolated from human phaeochromocytoma in 1993. It was initially demonstrated to have profound effects on the vasculature including vasodilatation and subsequently promotion of angiogenesis. Since then it has become apparent that it has a wide range of other biological actions including regulation of cell growth and differentiation. Successful pregnancy outcome relies on establishing and maintaining throughout gestation an efficient blood supply to the fetus. This allows the exchange of nutrients, oxygenation of fetal blood and removal of cytotoxins from the fetus, such as carbon dioxide. One of the most important local adaptations to pregnancy is the change in maternal blood flow to the implantation site. Evidence now points towards a vital role for adrenomedullin in the regulation of placentation. It appears that adrenomedullin may play important roles in the regulation of fetal perfusion both in normal and in compromised pregnancies. However, most studies have focused on measuring adrenomedullin levels and studying its expression as well as that of its receptors. More functional studies are now required to elucidate the underlying mechanisms involved.
Collapse
Affiliation(s)
- Caroline Wilson
- Nuffield Department of Obstetrics and Gynaecology, The Women's Centre, John Radcliffe Hospital, Oxford, UK
| | | | | | | |
Collapse
|