1
|
Patterson KC, Kahanovitch U, Gonçalves CM, Hablitz JJ, Staruschenko A, Mulkey DK, Olsen ML. K ir 5.1-dependent CO 2 /H + -sensitive currents contribute to astrocyte heterogeneity across brain regions. Glia 2021; 69:310-325. [PMID: 32865323 PMCID: PMC8665280 DOI: 10.1002/glia.23898] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 09/19/2023]
Abstract
Astrocyte heterogeneity is an emerging concept in which astrocytes within or between brain regions show variable morphological and/or gene expression profiles that presumably reflect different functional roles. Recent evidence indicates that retrotrapezoid nucleus (RTN) astrocytes sense changes in tissue CO2/ H+ to regulate respiratory activity; however, mechanism(s) by which they do so remain unclear. Alterations in inward K+ currents represent a potential mechanism by which CO2 /H+ signals may be conveyed to neurons. Here, we use slice electrophysiology in rats of either sex to show that RTN astrocytes intrinsically respond to CO2 /H+ by inhibition of an inward rectifying potassium (Kir ) conductance and depolarization of the membrane, while cortical astrocytes do not exhibit such CO2 /H+ -sensitive properties. Application of Ba2+ mimics the effect of CO2 /H+ on RTN astrocytes as measured by reductions in astrocyte Kir -like currents and increased RTN neuronal firing. These CO2 /H+ -sensitive currents increase developmentally, in parallel to an increased expression in Kir 4.1 and Kir 5.1 in the brainstem. Finally, the involvement of Kir 5.1 in the CO2 /H+ -sensitive current was verified using a Kir5.1 KO rat. These data suggest that Kir inhibition by CO2 /H+ may govern the degree to which astrocytes mediate downstream chemoreceptive signaling events through cell-autonomous mechanisms. These results identify Kir channels as potentially important regional CO2 /H+ sensors early in development, thus expanding our understanding of how astrocyte heterogeneity may uniquely support specific neural circuits and behaviors.
Collapse
Affiliation(s)
- Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
2
|
Bhargava Y, Hampden-Smith K, Chachlaki K, Wood KC, Vernon J, Allerston CK, Batchelor AM, Garthwaite J. Improved genetically-encoded, FlincG-type fluorescent biosensors for neural cGMP imaging. Front Mol Neurosci 2013; 6:26. [PMID: 24068983 PMCID: PMC3781335 DOI: 10.3389/fnmol.2013.00026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/14/2013] [Indexed: 12/20/2022] Open
Abstract
Genetically-encoded biosensors are powerful tools for understanding cellular signal transduction mechanisms. In aiming to investigate cGMP signaling in neurones using the EGFP-based fluorescent biosensor, FlincG (fluorescent indicator for cGMP), we encountered weak or non-existent fluorescence after attempted transfection with plasmid DNA, even in HEK293T cells. Adenoviral infection of HEK293T cells with FlincG, however, had previously proved successful. Both constructs were found to harbor a mutation in the EGFP domain and had a tail of 17 amino acids at the C-terminus that differed from the published sequence. These discrepancies were systematically examined, together with mutations found beneficial for the related GCaMP family of Ca2+ biosensors, in a HEK293T cell line stably expressing both nitric oxide (NO)-activated guanylyl cyclase and phosphodiesterase-5. Restoring the mutated amino acid improved basal fluorescence whereas additional restoration of the correct C-terminal tail resulted in poor cGMP sensing as assessed by superfusion of either 8-bromo-cGMP or NO. Ultimately, two improved FlincGs were identified: one (FlincG2) had the divergent tail and gave moderate basal fluorescence and cGMP response amplitude and the other (FlincG3) had the correct tail, a GCaMP-like mutation in the EGFP region and an N-terminal tag, and was superior in both respects. All variants tested were strongly influenced by pH over the physiological range, in common with other EGFP-based biosensors. Purified FlincG3 protein exhibited a lower cGMP affinity (0.89 μM) than reported for the original FlincG (0.17 μM) but retained rapid kinetics and a 230-fold selectivity over cAMP. Successful expression of FlincG2 or FlincG3 in differentiated N1E-115 neuroblastoma cells and in primary cultures of hippocampal and dorsal root ganglion cells commends them for real-time imaging of cGMP dynamics in neural (and other) cells, and in their subcellular specializations.
Collapse
Affiliation(s)
- Yogesh Bhargava
- Wolfson Institute for Biomedical Research, University College London London, UK
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Guglielmi L, Denis V, Vezzio-Vié N, Bec N, Dariavach P, Larroque C, Martineau P. Selection for intrabody solubility in mammalian cells using GFP fusions. Protein Eng Des Sel 2011; 24:873-81. [PMID: 21997307 DOI: 10.1093/protein/gzr049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Single-chain antibody fragments (scFv) expressed in the cytoplasm of mammalian cells, also called intrabodies, have many applications in functional proteomics. These applications are, however, limited by the aggregation-prone behaviour of many intrabodies. We show here that two scFv with highly homologous sequences and comparable soluble expression levels in Escherichia coli cytoplasm have different behaviours in mammalian cells. When over-expressed, one of the scFv aggregates in the cytoplasm whereas the second one is soluble and active. When expressed at low levels, using a retroviral vector, as a fusion with the green fluorescent protein (GFP) the former does not form aggregates and is degraded, resulting in weakly fluorescent cells, whereas the latter is expressed as a soluble protein, resulting in strongly fluorescent cells. These data suggest that the GFP signal can be used to evaluate the soluble expression of intrabodies in mammalian cells. When applied to a subset of an E.coli-optimised intrabody library, we showed that the population of GFP+ cells contains indeed soluble mammalian intrabodies. Altogether, our data demonstrate that the requirements for soluble intrabody expression are different in E.coli and mammalian cells, and that intrabody libraries can be directly optimised in human cells using a simple GFP-based assay.
Collapse
Affiliation(s)
- Laurence Guglielmi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier F-34298, France
| | | | | | | | | | | | | |
Collapse
|
4
|
Neri-Vidaurri PDC, Torres-Flores V, González-Martínez MT. A remarkable increase in the pHi sensitivity of voltage-dependent calcium channels occurs in human sperm incubated in capacitating conditions. Biochem Biophys Res Commun 2006; 343:105-9. [PMID: 16529718 DOI: 10.1016/j.bbrc.2006.02.095] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 02/16/2006] [Indexed: 11/24/2022]
Abstract
Human sperm are endowed with voltage-dependent calcium channels (VDCC) that produce increases in [Ca2+]i in response to depolarization with KCl. These channels are stimulated during "capacitation", a complex biochemical process, accompanied by a slight pHi alkalization, that sperm must accomplish to acquire the ability to fertilize the egg. The stimulation can be explained in part by the fact that in non-capacitated sperm, calcium influx through VDCC is stimulated by pHi alkalization in the range of pHi observed during capacitation. In this work, we explored the effect of pHi on VDCC in capacitated sperm loaded with fura ff. Strikingly, the pHi sensitivity of VDCC increased approximately 7-fold when sperm was capacitated, as compared with non-capacitated sperm. This finding suggests that the pHi sensitivity of VDCC can be modulated during capacitation so that a combined effect of pHi alkalization and biochemical regulation enhances calcium influx through these channels.
Collapse
Affiliation(s)
- Paloma del Carmen Neri-Vidaurri
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, Apartado Postal 70-297 México, DF, México
| | | | | |
Collapse
|
5
|
Bodi I, Mikala G, Koch SE, Akhter SA, Schwartz A. The L-type calcium channel in the heart: the beat goes on. J Clin Invest 2006; 115:3306-17. [PMID: 16322774 PMCID: PMC1297268 DOI: 10.1172/jci27167] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sydney Ringer would be overwhelmed today by the implications of his simple experiment performed over 120 years ago showing that the heart would not beat in the absence of Ca2+. Fascination with the role of Ca2+ has proliferated into all aspects of our understanding of normal cardiac function and the progression of heart disease, including induction of cardiac hypertrophy, heart failure, and sudden death. This review examines the role of Ca2+ and the L-type voltage-dependent Ca2+ channels in cardiac disease.
Collapse
Affiliation(s)
- Ilona Bodi
- Institute of Molecular Pharmacology and Biophysics, University of Cincinnati College of Medicine, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
6
|
Wakabayashi I, Poteser M, Groschner K. Intracellular pH as a determinant of vascular smooth muscle function. J Vasc Res 2006; 43:238-50. [PMID: 16449818 DOI: 10.1159/000091235] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 11/20/2005] [Indexed: 11/19/2022] Open
Abstract
Intracellular pH (pHi) is a physiological parameter that is intimately linked to contractility, growth and proliferation of vascular smooth muscle (VSM). Regarding contractility, no general unifying concept of pHi regulation but a rather complex relation between pHi signals and vascular tone has been revealed so far. The modulation of vasotone by pHi depends on the type of blood vessel as well as on the pattern of regulatory input signals. In addition, changes in pHi have been recognized as an important cellular signal to determine the fate of cells in terms of proliferation or apoptosis. Cellular sensors for pHi include a variety of ion transport systems which control intracellular Ca2+ gradients and are likely to serve as a link between pHi and cell functions. Here we provide an overview on the potential targets and mechanisms that transduce pHi signals in VSM. The role of pHi-sensing signaling complexes and localized pHi signaling as the basis of diversity of pHi regulation of VSM function is discussed.
Collapse
Affiliation(s)
- Ichiro Wakabayashi
- Department of Hygiene and Preventive Medicine, Yamagata University School of Medicine, Yamagata, Japan.
| | | | | |
Collapse
|
7
|
Sperelakis N, Sunagawa M, Yokoshiki H, Seki T, Nakamura M. Regulation of ion channels in myocardial cells and protection of ischemic myocardium. Heart Fail Rev 2005; 5:139-66. [PMID: 16228141 DOI: 10.1023/a:1009832804103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- N Sperelakis
- Department of Molecular and Cellular Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0576, USA
| | | | | | | | | |
Collapse
|
8
|
Fraire-Zamora JJ, González-Martínez MT. Effect of intracellular pH on depolarization-evoked calcium influx in human sperm. Am J Physiol Cell Physiol 2004; 287:C1688-96. [PMID: 15306540 DOI: 10.1152/ajpcell.00141.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human sperm are endowed with putative voltage-dependent calcium channels (VDCC) that produce measurable increases in intracellular calcium concentration ([Ca2+]i) in response to membrane depolarization with potassium. These channels are blocked by nickel, inactivate in 1–2 min in calcium-deprived medium, and are remarkably stimulated by NH4Cl, suggesting a role for intracellular pH (pHi). In a previous work, we showed that calcium permeability through these channels increases approximately onefold during in vitro “capacitation,” a calcium-dependent process that sperm require to fertilize eggs. In this work, we have determined the pHidependence of sperm VDCC. Simultaneous depolarization and pHialkalinization with NH4Cl induced an [Ca2+]iincrease that depended on the amount of NH4Cl added. VDCC stimulation as a function of pHishowed a sigmoid curve in the 6.6–7.2 pHirange, with a half-maximum stimulation at pH ∼7.00. At higher pHi(≥7.3), a further stimulation occurred. Calcium release from internal stores did not contribute to the stimulating effect of pHibecause the [Ca2+]iincrease induced by progesterone, which opens a calcium permeability pathway that does not involve gating of VDCC, was unaffected by ammonium. The ratio of pHi-stimulated-to-nonstimulated calcium influx was nearly constant at different test depolarization values. Likewise, depolarization-induced calcium influx in pHi-stimulated and nonstimulated cells was equally blocked by nickel. In our capacitating conditions pHiincreased 0.11 pH units, suggesting that the calcium influx stimulation observed during sperm capacitation might be partially caused by pHialkalinization. Additionally, a calcium permeability pathway triggered exclusively by pHialkalinization was detected.
Collapse
Affiliation(s)
- Juan J Fraire-Zamora
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, CP 04510, Apartado Postal 70-297 Mexico City, Mexico
| | | |
Collapse
|
9
|
Eto W, Hirano K, Hirano M, Nishimura J, Kanaide H. Intracellular alkalinization induces Ca2+ influx via non-voltage-operated Ca2+ channels in rat aortic smooth muscle cells. Cell Calcium 2003; 34:477-84. [PMID: 14572806 DOI: 10.1016/s0143-4160(03)00151-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In smooth muscle, the cytosolic Ca2+ concentration ([Ca2+](i)) is the primary determinant of contraction, and the intracellular pH (pH(i)) modulates contractility. Using fura-2 and 2',7'-biscarboxyethyl-5(6) carboxyfluorescein (BCECF) fluorometry and rat aortic smooth muscle cells in primary culture, we investigated the effect of the increase in pH(i) on [Ca2+](i). The application of the NH(4)Cl induced concentration-dependent increases in both pH(i) and [Ca2+](i). The extent of [Ca2+](i) elevation induced by 20mM NH(4)Cl was approximately 50% of that obtained with 100mM K(+)-depolarization. The NH(4)Cl-induced elevation of [Ca2+](i) was completely abolished by the removal of extracellular Ca2+ or the addition of extracellular Ni2+. The 100mM K(+)-induced [Ca2+](i) elevation was markedly inhibited by a voltage-operated Ca2+ channel blocker, diltiazem, and partly inhibited by a non-voltage-operated Ca2+ channel blocker, SKF96365. On the other hand, the NH(4)Cl-induced [Ca2+](i) elevation was resistant to diltiazem, but was markedly inhibited by SKF96365. It is thus concluded that intracellular alkalinization activates the Ca2+ influx via non-voltage-operated Ca2+ channels and thereby increases [Ca2+](i) in the vascular smooth muscle cells. The alkalinization-induced Ca2+ influx may therefore contribute to the enhancement of contraction.
Collapse
Affiliation(s)
- Wakako Eto
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
10
|
Poteser M, Wakabayashi I, Rosker C, Teubl M, Schindl R, Soldatov NM, Romanin C, Groschner K. Crosstalk between voltage-independent Ca2+ channels and L-type Ca2+ channels in A7r5 vascular smooth muscle cells at elevated intracellular pH: evidence for functional coupling between L-type Ca2+ channels and a 2-APB-sensitive cation channel. Circ Res 2003; 92:888-96. [PMID: 12663491 DOI: 10.1161/01.res.0000069216.80612.66] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was designed to investigate the role of voltage-independent and voltage-dependent Ca2+ channels in the Ca2+ signaling associated with intracellular alkalinization in A7r5 vascular smooth muscle cells. Extracellular administration of ammonium chloride (20 mmol/L) resulted in elevation of intracellular pH and activation of a sustained Ca2+ entry that was inhibited by 2-amino-ethoxydiphenyl borate (2-APB, 200 micromol/L) but not by verapamil (10 micro;mol/L). Alkalosis-induced Ca2+ entry was mediated by a voltage-independent cation conductance that allowed permeation of Ca2+ (PCa/PNa approximately 6), and was associated with inhibition of L-type Ca2+ currents. Alkalosis-induced inhibition of L-type Ca2+ currents was dependent on the presence of extracellular Ca2+ and was prevented by expression of a dominant-negative mutant of calmodulin. In the absence of extracellular Ca2+, with Ba2+ or Na+ as charge carrier, intracellular alkalosis failed to inhibit but potentiated L-type Ca2+ channel currents. Inhibition of Ca2+ currents through voltage-independent cation channels by 2-APB prevented alkalosis-induced inhibition of L-type Ca2+ currents. Similarly, 2-APB prevented vasopressin-induced activation of nonselective cation channels and inhibition of L-type Ca2+ currents. We suggest the existence of a pH-controlled Ca2+ entry pathway that governs the activity of smooth muscle L-type Ca2+ channels due to control of Ca2+/calmodulin-dependent negative feedback regulation. This Ca2+ entry pathway exhibits striking similarity with the pathway activated by stimulation of phospholipase-C-coupled receptors, and may involve a similar type of cation channel. We demonstrate for the first time the tight functional coupling between these voltage-independent Ca2+ channels and classical voltage-gated L-type Ca2+ channels.
Collapse
Affiliation(s)
- Michael Poteser
- Department of Pharmacology and Toxicology, School of Medicine, Yamagata University, Yamagata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wakabayashi I, Masui H, Groschner K. Intracellular alkalinization augments alpha(1)-adrenoceptor-mediated vasoconstriction by promotion of Ca(2+) entry through the non-L-type Ca(2+) channels. Eur J Pharmacol 2001; 428:251-9. [PMID: 11675043 DOI: 10.1016/s0014-2999(01)01293-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Modulation by intracellular pH of the vasoconstriction induced by alpha-adrenoceptor agonists was investigated in isolated guinea pig aorta. NH(4)Cl (15 mM) increased intracellular pH of aortic smooth muscle cells by about 0.2 pH unit and significantly augmented KCl-induced contraction of aortic strips, whereas simultaneous administration of NH(4)Cl (15 mM) plus Na(+) propionate (30 mM) failed to affect intracellular pH or contractility. NH(4)Cl (15 mM) potentiated contractions induced by alpha-adrenoceptor agonists, norepinephrine, phenylephrine and clonidine. Contraction induced by alpha(1)-selective adrenoceptor agonist, phenylephrine, but not that induced by norepinephrine or clonidine, was insensitive to inhibition by verapamil (1 microM). Phenylephrine-induced contraction was not affected by NH(4)Cl in Ca(2+)-free medium whereas extracellular Ca(2+)-induced contraction of phenylephrine-stimulated aorta was significantly augmented by NH(4)Cl. Consistently, 45Ca(2+)uptake into phenylephrine 1 microM)-stimulated aortic strips was increased by incubation with NH(4)Cl. The potentiating effects of NH(4)Cl on both phenylephrine-induced Ca(2+) entry and contraction were antagonized by Na(+) propionate. These results suggest that intracellular alkalinization facilitates alpha(1)-adrenoceptor-mediated vasoconstriction by facilitation of an agonist-induced Ca(2+) entry pathway that is independent of L-type Ca(2+) channels.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Ammonium Chloride/pharmacology
- Animals
- Aorta/drug effects
- Aorta/physiology
- Calcium/metabolism
- Calcium/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/physiology
- Clonidine/pharmacology
- Dose-Response Relationship, Drug
- Drug Synergism
- Guinea Pigs
- Hydrogen-Ion Concentration
- In Vitro Techniques
- Male
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Norepinephrine/pharmacology
- Phenylephrine/pharmacology
- Phorbol 12,13-Dibutyrate/pharmacology
- Potassium Chloride/pharmacology
- Propionates/pharmacology
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/physiology
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
- Verapamil/pharmacology
Collapse
Affiliation(s)
- I Wakabayashi
- Department of Hygiene and Preventive Medicine, School of Medicine, Yamagata University, Iida-Nishi 2-2-2, Yamagata 990-9585, Japan.
| | | | | |
Collapse
|
12
|
Sacchetti A, Cappetti V, Marra P, Dell'Arciprete R, El Sewedy T, Crescenzi C, Alberti S. Green fluorescent protein variants fold differentially in prokaryotic and eukaryotic cells. JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT 2001; Suppl 36:117-28. [PMID: 11455577 DOI: 10.1002/jcb.1091] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Better-folding Green Fluorescent Protein (GFP) mutants selected from bacterial screenings are commonly used in widely different cellular environments. However, it is unclear if the folding efficiency of GFPs is invariant in different cell types. In this work, we have analysed the folding properties of GFP variants in bacteria versus mammalian cells. Remarkably, S65T was found to fold at comparable levels with the wild type GFP in bacteria, but at 10-fold lower levels in mammalian cells. On the other hand, Bex1 folded 3-4 times better than the wtGFP or S65T in E. coli, and 10-20-fold or more than 95-fold better, respectively, in mammalian cells. The Vex1 mutant demonstrated similar properties to Bex1. No evidence of differential GFP unfolding in vivo or of preferential degradation of unfolded GFP molecules was found. Moreover, no relationship between GFP folding efficiency and expression levels, or protein stability was detected. Trivial Aconfounding factors, like GFP unfolding caused by different pH or fluorescence quenching due to molecular crowding, were also excluded. In summary, our results demonstrate that specific GFP variants follow different folding trajectories in mammalian versus bacterial cells. The specificity of this differential folding supports a role of chaperones in guiding the folding of GFP in vivo. J. Cell. Biochem. Suppl. 36: 117-128, 2001.
Collapse
Affiliation(s)
- A Sacchetti
- Biotech group - Laboratory of Experimental Oncology, Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche Mario Negri, 66030 Santa Maria Imbaro (Chieti), Italy
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Ca(2+) and H(+) ions can profoundly alter vascular tone. In many physiological and pathological processes, changes in the concentration of both ions occur. Thus, to understand the processes and mechanisms that modify force, it is necessary to understand what changes occur in these ions and, importantly, how they interact with each other. In this minireview, we highlight the quantitatively important mechanisms involved in the contractile responses of vascular tissues to pH change and discuss the cellular and molecular reasons underlying these responses.
Collapse
Affiliation(s)
- C Austin
- Department of Medicine, Manchester Royal Infirmary, Manchester, UK.
| | | |
Collapse
|
14
|
Hofmann F, Lacinová L, Klugbauer N. Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol 1999; 139:33-87. [PMID: 10453692 DOI: 10.1007/bfb0033648] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- F Hofmann
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Germany
| | | | | |
Collapse
|
15
|
Menegazzi R, Busetto S, Decleva E, Cramer R, Dri P, Patriarca P. Triggering of Chloride Ion Efflux from Human Neutrophils as a Novel Function of Leukocyte β2 Integrins: Relationship with Spreading and Activation of the Respiratory Burst. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.1.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
PMN residing on immobilized fibronectin have been shown to respond to TNF with an intense and long lasting Cl− efflux that leads to a marked decrease of the unusually high basal Cl− content of these phagocytes. The finding that this Cl− efflux depends, at least in part, on β2 integrin engagement stimulated the present investigation, which addresses the question as to whether β2 integrins per se, in the absence of PMN agonists, are able to generate signals triggering Cl− efflux. We induced β2 integrin cross-linking by plating PMN onto surface-bound mAbs directed against either the common β-chain (CD18) or the individual α-chains (CD11a, CD11b, CD11c) of LFA-1, CR3, and gp150/95. Anti-CD18 mAbs triggered a marked release of Cl− ions, which was accompanied by spreading and activation of the respiratory burst. Cross-linking of gp150/95 and LFA-1 generated the most powerful signals for the activation of Cl− efflux. The results of three independent experimental approaches, i.e., kinetic studies, use of Cl− transport inhibitors, and modulation of Cl− efflux with different amounts of anti-β2 integrin mAbs, indicated that Cl− efflux regulates both spreading and respiratory burst triggered by β2 integrin cross-linking. Cl− efflux appears to be independent on either alterations of [Ca2+]i or changes in the plasma membrane potential and shows sensitivity to a raise in pHi. This study uncovers a new signaling ability of β2 integrins and contributes to highlight the role of Cl− efflux in the outside-in signal transduction pathway regulating adherence-dependent PMN responses.
Collapse
Affiliation(s)
- Renzo Menegazzi
- Department of Physiology and Pathology, University of Trieste, Trieste, Italy
| | - Sara Busetto
- Department of Physiology and Pathology, University of Trieste, Trieste, Italy
| | - Eva Decleva
- Department of Physiology and Pathology, University of Trieste, Trieste, Italy
| | - Rita Cramer
- Department of Physiology and Pathology, University of Trieste, Trieste, Italy
| | - Pietro Dri
- Department of Physiology and Pathology, University of Trieste, Trieste, Italy
| | - Pierluigi Patriarca
- Department of Physiology and Pathology, University of Trieste, Trieste, Italy
| |
Collapse
|
16
|
Groschner K, Hingel S, Lintschinger B, Balzer M, Romanin C, Zhu X, Schreibmayer W. Trp proteins form store-operated cation channels in human vascular endothelial cells. FEBS Lett 1998; 437:101-6. [PMID: 9804180 DOI: 10.1016/s0014-5793(98)01212-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Members of the Trp protein family have been suggested as the structural basis of store-operated cation conductances. With this study, we provide evidence for the expression of three isoforms of Trp (hTrp1, 3 and 4) in human umbilical vein endothelial cells (HUVEC). The role of Trp proteins in store regulation of endothelial membrane conductances was tested by expression of an N-terminal fragment of hTrp3 (N-TRP) which exerts a dominant negative effect on Trp channel function presumably due to suppression of channel assembly. Depletion of intracellular Ca2+ stores with IP3 (100 microM) or thapsigargin (100 nM) induced a substantial cation conductance in sham-transfected HUVEC as well as in HUVEC transfected with hTrp3. In contrast, HUVEC transfected with N-TRP failed to exhibit store-operated currents. Our results suggest the involvement of Trp related proteins in the store-operated cation conductance of human vascular endothelial cells.
Collapse
Affiliation(s)
- K Groschner
- Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
17
|
Losito VA, Tsushima RG, Diaz RJ, Wilson GJ, Backx PH. Preferential regulation of rabbit cardiac L-type Ca2+ current by glycolytic derived ATP via a direct allosteric pathway. J Physiol 1998; 511 ( Pt 1):67-78. [PMID: 9679164 PMCID: PMC2231103 DOI: 10.1111/j.1469-7793.1998.067bi.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The activity of Ca2+ channels is regulated by a number of mechanisms including direct allosteric modulation by intracellular ATP. Since ATP derived from glycolysis is preferentially used for membrane function, we hypothesized that glycolytic ATP also preferentially regulates cardiac L-type Ca2+ channels. 2. To test this hypothesis, peak L-type Ca2+ currents (ICa) were measured in voltage-clamped rabbit cardiomyocytes during glycolytic inhibition (2-deoxyglucose + pyruvate), oxidative inhibition (cyanide + glucose) or both (full metabolic inhibition; FMI). 3. A 10 min period of FMI resulted in a 40.0 % decrease in peak ICa at +10 mV (-5.1 +/- 0.6 versus -3.1 +/- 0.4 pA pF-1; n = 5, P < 0.01). Similar decreases in peak ICa were observed during glycolytic inhibition using 2-deoxyglucose (-6.2 +/- 0.2 versus -3.7 +/- 0.2 pA pF-1; n = 5, P < 0.01) or iodoacetamide (-6.7 +/- 0.3 versus -3.7 +/- 0.2 pA pF-1; n = 7, P < 0.01), but not following oxidative inhibition (-6.2 +/- 0.4 versus -6.4 +/- 0.3 pA pF-1; n = 5, n.s.). The reduction in ICa following glycolytic inhibition was not mediated by phosphate sequestration by 2-deoxyglucose or changes in intracellular pH. 4. Reductions in ICa were still observed when inorganic phosphate and creatine were included in the pipette, confirming a critical role for glycolysis in ICa regulation. 5. With 5 mM MgATP in the pipette during FMI, peak ICa decreased by only 18.4 % (-6.8 +/- 0.6 versus -5.5 +/- 0.3 pA pF-1; n = 4, P < 0.05), while inclusion of 5 mM MgAMP-PCP (beta,gamma-methyleneadenosine 5'-triphosphate, Mg2+ salt) completely prevented the decrease in peak ICa (-6.9 +/- 0.3 versus -6.5 +/- 0.3 pA pF-1; n = 5, n.s.). 6. Together, these results suggest that ICa is regulated by intracellular ATP derived from glycolysis and does not require hydrolysis of ATP. This regulation is expected to be energy conserving during periods of metabolic stress and myocardial ischaemia.
Collapse
Affiliation(s)
- V A Losito
- Department of Physiology, University of Toronto and Center for Cardiovascular Research, Toronto General Hospital, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|