1
|
Ahmad MZ, Chen S, Qi X, Feng J, Chen H, Liu X, Sun M, Deng Y. Genome wide analysis of HMA gene family in Hydrangea macrophylla and characterization of HmHMA2 in response to aluminum stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109182. [PMID: 39405998 DOI: 10.1016/j.plaphy.2024.109182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Aluminum toxicity poses a significant threat to plant growth, especially in acidic soils. Heavy metal ATPases (HMAs) are crucial for transporting heavy metal ions across plant cell membranes, yet their role in Al3+ transport remains unexplored. This study identified eight HmHMA genes in the genome of Hydrangea macrophylla, categorizing them into two major clades based on phylogenetic relationships. These genes were found unevenly distributed across six chromosomes. Detailed analysis of their physicochemical properties, collinearity, and gene structure was conducted. RNA-seq and qRT-PCR analyses revealed that specific HmHMA genes, notably HmHMA2, were predominantly expressed in roots and flowers under Al3+ stress, indicating their potential role in Al3+ tolerance. HmHMA2 showed significant expression in roots, especially under Al3+ stress conditions, and when expressed in yeast cells, it conferred resistance to aluminum and zinc but increased sensitivity to cadmium. Overexpression of HmHMA2 in hydrangea leaf discs significantly improved Al3+ tolerance, reduced oxidative stress markers like hydrogen peroxide and malondialdehyde, and enhanced antioxidant enzyme activity such as SOD, POD and CAT compared to controls. These findings shed lights on the potential role of HmHMAs in Al transport and tolerance in H. macrophylla.
Collapse
Affiliation(s)
- Muhammad Zulfiqar Ahmad
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Shuangshuang Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Xiangyu Qi
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Jing Feng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Huijie Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Xintong Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China
| | - Ming Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083, Beijing, China
| | - Yanming Deng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, Jiangsu, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
2
|
Luo P, Wu J, Li TT, Shi P, Ma Q, Di DW. An Overview of the Mechanisms through Which Plants Regulate ROS Homeostasis under Cadmium Stress. Antioxidants (Basel) 2024; 13:1174. [PMID: 39456428 PMCID: PMC11505430 DOI: 10.3390/antiox13101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Cadmium (Cd2+) is a non-essential and highly toxic element to all organic life forms, including plants and humans. In response to Cd stress, plants have evolved multiple protective mechanisms, such as Cd2+ chelation, vesicle sequestration, the regulation of Cd2+ uptake, and enhanced antioxidant defenses. When Cd2+ accumulates in plants to a certain level, it triggers a burst of reactive oxygen species (ROS), leading to chlorosis, growth retardation, and potentially death. To counteract this, plants utilize a complex network of enzymatic and non-enzymatic antioxidant systems to manage ROS and protect cells from oxidative damage. This review systematically summarizes how various elements, including nitrogen, phosphorus, calcium, iron, and zinc, as well as phytohormones such as abscisic acid, auxin, brassinosteroids, and ethylene, and signaling molecules like nitric oxide, hydrogen peroxide, and hydrogen sulfide, regulate the antioxidant system under Cd stress. Furthermore, it explores the mechanisms by which exogenous regulators can enhance the antioxidant capacity and mitigate Cd toxicity.
Collapse
Affiliation(s)
- Pan Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jingjing Wu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
| | - Ting-Ting Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| | - Peihua Shi
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
| | - Qi Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Nanjing (UCASNJ), Nanjing 211135, China
| |
Collapse
|
3
|
Kaushik S, Ranjan A, Sidhu A, Singh AK, Sirhindi G. Cadmium toxicity: its' uptake and retaliation by plant defence system and ja signaling. Biometals 2024; 37:755-772. [PMID: 38206521 DOI: 10.1007/s10534-023-00569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Cadmium (Cd+2) renders multifarious environmental stresses and highly toxic to nearly all living organisms including plants. Cd causes toxicity by unnecessary augmentation of ROS that targets essential molecules and fundamental processes in plants. In response, plants outfitted a repertory of mechanisms to offset Cd toxicity. The main elements of these are Cd chelation, sequestration into vacuoles, and adjustment of Cd uptake by transporters and escalation of antioxidative mechanism. Signal molecules like phytohormones and reactive oxygen species (ROS) activate the MAPK cascade, the activation of the antioxidant system andsynergistic crosstalk between different signal molecules in order to regulate plant responses to Cd toxicity. Transcription factors like WRKY, MYB, bHLH, bZIP, ERF, NAC etc., located downstream of MAPK, and are key factors in regulating Cd toxicity responses in plants. Apart from this, MAPK and Ca2+signaling also have a salient involvement in rectifying Cd stress in plants. This review highlighted the mechanism of Cd uptake, translocation, detoxification and the key role of defense system, MAPKs, Ca2+ signals and jasmonic acid in retaliating Cd toxicity via synchronous management of various other regulators and signaling components involved under stress condition.
Collapse
Affiliation(s)
- Shruti Kaushik
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Alok Ranjan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biotechnology, Patna Women's College, Bihar, 800001, India
| | - Anmol Sidhu
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
4
|
Zhang X, Yang M, Yang H, Pian R, Wang J, Wu AM. The Uptake, Transfer, and Detoxification of Cadmium in Plants and Its Exogenous Effects. Cells 2024; 13:907. [PMID: 38891039 PMCID: PMC11172145 DOI: 10.3390/cells13110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.
Collapse
Affiliation(s)
- Xintong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Man Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Hui Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Ruiqi Pian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| | - Jinxiang Wang
- Root Biology Center, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Agricultural and Rural Pollution Control and Environmental Safety in Guangdong Province, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China (R.P.)
| |
Collapse
|
5
|
Li J, Zhang Z, Shi G. Genome-Wide Identification and Expression Profiling of Heavy Metal ATPase (HMA) Genes in Peanut: Potential Roles in Heavy Metal Transport. Int J Mol Sci 2024; 25:613. [PMID: 38203784 PMCID: PMC10779257 DOI: 10.3390/ijms25010613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
The heavy metal ATPase (HMA) family belongs to the P-type ATPase superfamily and plays an essential role in the regulation of metal homeostasis in plants. However, the gene family has not been fully investigated in peanut. Here, a genome-wide identification and bioinformatics analysis was performed on AhHMA genes in peanut, and the expression of 12 AhHMA genes in response to Cu, Zn, and Cd was evaluated in two peanut cultivars (Silihong and Fenghua 1) differing in Cd accumulation. A total of 21 AhHMA genes were identified in the peanut genome, including ten paralogous gene pairs derived from whole-genome duplication, and an additional gene resulting from tandem duplication. AhHMA proteins could be divided into six groups (I-VI), belonging to two clades (Zn/Co/Cd/Pb-ATPases and Cu/Ag-ATPases). Most AhHMA proteins within the same clade or group generally have a similar structure. However, significant divergence exists in the exon/intron organization even between duplicated gene pairs. RNA-seq data showed that most AhHMA genes are preferentially expressed in roots, shoots, and reproductive tissues. qRT-PCR results revealed that AhHMA1.1/1.2, AhHMA3.1/3.2, AhHMA7.1/7.4, and AhHMA8.1 might be involved in Zn transport in peanut plants, while AhHMA3.2 and AhHMA7.5 might be involved in Cd transport. Our findings provide clues to further characterize the functions of AhHMA genes in metal uptake and translocation in peanut plants.
Collapse
Affiliation(s)
| | | | - Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (J.L.); (Z.Z.)
| |
Collapse
|
6
|
Ali S, Huang S, Zhou J, Bai Y, Liu Y, Shi L, Liu S, Hu Z, Tang Y. miR397-LACs mediated cadmium stress tolerance in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2023; 113:415-430. [PMID: 37566350 DOI: 10.1007/s11103-023-01369-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/04/2023] [Indexed: 08/12/2023]
Abstract
Cadmium (Cd) is a non-essential heavy metal, assimilated in plant tissue with other nutrients, disturbing the ions' homeostasis in plants. The plant develops different mechanisms to tolerate the hazardous environmental effects of Cd. Recently studies found different miRNAs that are involved in Cd stress. In the current study, miR397 mutant lines were constructed to explore the molecular mechanisms of miR397 underlying Cd tolerance. Compared with the genetically modified line of overexpressed miR397 (artificial miR397, amiR397), the lines of downregulated miR397 (Short Tandem Target Mimic miR397, STTM miR397) showed more substantial Cd tolerance with higher chlorophyll a & b, carotenoid and lignin content. ICP-OES revealed higher cell wall Cd and low total Cd levels in STTM miR397 than in the wild-type and amiR397 plants.Further, the STTM plants produced fewer reactive oxygen species (ROS) and lower activity of antioxidants enzymes (e.g., catalase [CAT], malondialdehyde [MDA]) compared with amiR397 and wild-type plants after stress, indicating that silencing the expression of miR397 can reduce oxidative damage. In addition, the different family transporters' gene expression was much higher in the amiR397 plants than in the wild type and STTM miRNA397. Our results suggest that miR397 plays a role in Cd tolerance in Arabidopsis thaliana. Overexpression of miR397 could decrease Cd tolerance in plants by regulating the expression of LAC 2/4/17, changing the lignin content, which may play an important role in inducing different stress-tolerant mechanisms and protecting the cell from a hazardous condition. This study provides a basis to elucidate the functions of miR397 and the Cd stress tolerance mechanism in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, Longhua Institute of Innovative Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, Guangdong Province, China
| | - Shili Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, Longhua Institute of Innovative Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China
| | - Jiajie Zhou
- Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, Longhua Institute of Innovative Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China
| | - Yongsheng Bai
- Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, Longhua Institute of Innovative Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China
| | - Yang Liu
- Guangdong Academy of Forestry, Guangzhou, 510520, Guangdong Province, China
| | - Liyu Shi
- Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, Longhua Institute of Innovative Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China
| | - Shuai Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, 710003, Shaanxi, China
| | - Zhangli Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, Longhua Institute of Innovative Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics; Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, Longhua Institute of Innovative Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China.
| |
Collapse
|
7
|
Flores-Iga G, Lopez-Ortiz C, Gracia-Rodriguez C, Almeida A, Nimmakayala P, Reddy UK, Balagurusamy N. A Genome-Wide Identification and Comparative Analysis of the Heavy-Metal-Associated Gene Family in Cucurbitaceae Species and Their Role in Cucurbita pepo under Arsenic Stress. Genes (Basel) 2023; 14:1877. [PMID: 37895226 PMCID: PMC10606463 DOI: 10.3390/genes14101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The heavy-metal-associated (HMA) proteins are a class of PB1-type ATPases related to the intracellular transport and detoxification of metals. However, due to a lack of information regarding the HMA gene family in the Cucurbitaceae family, a comprehensive genome-wide analysis of the HMA family was performed in ten Cucurbitaceae species: Citrullus amarus, Citrullus colocynthis, Citrullus lanatus, Citrullus mucosospermus, Cucumis melo, Cucumis sativus, Cucurbita maxima, Cucurbita moschata, Cucurbita pepo, and Legenaria siceraria. We identified 103 Cucurbit HMA proteins with various members, ranging from 8 (Legenaria siceraria) to 14 (Cucurbita pepo) across species. The phylogenetic and structural analysis confirmed that the Cucurbitaceae HMA protein family could be further classified into two major clades: Zn/Co/Cd/Pb and Cu/Ag. The GO-annotation-based subcellular localization analysis predicted that all HMA gene family members were localized on membranes. Moreover, the analysis of conserved motifs and gene structure (intron/exon) revealed the functional divergence between clades. The interspecies microsynteny analysis demonstrated that maximum orthologous genes were found between species of the Citrullus genera. Finally, nine candidate HMA genes were selected, and their expression analysis was carried out via qRT-PCR in root, leaf, flower, and fruit tissues of C. pepo under arsenic stress. The expression pattern of the CpeHMA genes showed a distinct pattern of expression in root and shoot tissues, with a remarkable expression of CpeHMA6 and CpeHMA3 genes from the Cu/Ag clade. Overall, this study provides insights into the functional analysis of the HMA gene family in Cucurbitaceae species and lays down the basic knowledge to explore the role and mechanism of the HMA gene family to cope with arsenic stress conditions.
Collapse
Affiliation(s)
- Gerardo Flores-Iga
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, México; (G.F.-I.); (C.G.-R.)
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, México; (G.F.-I.); (C.G.-R.)
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Aldo Almeida
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark;
| | - Padma Nimmakayala
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Umesh K. Reddy
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV 25112-1000, USA; (C.L.-O.); (P.N.)
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón 27275, Coahuila, México; (G.F.-I.); (C.G.-R.)
| |
Collapse
|
8
|
Ajeesh Krishna TP, Maharajan T, Antony Ceasar S. Significance and genetic control of membrane transporters to improve phytoremediation and biofortification processes. Mol Biol Rep 2023:10.1007/s11033-023-08521-2. [PMID: 37212961 DOI: 10.1007/s11033-023-08521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Humans frequently consume plant-based foods in their daily life. Contamination of agricultural soils by heavy metals (HMs) is a major food and nutritional security issue. The crop plants grown in HM-contaminated agricultural soil may accumulate more HMs in their edible part, further transferring into the food chain. Consumption of HM-rich crops can cause severe health issues in humans. On the other hand, the low content of the essential HM in the edible part of the crop also causes health problems. Therefore, researchers must try to reduce the non-essential HM in the edible part of the crop plants and improve the essential HMs. Phytoremediation and biofortification are the two strategies for resolving this problem. The genetic component helps to improve the efficiency of phytoremediation and biofortification processes in plants. They help eliminate HMs from soil and improve essential HM content in crop plants. The membrane transporter genes (genetic components) are critical in these two strategies. Therefore, engineering membrane transporter genes may help reduce the non-essential HM content in the edible part of crop plants. Targeted gene editing by genome editing tools like CRISPR could help plants achieve efficient phytoremediation and biofortification. This article covers gene editing's scope, application, and implication to improve the phytoremediation and biofortification processes in non-crop and crop plants.
Collapse
Affiliation(s)
- T P Ajeesh Krishna
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, 683104, India
| | - Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, 683104, India
| | - S Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, 683104, India.
| |
Collapse
|
9
|
Zang H, He J, Zhang Q, Li X, Wang T, Bi X, Zhang Y. Ectopic Expression of PvHMA2.1 Enhances Cadmium Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24043544. [PMID: 36834955 PMCID: PMC9966247 DOI: 10.3390/ijms24043544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Cadmium (Cd) in soil inhibits plant growth and development and even harms human health through food chain transmission. Switchgrass (Panicum virgatum L.), a perennial C4 biofuel crop, is considered an ideal plant for phytoremediation due to its high efficiency in removing Cd and other heavy metals from contaminated soil. The key to understanding the mechanisms of switchgrass Cd tolerance is to identify the genes involved in Cd transport. Heavy-metal ATPases (HMAs) play pivotal roles in heavy metal transport, including Cd, in Arabidopsis thaliana and Oryza sativa, but little is known about the functions of their orthologs in switchgrass. Therefore, we identified 22 HMAs in switchgrass, which were distributed on 12 chromosomes and divided into 4 groups using a phylogenetic analysis. Then, we focused on PvHMA2.1, which is one of the orthologs of the rice Cd transporter OsHMA2. We found that PvHMA2.1 was widely expressed in roots, internodes, leaves, spikelets, and inflorescences, and was significantly induced in the shoots of switchgrass under Cd treatment. Moreover, PvHMA2.1 was found to have seven transmembrane domains and localized at the cell plasma membrane, indicating that it is a potential transporter. The ectopic expression of PvHMA2.1 alleviated the reduction in primary root length and the loss of fresh weight of Arabidopsis seedlings under Cd treatment, suggesting that PvHMA2.1 enhanced Cd tolerance in Arabidopsis. The higher levels of relative water content and chlorophyll content of the transgenic lines under Cd treatment reflected that PvHMA2.1 maintained water retention capacity and alleviated photosynthesis inhibition under Cd stress in Arabidopsis. The roots of the PvHMA2.1 ectopically expressed lines accumulated less Cd compared to the WT, while no significant differences were found in the Cd contents of the shoots between the transgenic lines and the WT under Cd treatment, suggesting that PvHMA2.1 reduced Cd absorption from the environment through the roots in Arabidopsis. Taken together, our results showed that PvHMA2.1 enhanced Cd tolerance in Arabidopsis, providing a promising target that could be engineered in switchgrass to repair Cd-contaminated soil.
Collapse
|
10
|
De Novo Transcriptome Assembly, Gene Annotations, and Characterization of Functional Profiling Reveal Key Genes for Lead Alleviation in the Pb Hyperaccumulator Greek Mustard ( Hirschfeldia incana L.). Curr Issues Mol Biol 2022; 44:4658-4675. [PMID: 36286033 PMCID: PMC9600276 DOI: 10.3390/cimb44100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Lead (Pb) contamination is a widespread environmental problem due to its toxicity to living organisms. Hirschfeldia incana L., a member of the Brassicaceae family, commonly found in the Mediterranean regions, is characterized by its ability to tolerate and accumulate Pb in soils and hydroponic cultures. This plant has been reported as an excellent model to assess the response of plants to Pb. However, the lack of genomic data for H. incana hinders research at the molecular level. In the present study, we carried out RNA deep transcriptome sequencing (RNA-seq) of H. incana under two conditions, control without Pb(NO3)2 and treatment with 100 µM of Pb(NO3)2 for 15 days. A total of 797.83 million reads were generated using Illumina sequencing technology. We assembled 77,491 transcript sequences with an average length of 959 bp and N50 of 1330 bp. Sequence similarity analyses and annotation of these transcripts were performed against the Arabidopsis thaliana nr protein database, Gene Ontology (GO), and KEGG databases. As a result, 13,046 GO terms and 138 KEGG maps were created. Under Pb stress, 577 and 270 genes were differentially expressed in roots and aboveground parts, respectively. Detailed elucidation of regulation of metal transporters, transcription factors (TFs), and plant hormone genes described the role of actors that allow the plant to fine-tune Pb stress responses. Our study revealed that several genes related to jasmonic acid biosynthesis and alpha-linoleic acid were upregulated, suggesting these components’ implication in Hirschfeldia incana L responses to Pb stress. This study provides data for further genomic analyses of the biological and molecular mechanisms leading to Pb tolerance and accumulation in Hirschfeldia incana L.
Collapse
|
11
|
Chen X, Zhang X, Chen H, Xu X. Physiology and proteomics reveal Fulvic acid mitigates Cadmium adverse effects on growth and photosynthetic properties of lettuce. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111418. [PMID: 35985414 DOI: 10.1016/j.plantsci.2022.111418] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Understanding the molecular mechanisms of plants in response to Cd stress is crucial for improving plants adaptation to Cd stress. Fulvic acid (FA) is an active humic substance that is often used as a soil conditioner. However, there are few reports on the role of FA against Cd stress. The aim of this study was to determine the effects of Fulvic acid on alleviation of Cd toxicity in lettuce (Lactuca sativa L) under hydroponic conditions. Our results showed that 20 μmol/L Cd stress significantly reduced photosynthetic pigment metabolism and the expression of photosynthetic apparatus-related proteins, thereby inhibiting photosynthetic electron transport, net photosynthetic rate and negatively affecting photosynthetic carbon assimilation and growth of lettuce. However, proteomic findings suggest that the application of FA can reduce the adverse effects of Cd contamination. Compared to Cd stress alone, FA significantly increased the expression of Light-harvesting proteins, reaction center and electron transport-related proteins. Further results showed that FA at 0.5 g/L reduced the uptake of Cd by the roots, resulting in a 23.5% reduction in total Cd content in lettuce. Moreover, FA enhanced S metabolism and rebuilt redox homeostasis in cells. Overall, these findings provide new insights into the mechanism of cadmium toxicity mitigation in lettuce by FA. Which is recommended as an eco-friendly tool for improving the photosynthesis performance and biomass of lettuce under Cd stress.
Collapse
Affiliation(s)
- Xiaojing Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Chorianopoulou SN, Bouranis DL. The Role of Sulfur in Agronomic Biofortification with Essential Micronutrients. PLANTS 2022; 11:plants11151979. [PMID: 35956455 PMCID: PMC9370111 DOI: 10.3390/plants11151979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022]
Abstract
Sulfur (S) is an essential macronutrient for plants, being necessary for their growth and metabolism and exhibiting diverse roles throughout their life cycles. Inside the plant body, S is present either in one of its inorganic forms or incorporated in an organic compound. Moreover, organic S compounds may contain S in its reduced or oxidized form. Among others, S plays roles in maintaining the homeostasis of essential micronutrients, e.g., iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn). One of the most well-known connections is homeostasis between S and Fe, mainly in terms of the role of S in uptake, transportation, and distribution of Fe, as well as the functional interactions of S with Fe in the Fe-S clusters. This review reports the available information describing the connections between the homeostasis of S and Fe, Cu, Zn, and Mn in plants. The roles of S- or sulfur-derived organic ligands in metal uptake and translocation within the plant are highlighted. Moreover, the roles of these micronutrients in S homeostasis are also discussed.
Collapse
|
13
|
Advances in Genes-Encoding Transporters for Cadmium Uptake, Translocation, and Accumulation in Plants. TOXICS 2022; 10:toxics10080411. [PMID: 35893843 PMCID: PMC9332107 DOI: 10.3390/toxics10080411] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a heavy metal that is highly toxic for plants, animals, and human beings. A better understanding of the mechanisms involved in Cd accumulation in plants is beneficial for developing strategies for either the remediation of Cd-polluted soils using hyperaccumulator plants or preventing excess Cd accumulation in the edible parts of crops and vegetables. As a ubiquitous heavy metal, the transport of Cd in plant cells is suggested to be mediated by transporters for essential elements such as Ca, Zn, K, and Mn. Identification of the genes encoding Cd transporters is important for understanding the mechanisms underlying Cd uptake, translocation, and accumulation in either crop or hyperaccumulator plants. Recent studies have shown that the transporters that mediate the uptake, transport, and accumulation of Cd in plants mainly include members of the natural resistance-associated macrophage protein (Nramp), heavy metal-transporting ATPase (HMA), zinc and iron regulated transporter protein (ZIP), ATP-binding cassette (ABC), and yellow stripe-like (YSL) families. Here, we review the latest advances in the research of these Cd transporters and lay the foundation for a systematic understanding underlying the molecular mechanisms of Cd uptake, transport, and accumulation in plants.
Collapse
|
14
|
Zheng P, Cao L, Zhang C, Pan W, Wang W, Yu X, Li Y, Fan T, Miao M, Tang X, Liu Y, Cao S. MYB43 as a novel substrate for CRL4 PRL1 E3 ligases negatively regulates cadmium tolerance through transcriptional inhibition of HMAs in Arabidopsis. THE NEW PHYTOLOGIST 2022; 234:884-901. [PMID: 35129221 DOI: 10.1111/nph.18020] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Controlled stability of proteins is a highly efficient mechanism to direct diverse processes in plants. A key regulatory system for protein stability is given by the CULLIN-RING E3 ligases (CRLs). In this work, MYB43 is identified as a novel target of a CUL4-DDB1-PRL1 (PLEIOTROPIC REGULATORY LOCUS 1)-RING E3 ligase (CRL4PRL1 E3 ligase). Its stability depends on the presence of PRL1, a WD40-containing protein functioning as a substrate receptor of the CRL4 E3 ligases. Genetic studies have indicated that MYB43 is a negative regulator of cadmium (Cd) tolerance in Arabidopsis by transcriptional inhibition of important Cd transporters (HMA2, HMA3 and HMA4), while PRL1 and CUL4 positively regulate Cd tolerance. Expression of CUL4 and PRL1 was enhanced in response to Cd stress, and PRL1 can interact with and target MYB43 for degradation depending on assembly of CRL4PRL1 E3 ligase, and consequently increase the expression of HMA2, HMA3 and HMA4 through attenuating the transcriptional inhibition. HMA2 and HMA4 are shown to transport cadmium ion (Cd2+ ) from the roots of plants to the shoots through the xylem, ultimately increasing the plants' tolerance to Cd stress.
Collapse
Affiliation(s)
- Pengpeng Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Lei Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Cheng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Weicheng Pan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Wei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Xin Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yaping Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Tingting Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Min Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Xiaofeng Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| |
Collapse
|
15
|
Yin A, Shen C, Huang Y, Fu H, Liao Q, Xin J, Huang B. Transcriptomic analyses of sweet potato in response to Cd exposure and protective effects of K on Cd-induced physiological alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36824-36838. [PMID: 35064501 DOI: 10.1007/s11356-021-18144-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
We aimed to understand the molecular mechanism of differential cadmium (Cd) accumulation in two cultivars of sweet potato and to clarify the effects of potassium (K) supply on Cd accumulation. Comparative transcriptomes were employed to identify key genes and pathways using a low-Cd (N88) and a high-Cd cultivar (X16) in a pot experiment. The antioxidant capacity and cell wall components of root tips were analyzed to account for the effect of K regulating Cd accumulation in N88 via a hydroponic experiment. Transcriptome analysis revealed that 29 and 20 genes were differentially expressed in N88 and X16, respectively, when comparing the control with the two Cd treatments. X16 had more differentially expressed genes (DEGs), including 2649 common up-regulated and 3173 common down-regulated than N88 in any treatment. GO and KEGG analyses showed that the DEGs were assigned and enriched in different pathways. Some critical DEGs such as PDR, HMA3, COPT5, CAX3, GAUT, CCR, AUX1, CAT, SOD, GSR, and GST were identified. The DEGs were involved in pathways including heavy metal transport or detoxification, cell wall biosynthesis, plant hormone signal transduction, and glutathione metabolism. Additionally, K supply substantially decreased Cd accumulation and reactive oxygen species production and promoted the production of cellulose, pectin and lignin in the root tips when exposed to Cd. Several critical DEGs associated with heavy metal transport and cell wall biosynthesis were responsible for the difference of Cd accumulation between the two cultivars. Application of K could help decrease Cd accumulation in sweet potato.
Collapse
Affiliation(s)
- Aiguo Yin
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Chuang Shen
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Yingying Huang
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Huiling Fu
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Qiong Liao
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Junliang Xin
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| | - Baifei Huang
- Research Center for Environmental Pollution Control Technology, School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| |
Collapse
|
16
|
Ceasar SA, Maharajan T, Hillary VE, Ajeesh Krishna TP. Insights to improve the plant nutrient transport by CRISPR/Cas system. Biotechnol Adv 2022; 59:107963. [PMID: 35452778 DOI: 10.1016/j.biotechadv.2022.107963] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023]
Abstract
We need to improve food production to feed the ever growing world population especially in a changing climate. Nutrient deficiency in soils is one of the primary bottlenecks affecting the crop production both in developed and developing countries. Farmers are forced to apply synthetic fertilizers to improve the crop production to meet the demand. Understanding the mechanism of nutrient transport is helpful to improve the nutrient-use efficiency of crops and promote the sustainable agriculture. Many transporters involved in the acquisition, export and redistribution of nutrients in plants are characterized. In these studies, heterologous systems like yeast and Xenopus were most frequently used to study the transport function of plant nutrient transporters. CRIPSR/Cas system introduced recently has taken central stage for efficient genome editing in diverse organisms including plants. In this review, we discuss the key nutrient transporters involved in the acquisition and redistribution of nutrients from soil. We draw insights on the possible application CRISPR/Cas system for improving the nutrient transport in plants by engineering key residues of nutrient transporters, transcriptional regulation of nutrient transport signals, engineering motifs in promoters and transcription factors. CRISPR-based engineering of plant nutrient transport not only helps to study the process in native plants with conserved regulatory system but also aid to develop non-transgenic crops with better nutrient use-efficiency. This will reduce the application of synthetic fertilizers and promote the sustainable agriculture strengthening the food and nutrient security.
Collapse
Affiliation(s)
| | | | - V Edwin Hillary
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| | - T P Ajeesh Krishna
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| |
Collapse
|
17
|
Cao GH, Wang XF, Li ZD, Zhang X, Li XG, Gu W, Zhang F, Yu J, He S. A Panax notoginseng phosphate transporter, PnPht1;3, greatly contributes to phosphate and arsenate uptake. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:259-271. [PMID: 35115080 DOI: 10.1071/fp21218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The crisis of arsenic (As) accumulation in rhizomes threatens the quality and safety of Panax notoginseng (Burk.) F.H. Chen, which is a well-known traditional Chinese herb with a long clinical history. The uptake of arsenate (AsV) could be suppressed by supplying phosphate (Pi), in which Pi transporters play important roles in the uptake of Pi and AsV. Herein, the P . notoginseng Pi transporter-encoding gene PnPht1;3 was identified and characterised under Pi deficiency and AsV exposure. In this study, the open reading frame (ORF) of PnPht1;3 was cloned according to RNA-seq and encoded 545 amino acids. The relative expression levels revealed that PnPht1;3 was significantly upregulated under phosphate deficiency and AsV exposure. Heterologous expression in Saccharomyces cerevisiae MB192 demonstrated that PnPht1;3 performed optimally in complementing the yeast Pi-transport defect and accumulated more As in the cells. Combined with the subcellular localisation prediction, it was concluded that PnPht1;3 encodes a functional plasma membrane-localised transporter protein that mediates putative high-affinity Pi/H+ symport activity and enhances the uptake of Pi and AsV. Therefore, a better understanding of the roles of the P . notoginseng Pi transporter could provide new insight for solving As accumulation in medicinal plants.
Collapse
Affiliation(s)
- Guan-Hua Cao
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xi-Fu Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Ze-Dong Li
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xue Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Xiao-Gang Li
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Wen Gu
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Fan Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Jie Yu
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Sen He
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China; and Yunnan Key Laboratory for Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| |
Collapse
|
18
|
A large transposable element mediates metal resistance in the fungus Paecilomyces variotii. Curr Biol 2022; 32:937-950.e5. [PMID: 35063120 DOI: 10.1016/j.cub.2021.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/11/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
The horizontal transfer of large gene clusters by mobile elements is a key driver of prokaryotic adaptation in response to environmental stresses. Eukaryotic microbes face similar stresses; however, a parallel role for mobile elements has not been established. A stress faced by many microorganisms is toxic metal ions in their environment. In fungi, identified mechanisms for protection against metals generally rely on genes that are dispersed within an organism's genome. Here, we discover a large (∼85 kb) region that confers tolerance to five metal/metalloid ions (arsenate, cadmium, copper, lead, and zinc) in the genomes of some, but not all, strains of a fungus, Paecilomyces variotii. We name this region HEPHAESTUS (Hφ) and present evidence that it is mobile within the P. variotii genome with features characteristic of a transposable element. HEPHAESTUS contains the greatest complement of host-beneficial genes carried by a transposable element in eukaryotes, suggesting that eukaryotic transposable elements might play a role analogous to bacteria in the horizontal transfer of large regions of host-beneficial DNA. Genes within HEPHAESTUS responsible for individual metal tolerances include those encoding a P-type ATPase transporter-PcaA-required for cadmium and lead tolerance, a transporter-ZrcA-providing tolerance to zinc, and a multicopper oxidase-McoA-conferring tolerance to copper. In addition, a subregion of Hφ confers tolerance to arsenate. The genome sequences of other fungi in the Eurotiales contain further examples of HEPHAESTUS, suggesting that it is responsible for independently assembling tolerance to a diverse array of ions, including chromium, mercury, and sodium.
Collapse
|
19
|
Feki K, Tounsi S, Mrabet M, Mhadhbi H, Brini F. Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64967-64986. [PMID: 34599711 DOI: 10.1007/s11356-021-16805-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/24/2021] [Indexed: 05/27/2023]
Abstract
Among abiotic stress, the toxicity of metals impacts negatively on plants' growth and productivity. This toxicity promotes various perturbations in plants at different levels. To withstand stress, plants involve efficient mechanisms through the implication of various signaling pathways. These pathways enhance the expression of many target genes among them gene coding for metal transporters. Various metal transporters which are localized at the plasma membrane and/or at the tonoplast are crucial in metal stress response. Furthermore, metal detoxification is provided by metal-binding proteins like phytochelatins and metallothioneins. The understanding of the molecular basis of metal toxicities signaling pathways and tolerance mechanisms is crucial for genetic engineering to produce transgenic plants that enhance phytoremediation. This review presents an overview of the recent advances in our understanding of metal stress response. Firstly, we described the effect of metal stress on plants. Then, we highlight the mechanisms involved in metal detoxification and the importance of the regulation in the response to heavy metal stress. Finally, we mentioned the importance of genetic engineering for enhancing the phytoremediation technique. In the end, the response to heavy metal stress is complex and implicates various components. Thus, further studies are needed to better understand the mechanisms involved in response to this abiotic stress.
Collapse
Affiliation(s)
- Kaouthar Feki
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Moncef Mrabet
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Haythem Mhadhbi
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
| |
Collapse
|
20
|
Wu Z, Liu D, Yue N, Song H, Luo J, Zhang Z. PDF1.5 Enhances Adaptation to Low Nitrogen Levels and Cadmium Stress. Int J Mol Sci 2021; 22:ijms221910455. [PMID: 34638794 PMCID: PMC8509053 DOI: 10.3390/ijms221910455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Environmental acclimation ability plays a key role in plant growth, although the mechanism remains unclear. Here, we determined the involvement of Arabidopsis thaliana PLANT DEFENSIN 1 gene AtPDF1.5 in the adaptation to low nitrogen (LN) levels and cadmium (Cd) stress. Histochemical analysis revealed that AtPDF1.5 was mainly expressed in the nodes and carpopodium and was significantly induced in plants exposed to LN conditions and Cd stress. Subcellular localization analysis revealed that AtPDF1.5 was cell wall- and cytoplasm-localized. AtPDF1.5 overexpression significantly enhanced adaptation to LN and Cd stress and enhanced the distribution of metallic elements. The functional disruption of AtPDF1.5 reduced adaptations to LN and Cd stress and impaired metal distribution. Under LN conditions, the nitrate transporter AtNRT1.5 expression was upregulated. Nitrate transporter AtNRT1.8 expression was downregulated when AtPDF1.5 was overexpressed, resulting in enhanced transport of NO3- to shoots. In response to Cd treatment, AtPDF1.5 regulated the expression of metal transporter genes AtHMP07, AtNRAMP4, AtNRAMP1, and AtHIPP3, resulting in higher Cd accumulation in the shoots. We conclude that AtPDF1.5 is involved in the processing or transmission of signal substances and plays an important role in the remediation of Cd pollution and LN adaptation.
Collapse
Affiliation(s)
- Zhimin Wu
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (D.L.); (N.Y.); (H.S.)
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410221, China
| | - Dong Liu
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (D.L.); (N.Y.); (H.S.)
- National Centre of Oilseed Crops Improvement, Hunan Branch, Changsha 410128, China
| | - Ningyan Yue
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (D.L.); (N.Y.); (H.S.)
- National Centre of Oilseed Crops Improvement, Hunan Branch, Changsha 410128, China
| | - Haixing Song
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (D.L.); (N.Y.); (H.S.)
- National Centre of Oilseed Crops Improvement, Hunan Branch, Changsha 410128, China
| | - Jinsong Luo
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (D.L.); (N.Y.); (H.S.)
- National Centre of Oilseed Crops Improvement, Hunan Branch, Changsha 410128, China
- Correspondence: (J.L.); (Z.Z.)
| | - Zhenhua Zhang
- Southern Regional Collaborative Innovation Centre for Grain and Oil Crops in China, College of Resources and Environmental Sciences, Hunan Agricultural University, Changsha 410128, China; (Z.W.); (D.L.); (N.Y.); (H.S.)
- National Centre of Oilseed Crops Improvement, Hunan Branch, Changsha 410128, China
- Correspondence: (J.L.); (Z.Z.)
| |
Collapse
|
21
|
Molecular Responses to Cadmium Exposure in Two Contrasting Durum Wheat Genotypes. Int J Mol Sci 2021; 22:ijms22147343. [PMID: 34298963 PMCID: PMC8306872 DOI: 10.3390/ijms22147343] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
Cadmium is a heavy metal that can be easily accumulated in durum wheat kernels and enter the human food chain. Two near-isogenic lines (NILs) with contrasting cadmium accumulation in grains, High-Cd or Low-Cd (H-Cd NIL and L-Cd NIL, respectively), were used to understand the Cd accumulation and transport mechanisms in durum wheat roots. Plants were cultivated in hydroponic solution, and cadmium concentrations in roots, shoots and grains were quantified. To evaluate the molecular mechanism activated in the two NILs, the transcriptomes of roots were analyzed. The observed response is complex and involves many genes and molecular mechanisms. We found that the gene sequences of two basic helix–loop–helix (bHLH) transcription factors (bHLH29 and bHLH38) differ between the two genotypes. In addition, the transporter Heavy Metal Tolerance 1 (HMT-1) is expressed only in the low-Cd genotype and many peroxidase genes are up-regulated only in the L-Cd NIL, suggesting ROS scavenging and root lignification as active responses to cadmium presence. Finally, we hypothesize that some aquaporins could enhance the Cd translocation from roots to shoots. The response to cadmium in durum wheat is therefore extremely complex and involves transcription factors, chelators, heavy metal transporters, peroxidases and aquaporins. All these new findings could help to elucidate the cadmium tolerance in wheat and address future breeding programs.
Collapse
|
22
|
Ali S, Tyagi A, Bae H. Ionomic Approaches for Discovery of Novel Stress-Resilient Genes in Plants. Int J Mol Sci 2021; 22:7182. [PMID: 34281232 PMCID: PMC8267685 DOI: 10.3390/ijms22137182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 01/03/2023] Open
Abstract
Plants, being sessile, face an array of biotic and abiotic stresses in their lifespan that endanger their survival. Hence, optimized uptake of mineral nutrients creates potential new routes for enhancing plant health and stress resilience. Recently, minerals (both essential and non-essential) have been identified as key players in plant stress biology, owing to their multifaceted functions. However, a realistic understanding of the relationship between different ions and stresses is lacking. In this context, ionomics will provide new platforms for not only understanding the function of the plant ionome during stresses but also identifying the genes and regulatory pathways related to mineral accumulation, transportation, and involvement in different molecular mechanisms under normal or stress conditions. This article provides a general overview of ionomics and the integration of high-throughput ionomic approaches with other "omics" tools. Integrated omics analysis is highly suitable for identification of the genes for various traits that confer biotic and abiotic stress tolerance. Moreover, ionomics advances being used to identify loci using qualitative trait loci and genome-wide association analysis of element uptake and transport within plant tissues, as well as genetic variation within species, are discussed. Furthermore, recent developments in ionomics for the discovery of stress-tolerant genes in plants have also been addressed; these can be used to produce more robust crops with a high nutritional value for sustainable agriculture.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| | - Anshika Tyagi
- National Institute for Plant Biotechnology, New Delhi 110012, India;
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
23
|
Wu J, Song Q, Zhou J, Wu Y, Liu X, Liu J, Zhou L, Wu Z, Wu W. Cadmium threshold for acidic and multi-metal contaminated soil according to Oryza sativa L. Cadmium accumulation: Influential factors and prediction model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111420. [PMID: 33080421 DOI: 10.1016/j.ecoenv.2020.111420] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) contamination in soil-rice systems has become a global public concern. However, influencing factors and the contamination threshold of Cd in soils remain largely unknown owing to soil heterogeneity, which limits our ability to assess the risk to human health and to draft appropriate environmental policies. In this study, we selected the soil-rice system of Longtang and Shijiao town in southern China, which was characterized by multi-metal acidic soil contamination due to improper electronic waste recycling activities, as a case to analyze the influence of different soil properties on the Cd threshold in the soil and Cd accumulation in rice. The results showed that soil organic matter (SOM) was the main factor regulating Cd accumulation in the soil-rice system. Moreover, compared with the total Cd concentration, the DTPA-extractable Cd concentration in the soil was a better predictor of Cd transportation in the soil-rice system. According to the prediction model, when SOM was < 35 g kg-1, the CdDTPA threshold was 0.16 mg kg-1 with a 95% likelihood of Cdrice accumulation above the Chinese food standard limit (0.2 mg kg-1). Conversely, when SOM was ≥ 35 g kg-1, the CdDTPA threshold was only 0.03 mg kg-1. This study of the influence of SOM on Cd accumulation in a soil-rice system confirms that SOM is a crucial parameter for better and safer rice production, especially in multi-metal contaminated acidic soils.
Collapse
Affiliation(s)
- Jiahui Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Qingmei Song
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Jingyan Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Yingxin Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Xiaowen Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Junjun Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Lingli Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Zhuohao Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China.
| |
Collapse
|
24
|
He G, Qin L, Tian W, Meng L, He T, Zhao D. Heavy Metal Transporters-Associated Proteins in S. tuberosum: Genome-Wide Identification, Comprehensive Gene Feature, Evolution and Expression Analysis. Genes (Basel) 2020; 11:genes11111269. [PMID: 33126505 PMCID: PMC7694169 DOI: 10.3390/genes11111269] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Plants have evolved a number of defense and adaptation responses to protect themselves against challenging environmental stresses. Genes containing a heavy metal associated (HMA) domain are required for the spatiotemporal transportation of metal ions that bind with various enzymes and co-factors within the cell. To uncover the underlying mechanisms mediated by StHMA genes, we identified 36 gene members in the StHMA family and divided them into six subfamilies by phylogenetic analysis. The StHMAs had high collinearity and were segmentally duplicated. Structurally, most StHMAs had one HMA domain, StHIPPc and StRNA1 subfamilies had two, and 13 StHMAs may be genetically variable. The StHMA gene structures and motifs varied considerably among the various classifications, this suggests the StHMA family is diverse in genetic functions. The promoter analysis showed that the StHMAs had six main cis-acting elements with abiotic stress. An expression pattern analysis revealed that the StHMAs were expressed tissue specifically, and a variety of abiotic stresses may induce the expression of StHMA family genes. The HMA transporter family may be regulated and expressed by a series of complex signal networks under abiotic stress. The results of this study may help to establish a theoretical foundation for further research investigating the functions of HMA genes in Solanum tuberosum to elucidate their regulatory role in the mechanism governing the response of plants to abiotic stress.
Collapse
Affiliation(s)
- Guandi He
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
| | - Lijun Qin
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
| | - Weijun Tian
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
| | - Lulu Meng
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
| | - Tengbing He
- Agricultural College, Guizhou University, Guiyang 550025, China; (W.T.); (L.M.)
- Institute of New Rural Development of Guizhou University, Guiyang 550025, China
- Correspondence: (T.H.); (D.Z.)
| | - Degang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.H.); (L.Q.)
- Guizhou Academy of Agricultural Science, Guiyang 550025, China
- Correspondence: (T.H.); (D.Z.)
| |
Collapse
|
25
|
Zhang F, Xiao X, Wu X. Physiological and molecular mechanism of cadmium (Cd) tolerance at initial growth stage in rapeseed (Brassica napus L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110613. [PMID: 32304923 DOI: 10.1016/j.ecoenv.2020.110613] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) contaminated soil has threatened plant growth and human health. Rapeseed (Brassica napus L.), an ideal plant for phytoremediation, is an important source of edible vegetable oil, vegetable, animal fodder, green manure and biodiesel. For safe utilization of Cd polluted soil, physiological, biochemical, and molecular techniques have been used to understand mechanisms of Cd tolerance in B. napus. However, most of these researches have concentrated on vegetative and adult stages, just a few reports focus on the initial growth stage. Here, the partitioning of cadmium, gene expression level and activity of enzymatic antioxidants of H18 (tolerant genotype) and P9 (sensitive genotype) were investigated under 0 and 30 mg/L Cd stress at seedling establishment stage. Results shown that the radicle length of H18 and P9 under Cd stress were decreased by 30.33 (0.01 < P < 0.05) and 88.89% (P < 0.01) respectively. Cd concentration at cotyledon not radicle and hypocotyl in P9 was significantly higher than that in H18. The expression level of BnaHMA4c, which plays a key role in root-to-shoot translocation of Cd, was extremely higher in P9 than in H18 under both normal and Cd stress conditions. We also found that SOD, CAT and POD were more active in responding to Cd stress after 48 h, and the activity of SOD and CAT in H18 were higher than that in P9 at all observed time points. In conclusion, high activity of enzymatic antioxidants at initial Cd stress stage is the main detoxification mechanism in Cd-tolerant rapeseed, while the higher Cd transfer coefficient, driven by higher expression level of BnaHMA4c is the main mechanism for surviving radicle from initial Cd toxicity in Cd-sensitive rapeseed.
Collapse
Affiliation(s)
- Fugui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xin Xiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
26
|
Cheema AI, Liu G, Yousaf B, Abbas Q, Zhou H. A comprehensive review of biogeochemical distribution and fractionation of lead isotopes for source tracing in distinct interactive environmental compartments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:135658. [PMID: 31874752 DOI: 10.1016/j.scitotenv.2019.135658] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 05/06/2023]
Abstract
Lead (Pb) is a non-essential and extremely noxious metallic-element whose biogeochemical cycle has been influenced predominantly by increasing human activities to a great extent. The introduction and enrichment of this ubiquitous contaminant in the terrestrial-environment has a long history and getting more attention due to its adverse health effects to living organisms even at very low exposure levels. Its lethal-effects can vary widely depending on the atmospheric-depositions, fates and distribution of Pb isotopes (i.e., 204Pb, 206Pb, 207Pb &208Pb) in the terrestrial-environment. Thus, it is essential to understand the depositional behavior and transformation mechanism of Pb and the factors affecting Pb isotopes composition in the terrestrial-compartments. Owing to the persistence nature of Pb-isotopic fractions, regardless of ongoing biogeochemical-processes taking place in soils and in other interlinked terrestrial-compartments of the biosphere makes Pb isotope ratios (Pb-IRs) more recognizable as a powerful and an efficient-tool for tracing the source(s) and helped uncover pertinent migration and transformation processes. This review discusses the ongoing developments in tracing migration pathway and distribution of lead in various terrestrial-compartments and investigates the processes regulating the Pb isotope geochemistry taking into account the source identification of lead, its transformation among miscellaneous terrestrial-compartments and detoxification mechanism in soil-plant system. Additionally, this compendium reveals that Pb-pools in various terrestrial-compartments differ in Pb isotopic fractionations. In order to improve understanding of partition behaviors and biogeochemical pathways of Pb isotope in the terrestrial environment, future works should involve investigation of changes in Pb isotopic compositions during weathering processes and atmospheric-biological sub-cycles.
Collapse
Affiliation(s)
- Ayesha Imtiyaz Cheema
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, PR China.
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, PR China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Huihui Zhou
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
27
|
Cao GH, Li ZD, Wang XF, Zhang X, Zhao RH, Gu W, Chen D, Yu J, He S. Phosphate transporters, PnPht1;1 and PnPht1;2 from Panax notoginseng enhance phosphate and arsenate acquisition. BMC PLANT BIOLOGY 2020; 20:124. [PMID: 32197586 PMCID: PMC7083058 DOI: 10.1186/s12870-020-2316-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/27/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Panax notoginseng is a medicinally important Chinese herb with a long history of cultivation and clinical application. The planting area is mainly distributed in Wenshan Prefecture, where the quality and safety of P. notoginseng have been threatened by high concentration of arsenic (As) from the soil. The roles of phosphate (Pi) transporters involved in Pi acquisition and arsenate (AsV) tolerance were still unclear in this species. RESULTS In this study, two open reading frames (ORFs) of PnPht1;1 and PnPht1;2 separated from P. notoginseng were cloned based on RNA-seq, which encoded 527 and 541 amino acids, respectively. The results of relative expression levels showed that both genes responded to the Pi deficiency or As exposure, and were highly upregulated. Heterologous expression in Saccharomyces cerevisiae MB192 revealed that PnPht1;1 and PnPht1;2 performed optimally in complementing the yeast Pi-transport defect, particularly in PnPht1;2. Cells expressing PnPht1;2 had a stronger AsV tolerance than PnPht1;1-expressing cells, and accumulated less As in cells under a high-Pi concentration. Combining with the result of plasma membrane localization, these data confirmed that transporters PnPht1;1 and PnPht1;2 were putative high-affinity H+/H2PO4- symporters, mediating the uptake of Pi and AsV. CONCLUSION PnPht1;1 and PnPht1;2 encoded functional plasma membrane-localized transporter proteins that mediated a putative high-affinity Pi/H+ symport activity. Expression of PnPht1;1 or PnPht1;2 in mutant strains could enhance the uptake of Pi and AsV, that is probably responsible for the As accumulation in the roots of P. notoginseng.
Collapse
Affiliation(s)
- Guan-Hua Cao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, Yunnan, China
| | - Ze-Dong Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xi-Fu Wang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xue Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Rong-Hua Zhao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen Gu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Di Chen
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jie Yu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Sen He
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| |
Collapse
|
28
|
Khatiwada B, Hasan MT, Sun A, Kamath KS, Mirzaei M, Sunna A, Nevalainen H. Probing the Role of the Chloroplasts in Heavy Metal Tolerance and Accumulation in Euglena gracilis. Microorganisms 2020; 8:E115. [PMID: 31947612 PMCID: PMC7023027 DOI: 10.3390/microorganisms8010115] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 12/02/2022] Open
Abstract
The E. gracilis Zm-strain lacking chloroplasts, characterized in this study, was compared with the earlier assessed wild type Z-strain to explore the role of chloroplasts in heavy metal accumulation and tolerance. Comparison of the minimum inhibitory concentration (MIC) values indicated that both strains tolerated similar concentrations of mercury (Hg) and lead (Pb), but cadmium (Cd) tolerance of the Z-strain was twice that of the Zm-strain. The ability of the Zm-strain to accumulate Hg was higher compared to the Z-strain, indicating the existence of a Hg transportation and accumulation mechanism not depending on the presence of chloroplasts. Transmission electron microscopy (TEM) showed maximum accumulation of Hg in the cytosol of the Zm-strain and highest accumulation of Cd in the chloroplasts of the Z-strain indicating a difference in the ability of the two strains to deposit heavy metals in the cell. The highly abundant heavy metal transporter MTP2 in the Z-strain may have a role in Cd transportation to the chloroplasts. A multidrug resistance-associated protein highly increased in abundance in the Zm-strain could be a potential Hg transporter to either cytosol or mitochondria. Overall, the chloroplasts appear to have major role in the tolerance and accumulation of Cd in E. gracilis.
Collapse
Affiliation(s)
- Bishal Khatiwada
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.K.); (M.T.H.); (A.S.); (K.S.K.); (M.M.)
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Mafruha T. Hasan
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.K.); (M.T.H.); (A.S.); (K.S.K.); (M.M.)
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Angela Sun
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.K.); (M.T.H.); (A.S.); (K.S.K.); (M.M.)
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Karthik Shantharam Kamath
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.K.); (M.T.H.); (A.S.); (K.S.K.); (M.M.)
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.K.); (M.T.H.); (A.S.); (K.S.K.); (M.M.)
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.K.); (M.T.H.); (A.S.); (K.S.K.); (M.M.)
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.K.); (M.T.H.); (A.S.); (K.S.K.); (M.M.)
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
29
|
Pita-Barbosa A, Ricachenevsky FK, Wilson M, Dottorini T, Salt DE. Transcriptional plasticity buffers genetic variation in zinc homeostasis. Sci Rep 2019; 9:19482. [PMID: 31862901 PMCID: PMC6925235 DOI: 10.1038/s41598-019-55736-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/02/2019] [Indexed: 11/08/2022] Open
Abstract
In roots of Arabidopsis thaliana, Zn can be either loaded into the xylem for translocation to the shoot or stored in vacuoles. Vacuolar storage is achieved through the action of the Zn/Cd transporter HMA3 (Heavy Metal Atpase 3). The Col-0 accession has an HMA3 loss-of-function allele resulting in high shoot Cd, when compared to accession CSHL-5 which has a functional allele and low shoot Cd. Interestingly, both Col-0 and CSHL-5 have similar shoot Zn concentrations. We hypothesize that plants sense changes in cytosolic Zn that are due to variation in HMA3 function, and respond by altering expression of genes related to Zn uptake, transport and compartmentalisation, in order to maintain Zn homeostasis. The expression level of genes known to be involved in Zn homeostasis were quantified in both wild-type Col-0 and Col-0::HMA3CSHL-5 plants transformed with the functional CSHL-5 allele of HMA3. We observed significant positive correlations between expression of HMA3 and of genes known to be involved in Zn homeostasis, including ZIP3, ZIP4, MTP1, and bZIP19. The results support our hypothesis that alteration in the level of function of HMA3 is counterbalanced by the fine regulation of the Zn homeostasis gene network in roots of A. thaliana.
Collapse
Affiliation(s)
- Alice Pita-Barbosa
- Center for Coastal, Limnology and Marine Studies, Federal University of Rio Grande do Sul, Litoral Norte Campus, Imbé, RS, 95625-000, Brazil
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Felipe K Ricachenevsky
- Biology Department, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michael Wilson
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, LE12 5RD, UK
| | - David E Salt
- Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK.
| |
Collapse
|
30
|
Cao GH, He S, Chen D, Li T, Zhao ZW. EpABC Genes in the Adaptive Responses of Exophiala pisciphila to Metal Stress: Functional Importance and Relation to Metal Tolerance. Appl Environ Microbiol 2019; 85:e01844-19. [PMID: 31540987 PMCID: PMC6856334 DOI: 10.1128/aem.01844-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/14/2019] [Indexed: 11/20/2022] Open
Abstract
Exophiala pisciphila is one of the dominant dark septate endophytes (DSEs) colonizing metal-polluted slag heaps in southwest China. It shows numerous super-metal-tolerant characteristics, but the molecular mechanisms involved remain largely unknown. In the present study, the functional roles of a specific set of ATP-binding cassette (ABC) transporters in E. pisciphila were characterized. In total, 26 EpABC genes belonging to 6 subfamilies (ABCA to ABCG) were annotated in previous transcriptome sequencing libraries, and all were regulated by metal ions (Pb, Zn, and Cd), which was dependent on the metal species and/or concentrations tested. The results from the heterologous expression of 3 representative EpABC genes confirmed that the expression of EpABC2.1, EpABC3.1, or EpABC4.1 restored the growth of metal-sensitive mutant Saccharomyces cerevisiae strains and significantly improved the tolerance of Arabidopsis thaliana to Pb, Zn, and Cd. Interestingly, the expression of the 3 EpABC genes further altered metal (Pb, Zn, and Cd) uptake and accumulation and promoted growth by alleviating the inhibitory activity in yeast and thale cress caused by toxic ions. These functions along with their vacuolar location suggest that the 3 EpABC transporters may enhance the detoxification of vacuolar compartmentation via transport activities across their membranes. In conclusion, the 26 annotated EpABC transporters may play a major role in maintaining the homeostasis of various metal ions in different cellular compartments, conferring an extreme adaptative advantage to E. pisciphila in metal-polluted slag heaps.IMPORTANCE Many ABC transporters and their functions have been identified in animals and plants. However, little is known about ABC genes in filamentous fungi, especially DSEs, which tend to dominantly colonize the roots of plants growing in stressed environments. Our results deepen the understanding of the function of the ABC genes of a super-metal-tolerant DSE (E. pisciphila) in enhancing its heavy metal resistance and detoxification. Furthermore, the genetic resources of DSEs, e.g., numerous EpABC genes, especially from super-metal-tolerant strains in heavy metal-polluted environments, can be directly used for transgenic applications to improve tolerance and phytoextraction potential.
Collapse
Affiliation(s)
- Guan-Hua Cao
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, Yunnan, China
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen He
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Di Chen
- School of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Tao Li
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, Yunnan, China
| | - Zhi-Wei Zhao
- State Key Laboratory of Conservation and Utilization for Bioresources in Yunnan, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
31
|
Begum N, Hu Z, Cai Q, Lou L. Influence of PGPB Inoculation on HSP70 and HMA3 Gene Expression in Switchgrass under Cadmium Stress. PLANTS (BASEL, SWITZERLAND) 2019; 8:E504. [PMID: 31739628 PMCID: PMC6918137 DOI: 10.3390/plants8110504] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022]
Abstract
This study aimed to evaluate the gene expression of HSP70 and HMA3 in the switchgrass inoculated with plant-growth-promoting-bacteria (PGPB) under cadmium (Cd) stress and to observe the benefit of PGPB in plant growth and development. Plants were grown in hydroponic culture and treated with PGPB inoculants: Pseudomonas grimontii, Pantoea vagans, Pseudomonas veronii, and Pseudomonas fluorescens with the strains Bc09, So23, E02, and Oj24, respectively. The experimental results revealed that HSP70 and HMA3 genes expressed highly in the PGPB-inoculated plants under Cd stress. In addition, the expression of HSP70 and HMA3 genes was considerably higher in the first two days after successive four-day exposure of Cd in plants compared to the last two days of exposure. Increased biomass and indole-3-acetic-acid production with reduced Cd accumulation were observed in the PGPB-inoculated plants under Cd stress compared to the Cd-control plants. These PGPB, with their beneficial mechanisms, protect plants by modifying the gene expression profile that arises during Cd-toxic conditions and increased the healthy biomass of switchgrass. This demonstrates there is a correlation among the growth parameters under Cd stress. The PGPB in this study may help to intensify agriculture by triggering mechanisms to encourage plant growth and development under heavy metal stress.
Collapse
Affiliation(s)
- Nahmina Begum
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | | | - Qingsheng Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| | - Laiqing Lou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
32
|
Qiao K, Wang F, Liang S, Hu Z, Chai T. Heterologous expression of TuCAX1a and TuCAX1b enhances Ca 2+ and Zn 2+ translocation in Arabidopsis. PLANT CELL REPORTS 2019; 38:597-607. [PMID: 30725161 DOI: 10.1007/s00299-019-02390-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
TuCAX1a and TuCAX1b improved Ca2+ and Zn2+ translocation and TuCAX1b enhanced Ca2+, Zn2+, Mn2+ and Fe2+ content when exposed to Cd2+; Cd2+ translocation was inhibited under Ca2+ and Zn2+. Cation/H+ antiporters (CAXs) are involved in the translocation of Ca2+ and various metal ions in higher plants. In the present study, TuCAX1a and TuCAX1b, two cation/H+ antiporters, were isolated from the diploid wheat Triticum urartu, and their metal cation translocation functions investigated. TuCAX1a and TuCAX1b showed abundant tissue-specific expression in the internode and beard, respectively, and their expression levels were increased in shoots exposed to Cd2+, Zn2+ and Ca2+. Plant phenotype analysis showed that overexpression of TuCAX1a and TuCAX1b could improve the tolerance of Arabidopsis to exogenous Ca2+ and Zn2+. In the plant shoots and roots, the contents of Ca2+ and Zn2+ were higher than wild-type plants under Ca2+ and Zn2+ treatments, indicating that TuCAX1a and TuCAX1b can enhance Ca2+ and Zn2+ translocation. Ca2+, Zn2+, Mn2+ and Fe2+ contents showed higher accumulation in TuCAX1b-transgenic Arabidopsis shoots than in wild-type plants exposed to Cd2+, and the translocation of Cd2+ was inhibited under Ca2+ and Zn2+. Overall, the present study provides a novel genetic resource for improving the uptake of microelements and reducing accumulation of toxic heavy metals in wheat.
Collapse
Affiliation(s)
- Kun Qiao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Fanhong Wang
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Shuang Liang
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.
| | - Tuanyao Chai
- College of Life Science, University of the Chinese Academy of Sciences, Beijing, China.
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- The Innovative Academy of Seed Design (INASEED), Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
33
|
Overexpression of TtNRAMP6 enhances the accumulation of Cd in Arabidopsis. Gene 2019; 696:225-232. [DOI: 10.1016/j.gene.2019.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 01/01/2023]
|
34
|
Deng F, Yu M, Martinoia E, Song WY. Ideal Cereals With Lower Arsenic and Cadmium by Accurately Enhancing Vacuolar Sequestration Capacity. Front Genet 2019; 10:322. [PMID: 31024630 PMCID: PMC6467212 DOI: 10.3389/fgene.2019.00322] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/22/2019] [Indexed: 12/29/2022] Open
Abstract
Cereals are a staple food for many people around the world; however, they are also a major dietary source of toxic metal(loid)s. Many agricultural regions throughout the world are contaminated with toxic metal(loid)s, which can accumulate to high levels in the grains of cereals cultivated in these regions, posing serious health risks to consumers. Arsenic (As) and cadmium (Cd) are efficiently accumulated in cereals through metal transport pathways. Therefore, there is an urgent need to develop crops that contain greatly reduced levels of toxic metal(loid)s. Vacuolar sequestration of toxic metal(loid)s is a primary strategy for reducing toxic metal(loid)s in grains. However, until recently, detailed strategies and mechanisms for reducing toxic metal(loid)s in grain were limited by the lack of experimental data. New strategies to reduce As and Cd in grain by enhancing vacuolar sequestration in specific tissues are critical to develop crops that lower the daily intake of As and Cd, potentially improving human health. This review provides insights and strategies for developing crops with strongly reduced amounts of toxic metal(loid)s without jeopardizing agronomic traits.
Collapse
Affiliation(s)
- Fenglin Deng
- Department of Horticulture, Foshan University, Foshan, China
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| | - Min Yu
- Department of Horticulture, Foshan University, Foshan, China
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zurich, Zurich, Switzerland
| | - Won-Yong Song
- Department of Horticulture, Foshan University, Foshan, China
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, South Korea
| |
Collapse
|
35
|
Zhao H, Wang L, Zhao FJ, Wu L, Liu A, Xu W. SpHMA1 is a chloroplast cadmium exporter protecting photochemical reactions in the Cd hyperaccumulator Sedum plumbizincicola. PLANT, CELL & ENVIRONMENT 2019; 42:1112-1124. [PMID: 30311663 DOI: 10.1111/pce.13456] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above-ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9-induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild-type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola.
Collapse
Affiliation(s)
- Haixia Zhao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Anna Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Wang J, Liang S, Xiang W, Dai H, Duan Y, Kang F, Chai T. A repeat region from the Brassica juncea HMA4 gene BjHMA4R is specifically involved in Cd 2+ binding in the cytosol under low heavy metal concentrations. BMC PLANT BIOLOGY 2019; 19:89. [PMID: 30819104 PMCID: PMC6394093 DOI: 10.1186/s12870-019-1674-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/07/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND HMA4 transporters are involved in the transport and binding of divalent heavy metals (Cd, Zn, Pb [lead] and Co [cobalt]). In general, as efflux pumps, HMA4 transporters can increase the heavy metal tolerance of yeast and Escherichia coli. Additional research has shown that the C-terminus of HMA4 contains a heavy metal-binding domain and that heterologous expression of a portion of peptides from this C-terminal domain in yeast provides a high level of Cd tolerance and Cd hyperaccumulation. RESULTS We cloned BjHMA4 from Brassica juncea, and quantitative real-time PCR analysis revealed that BjHMA4 was upregulated by Zn and Cd in the roots, stems and leaves. Overexpression of BjHMA4 dramatically affects Zn/Cd distribution in rice and wheat seedlings. Interestingly, BjHMA4 contains a repeat region named BjHMA4R within the C-terminal region; this repeat region is not far from the last transmembrane domain. We further characterized the detailed function of BjHMA4R via yeast and E. coli experiments. Notably, BjHMA4R greatly and specifically improved Cd tolerance, and BjHMA4R transformants both grew on solid media that contained 500 μM CdCl2 and presented improved Cd accumulation (approximately twice that of wild-type [WT] strains). Additionally, visualization via fluorescence microscopy indicated that BjHMA4R clearly localizes in the cytosol of yeast. Overall, these findings suggest that BjHMA4R specifically improves Cd tolerance and Cd accumulation in yeast by specifically binding Cd2+ in the cytosol under low heavy metal concentrations. Moreover, similar results in E. coli experiments corroborate this postulation. CONCLUSION BjHMA4R can specifically bind Cd2+ in the cytosol, thereby substantially and specifically improving Cd tolerance and accumulation under low heavy metal concentrations.
Collapse
Affiliation(s)
- Jianwu Wang
- Shaanxi Key Laboratory of Ecological Restoration in Shanbei Mining Area, Yulin University, Yulin, 719000 Shaanxi China
| | - Shuang Liang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Weiwei Xiang
- Shaanxi Key Laboratory of Ecological Restoration in Shanbei Mining Area, Yulin University, Yulin, 719000 Shaanxi China
| | - Huiping Dai
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001 People’s Republic of China
| | - Yizhong Duan
- Shaanxi Key Laboratory of Ecological Restoration in Shanbei Mining Area, Yulin University, Yulin, 719000 Shaanxi China
| | - Furen Kang
- Shaanxi Key Laboratory of Ecological Restoration in Shanbei Mining Area, Yulin University, Yulin, 719000 Shaanxi China
| | - Tuanyao Chai
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Lekeux G, Laurent C, Joris M, Jadoul A, Jiang D, Bosman B, Carnol M, Motte P, Xiao Z, Galleni M, Hanikenne M. di-Cysteine motifs in the C-terminus of plant HMA4 proteins confer nanomolar affinity for zinc and are essential for HMA4 function in vivo. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5547-5560. [PMID: 30137564 PMCID: PMC6255694 DOI: 10.1093/jxb/ery311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/13/2018] [Indexed: 05/22/2023]
Abstract
The PIB ATPase heavy metal ATPase 4 (HMA4) has a central role in the zinc homeostasis network of Arabidopsis thaliana. This membrane protein loads metal from the pericycle cells into the xylem in roots, thereby allowing root to shoot metal translocation. Moreover, HMA4 is key for zinc hyperaccumulation as well as zinc and cadmium hypertolerance in the pseudometallophyte Arabidopsis halleri. The plant-specific cytosolic C-terminal extension of HMA4 is rich in putative metal-binding residues and has substantially diverged between A. thaliana and A. halleri. To clarify the function of the domain in both species, protein variants with truncated C-terminal extension, as well as with mutated di-Cys motifs and/or a His-stretch, were functionally characterized. We show that di-Cys motifs, but not the His-stretch, contribute to high affinity zinc binding and function in planta. We suggest that the HMA4 C-terminal extension is at least partly responsible for protein targeting to the plasma membrane. Finally, we reveal that the C-terminal extensions of both A. thaliana and A. halleri HMA4 proteins share similar function, despite marginally different zinc-binding capacity.
Collapse
Affiliation(s)
- Gilles Lekeux
- InBioS – Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, Liège, Belgium
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Clémentine Laurent
- InBioS – Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, Liège, Belgium
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
- Present address: EyeD Pharma, Quartier Hôpital, Avenue Hippocrate, 54000 Liège, Belgium
| | - Marine Joris
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Alice Jadoul
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Dan Jiang
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Bernard Bosman
- InBioS – PhytoSystems, Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, Liège, Belgium
| | - Monique Carnol
- InBioS – PhytoSystems, Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, Liège, Belgium
| | - Patrick Motte
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Zhiguang Xiao
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Present address: Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Moreno Galleni
- InBioS – Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, Liège, Belgium
| | - Marc Hanikenne
- InBioS – PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
- Correspondence:
| |
Collapse
|
38
|
Yao X, Cai Y, Yu D, Liang G. bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:691-702. [PMID: 29667322 DOI: 10.1111/jipb.12658] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Cd is a non-essential heavy metal that is toxic to both plants and animals. Here, we reveal that the transcription factor bHLH104 positively regulates Cd tolerance in Arabidopsis thaliana. We show that Fe deficiency-responsive genes were induced by Cd treatment, and that their upregulation was suppressed in bhlh104 loss-of-function mutants, but enhanced upon overexpression of bHLH104. Correspondingly, the bhlh104 mutants displayed sensitivity to Cd stress, whereas plants overexpressing bHLH104 exhibited enhanced Cd tolerance. Further analysis suggested that bHLH104 positively regulates four heavy metal detoxification-associated genes, IREG2, MTP3, HMA3 and NAS4, which play roles in Cd sequestration and tolerance. The bHLH104 overexpression plants accumulated high levels of Cd in the root but low levels of Cd in the shoot, which might contribute to the Cd tolerance in those lines. The present study thus points to bHLH104 as a potentially useful tool for genetic engineering of plants with enhanced Cd tolerance.
Collapse
Affiliation(s)
- Xiani Yao
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuerong Cai
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Gang Liang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
39
|
Zhang J, Martinoia E, Lee Y. Vacuolar Transporters for Cadmium and Arsenic in Plants and their Applications in Phytoremediation and Crop Development. PLANT & CELL PHYSIOLOGY 2018; 59:1317-1325. [PMID: 29361141 DOI: 10.1093/pcp/pcy006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/04/2018] [Indexed: 05/18/2023]
Abstract
Soil contamination by heavy metals and metalloids such as cadmium (Cd) and arsenic (As) poses a major threat to the environment and to human health. Vacuolar sequestration is one of the main mechanisms by which plants control toxic materials including Cd and As. Understanding the mechanisms of heavy metal tolerance and accumulation can be useful for both phytoremediation and safe crop development. In this review, we summarize recent advances in deciphering the molecular mechanisms underlying vacuolar sequestration of Cd and As, and discuss potential biotechnological applications of this knowledge and efforts towards attaining these goals.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Enrico Martinoia
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea
- Institut für Pflanzenbiologie, Universität Zürich, Zollikerstrasse 107, Zürich, Switzerland
| | - Youngsook Lee
- Department of Integrative Bioscience & Biotechnology, Pohang University of Science and Technology, Pohang, Korea
- Department of Life Science, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|
40
|
Zhang X, Rui H, Zhang F, Hu Z, Xia Y, Shen Z. Overexpression of a Functional Vicia sativa PCS1 Homolog Increases Cadmium Tolerance and Phytochelatins Synthesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:107. [PMID: 29467781 PMCID: PMC5808204 DOI: 10.3389/fpls.2018.00107] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/19/2018] [Indexed: 05/05/2023]
Abstract
Phytochelatins (PCs) catalyzed by phytochelatin synthases (PCS) are important for the detoxification of metals in plants and other living organisms. In this study, we isolated a PCS gene (VsPCS1) from Vicia sativa and investigated its role in regulating cadmium (Cd) tolerance. Expression of VsPCS1 was induced in roots of V. sativa under Cd stress. Analysis of subcellular localization showed that VsPCS1 was localized in the cytoplasm of mesophyll protoplasts of V. sativa. Overexpression of VsPCS1 (35S::VsPCS1, in wild-type background) in Arabidopsis thaliana could complement the defects of Cd tolerance of AtPCS1-deficent mutant (atpcs1). Compared with atpcs1 mutants, 35S::VsPCS1/atpcs1 (in AtPCS1-deficent mutant background) transgenic plants significantly lowered Cd-fluorescence intensity in mesophyll cytoplasm, accompanied with enhanced Cd-fluorescence intensity in the vacuoles, demonstrating that the increased Cd tolerance may be attributed to the increased PC-based sequestration of Cd into the vacuole. Furthermore, overexpressing VsPCS1 could enhance the Cd tolerance in 35S::VsPCS1, but have no effect on Cd accumulation and distribution, showing the same level of Cd-fluorescence intensity between 35S::VsPCS1 and wild-type (WT) plants. Further analysis indicated this increased tolerance in 35S::VsPCS1 was possibly due to the increased PCs-chelated Cd in cytosol. Taken together, a functional PCS1 homolog from V. sativa was identified, which hold a strong catalyzed property for the synthesis of high-order PCs that retained Cd in the cytosol rather the vacuole. These findings enrich the original model of Cd detoxification mediated by PCS in higher plants.
Collapse
Affiliation(s)
- Xingxing Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Haiyun Rui
- College of Pharmacy and Chemistry and Chemical Engineering, Taizhou University, Taizhou, China
| | - Fenqin Zhang
- College of Agriculture and Biotechnology, Hexi University, Zhangye, China
| | - Zhubing Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yan Xia,
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
41
|
Gu CS, Liu LQ, Deng YM, Zhang YX, Wang ZQ, Yuan HY, Huang SZ. De novo characterization of the Iris lactea var. chinensis transcriptome and an analysis of genes under cadmium or lead exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 144:507-513. [PMID: 28675864 DOI: 10.1016/j.ecoenv.2017.06.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/20/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Iris lactea var. chinensis (I. lactea var. chinensis) is tolerant to accumulations of cadmium (Cd) and lead (Pb). In this study, the transcriptome of I. lactea var. chinensis was investigated under Cd or Pb stresses. Using the gene ontology database, 31,974 unigenes were classified into biological process, cellular component and molecular function. In total, 13,132 unigenes were involved in enriched Encyclopedia of Genes and Genomes (KEGG) metabolic pathways, and the expression levels of 5904 unigenes were significantly changed after exposure to Cd or Pb stresses. Of these, 974 were co-up-regulated and 1281 were co-down-regulated under the two stresses. The transcriptome expression profiles of I. lactea var. chinensis under Cd or Pb stresses obtained in this study provided a resource for identifying common mechanisms in the detoxification of different heavy metals. Furthermore, the identified unigenes may be used for the genetic breeding of heavy-metal tolerant plants.
Collapse
Affiliation(s)
- Chun-Sun Gu
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Liang-Qin Liu
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yan-Ming Deng
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yong-Xia Zhang
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Zhi-Quan Wang
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Hai-Yan Yuan
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Su-Zhen Huang
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
42
|
Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. Biophys Rev 2017; 9:807-825. [PMID: 28836190 DOI: 10.1007/s12551-017-0303-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/28/2017] [Indexed: 01/02/2023] Open
Abstract
Lead ions (Pb2+) possess characteristics similar to Ca2+. Because of this and its redox capabilities, lead causes different toxic effects. The neurotoxic effects have been well documented; however, the toxic effects on cardiac tissues remain allusive. We utilized isolated guinea pig hearts and measured the effects of Pb2+ on their contractility and excitability. Acute exposure to extracellular Pb2+ had a negative inotropic effect and increased diastolic tension. The speed of contraction and relaxation were affected, though the effects were more dramatic on the speed of contraction. Excitability was also altered. Heart beat frequency increased and later diminished after lead ion exposure. Pro-arrhytmic events, such as early after-depolarization and a reduction of the action potential plateau, were also observed. In isolated cardiomyocytes and tsA 201 cells, extracellular lead blocked currents through Cav1.2 channels, diminished their activation, and enhanced their fast inactivation, negatively affecting their gating currents. Thus, Pb2+ was cardiotoxic and reduced cardiac contractility, making the heart prone to arrhythmias. This was due, in part, to Pb2+ effects on the Cav1.2 channels; however, other channels, transporters or pathways may also be involved. Acute cardiotoxic effects were observed at Pb2+ concentrations achievable during acute lead poisoning. The results suggest how Cav1.2 gating can be affected by divalent cations, such as Pb2, and also suggest a more thorough evaluation of heart function in individuals affected by lead poisoning.
Collapse
|
43
|
Yu R, Li D, Du X, Xia S, Liu C, Shi G. Comparative transcriptome analysis reveals key cadmium transport-related genes in roots of two pak choi (Brassica rapa L. ssp. chinensis) cultivars. BMC Genomics 2017; 18:587. [PMID: 28789614 PMCID: PMC5549386 DOI: 10.1186/s12864-017-3973-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/31/2017] [Indexed: 01/08/2023] Open
Abstract
Background Cadmium translocation from roots to shoots is a complex biological process that is controlled by gene regulatory networks. Pak choi exhibits wide cultivar variations in Cd accumulation. However, the molecular mechanism involved in cadmium translocation and accumulation is still unclear. To isolate differentially expressed genes (DEGs) involved in transporter-mediated regulatory mechanisms of Cd translocation in two contrasting pak choi cultivars, Baiyewuyueman (B, high Cd accumulator) and Kuishan’aijiaoheiye (K, low Cd accumulator), eight cDNA libraries from the roots of two cultivars were constructed and sequenced by RNA-sequencing. Results A total of 244,190 unigenes were obtained. Of them, 6827 DEGs, including BCd10 vs. BCd0 (690), KCd10 vs. KCd0 (2733), KCd0 vs. BCd0 (2919), and KCd10 vs. BCd10 (3455), were identified. Regulatory roles of these DEGs were annotated and clarified through GO and KEEG enrichment analysis. Interestingly, 135 DEGs encoding ion transport (i.e. ZIPs, P1B-type ATPase and MTPs) related proteins were identified. The expression patterns of ten critical genes were validated using RT-qPCR analysis. Furthermore, a putative model of cadmium translocation regulatory network in pak choi was proposed. Conclusions High Cd cultivar (Baiyewuyueman) showed higher expression levels in plasma membrane-localized transport genes (i.e., ZIP2, ZIP3, IRT1, HMA2 and HMA4) and tonoplast-localized transport genes (i.e., CAX4, HMA3, MRP7, MTP3 and COPT5) than low Cd cultivar (Kuishan’aijiaoheiye). These genes, therefore, might be involved in root-to-shoot Cd translocation in pak choi. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3973-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rugang Yu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Dan Li
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Xueling Du
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Shenglan Xia
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Caifeng Liu
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China
| | - Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, People's Republic of China.
| |
Collapse
|
44
|
Liu H, Zhao H, Wu L, Liu A, Zhao FJ, Xu W. Heavy metal ATPase 3 (HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. THE NEW PHYTOLOGIST 2017; 215:687-698. [PMID: 28574163 DOI: 10.1111/nph.14622] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/21/2017] [Indexed: 05/18/2023]
Abstract
Cadmium (Cd) is highly toxic to most organisms, but some rare plant species can hyperaccumulate Cd in aboveground tissues without suffering from toxicity. The mechanism underlying Cd detoxification by hyperaccumulators is interesting but unclear. Here, the heavy metal ATPase 3 (SpHMA3) gene responsible for Cd detoxification was isolated from the Cd/zinc (Zn) hyperaccumulator Sedum plumbizincicola. RNA interference (RNAi)-mediated silencing and overexpression of SpHMA3 were induced to investigate its physiological functions in S. plumbizincicola and a nonhyperaccumulating ecotype of Sedum alfredii. Heterologous expression of SpHMA3 in Saccharomyces cerevisiae showed Cd-specific transport activity. SpHMA3 was highly expressed in the shoots and the protein was localized to the tonoplast. The SpHMA3-RNAi lines were hypersensitive to Cd but not to Zn, with the growth of shoots and young leaves being severely inhibited by Cd. Overexpressing SpHMA3 in the nonhyperaccumulating ecotype of S. alfredii greatly increased its tolerance to and accumulation of Cd, but not Zn. These results indicate that elevated expression of the tonoplast-localized SpHMA3 in the shoots plays an essential role in Cd detoxification, which contributes to the maintenance of the normal growth of young leaves of S. plumbizincicola in Cd-contaminated soils.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haixia Zhao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Anna Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
45
|
Mishra S, Mishra A, Küpper H. Protein Biochemistry and Expression Regulation of Cadmium/Zinc Pumping ATPases in the Hyperaccumulator Plants Arabidopsis halleri and Noccaea caerulescens. FRONTIERS IN PLANT SCIENCE 2017; 8:835. [PMID: 28588597 DOI: 10.3389/fpls.2013.00835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/04/2017] [Indexed: 05/24/2023]
Abstract
P1B-ATPases are decisive for metal accumulation phenotypes, but mechanisms of their regulation are only partially understood. Here, we studied the Cd/Zn transporting ATPases NcHMA3 and NcHMA4 from Noccaea caerulescens as well as AhHMA3 and AhHMA4 from Arabidopsis halleri. Protein biochemistry was analyzed on HMA4 purified from roots of N. caerulescens in active state. Metal titration of NcHMA4 protein with an electrochromic dye as charge indicator suggested that HMA4 reaches maximal ATPase activity when all internal high-affinity Cd2+ binding sites are occupied. Although HMA4 was reported to be mainly responsible for xylem loading of heavy metals for root to shoot transport, the current study revealed high expression of NcHMA4 in shoots as well. Further, there were additional 20 and 40 kD fragments at replete Zn2+ and toxic Cd2+, but not at deficient Zn2+ concentrations. Altogether, the protein level expression analysis suggested a more multifunctional role of NcHMA4 than previously assumed. Organ-level transcription analysis through quantitative PCR of mRNA in N. caerulescens and A. halleri confirmed the strong shoot expression of both NcHMA4 and AhHMA4. Further, in shoots NcHMA4 was more abundant in 10 μM Zn2+ and AhHMA4 in Zn2+ deficiency. In roots, NcHMA4 was up-regulated in response to deficient Zn2+ when compared to replete Zn2+ and toxic Cd2+ treatment. In both species, HMA3 was much more expressed in shoots than in roots, and HMA3 transcript levels remained rather constant regardless of Zn2+ supply, but were up-regulated by 10 μM Cd2+. Analysis of cellular expression by quantitative mRNA in situ hybridisation showed that in A. halleri, both HMA3 and HMA4 mRNA levels were highest in the mesophyll, while in N. caerulescens they were highest in the bundle sheath of the vein. This is likely related to the different final storage sites for hyperaccumulated metals in both species: epidermis in N. caerulescens, mesophyll in A. halleri.
Collapse
Affiliation(s)
- Seema Mishra
- Fachbereich Biologie, Mathematisch-Naturwissenschaftliche, Universität KonstanzKonstanz, Germany
- Department of Biophysics and Biochemistry of Plants, Institute of Plant Molecular Biology, Biology Centre of the ASCRČeské Budějovice, Czechia
- CSIR-National Botanical Research Institute, Plant Ecology and Environmental Science DivisionLucknow, India
| | - Archana Mishra
- Department of Biophysics and Biochemistry of Plants, Institute of Plant Molecular Biology, Biology Centre of the ASCRČeské Budějovice, Czechia
| | - Hendrik Küpper
- Fachbereich Biologie, Mathematisch-Naturwissenschaftliche, Universität KonstanzKonstanz, Germany
- Department of Biophysics and Biochemistry of Plants, Institute of Plant Molecular Biology, Biology Centre of the ASCRČeské Budějovice, Czechia
- Department of Experimental Plant Biology, Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
| |
Collapse
|
46
|
Liedschulte V, Laparra H, Battey JND, Schwaar JD, Broye H, Mark R, Klein M, Goepfert S, Bovet L. Impairing both HMA4 homeologs is required for cadmium reduction in tobacco. PLANT, CELL & ENVIRONMENT 2017; 40:364-377. [PMID: 27880006 DOI: 10.1111/pce.12870] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/18/2016] [Accepted: 11/15/2016] [Indexed: 05/26/2023]
Abstract
In tobacco, the heavy metal P1B-ATPases HMA4.1 and HMA4.2 function in root-to-shoot zinc and cadmium transport. We present greenhouse and field data that dissect the possibilities to impact the two homeologous genes in order to define the best strategy for leaf cadmium reduction. In a first step, both genes were silenced using an RNAi approach leading to >90% reduction of leaf cadmium content. To modulate HMA4 function more precisely, mutant HMA4.1 and HMA4.2 alleles of a Targeting Induced Local Lesions IN Genomes (TILLING) population were combined. As observed with RNAi plants, knockout of both homeologs decreased cadmium root-to-shoot transfer by >90%. Analysis of plants with segregating null and wild-type alleles of both homeologs showed that one functional HMA4 allele is sufficient to maintain wild-type cadmium levels. Plant development was affected in HMA4 RNAi and double knockout plants that included retarded growth, necrotic lesions, altered leaf morphology and increased water content. The combination of complete functional loss (nonsense mutation) in one homeologous HMA4 gene and the functional reduction in the other HMA4 gene (missense mutation) is proposed as strategy to limit cadmium leaf accumulation without developmental effects.
Collapse
Affiliation(s)
- Verena Liedschulte
- PMI R&D, Philip Morris Products SA (part of Philip Morris International group of companies), Neuchâtel, Switzerland
| | - Hélène Laparra
- PMI R&D, Philip Morris Products SA (part of Philip Morris International group of companies), Neuchâtel, Switzerland
| | - James Nicolas Duncan Battey
- PMI R&D, Philip Morris Products SA (part of Philip Morris International group of companies), Neuchâtel, Switzerland
| | - Joanne Deborah Schwaar
- PMI R&D, Philip Morris Products SA (part of Philip Morris International group of companies), Neuchâtel, Switzerland
| | - Hervé Broye
- PMI R&D, Philip Morris Products SA (part of Philip Morris International group of companies), Neuchâtel, Switzerland
| | - Régis Mark
- PMI R&D, Philip Morris Products SA (part of Philip Morris International group of companies), Neuchâtel, Switzerland
| | - Markus Klein
- PMI R&D, Philip Morris Products SA (part of Philip Morris International group of companies), Neuchâtel, Switzerland
| | - Simon Goepfert
- PMI R&D, Philip Morris Products SA (part of Philip Morris International group of companies), Neuchâtel, Switzerland
| | - Lucien Bovet
- PMI R&D, Philip Morris Products SA (part of Philip Morris International group of companies), Neuchâtel, Switzerland
| |
Collapse
|
47
|
Guo Q, Meng L, Humphreys MW, Scullion J, Mur LAJ. Expression of FlHMA3, a P 1B2-ATPase from Festulolium loliaceum, correlates with response to cadmium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:270-277. [PMID: 28113076 DOI: 10.1016/j.plaphy.2017.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 05/04/2023]
Abstract
Heavy metal ATPase 3 (HMA3), a P1B2-ATPase, is a key tonoplast transporter involved in mediating the vacuolar sequestration of cadmium (Cd) to detoxify the intake of this element by plants. HMA3 expression in response to Cd stress has not been previously examined in the grass hybrid species Festulolium loliaceum (Huds.) P. Fourn. In this study, FlHMA3 isolated from F. loliaceum was found to comprise 833 amino acid residues with 77% homology to the rice OsHMA3. Transient expression of FlHMA3 fused to enhanced green fluorescent protein in Arabidopsis protoplasts suggested its localization to vacuolar membranes. Quantitative real-time RT-PCR analysis of F. loliaceum revealed that FlHMA3 is expressed predominantly within roots and up-regulated by excess Cd. Over the 168 h treatment, Cd content of F. loliaceum roots was significantly higher than that of shoots, regardless of external CdCl2 concentrations. A significant positive correlation was found between FlHMA3 expression and Cd accumulation in roots of F. loliaceum seedlings subjected to 10-100 mg L-1 CdCl2 for 168 h or, in a separate experiment, to 25 or 100 mg L-1 CdCl2 for the same duration. These findings provide evidence that FlHMA3 encodes a vacuolar P1B2-ATPase that may play an important role in Cd2+ sequestration into root cell vacuoles, thereby limiting the entry of Cd2+ into the cytoplasm and reducing Cd2+ toxicity.
Collapse
Affiliation(s)
- Qiang Guo
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China
| | - Lin Meng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, PR China.
| | - Mike W Humphreys
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| | - John Scullion
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| | - Luis A J Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| |
Collapse
|
48
|
Li H, Hu T, Amombo E, Fu J. Transcriptome profilings of two tall fescue (Festuca arundinacea) cultivars in response to lead (Pb) stress. BMC Genomics 2017; 18:145. [PMID: 28183269 PMCID: PMC5301350 DOI: 10.1186/s12864-016-3479-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lead (Pb) is one of the most toxic heavy metal environmental pollutants. Tall fescue is an important cold season turf grass which can tolerate and accumulate substantial amount of Pb. To estimate genes related to Pb response and the molecular mechanism associated with Pb tolerance and accumulation, we analyzed the transcriptome of tall fescue in response to Pb treatment. RESULTS RNA-sequencing was performed in two tall fescue cultivars, Pb tolerant Silverado and Pb sensitive AST7001. A total of 810,146 assembled unique transcripts representing 25,415 unigenes were obtained from the tall fescue leaves. Among the panel, 3,696 differentially expressed genes (DEGs) were detected between the Pb treated (1000 mg/L) and untreated samples. Gene ontology (GO) and pathway enrichment analysis demonstrated that the DEGs were mainly implicated in energy metabolism, metabolism of terpenoids and polyketides, and carbohydrate metabolism related pathways. The expression patterns of 16 randomly selected genes were in consistent with that from the Solexa analysis using quantitative reverse-transcription PCR. In addition, compared to the common transcriptional response to Pb stress in both cultivars, the regulation of numerous genes including those involved in zeatin biosynthesis, limonene and pinene degradation, phagosome was exclusive to one cultivar. CONCLUSIONS The tall fescue assembled transcriptome provided substantial molecular resources for further genomics analysis of turfgrass in response to heavy metal stress. The significant expression difference of specific unigenes may account for Pb tolerance or accumulation in two different tall fescue cultivars. This study provided new insights for the investigation of the molecular basis of Pb tolerance and accumulation in tall fescue as well as other related turf grass species.
Collapse
Affiliation(s)
- Huiying Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo street, Wuhan City, Hubei, 430074, People's Republic of China
| | - Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo street, Wuhan City, Hubei, 430074, People's Republic of China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo street, Wuhan City, Hubei, 430074, People's Republic of China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo street, Wuhan City, Hubei, 430074, People's Republic of China.
| |
Collapse
|
49
|
Mishra S, Mishra A, Küpper H. Protein Biochemistry and Expression Regulation of Cadmium/Zinc Pumping ATPases in the Hyperaccumulator Plants Arabidopsis halleri and Noccaea caerulescens. FRONTIERS IN PLANT SCIENCE 2017; 8:835. [PMID: 28588597 PMCID: PMC5438989 DOI: 10.3389/fpls.2017.00835] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/04/2017] [Indexed: 05/15/2023]
Abstract
P1B-ATPases are decisive for metal accumulation phenotypes, but mechanisms of their regulation are only partially understood. Here, we studied the Cd/Zn transporting ATPases NcHMA3 and NcHMA4 from Noccaea caerulescens as well as AhHMA3 and AhHMA4 from Arabidopsis halleri. Protein biochemistry was analyzed on HMA4 purified from roots of N. caerulescens in active state. Metal titration of NcHMA4 protein with an electrochromic dye as charge indicator suggested that HMA4 reaches maximal ATPase activity when all internal high-affinity Cd2+ binding sites are occupied. Although HMA4 was reported to be mainly responsible for xylem loading of heavy metals for root to shoot transport, the current study revealed high expression of NcHMA4 in shoots as well. Further, there were additional 20 and 40 kD fragments at replete Zn2+ and toxic Cd2+, but not at deficient Zn2+ concentrations. Altogether, the protein level expression analysis suggested a more multifunctional role of NcHMA4 than previously assumed. Organ-level transcription analysis through quantitative PCR of mRNA in N. caerulescens and A. halleri confirmed the strong shoot expression of both NcHMA4 and AhHMA4. Further, in shoots NcHMA4 was more abundant in 10 μM Zn2+ and AhHMA4 in Zn2+ deficiency. In roots, NcHMA4 was up-regulated in response to deficient Zn2+ when compared to replete Zn2+ and toxic Cd2+ treatment. In both species, HMA3 was much more expressed in shoots than in roots, and HMA3 transcript levels remained rather constant regardless of Zn2+ supply, but were up-regulated by 10 μM Cd2+. Analysis of cellular expression by quantitative mRNA in situ hybridisation showed that in A. halleri, both HMA3 and HMA4 mRNA levels were highest in the mesophyll, while in N. caerulescens they were highest in the bundle sheath of the vein. This is likely related to the different final storage sites for hyperaccumulated metals in both species: epidermis in N. caerulescens, mesophyll in A. halleri.
Collapse
Affiliation(s)
- Seema Mishra
- Fachbereich Biologie, Mathematisch-Naturwissenschaftliche, Universität KonstanzKonstanz, Germany
- Department of Biophysics and Biochemistry of Plants, Institute of Plant Molecular Biology, Biology Centre of the ASCRČeské Budějovice, Czechia
- CSIR-National Botanical Research Institute, Plant Ecology and Environmental Science DivisionLucknow, India
| | - Archana Mishra
- Department of Biophysics and Biochemistry of Plants, Institute of Plant Molecular Biology, Biology Centre of the ASCRČeské Budějovice, Czechia
| | - Hendrik Küpper
- Fachbereich Biologie, Mathematisch-Naturwissenschaftliche, Universität KonstanzKonstanz, Germany
- Department of Biophysics and Biochemistry of Plants, Institute of Plant Molecular Biology, Biology Centre of the ASCRČeské Budějovice, Czechia
- Department of Experimental Plant Biology, Faculty of Science, University of South BohemiaČeské Budějovice, Czechia
- *Correspondence: Hendrik Küpper,
| |
Collapse
|
50
|
Zhu J, Wang WS, Ma D, Zhang LY, Ren F, Yuan TT. A role for CK2 β subunit 4 in the regulation of plant growth, cadmium accumulation and H 2O 2 content under cadmium stress in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:240-247. [PMID: 27750098 DOI: 10.1016/j.plaphy.2016.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 05/26/2023]
Abstract
Protein kinase CK2, which consists of two α and two β subunits, plays an essential role in plant development and is implicated in plant responses to abiotic stresses, including salt and heat. However, the function of CK2 in response to heavy metals such as cadmium (Cd) has not yet been established. In this study, the transgenic line CKB4ox, which overexpresses CKB4 encoding the CK2β subunit and has elevated CK2 activity, was used to investigate the potential role of CK2 in response to Cd stress in Arabidopsis thaliana. Under Cd stress, CKB4ox showed reduced root growth and biomass accumulation as well as decreased chlorophyll and proline contents compared with wild type. Furthermore, increased Cd accumulation and a higher H2O2 content were found in CKB4ox, possibly contributing to the inhibition of CKB4ox growth under Cd stress. Additionally, altered levels of Cd and H2O2 were found to be associated with decreased expression of genes involved in Cd efflux, Cd sequestration and H2O2 scavenging. Taken together, these results suggest that elevated expression of CKB4 and increased CK2 activity enhance the sensitivity of plants to Cd stress by affecting Cd and H2O2 accumulation, including the modulation of genes involved in Cd transport and H2O2 scavenging. This study provides direct evidence for the involvement of plant CK2 in the response to Cd stress.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Shu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dan Ma
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lin-Yu Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Ren
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|