1
|
Selarka K, Shravage BV. Illuminating intercellular autophagy: A comprehensive review of cell non-autonomous autophagy. Biochem Biophys Res Commun 2024; 716:150024. [PMID: 38701555 DOI: 10.1016/j.bbrc.2024.150024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Macro-autophagy (autophagy hereafter) is an evolutionarily conserved cellular process that has long been recognized as an intracellular mechanism for maintaining cellular homeostasis. It involves the formation of a membraned structure called the autophagosome, which carries cargo that includes toxic protein aggregates and dysfunctional organelles to the lysosome for degradation and recycling. Autophagy is primarily considered and studied as a cell-autonomous mechanism. However, recent studies have illuminated an underappreciated facet of autophagy, i.e., non-autonomously regulated autophagy. Non-autonomously regulated autophagy involves the degradation of autophagic components, including organelles, cargo, and signaling molecules, and is induced in neighboring cells by signals from primary adjacent or distant cells/tissues/organs. This review provides insight into the complex molecular mechanisms governing non-autonomously regulated autophagy, highlighting the dynamic interplay between cells within tissue/organ or distinct cell types in different tissues/organs. Emphasis is placed on modes of intercellular communication that include secreted molecules, including microRNAs, and their regulatory roles in orchestrating this phenomenon. Furthermore, we explore the multidimensional roles of non-autonomously regulated autophagy in various physiological contexts, spanning tissue development and aging, as well as its importance in diverse pathological conditions, including cancer and neurodegeneration. By studying the complexities of non-autonomously regulated autophagy, we hope to gain insights into the sophisticated intercellular dynamics within multicellular organisms, including mammals. These studies will uncover novel avenues for therapeutic intervention to modulate intercellular autophagic pathways in altered human physiology.
Collapse
Affiliation(s)
- Karan Selarka
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India; Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Bhupendra V Shravage
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India; Department of Biotechnology, Savitribai Phule Pune University, Pune, India; Department of Zoology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
2
|
Yuen AC, Prasad AR, Fernandes VM, Amoyel M. A kinase translocation reporter reveals real-time dynamics of ERK activity in Drosophila. Biol Open 2022; 11:bio059364. [PMID: 35608229 PMCID: PMC9167624 DOI: 10.1242/bio.059364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular signal-regulated kinase (ERK) lies downstream of a core signalling cascade that controls all aspects of development and adult homeostasis. Recent developments have led to new tools to image and manipulate the pathway. However, visualising ERK activity in vivo with high temporal resolution remains a challenge in Drosophila. We adapted a kinase translocation reporter (KTR) for use in Drosophila, which shuttles out of the nucleus when phosphorylated by ERK. We show that ERK-KTR faithfully reports endogenous ERK signalling activity in developing and adult tissues, and that it responds to genetic perturbations upstream of ERK. Using ERK-KTR in time-lapse imaging, we made two novel observations: firstly, sustained hyperactivation of ERK by expression of dominant-active epidermal growth factor receptor raised the overall level but did not alter the kinetics of ERK activity; secondly, the direction of migration of retinal basal glia correlated with their ERK activity levels, suggesting an explanation for the heterogeneity in ERK activity observed in fixed tissue. Our results show that KTR technology can be applied in Drosophila to monitor ERK activity in real-time and suggest that this modular tool can be further adapted to study other kinases. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
3
|
Yung Y, Yao Z, Hanoch T, Seger R. ERK1b, a 46-kDa ERK Isoform That Is Differentially Regulated by MEK. Cell Biol Int 2022; 46:1021-1035. [PMID: 35332606 PMCID: PMC9320930 DOI: 10.1002/cbin.11801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/27/2021] [Accepted: 01/08/2022] [Indexed: 11/25/2022]
Abstract
The extracellular signal‐regulated kinases (ERK) 1 and 2 (ERK1/2) are members of the mitogen‐activated protein kinase family. Using various stimulated rodent cells and kinase activation techniques, we identified a 46‐kDa ERK. The kinetics of activation of this ERK isoform was similar to that of ERK1 and ERK2 under most but not all circumstances. We purified this isoform from rat cells followed by its cloning. The sequence of this isoform revealed that it is an alternatively spliced version of the 44‐kDa ERK1 and therefore we termed it ERK1b. Interestingly, this isoform had a 26‐amino acid insertion between residues 340 and 341 of ERK1, which results from Intron 7 insertion to the sequence. Examining the expression pattern, we found that ERK1b is detected mainly in rat and particularly in Ras‐transformed Rat1 cells. In this cell line, ERK1b was more sensitive to extracellular stimulation than ERK1 and ERK2. Moreover, unlike ERK1 and ERK2, ERK1b had a very low binding affinity to MEK1. This low interaction led to nuclear localization of this isoform when expressed together with MEK1 under conditions in which ERK1 and ERK2 are retained in the cytoplasm. In addition, ERK1b was not coimmunoprecipitated with MEK1. We identified a new, 46‐kDa ERK alternatively spliced isoform. Our results indicate that this isoform is the major one to respond to exogenous stimulation in Ras‐transformed cells, probably due to its differential regulation by MAPK/ERK kinase and by phosphatases.
Collapse
Affiliation(s)
- Yuval Yung
- Department of Biological Regulation,, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Zhong Yao
- Department of Biological Regulation,, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tamar Hanoch
- Department of Biological Regulation,, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rony Seger
- Department of Biological Regulation,, The Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
4
|
Sênos Demarco R, Uyemura BS, Jones DL. EGFR Signaling Stimulates Autophagy to Regulate Stem Cell Maintenance and Lipid Homeostasis in the Drosophila Testis. Cell Rep 2020; 30:1101-1116.e5. [PMID: 31995752 PMCID: PMC7357864 DOI: 10.1016/j.celrep.2019.12.086] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/26/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022] Open
Abstract
Although typically upregulated upon cellular stress, autophagy can also be utilized under homeostatic conditions as a quality control mechanism or in response to developmental cues. Here, we report that autophagy is required for the maintenance of somatic cyst stem cells (CySCs) in the Drosophila testis. Disruption of autophagy in CySCs and early cyst cells (CCs) by the depletion of autophagy-related (Atg) genes reduced early CC numbers and affected CC function, resembling decreased epidermal growth factor receptor (EGFR) signaling. Indeed, our data indicate that EGFR acts to stimulate autophagy to preserve early CC function, whereas target of rapamycin (TOR) negatively regulates autophagy in the differentiating CCs. Finally, we show that the EGFR-mediated stimulation of autophagy regulates lipid levels in CySCs and CCs. These results demonstrate a key role for autophagy in regulating somatic stem cell behavior and tissue homeostasis by integrating cues from both the EGFR and TOR signaling pathways to control lipid metabolism.
Collapse
Affiliation(s)
- Rafael Sênos Demarco
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bradley S Uyemura
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - D Leanne Jones
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Roy S, Brasino M, Beirne JM, Harguindey A, Chapnick DA, Liu X, Cha JN, Goodwin AP. Enzymes Photo-Cross-Linked to Live Cell Receptors Retain Activity and EGFR Inhibition after Both Internalization and Recycling. Bioconjug Chem 2019; 31:104-112. [PMID: 31840981 DOI: 10.1021/acs.bioconjchem.9b00781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this work, we show that a prodrug enzyme covalently photoconjugated to live cell receptors survives endosomal proteolysis and retains its catalytic activity over multiple days. Here, a fusion protein was designed with both an antiepidermal growth factor receptor (EGFR) affibody and the prodrug enzyme cytosine deaminase, which can convert prodrug 5-fluorocytosine to the anticancer drug 5-fluorouracil. A benzophenone group was added at a site-specific mutation within the affibody, and the fusion protein was selectively photoconjugated to EGFR receptors expressed on membranes of MDA-MB-468 breast cancer cells. The fusion protein was next labeled with two dyes for tracking uptake: AlexaFluor 488 and pH-sensitive pHAb. Flow cytometry showed that fusion proteins photo-cross-linked to EGFR first underwent receptor-mediated endocytosis within 12 h, followed by recycling back to the cell membrane within 24 h. These findings were also confirmed by confocal microscopy. The unique cross-linking of the affibody-enzyme fusion proteins was utilized for two anticancer treatments. First, the covalent linking of the protein to the EGFR led to inhibition of ERK signaling over a two-day period, whereas conventional antibody therapy only led to 6 h of inhibition. Second, when the affibody-CodA fusion proteins were photo-cross-linked to EGFR overexpressed on MDA-MB-468 breast cancer cells, prodrug conversion was found even 48 h postincubation without any apparent decrease in cell killing, while without photo-cross-linking no cell killing was observed 8 h postincubation. These studies show that affinity-mediated covalent conjugation of the affibody-enzymes to cell receptors allows for prolonged expression on membranes and retained enzymatic activity without genetic engineering.
Collapse
|
6
|
Lu Y, Yao Y, Li Z. Ectopic Dpp signaling promotes stem cell competition through EGFR signaling in the Drosophila testis. Sci Rep 2019; 9:6118. [PMID: 30992503 PMCID: PMC6467874 DOI: 10.1038/s41598-019-42630-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
Stem cell competition could select the fittest stem cells and potentially control tumorigenesis. However, little is known about the underlying molecular mechanisms. Here, we find that ectopic Decapentaplegic (Dpp) signal activation by expressing a constitutively active form of Thickveins (TkvCA) in cyst stem cells (CySCs) leads to competition between CySCs and germline stem cells (GSCs) for niche occupancy and GSC loss. GSCs are displaced from the niche and undergo differentiation. Interestingly, we find that induction of TkvCA results in elevated expression of vein, which further activates Epidermal Growth Factor Receptor (EGFR) signaling in CySCs to promote their proliferation and compete GSCs out of the niche. Our findings elucidate the important role of Dpp signaling in regulating stem cell competition and tumorigenesis, which could be shed light on tumorigenesis and cancer treatment in mammals.
Collapse
Affiliation(s)
- Yanfen Lu
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
| | - Yuncong Yao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China.
| | - Zhouhua Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
7
|
Lv C, Wang H, Tong Y, Yin H, Wang D, Yan Z, Liang Y, Wu D, Su Q. The function of BTG3 in colorectal cancer cells and its possible signaling pathway. J Cancer Res Clin Oncol 2018; 144:295-308. [PMID: 29270670 PMCID: PMC5794823 DOI: 10.1007/s00432-017-2561-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/16/2017] [Indexed: 01/02/2023]
Abstract
PURPOSE B-cell translocation gene 3 (BTG3) has been identified as a candidate driver gene for various cancers, but its specific role in colorectal cancer (CRC) is poorly understood. We aimed to investigate the relationship between expression of BTG3 and clinicopathological features and prognosis, as well as to explore the effects and the role of a possible BTG3 molecular mechanism on aggressive colorectal cancer behavior. METHODS BTG3 expression was assessed by immunohistochemistry (IHC) on specimens from 140 patients with CRC. The association of BTG3 expression with clinicopathological features was examined. To confirm the biological role of BTG3 in CRC, two CRC cell lines expressing BTG3 were used and BTG3 expression was knocked down by shRNA. CCK-8, cell cycle, apoptosis, migration, and invasion assays were performed. The influence of BTG3 knockdown was further investigated by genomic microarray to uncover the potential molecular mechanisms underlying BTG3-mediated CRC development and progression. RESULTS BTG3 was downregulated in colorectal cancer tissues and positively correlated with pathological classification (p = 0.037), depth of invasion (p = 0.016), distant metastasis (p = 0.024), TNM stage (p = 0.007), and overall survival (OS) and disease-free survival (DFS). BTG3 knockdown promoted cell proliferation, migration, invasion, relieved G2 arrest, and inhibited apoptosis in HCT116 and LoVo cells. A genomic microarray analysis showed that numerous tumor-associated signaling pathways and oncogenes were altered by BTG3 knockdown. At the mRNA level, nine genes referred to the extracellular-regulated kinase/mitogen-activated protein kinase pathway were differentially expressed. Western blotting revealed that BTG3 knockdown upregulated PAK2, RPS6KA5, YWHAB, and signal transducer and activator of transcription (STAT)3 protein levels, but downregulated RAP1A, DUSP6, and STAT1 protein expression, which was consistent with the genomic microarray data. CONCLUSIONS BTG3 expression might contribute to CRC carcinogenesis. BTG3 knockdown might strengthen the aggressive colorectal cancer behavior.
Collapse
Affiliation(s)
- Chi Lv
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang City, Liaoning Province, 110004, People's Republic of China
- Department of General Surgery, General Hospital of Shenyang Military Region, Shenyang, People's Republic of China
| | - Heling Wang
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang City, Liaoning Province, 110004, People's Republic of China
| | - Yuxin Tong
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hongzhuan Yin
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang City, Liaoning Province, 110004, People's Republic of China
| | - Dalu Wang
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang City, Liaoning Province, 110004, People's Republic of China
| | - Zhaopeng Yan
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang City, Liaoning Province, 110004, People's Republic of China
| | - Yichao Liang
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang City, Liaoning Province, 110004, People's Republic of China
| | - Di Wu
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang City, Liaoning Province, 110004, People's Republic of China
| | - Qi Su
- Department of General Surgery, Shengjing Hospital Affiliated to China Medical University, Shenyang City, Liaoning Province, 110004, People's Republic of China.
| |
Collapse
|
8
|
Chandran K, Goswami S, Sharma-Walia N. Implications of a peroxisome proliferator-activated receptor alpha (PPARα) ligand clofibrate in breast cancer. Oncotarget 2017; 7:15577-99. [PMID: 26621841 PMCID: PMC4941262 DOI: 10.18632/oncotarget.6402] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/17/2015] [Indexed: 11/25/2022] Open
Abstract
Inflammatory and invasive breast cancers are aggressive and require better understanding for the development of new treatments and more accurate prognosis. Here, we detected high expression of PPARα in human primary inflammatory (SUM149PT) and highly invasive (SUM1315MO2) breast cancer cells, and tissue sections of human breast cancer. PPARα ligands are clinically used to treat dyslipidemia. Among lipid lowering drugs clofibrate, fenofibrate and WY14643, clofibrate showed high chemo-sensitivity towards breast cancer cells. Clofibrate treatment significantly induced PPARα DNA binding activity, and remarkably reduced cyclooxygenase-2/PGE2 and 5-lipoxygenase/LTB4 inflammatory pathways. Clofibrate treatment reduced the proliferation of breast cancer cells probably by inhibiting NF-κB and ERK1/2 activation, reducing cyclinD1, cyclinA, cyclinE, and inducing pro-apoptotic P21 levels. Surprisingly, the expression of lipogenic pathway genes including SREBP-1c (sterol regulatory element-binding protein-1c), HMG-CoA synthase, SPTLC1 (serine palmitoyltransferase long-chain), and Acyl-CoA oxidase (ACO) decreased with a concurrent increase in fatty acid oxidation genes such as CPT-1a (carnitine palmitoyltransferase 1a) and SREBP-2 (Sterol regulatory element-binding protein-2). Clofibrate treatment induced secretion of free fatty acids and effectively decreased the level of phosphorylated active form of fatty acid synthase (FASN), an enzyme catalyzing de novo synthesis of fatty acids. High level of coactivators steroid receptor coactivator-1 (SRC-1) and histone acetylase CBP-300 (CREB binding protein-300) were observed in the nuclear complexes of clofibrate treated breast cancer cells. These findings implicate that stimulating PPARα by safe, well-tolerated, and clinically approved clofibrate may provide a safer and more effective strategy to target the signaling, lipogenic, and inflammatory pathways in aggressive forms of breast cancer.
Collapse
Affiliation(s)
- Karthic Chandran
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A
| | - Sudeshna Goswami
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A
| | - Neelam Sharma-Walia
- H. M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, U.S.A
| |
Collapse
|
9
|
Sardar A, Nandi AK, Chattopadhyay D. CBL-interacting protein kinase 6 negatively regulates immune response to Pseudomonas syringae in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3573-3584. [PMID: 28541442 PMCID: PMC5853215 DOI: 10.1093/jxb/erx170] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/26/2017] [Indexed: 05/21/2023]
Abstract
Cytosolic calcium ion (Ca2+) is an essential mediator of the plant innate immune response. Here, we report that a calcium-regulated protein kinase Calcineurin B-like protein (CBL)-interacting protein kinase 6 (CIPK6) functions as a negative regulator of immunity against the bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana. Arabidopsis lines with compromised expression of CIPK6 exhibited enhanced disease resistance to the bacterial pathogen and to P. syringae harboring certain but not all avirulent effectors, while restoration of CIPK6 expression resulted in abolition of resistance. Plants overexpressing CIPK6 were more susceptible to P. syringae. Enhanced resistance in the absence of CIPK6 was accompanied by increased accumulation of salicylic acid and elevated expression of defense marker genes. Salicylic acid accumulation was essential for improved immunity in the absence of CIPK6. CIPK6 negatively regulated the oxidative burst associated with perception of pathogen-associated microbial patterns (PAMPs) and bacterial effectors. Accelerated and enhanced activation of the mitogen-activated protein kinase cascade in response to bacterial and fungal elicitors was observed in the absence of CIPK6. The results of this study suggested that CIPK6 negatively regulates effector-triggered and PAMP-triggered immunity in Arabidopsis.
Collapse
Affiliation(s)
- Atish Sardar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Correspondence:
| |
Collapse
|
10
|
Brumbaugh K, Liao WC, Houchins JP, Cooper J, Stoesz S. Phosphosite-Specific Antibodies: A Brief Update on Generation and Applications. Methods Mol Biol 2017; 1554:1-40. [PMID: 28185181 DOI: 10.1007/978-1-4939-6759-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphate addition is a posttranslational modification of proteins, and this modification can affect the activity and other properties of intracellular proteins. Different animal species can be used to generate phosphosite-specific antibodies as either polyclonals or monoclonals, and each approach offers its own benefits and disadvantages. The validation of phosphosite-specific antibodies requires multiple techniques and tactics to demonstrate their specificity. These antibodies can be used in arrays, flow cytometry, and imaging platforms. The specificity of phosphosite-specific antibodies is vital for their use in proteomics and profiling of disease.
Collapse
Affiliation(s)
- Kathy Brumbaugh
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA.
| | - Wen-Chie Liao
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - J P Houchins
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - Jeff Cooper
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| | - Steve Stoesz
- Bio-Techne, Inc., 614 McKinley Place NE, Minneapolis, MN, 55413, USA
| |
Collapse
|
11
|
Layden MJ, Johnston H, Amiel AR, Havrilak J, Steinworth B, Chock T, Röttinger E, Martindale MQ. MAPK signaling is necessary for neurogenesis in Nematostella vectensis. BMC Biol 2016; 14:61. [PMID: 27480076 PMCID: PMC4968017 DOI: 10.1186/s12915-016-0282-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/04/2016] [Indexed: 11/16/2022] Open
Abstract
Background The nerve net of Nematostella is generated using a conserved cascade of neurogenic transcription factors. For example, NvashA, a homolog of the achaete-scute family of basic helix-loop-helix transcription factors, is necessary and sufficient to specify a subset of embryonic neurons. However, positive regulators required for the expression of neurogenic transcription factors remain poorly understood. Results We show that treatment with the MEK/MAPK inhibitor U0126 severely reduces the expression of known neurogenic genes, Nvath-like, NvsoxB(2), and NvashA, and known markers of differentiated neurons, suggesting that MAPK signaling is necessary for neural development. Interestingly, ectopic NvashA fails to rescue the expression of neural markers in U0126-treated animals. Double fluorescence in situ hybridization and transgenic analysis confirmed that NvashA targets represent both unique and overlapping populations of neurons. Finally, we used a genome-wide microarray to identify additional patterning genes downstream of MAPK that might contribute to neurogenesis. We identified 18 likely neural transcription factors, and surprisingly identified ~40 signaling genes and transcription factors that are expressed in either the aboral domain or animal pole that gives rise to the endomesoderm at late blastula stages. Conclusions Together, our data suggest that MAPK is a key early regulator of neurogenesis, and that it is likely required at multiple steps. Initially, MAPK promotes neurogenesis by positively regulating expression of NvsoxB(2), Nvath-like, and NvashA. However, we also found that MAPK is necessary for the activity of the neurogenic transcription factor NvashA. Our forward molecular approach provided insight about the mechanisms of embryonic neurogenesis. For instance, NvashA suppression of Nvath-like suggests that inhibition of progenitor identity is an active process in newly born neurons, and we show that downstream targets of NvashA reflect multiple neural subtypes rather than a uniform neural fate. Lastly, analysis of the MAPK targets in the early embryo suggests that MAPK signaling is critical not only to neurogenesis, but also endomesoderm formation and aboral patterning. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0282-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA.
| | - Hereroa Johnston
- Université Nice Sophia Antipolis UMR 7284, CNRS UMR 7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Aldine R Amiel
- Université Nice Sophia Antipolis UMR 7284, CNRS UMR 7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Jamie Havrilak
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Bailey Steinworth
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, Florida, USA
| | - Taylor Chock
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, Florida, USA
| | - Eric Röttinger
- Université Nice Sophia Antipolis UMR 7284, CNRS UMR 7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice, France
| | - Mark Q Martindale
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, Florida, USA.
| |
Collapse
|
12
|
Ferenczi EA, Vierock J, Atsuta-Tsunoda K, Tsunoda SP, Ramakrishnan C, Gorini C, Thompson K, Lee SY, Berndt A, Perry C, Minniberger S, Vogt A, Mattis J, Prakash R, Delp S, Deisseroth K, Hegemann P. Optogenetic approaches addressing extracellular modulation of neural excitability. Sci Rep 2016; 6:23947. [PMID: 27045897 PMCID: PMC4820717 DOI: 10.1038/srep23947] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/10/2016] [Indexed: 12/28/2022] Open
Abstract
The extracellular ionic environment in neural tissue has the capacity to influence, and be influenced by, natural bouts of neural activity. We employed optogenetic approaches to control and investigate these interactions within and between cells, and across spatial scales. We began by developing a temporally precise means to study microdomain-scale interactions between extracellular protons and acid-sensing ion channels (ASICs). By coupling single-component proton-transporting optogenetic tools to ASICs to create two-component optogenetic constructs (TCOs), we found that acidification of the local extracellular membrane surface by a light-activated proton pump recruited a slow inward ASIC current, which required molecular proximity of the two components on the membrane. To elicit more global effects of activity modulation on ‘bystander’ neurons not under direct control, we used densely-expressed depolarizing (ChR2) or hyperpolarizing (eArch3.0, eNpHR3.0) tools to create a slow non-synaptic membrane current in bystander neurons, which matched the current direction seen in the directly modulated neurons. Extracellular protons played contributory role but were insufficient to explain the entire bystander effect, suggesting the recruitment of other mechanisms. Together, these findings present a new approach to the engineering of multicomponent optogenetic tools to manipulate ionic microdomains, and probe the complex neuronal-extracellular space interactions that regulate neural excitability.
Collapse
Affiliation(s)
- Emily A Ferenczi
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.,Neurosciences, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Johannes Vierock
- Institute of Biology, Experimental Biophysics, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Kyoko Atsuta-Tsunoda
- Institute of Biology, Experimental Biophysics, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Satoshi P Tsunoda
- Institute of Biology, Experimental Biophysics, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Charu Ramakrishnan
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Christopher Gorini
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Kimberly Thompson
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Soo Yeun Lee
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Andre Berndt
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Chelsey Perry
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Sonja Minniberger
- Institute of Biology, Experimental Biophysics, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Arend Vogt
- Institute of Biology, Experimental Biophysics, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Joanna Mattis
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.,Neurosciences, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Rohit Prakash
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.,Neurosciences, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Scott Delp
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.,HHMI, Stanford University, 318 Campus Drive, Stanford, CA 94305, USA.,Department of Psychiatry &Behavioral Science, Stanford University, 401 Quarry Road, Stanford, CA 94305, USA
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Invalidenstraße 42, D-10115 Berlin, Germany
| |
Collapse
|
13
|
Morita M, Nakane A, Fujii Y, Maekawa S, Kudo Y. High Cell Density Upregulates Calcium Oscillation by Increasing Calcium Store Content via Basal Mitogen-Activated Protein Kinase Activity. PLoS One 2015; 10:e0137610. [PMID: 26398212 PMCID: PMC4580325 DOI: 10.1371/journal.pone.0137610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/20/2015] [Indexed: 01/12/2023] Open
Abstract
Calcium releases of non-excitable cells are generally a combination of oscillatory and non-oscillatory patterns, and factors affecting the calcium dynamics are still to be determined. Here we report the influence of cell density on calcium increase patterns of clonal cell lines. The majority of HeLa cells seeded at 1.5 x 104/cm2 showed calcium oscillations in response to histamine and ATP, whereas cells seeded at 0.5 x 104/cm2 largely showed transient and sustained calcium increases. Cell density also affected the response of HEK293 cells to ATP in a similar manner. High cell density increased the basal activity of the mitogen-activated protein (MAP) kinase and calcium store content, and both calcium oscillation and calcium store content were down-regulated by a MAP kinase inhibitor, U0126. Thus, MAP kinase-mediated regulation of calcium store likely underlie the effect of cell density on calcium oscillation. Calcium increase patterns of HeLa cells were conserved at any histamine concentrations tested, whereas the overexpression of histamine H1 receptor, which robustly increased histamine-induced inositol phospholipid hydrolysis, converted calcium oscillations to sustained calcium increases only at high histamine concentrations. Thus, the consequence of modulating inositol phospholipid metabolism was distinct from that of changing cell density, suggesting the effect of cell density is not attributed to inositol phospholipid metabolism. Collectively, our results propose that calcium increase patterns of non-excitable cells reflect calcium store, which is regulated by the basal MAP kinase activity under the influence of cell density.
Collapse
Affiliation(s)
- Mitsuhiro Morita
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
- * E-mail:
| | - Akira Nakane
- Laboratory of Cellular Neurobiology, School of Life Science, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| | - Yuki Fujii
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| | - Shohei Maekawa
- Department of Biology, Kobe University Graduate School of Science, Kobe, Japan
| | - Yoshihisa Kudo
- Laboratory of Cellular Neurobiology, School of Life Science, Tokyo University of Pharmacy and Life Science, Tokyo, Japan
| |
Collapse
|
14
|
Röttinger E, DuBuc TQ, Amiel AR, Martindale MQ. Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava. Biol Open 2015; 4:830-42. [PMID: 25979707 PMCID: PMC4571091 DOI: 10.1242/bio.011809] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nodal signaling plays crucial roles in vertebrate developmental processes such as endoderm and mesoderm formation, and axial patterning events along the anteroposterior, dorsoventral and left-right axes. In echinoderms, Nodal plays an essential role in the establishment of the dorsoventral axis and left-right asymmetry, but not in endoderm or mesoderm induction. In protostomes, Nodal signaling appears to be involved only in establishing left-right asymmetry. Hence, it is hypothesized that Nodal signaling has been co-opted to pattern the dorsoventral axis of deuterostomes and for endoderm, mesoderm formation as well as anteroposterior patterning in chordates. Hemichordata, together with echinoderms, represent the sister taxon to chordates. In this study, we analyze the role of Nodal signaling in the indirect developing hemichordate Ptychodera flava. In particular, we show that during gastrulation nodal transcripts are detected in a ring of cells at the vegetal pole that gives rise to endomesoderm and in the ventral ectoderm at later stages of development. Inhibition of Nodal function disrupts dorsoventral fates and also blocks formation of the larval mesoderm. Interestingly, molecular analysis reveals that only mesodermal, apical and ventral gene expression is affected while the dorsal side appears to be patterned correctly. Taken together, this study suggests that the co-option of Nodal signaling in mesoderm formation and potentially in anteroposterior patterning has occurred prior to the emergence of chordates and that Nodal signaling on the ventral side is uncoupled from BMP signaling on the dorsal side, representing a major difference from the molecular mechanisms of dorsoventral patterning events in echinoderms.
Collapse
Affiliation(s)
- Eric Röttinger
- Université Nice Sophia Antipolis, IRCAN, UMR 7284, 06107 Nice, France CNRS, IRCAN, UMR 7284, 06107 Nice, France INSERM, IRCAN, U1081, 06107 Nice, France
| | - Timothy Q DuBuc
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, FL 32080-8610, USA
| | - Aldine R Amiel
- Université Nice Sophia Antipolis, IRCAN, UMR 7284, 06107 Nice, France CNRS, IRCAN, UMR 7284, 06107 Nice, France INSERM, IRCAN, U1081, 06107 Nice, France
| | - Mark Q Martindale
- The Whitney Marine Laboratory for Marine Science, University of Florida, St. Augustine, FL 32080-8610, USA
| |
Collapse
|
15
|
Futran AS, Link AJ, Seger R, Shvartsman SY. ERK as a model for systems biology of enzyme kinetics in cells. Curr Biol 2014; 23:R972-9. [PMID: 24200329 DOI: 10.1016/j.cub.2013.09.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A key step towards a chemical picture of enzyme catalysis was taken in 1913, when Leonor Michaelis and Maud Menten published their studies of sucrose hydrolysis by invertase. Based on a novel experimental design and a mathematical model, their work offered a quantitative view of biochemical kinetics well before the protein nature of enzymes was established and complexes with substrates could be detected. Michaelis-Menten kinetics provides a solid framework for enzyme kinetics in vitro, but what about kinetics in cells, where enzymes can be highly regulated and participate in a multitude of interactions? We discuss this question using the Extracellular Signal Regulated Kinase (ERK), which controls a myriad functions in cells, as a model of an important enzyme for which we have crystal structures, quantitative in vitro assays, and a vast list of binding partners. Despite great progress, we still cannot quantitatively predict how the rates of ERK-dependent reactions respond to genetic and pharmacological perturbations. Achieving this goal, which is important from both fundamental and practical standpoints, requires measuring the rates of enzyme reactions in their native environment and interpreting these measurements using simple but realistic mathematical models--the two elements which served as the cornerstones for Michaelis' and Menten's seminal 1913 paper.
Collapse
Affiliation(s)
- Alan S Futran
- Department of Chemical and Biological Engineering, Princeton University, Princeton, USA
| | | | | | | |
Collapse
|
16
|
Turner ML, Cronin JG, Healey GD, Sheldon IM. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology 2014; 155:1453-65. [PMID: 24437488 PMCID: PMC3959608 DOI: 10.1210/en.2013-1822] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacteria often infect the endometrium of cattle to cause endometritis, uterine disease, and infertility. Lipopeptides are commonly found among bacteria and are detected by the Toll-like receptor (TLR) cell surface receptor TLR2 on immune cells. Heterodimers of TLR2 with TLR1 or TLR6 activate MAPK and nuclear factor-κB intracellular signaling pathways to stimulate inflammatory responses. In the endometrium, epithelial and stromal cells are the first to encounter invading bacteria, so the present study explored whether endometrial cells can also mount inflammatory responses to bacterial lipopeptides via TLRs. The supernatants of pure populations of primary bovine endometrial epithelial and stromal cells accumulated the cytokine IL-6 and the chemokine IL-8 in response to triacylated or diacylated bacterial lipopeptides. The accumulation of IL-6 and IL-8 in response to triacylated lipopeptides was reduced by small interfering RNA targeting TLR2 or TLR1 but not TLR6, whereas cellular responses to diacylated lipopeptide were reduced by small interfering RNA targeting TLR2, TLR1, or TLR6. Both lipopeptides induced rapid phosphorylation of ERK1/2, p38, and nuclear factor-κB in endometrial cells, and inhibitors of ERK1/2 or p38 limited the accumulation of IL-6. The ovarian steroids estradiol and progesterone had little impact on inflammatory responses to lipopeptides. The endometrial epithelial and stromal cell responses to lipopeptides via TLR2, TLR1, and TLR6 provide a mechanism linking a wide range of bacterial infections to inflammation of the endometrium.
Collapse
Affiliation(s)
- Matthew L Turner
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | | | | | | |
Collapse
|
17
|
Ono K, Kita T, Sato S, O'Neill P, Mak SS, Paschaki M, Ito M, Gotoh N, Kawakami K, Sasai Y, Ladher RK. FGFR1-Frs2/3 signalling maintains sensory progenitors during inner ear hair cell formation. PLoS Genet 2014; 10:e1004118. [PMID: 24465223 PMCID: PMC3900395 DOI: 10.1371/journal.pgen.1004118] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 12/02/2013] [Indexed: 12/11/2022] Open
Abstract
Inner ear mechanosensory hair cells transduce sound and balance information. Auditory hair cells emerge from a Sox2-positive sensory patch in the inner ear epithelium, which is progressively restricted during development. This restriction depends on the action of signaling molecules. Fibroblast growth factor (FGF) signalling is important during sensory specification: attenuation of Fgfr1 disrupts cochlear hair cell formation; however, the underlying mechanisms remain unknown. Here we report that in the absence of FGFR1 signaling, the expression of Sox2 within the sensory patch is not maintained. Despite the down-regulation of the prosensory domain markers, p27Kip1, Hey2, and Hes5, progenitors can still exit the cell cycle to form the zone of non-proliferating cells (ZNPC), however the number of cells that form sensory cells is reduced. Analysis of a mutant Fgfr1 allele, unable to bind to the adaptor protein, Frs2/3, indicates that Sox2 maintenance can be regulated by MAP kinase. We suggest that FGF signaling, through the activation of MAP kinase, is necessary for the maintenance of sensory progenitors and commits precursors to sensory cell differentiation in the mammalian cochlea. The ability of our brain to perceive sound depends on its conversion into electrical impulses within the cochlea of the inner ear. The cochlea has dedicated specialized cells, called inner ear hair cells, which register sound energy. Environmental effects, genetic disorders or just the passage of time can damage these cells, and the damage impairs our ability to hear. If we could understand how these cells develop, we might be able to exploit this knowledge to generate new hair cells. In this study we address an old problem: how do signals from the fibroblast growth factor (FGF) family control hair cell number? We used mice in which one of the receptors for FGF (Fgfr1) is mutated and found that the expression of a stem cell protein, Sox2 is not maintained. Sox2 generally acts to keep precursors in the cochlea in a pre-hair cell state. However, in mutant mice Sox2 expression is transient, diminishing the ability of precursors to commit to a hair cell fate. These findings suggest that it may be possible to amplify the number of hair cell progenitors in culture by tuning FGF activity, providing a route to replace damaged inner ear hair cells.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Cycle
- Cell Differentiation/genetics
- Cochlea/growth & development
- Cochlea/metabolism
- Ear, Inner/cytology
- Ear, Inner/growth & development
- Epithelium/growth & development
- Epithelium/metabolism
- Gene Expression Regulation, Developmental
- Hair Cells, Auditory, Inner/cytology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Protein Binding
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- SOXB1 Transcription Factors/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Kazuya Ono
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
- Neurogenesis and Organogenesis, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Tomoko Kita
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Shigeru Sato
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Paul O'Neill
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Siu-Shan Mak
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Marie Paschaki
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Masataka Ito
- Department of Anatomy, National Defense Medical College, Tokorozawa, Japan
| | - Noriko Gotoh
- Division of Genetics, Institute of Medical Science, University of Tokyo, Minato-ku, Japan
| | - Kiyoshi Kawakami
- Division of Biology, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshiki Sasai
- Neurogenesis and Organogenesis, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Raj K. Ladher
- Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
- * E-mail:
| |
Collapse
|
18
|
Friedman SH, Dani N, Rushton E, Broadie K. Fragile X mental retardation protein regulates trans-synaptic signaling in Drosophila. Dis Model Mech 2013; 6:1400-13. [PMID: 24046358 PMCID: PMC3820263 DOI: 10.1242/dmm.012229] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fragile X syndrome (FXS), the most common inherited determinant of intellectual disability and autism spectrum disorders, is caused by loss of the fragile X mental retardation 1 (FMR1) gene product (FMRP), an mRNA-binding translational repressor. A number of conserved FMRP targets have been identified in the well-characterized Drosophila FXS disease model, but FMRP is highly pleiotropic in function and the full spectrum of FMRP targets has yet to be revealed. In this study, screens for upregulated neural proteins in Drosophila fmr1 (dfmr1) null mutants reveal strong elevation of two synaptic heparan sulfate proteoglycans (HSPGs): GPI-anchored glypican Dally-like protein (Dlp) and transmembrane Syndecan (Sdc). Our recent work has shown that Dlp and Sdc act as co-receptors regulating extracellular ligands upstream of intracellular signal transduction in multiple trans-synaptic pathways that drive synaptogenesis. Consistently, dfmr1 null synapses exhibit altered WNT signaling, with changes in both Wingless (Wg) ligand abundance and downstream Frizzled-2 (Fz2) receptor C-terminal nuclear import. Similarly, a parallel anterograde signaling ligand, Jelly belly (Jeb), and downstream ERK phosphorylation (dpERK) are depressed at dfmr1 null synapses. In contrast, the retrograde BMP ligand Glass bottom boat (Gbb) and downstream signaling via phosphorylation of the transcription factor MAD (pMAD) seem not to be affected. To determine whether HSPG upregulation is causative for synaptogenic defects, HSPGs were genetically reduced to control levels in the dfmr1 null background. HSPG correction restored both (1) Wg and Jeb trans-synaptic signaling, and (2) synaptic architecture and transmission strength back to wild-type levels. Taken together, these data suggest that FMRP negatively regulates HSPG co-receptors controlling trans-synaptic signaling during synaptogenesis, and that loss of this regulation causes synaptic structure and function defects characterizing the FXS disease state.
Collapse
Affiliation(s)
- Samuel H Friedman
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37212, USA
| | | | | | | |
Collapse
|
19
|
Bickel RD, Cleveland HC, Barkas J, Jeschke CC, Raz AA, Stern DL, Davis GK. The pea aphid uses a version of the terminal system during oviparous, but not viviparous, development. EvoDevo 2013; 4:10. [PMID: 23552511 PMCID: PMC3639227 DOI: 10.1186/2041-9139-4-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/18/2013] [Indexed: 01/03/2023] Open
Abstract
Background In most species of aphid, female nymphs develop into either sexual or asexual adults depending on the length of the photoperiod to which their mothers were exposed. The progeny of these sexual and asexual females, in turn, develop in dramatically different ways. The fertilized oocytes of sexual females begin embryogenesis after being deposited on leaves (oviparous development) while the oocytes of asexual females complete embryogenesis within the mother (viviparous development). Compared with oviparous development, viviparous development involves a smaller transient oocyte surrounded by fewer somatic epithelial cells and a smaller early embryo that comprises fewer cells. To investigate whether patterning mechanisms differ between the earliest stages of the oviparous and viviparous modes of pea aphid development, we examined the expression of pea aphid orthologs of genes known to specify embryonic termini in other insects. Results Here we show that pea aphid oviparous ovaries express torso-like in somatic posterior follicle cells and activate ERK MAP kinase at the posterior of the oocyte. In addition to suggesting that some posterior features of the terminal system are evolutionarily conserved, our detection of activated ERK in the oocyte, rather than in the embryo, suggests that pea aphids may transduce the terminal signal using a mechanism distinct from the one used in Drosophila. In contrast with oviparous development, the pea aphid version of the terminal system does not appear to be used during viviparous development, since we did not detect expression of torso-like in the somatic epithelial cells that surround either the oocyte or the blastoderm embryo and we did not observe restricted activated ERK in the oocyte. Conclusions We suggest that while oviparous oocytes and embryos may specify posterior fate through an aphid terminal system, viviparous oocytes and embryos employ a different mechanism, perhaps one that does not rely on an interaction between the oocyte and surrounding somatic cells. Together, these observations provide a striking example of a difference in the fundamental events of early development that is both environmentally induced and encoded by the same genome.
Collapse
Affiliation(s)
- Ryan D Bickel
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA 19010, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Brumbaugh K, Johnson W, Liao WC, Lin MS, Houchins JP, Cooper J, Stoesz S, Campos-Gonzalez R. Overview of the generation, validation, and application of phosphosite-specific antibodies. Methods Mol Biol 2011; 717:3-43. [PMID: 21370022 DOI: 10.1007/978-1-61779-024-9_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein phosphorylation is a universal key posttranslational modification that affects the activity and other properties of intracellular proteins. Phosphosite-specific antibodies can be produced as polyclonals or monoclonals in different animal species, and each approach offers its own benefits and disadvantages. The validation of phosphosite-specific antibodies requires multiple techniques and tactics to demonstrate their specificity. These antibodies can be used in arrays, flow cytometry, and imaging platforms. The specificity of phosphosite-specific antibodies is key for their use in proteomics and profiling of disease.
Collapse
|
21
|
Helman A, Paroush Z. Detection of RTK pathway activation in Drosophila using anti-dpERK immunofluorescence staining. Methods Mol Biol 2010; 661:401-8. [PMID: 20811997 DOI: 10.1007/978-1-60761-795-2_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In Drosophila, like in other metazoans, receptor tyrosine kinase (RTK) signaling pathways control diverse cellular processes such as migration, growth, fate determination, and differentiation (Shilo, Development 132:4017-4027, 2005). Activation of RTKs by their extracellular ligands triggers a signal transduction cascade, mediated by the Ras/Raf/MEK cassette, which ultimately leads to dual phosphorylation and activation of the mitogen-activated protein kinase/extracellularly regulated kinase (MAPK/Erk). Once active, MAPK/Erk phosphorylates its cytoplasmic and nuclear substrates, consequently modulating (i.e., stimulating or inhibiting) their biological function (Murphy and Blenis, Trends in Biochemical Sciences 31:268-275, 2006). The currently available antibody specific for the doubly phosphorylated form of MAPK/Erk (dpERK) (Yung et al., FEBS Letters 408:292-296, 1997) provides a valuable readout for RTK signaling: it enables the spatiotemporal detection of RTK pathway activity in the developing organism, in situ (Gabay et al., Development 124:3535-3541, 1997; Gabay et al., Science 277:1103-1106, 1997). Here, we present a detailed protocol for anti-dpERK immunofluorescent staining that can be applied to the analysis of MAPK/Erk signaling in Drosophila embryogenesis.
Collapse
Affiliation(s)
- Aharon Helman
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | |
Collapse
|
22
|
|
23
|
Procaccia S, Kraus S, Seger R. Determination of ERK activity: anti-phospho-ERK antibodies and in vitro phosphorylation. Methods Mol Biol 2010; 661:39-58. [PMID: 20811975 DOI: 10.1007/978-1-60761-795-2_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ERK signaling cascade is composed of several protein kinases that sequentially activate each other by phosphorylation. This pathway is a central component of a complex signaling network that regulates important cellular processes including proliferation, differentiation, and survival. In most of these cases, the ERK cascade is activated downstream of the small GTPase Ras that, upon activation, recruits and activates the first tier in the cascade, which contains the Raf kinases. Afterward the signal is further transmitted by MEKs, ERKs, and often RSKs in the MAPKK, MAPK, and MAPKAPKs tiers of the cascade, respectively. ERKs and RSKs can further disseminate the signal by phosphorylating and modulating the activity of a large number of regulatory proteins including transcription factors and chromatin modifying enzymes. Understanding the mechanisms of activation and the regulation of the various components of this cascade will enhance our insight into the regulation of the ERK-dependent cellular processes in normal cells or of their malfunctioning in various diseases, including cancer. In this chapter, we describe methods used to determine the activity of ERKs, which upon slight modifications can also be used for the study of other signaling kinases, either within the cascade or in other pathways. These methods have been successfully applied to study the ERK signaling cascades in a variety of tissue-cultured cell lines, homo-genized animal organs, and lower organisms. As such, the use of these methods should expand our knowledge on the regulation of many distinct systems and upon induction of various stimulations.
Collapse
Affiliation(s)
- Shiri Procaccia
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
24
|
Specific phosphorylation and activation of ERK1c by MEK1b: a unique route in the ERK cascade. Genes Dev 2009; 23:1779-90. [PMID: 19651986 DOI: 10.1101/gad.523909] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Extracellular signal-regulated kinases (ERKs) are key signaling molecules that regulate a large number of cellular processes, including mitosis. We showed previously that ERK1c, an alternatively spliced form of ERK1, facilitates mitotic Golgi fragmentation without the involvement of ERK1 and ERK2. Here we demonstrate that activation of ERK1c is mainly mediated by mitogen-activated protein kinase (MAPK)/ERK kinase 1b (MEK1b), which is an alternatively spliced form of MEK1 that was previously considered an inactive kinase. MEK1b phosphorylation and activity are preferentially stimulated by nocodazole, to induce its specific activity toward ERK1c. MEK1/2, on the other hand, preferentially target ERK1/2 in response to growth factors, such as EGF. As previously demonstrated for ERK1c, also MEK1b expression and activity are elevated during mitosis, and thereby enhance Golgi fragmentation and mitotic rate. MEK1 activity is also increased during mitosis, but this isoform facilitates mitotic progression without affecting the Golgi architecture. These results illustrate that the ERK cascade is divided into two routes: the classic MEK1/2-ERK1/2 and the splice-variant MEK1b-ERK1c, each of which regulates distinct cellular processes and thus extends the cascade specificity.
Collapse
|
25
|
Teraishi T, Miura K. Toward anin situphospho-protein atlas: phospho- and site-specific antibody-based spatio-temporally systematized detection of phosphorylated proteinsin vivo. Bioessays 2009; 31:831-42. [DOI: 10.1002/bies.200900006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Korkmaz Y, Bloch W, Klinz FJ, Kübler AC, Schneider K, Zimmer S, Addicks K, Raab WHM. The Constitutive Activation of Extracellular Signal-Regulated Kinase 1 and 2 in Periodontal Ligament Nerve Fibers. J Periodontol 2009; 80:850-9. [DOI: 10.1902/jop.2009.080550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Korkmaz Y, Bloch W, Schneider K, Zimmer S, Addicks K, Raab WM. Time-dependent Activation of ERK1/2 in Nerve Terminals of the Dentin-Pulp Complex following Bradykinin Treatment. J Dent Res 2008; 87:1149-54. [DOI: 10.1177/154405910808701202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The extracellular signal-regulated kinases 1 and 2 (ERK1/2) have been implicated in the inflammation-dependent sensitization of nociceptors, and the inflammatory mediator bradykinin (BK) led to a reduced threshold in the nociceptor terminals, activating intracellular signaling by phosphorylating receptors and ion channels. The effects of BK on the non-transcriptional modulation of the ERK1/2 in the peripheral nociceptor terminals, including in nerve endings of the dentin-pulp complex, are unknown. The time-dependent effects of BK (10−7 M) on the ERK1/2 phosphorylation in nerve terminals of the dentin-pulp complex were investigated by quantitative and double immunolabeling with organ bath experiments. In nerve terminals, total and p-ERK1/2 were detected. In comparison with the controls, the numbers of p-ERK1/2-positive nerve endings increased after 1 and 3 min and decreased after 10 min of BK treatment. Analysis of the data indicates that BK induces phosphorylation-mediated local activation of ERK1/2 in nerve terminals modulating nociception in the dentin-pulp complex.
Collapse
Affiliation(s)
- Y. Korkmaz
- Dept. of Operative and Preventive Dentistry and Endodontics, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Dept. of Molecular and Cellular Sports Medicine, German Sports University, Cologne, Germany
- Dept. of Operative Dentistry, University Witten/Herdecke, Witten, Germany; and
- Dept. I of Anatomy, University of Cologne, Germany
| | - W. Bloch
- Dept. of Operative and Preventive Dentistry and Endodontics, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Dept. of Molecular and Cellular Sports Medicine, German Sports University, Cologne, Germany
- Dept. of Operative Dentistry, University Witten/Herdecke, Witten, Germany; and
- Dept. I of Anatomy, University of Cologne, Germany
| | - K. Schneider
- Dept. of Operative and Preventive Dentistry and Endodontics, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Dept. of Molecular and Cellular Sports Medicine, German Sports University, Cologne, Germany
- Dept. of Operative Dentistry, University Witten/Herdecke, Witten, Germany; and
- Dept. I of Anatomy, University of Cologne, Germany
| | - S. Zimmer
- Dept. of Operative and Preventive Dentistry and Endodontics, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Dept. of Molecular and Cellular Sports Medicine, German Sports University, Cologne, Germany
- Dept. of Operative Dentistry, University Witten/Herdecke, Witten, Germany; and
- Dept. I of Anatomy, University of Cologne, Germany
| | - K. Addicks
- Dept. of Operative and Preventive Dentistry and Endodontics, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Dept. of Molecular and Cellular Sports Medicine, German Sports University, Cologne, Germany
- Dept. of Operative Dentistry, University Witten/Herdecke, Witten, Germany; and
- Dept. I of Anatomy, University of Cologne, Germany
| | - W.H.-M. Raab
- Dept. of Operative and Preventive Dentistry and Endodontics, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Dept. of Molecular and Cellular Sports Medicine, German Sports University, Cologne, Germany
- Dept. of Operative Dentistry, University Witten/Herdecke, Witten, Germany; and
- Dept. I of Anatomy, University of Cologne, Germany
| |
Collapse
|
28
|
Chuderland D, Marmor G, Shainskaya A, Seger R. Calcium-mediated Interactions Regulate the Subcellular Localization of Extracellular Signal-regulated Kinases. J Biol Chem 2008; 283:11176-88. [DOI: 10.1074/jbc.m709030200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
29
|
Abstract
Mitogen-activated protein kinase (MAPK) cascades are central pathways that participate in the intracellular transmission of extracellular signals. Each of the MAPK signaling cascades seems to consist of three to five tiers of protein kinases that sequentially activate each other by phosphorylation. Since the majority of MAPK cascade components are kinases, the methods used to detect their activation involve determining phosphorylation state and protein kinase activities. The primary method describes the use of immunoblotting with specific anti-phospho antibody to detect activation of MAPK components. Alternative methods described are immunoprecipitation of desired protein kinases followed by phosphorylation of specific substrates and the use of an in-gel kinase assay. These methods have proven useful in the study of the MAPK signaling cascades.
Collapse
Affiliation(s)
- Yoav Shaul
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
30
|
Shaul Y, Seger R. The detection of MAPK signaling. CURRENT PROTOCOLS IN CELL BIOLOGY 2008; Chapter 14:Unit 14.3. [PMID: 18228462 DOI: 10.1002/0471143030.cb1403s28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are central pathways that participate in the intracellular transmission of extracellular signals. Each of the MAPK signaling cascades seems to consist of three to five tiers of protein kinases that sequentially activate each other by phosphorylation. Since the majority of MAPK cascade components are kinases, the methods used to detect their activation involve determining phosphorylation state and protein kinase activities. The Basic Protocol describes the use of immunoblotting with specific anti-phospho antibody to detect activation of MAPK components. Alternative methods described are immunoprecipitation of desired protein kinases followed by phosphorylation of specific substrates and the use of an in-gel kinase assay. These methods have proven useful in the study of the MAPK signaling cascades.
Collapse
Affiliation(s)
- Yoav Shaul
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
31
|
Yao Z, Seger R. Immunological detection of phosphorylation. CURRENT PROTOCOLS IN CELL BIOLOGY 2008; Chapter 14:Unit 14.2. [PMID: 18228325 DOI: 10.1002/0471143030.cb1402s00] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Incorporation of phosphates into serine, threonine, and tyrosine acceptors in proteins is a common mechanism for regulating protein function. This unit presents protocols that use specific anti-phosphoamino acid (PAA) and anti-phosphoprotein antibodies to detect protein phosphorylation and protein kinase activity. Immunoblotting to detect protein phosphorylation using either anti-PAA or anti-phosphoprotein antibodies. This is a convenient method that usually yields impressive results. Phosphorylation can also be detected by immunoprecipitation followed by immunoblot analysis or by immunofluorescent staining; these methods are typically more complicated and time consuming. All three methods have been successfully used to detect protein phosphorylation with a wide variety of antibodies and most phosphorylated proteins.
Collapse
Affiliation(s)
- Z Yao
- The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
32
|
Henry JJ, Perry KJ. MAPK activation and the specification of the D quadrant in the gastropod mollusc, Crepidula fornicata. Dev Biol 2007; 313:181-95. [PMID: 18022612 DOI: 10.1016/j.ydbio.2007.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/24/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
Embryos of the gastropod snail Crepidula fornicata exhibit a typical spiral cleavage pattern. Although a small polar lobe is formed at the first and second cleavage divisions, the embryo of C. fornicata exhibits a mode of development similar to that of equal-cleaving spiralians in which the D quadrant is conditionally specified by inductive interactions involving the derivatives of the first quartet micromeres. This study demonstrates that mitogen activated protein kinases, MAPK, are initially activated in the progeny of the first quartet micromeres, just prior to the birth of the third quartet (e.g., late during the 16-cell and subsequently during the 20-cell stages). Afterwards, MAPK is activated in 3D just prior to the 24-cell stage, transiently in 4d and finally in a subset of animal micromeres immediately following those stages. This pattern of MAPK activation differs from that reported for other spiralians. Using an inhibitor of MAPK kinase (MEK), we demonstrated that activated MAPK is required for the specification of the 3D macromere, during the late 16-cell through early 24-cell stages. This corresponds to the interval when the progeny of the first quartet micromeres specify the D quadrant macromere. Activated MAPK is not required in 3D later during the 24-cell stage or in the embryonic organizer, 4d, for its normal activity. Likewise, activated MAPK is not required in the animal micromeres during subsequent stages of development. Additional experiments suggest that the polar lobe, though not required for normal development, may play a role in restricting the activation of MAPK and biasing the specification of the 3D macromere.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801, USA.
| | | |
Collapse
|
33
|
Boggio EM, Putignano E, Sassoè-Pognetto M, Pizzorusso T, Giustetto M. Visual stimulation activates ERK in synaptic and somatic compartments of rat cortical neurons with parallel kinetics. PLoS One 2007; 2:e604. [PMID: 17622349 PMCID: PMC1899229 DOI: 10.1371/journal.pone.0000604] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 06/11/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Extracellular signal-regulated kinase (ERK) signalling pathway plays a crucial role in regulating diverse neuronal processes, such as cell proliferation and differentiation, and long-term synaptic plasticity. However, a detailed understanding of the action of ERK in neurons is made difficult by the lack of knowledge about its subcellular localization in response to physiological stimuli. To address this issue, we have studied the effect of visual stimulation in vivo of dark-reared rats on the spatial-temporal dynamics of ERK activation in pyramidal neurons of the visual cortex. METHODOLOGY/PRINCIPAL FINDINGS Using immunogold electron microscopy, we show that phosphorylated ERK (pERK) is present in dendritic spines, both at synaptic and non-synaptic plasma membrane domains. Moreover, pERK is also detected in presynaptic axonal boutons forming connections with dendritic spines. Visual stimulation after dark rearing during the critical period causes a rapid increase in the number of pERK-labelled synapses in cortical layers I-II/III. This visually-induced activation of ERK at synaptic sites occurs in pre- and post-synaptic compartments and its temporal profile is identical to that of ERK activation in neuronal cell bodies. CONCLUSIONS/SIGNIFICANCE Visual stimulation in vivo increases pERK expression at pre- and post-synaptic sites of axo-spinous junctions, suggesting that ERK plays an important role in the local modulation of synaptic function. The data presented here support a model in which pERK can have early and late actions both centrally in the cell nucleus and peripherally at synaptic contacts.
Collapse
Affiliation(s)
- Elena M. Boggio
- Dipartimento di Anatomia, Farmacologia e Medicina Legale and Istituto Nazionale di Neuroscienze, Università di Torino, Turin, Italy
| | - Elena Putignano
- Scuola Normale Superiore, Pisa and Institute of Neuroscience, CNR, Pisa, Italy
| | - Marco Sassoè-Pognetto
- Dipartimento di Anatomia, Farmacologia e Medicina Legale and Istituto Nazionale di Neuroscienze, Università di Torino, Turin, Italy
| | - Tommaso Pizzorusso
- Scuola Normale Superiore, Pisa and Institute of Neuroscience, CNR, Pisa, Italy
- Dipartimento di Psicologia, Università di Firenze, Florence, Italy
| | - Maurizio Giustetto
- Dipartimento di Anatomia, Farmacologia e Medicina Legale and Istituto Nazionale di Neuroscienze, Università di Torino, Turin, Italy
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Leacock SW, Reinke V. Expression profiling of MAP kinase-mediated meiotic progression in Caenorhabditis elegans. PLoS Genet 2006; 2:e174. [PMID: 17096596 PMCID: PMC1635537 DOI: 10.1371/journal.pgen.0020174] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 08/28/2006] [Indexed: 12/02/2022] Open
Abstract
The LET-60 (Ras)/LIN-45 (Raf)/MPK-1 (MAP kinase) signaling pathway plays a key role in the development of multiple tissues in Caenorhabditis elegans. For the most part, the identities of the downstream genes that act as the ultimate effectors of MPK-1 signaling have remained elusive. A unique allele of mpk-1, ga111, displays a reversible, temperature-sensitive, tissue-specific defect in progression through meiotic prophase I. We performed gene expression profiling on mpk-1(ga111) animals to identify candidate downstream effectors of MPK-1 signaling in the germ line. This analysis delineated a cohort of genes whose expression requires MPK-1 signaling in germ cells in the pachytene stage of meiosis I. RNA in situ hybridization analysis shows that these genes are expressed in the germ line in an MPK-1-dependent manner and have a spatial expression pattern consistent with the location of activated MPK-1. We found that one MPK-1 signaling-responsive gene encoding a C2H2 zinc finger protein plays a role in meiotic chromosome segregation downstream of MPK-1. Additionally, discovery of genes responsive to MPK-1 signaling permitted us to order MPK-1 signaling relative to several events occurring in pachytene, including EFL-1/DPL-1 gene regulation and X chromosome reactivation. This study highlights the utility of applying global gene expression methods to investigate genes downstream of commonly used signaling pathways in vivo. In many tissues in developing organisms, signaling pathways interpret extracellular cues that change how genes are expressed inside the nucleus and thus direct the appropriate developmental choice. Identification of the genes that are responsive to signaling pathways is critical for understanding how these pathways can promote the correct cell fate. Additionally, understanding the relationships between different regulatory pathways will also help to decipher the network of gene expression that underlies development. The nematode Caenorhabditis elegans has many signaling pathways that are highly similar to those acting in mammals. In particular, the Ras/Raf/MAP kinase signaling pathway acts in many tissues in C. elegans to direct a diverse set of cell fates. Here, we identify a set of genes whose expression alters in response to Ras/Raf/MAP kinase signaling in the germ line during meiosis. We show that this set of genes is primarily expressed in the germ line and that at least one of these genes is important for proper germ cell fate downstream of Ras/Raf/MAP kinase signaling. We also find that the Ras/Raf/MAP kinase signaling pathway functions independently of a second regulatory pathway, the E2F pathway, that acts at a similar time during germ cell development.
Collapse
Affiliation(s)
- Stefanie W Leacock
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Wu J, O'Donnell M, Gitler AD, Klein PS. Kermit 2/XGIPC, an IGF1 receptor interacting protein, is required for IGF signaling in Xenopus eye development. Development 2006; 133:3651-60. [PMID: 16914488 DOI: 10.1242/dev.02547] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GIPC is a PDZ-domain-containing protein identified in vertebrate and invertebrate organisms through its interaction with a variety of binding partners including many membrane proteins. Despite the multiple reports identifying GIPC, its endogenous function and the physiological significance of these interactions are much less studied. We have previously identified the Xenopus GIPC homolog kermit as a frizzled 3 interacting protein that is required for frizzled 3 induction of neural crest in ectodermal explants. We identified a second Xenopus GIPC homolog, named kermit 2 (also recently described as an IGF receptor interacting protein and named XGIPC). Despite its high amino acid similarity with kermit, kermit 2/XGIPC has a distinct function in Xenopus embryos. Loss-of-function analysis indicates that kermit 2/XGIPC is specifically required for Xenopus eye development. Kermit 2/XGIPC functions downstream of IGF in eye formation and is required for maintaining IGF-induced AKT activation. A constitutively active PI3 kinase partially rescues the Kermit 2/XGIPC loss-of-function phenotype. Our results provide the first in vivo loss of function analysis of GIPC in embryonic development and also indicate that kermit 2/XGIPC is a novel component of the IGF pathway, potentially functioning through modulation of the IGF1 receptor.
Collapse
Affiliation(s)
- Jinling Wu
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
36
|
Ben-Ami I, Freimann S, Armon L, Dantes A, Strassburger D, Friedler S, Raziel A, Seger R, Ron-El R, Amsterdam A. PGE2 up-regulates EGF-like growth factor biosynthesis in human granulosa cells: new insights into the coordination between PGE2 and LH in ovulation. ACTA ACUST UNITED AC 2006; 12:593-9. [PMID: 16888076 DOI: 10.1093/molehr/gal068] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
LH and prostaglandin E(2) (PGE(2)) share many similar effects on the pre-ovulatory follicle. They can induce independently cumulus expansion, the resumption of meiosis and progesterone production. However, cyclooxygenase-2 (COX-2) inhibitors were found to hinder most of the LH-induced effects. Recently, EGF-like growth factors amphiregulin (Ar) and epiregulin (Ep) were found to be produced in response to LH stimulation and to induce cumulus expansion and oocyte maturation. We aimed at evaluating whether PGE(2) induces Ar and Ep syntheses in human granulosa cells and whether the inhibition of PGE(2) production by selective COX-2 inhibitor, nimesulide, affects LH-induced Ar and Ep biosynthesis. Ar and Ep mRNA levels increased following PGE(2) stimulation, in a dose- and time-dependent manner, which resembled those of LH. The blockade of protein kinase A (PKA) (by H89) and mitogen-activated protein kinase (MAPK) (by UO126) reduced the expression of PGE(2)-induced Ar and Ep biosynthesis. Although the stimulation of the cells with LH in the presence of nimesulide did not change the progesterone levels, it resulted in a significant reduction of Ar and Ep biosynthesis. In conclusion, PGE(2) may mimic LH action, at least in part, by the induction of Ar and Ep biosynthesis, which involves cAMP/PKA and MAPK pathways. The negative effect of nimesulide on the ovulatory process may be due to the reduction of Ar and Ep biosynthesis, which implies a possible collaborative role between PGE(2) and LH on their induction.
Collapse
Affiliation(s)
- I Ben-Ami
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Sequential activation of protein kinases within the mitogen-activated protein kinase (MAPK) cascades is a common mechanism of signal transduction in many cellular processes. Four such cascades have been elucidated thus far, and named according to their MAPK tier component as the ERK1/2, JNK, p38MAPK, and ERK5 cascades. These cascades cooperate in transmitting various extracellular signals, and thus control cellular processes such as proliferation, differentiation, development, stress response, and apoptosis. Here we describe the classic ERK1/2 cascade, and concentrate mainly on the properties of MEK1/2 and ERK1/2, including their mode of regulation and their role in various cellular processes and in oncogenesis. This cascade may serve as a prototype of the other MAPK cascades, and the study of this cascade is likely to contribute to the understanding of mitogenic and other processes in many cell lines and tissues.
Collapse
Affiliation(s)
- Hadara Rubinfeld
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
38
|
Orton R, Sturm O, Vyshemirsky V, Calder M, Gilbert D, Kolch W. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J 2006; 392:249-61. [PMID: 16293107 PMCID: PMC1316260 DOI: 10.1042/bj20050908] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The MAPK (mitogen-activated protein kinase) pathway is one of the most important and intensively studied signalling pathways. It is at the heart of a molecular-signalling network that governs the growth, proliferation, differentiation and survival of many, if not all, cell types. It is de-regulated in various diseases, ranging from cancer to immunological, inflammatory and degenerative syndromes, and thus represents an important drug target. Over recent years, the computational or mathematical modelling of biological systems has become increasingly valuable, and there is now a wide variety of mathematical models of the MAPK pathway which have led to some novel insights and predictions as to how this system functions. In the present review we give an overview of the processes involved in modelling a biological system using the popular approach of ordinary differential equations. Focusing on the MAPK pathway, we introduce the features and functions of the pathway itself before comparing the available models and describing what new biological insights they have led to.
Collapse
Affiliation(s)
- Richard J. Orton
- *Bioinformatics Research Centre, Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Oliver E. Sturm
- *Bioinformatics Research Centre, Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Vladislav Vyshemirsky
- *Bioinformatics Research Centre, Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Muffy Calder
- †Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - David R. Gilbert
- *Bioinformatics Research Centre, Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Walter Kolch
- ‡Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
- §Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
39
|
Lee MH, Hook B, Lamont LB, Wickens M, Kimble J. LIP-1 phosphatase controls the extent of germline proliferation in Caenorhabditis elegans. EMBO J 2005; 25:88-96. [PMID: 16319922 PMCID: PMC1351240 DOI: 10.1038/sj.emboj.7600901] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 11/15/2005] [Indexed: 01/10/2023] Open
Abstract
Caenorhabditis elegans germline cells are maintained in an undifferentiated and mitotically dividing state by Notch signaling and the FBF (for fem-3 binding factor) RNA-binding protein. Here, we report that the LIP-1 phosphatase, a proposed homolog of mitogen-activated protein (MAP) kinase phosphatases, is required for the normal extent of germline proliferation, and that lip-1 controls germline proliferation by regulating MAP kinase activity. In wild-type germ lines, LIP-1 protein is present in the proximal third of the mitotic region, consistent with its effect on germline proliferation. We provide evidence that lip-1 expression in the germline mitotic region is controlled by a combination of GLP-1/Notch signaling and FBF repression. Unexpectedly, FBF controls the accumulation of lip-1 mRNA, and therefore is likely to control its stability or 3'-end formation. In a sensitized mutant background, LIP-1 can function as a pivotal regulator of the decision between proliferation and differentiation. The control of germline proliferation by LIP-1 has intriguing parallels with the control of stem cells and progenitor cells in vertebrates.
Collapse
Affiliation(s)
- Myon-Hee Lee
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Brad Hook
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Liana B Lamont
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Kimble
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biochemistry, Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA. Tel.: +1 608 262 6188; Fax: +1 608 265 5820; E-mail:
| |
Collapse
|
40
|
Sharma-Walia N, Krishnan HH, Naranatt PP, Zeng L, Smith MS, Chandran B. ERK1/2 and MEK1/2 induced by Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) early during infection of target cells are essential for expression of viral genes and for establishment of infection. J Virol 2005; 79:10308-29. [PMID: 16051824 PMCID: PMC1182676 DOI: 10.1128/jvi.79.16.10308-10329.2005] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) in vitro target cell infection is characterized by the expression of the latency-associated genes ORF 73 (LANA-1), ORF 72, and K13 and by the transient expression of a very limited number of lytic genes such as lytic cycle switch gene ORF 50 (RTA) and the immediate early (IE) lytic K5, K8, and v-IRF2 genes. During the early stages of infection, several overlapping multistep complex events precede the initiation of viral gene expression. KSHV envelope glycoprotein gB induces the FAK-Src-PI3K-RhoGTPase (where FAK is focal adhesion kinase) signaling pathway. As early as 5 min postinfection (p.i.), KSHV induced the extracellular signal-regulated kinase 1 and 2 (ERK1/2) via the PI3K-PKCzeta-MEK pathway. In addition, KSHV modulated the transcription of several host genes of primary human dermal microvascular endothelial cells (HMVEC-d) and fibroblast (HFF) cells by 2 h and 4 h p.i. Neutralization of virus entry and infection by PI-3K and other cellular tyrosine kinase inhibitors suggested a critical role for signaling molecules in KSHV infection of target cells. Here we investigated the induction of ERK1/2 by KSHV and KSHV envelope glycoproteins gB and gpK8.1A and the role of induced ERK in viral and host gene expression. Early during infection, significant ERK1/2 induction was observed even with low multiplicity of infection of live and UV-inactivated KSHV in serum-starved cells as well as in the presence of serum. Entry of UV-inactivated virus and the absence of viral gene expression suggested that ERK1/2 induction is mediated by the initial signal cascade induced by KSHV binding and entry. Purified soluble gpK8.1A induced the MEK1/2 dependent ERK1/2 but not ERK5 and p38 mitogen-activated protein kinase (MAPK) in HMVEC-d and HFF. Moderate ERK induction with soluble gB was seen only in HMVEC-d. Preincubation of gpK8.1A with heparin or anti-gpK8.1A antibodies inhibited the ERK induction. U0126, a selective inhibitor for MEK/ERK blocked the gpK8.1A- and KSHV-induced ERK activation. ERK1/2 inhibition did not block viral DNA internalization and had no significant effect on nuclear delivery of KSHV DNA during de novo infection. Analyses of viral gene expression by quantitative real-time reverse transcriptase PCR revealed that pretreatment of cells with U0126 for 1 h and during the 2-h infection with KSHV significantly inhibited the expression of ORF 73, ORF 50 (RTA), and the IE-K8 and v-IRF2 genes. However, the expression of lytic IE-K5 gene was not affected significantly. Expression of ORF 73 in BCBL-1 cells was also significantly inhibited by preincubation with U0126. Inhibition of ERK1/2 also inhibited the transcription of some of the vital host genes such as DUSP5 (dual specificity phosphatase 5), ICAM-1 (intercellular adhesion molecule 1), heparin binding epidermal growth factor, and vascular endothelial growth factor that were up-regulated early during KSHV infection. Several MAPK-regulated host transcription factors such as c-Jun, STAT1alpha, MEF2, c-Myc, ATF-2 and c-Fos were induced early during infection, and ERK inhibition significantly blocked the c-Fos, c-Jun, c-Myc, and STAT1alpha activation in the infected cells. AP1 transcription factors binding to the RTA promoter in electrophoretic mobility shift assays were readily detected in the infected cell nuclear extracts which were significantly reduced by ERK inhibition. Together, these results suggest that very early during de novo infection, KSHV induces the ERK1/2 to modulate the initiation of viral gene expression and host cell genes, which further supports our hypothesis that beside the conduit for viral DNA delivery into the cytoplasm, KSHV interactions with host cell receptor(s) create an appropriate intracellular environment facilitating infection.
Collapse
Affiliation(s)
- Neelam Sharma-Walia
- Department of Microbiology, Molecular Genetics and Immunology, Mail Stop 3029, The University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
41
|
Mackeigan JP, Murphy LO, Dimitri CA, Blenis J. Graded mitogen-activated protein kinase activity precedes switch-like c-Fos induction in mammalian cells. Mol Cell Biol 2005; 25:4676-82. [PMID: 15899869 PMCID: PMC1140635 DOI: 10.1128/mcb.25.11.4676-4682.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an evolutionarily conserved signaling module that controls important cell fate decisions in a variety of physiological contexts. During Xenopus oocyte maturation, the MAPK cascade converts an increasing progesterone stimulus into a switch-like, all-or-nothing response. While the importance of such switch-like behavior is widely discussed in the literature, it is not known whether the MAPK pathway in mammalian cells exhibits a switch-like or graded response. For this study, we used flow cytometry and immunofluorescence to generate single-cell measurements of MAPK signaling in Swiss 3T3 fibroblasts. In contrast to the case in Xenopus oocytes, we found that ERK activation in individual mammalian cells is not ultrasensitive and shows a graded response to changes in agonist concentration. Thus, the conserved MAPK signaling module exhibits different systems-level properties in different cellular contexts. Furthermore, the graded ERK response was converted into a more switch-like behavior at the level of immediate-early gene induction and cell cycle progression. Thus, while MAPK signaling is involved in all-or-nothing cell fate decisions for both Xenopus oocyte maturation and mammalian fibroblast proliferation, the underlying mechanisms responsible for the switch-like nature of the cellular responses are different in these two systems, with the mechanism appearing to lie downstream of the kinase cascade in mammalian fibroblasts.
Collapse
Affiliation(s)
- Jeffrey P Mackeigan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston MA 02115, USA
| | | | | | | |
Collapse
|
42
|
Tajima K, Yoshii K, Fukuda S, Orisaka M, Miyamoto K, Amsterdam A, Kotsuji F. Luteinizing hormone-induced extracellular-signal regulated kinase activation differently modulates progesterone and androstenedione production in bovine theca cells. Endocrinology 2005; 146:2903-10. [PMID: 15817663 DOI: 10.1210/en.2005-0093] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been reported that gonadotropins promoted phosphorylation of ERK/MAPK in granulosa cells. However, little is known about the effects of gonadotropin on ERK activity in theca cells. This study explores how LH/forskolin controls ERK phosphorylation in cultured bovine theca cells. Effects of ERK on steroidogenesis were also investigated. Phosphorylation of ERK in bovine theca cells was augmented by LH and forskolin in 5 min; it decreased thereafter below basal levels in 20 min. Nevertheless, phosphorylation of the ERK kinase, MEK, was unaffected. Addition of H89 (a protein kinase A inhibitor) significantly reduced the effect of LH/forskolin on ERK phosphorylation. A potent MEK inhibitor PD98059 eliminated ERK phosphorylation and augmented progesterone production concomitantly with the elevation of intracellular steroidogenic acute regulatory protein mRNA in LH/forskolin-stimulated theca cells. In contrast to progesterone production, androgen production was diminished significantly by inhibition of ERK with decreased intracellular P450c17 mRNA levels. Taking these results together, we conclude that LH/cAMP leads to phosphorylation of ERK in a biphasic manner through MEK-independent pathway in bovine theca cells. Protein kinase A-induced phosphatase could possibly contribute to the phosphorylation process. Furthermore, modulation of ERK phosphorylation involves control of thecal steroidogenesis via modulation of the expression of steroidogenic acute regulatory protein and P450c17.
Collapse
Affiliation(s)
- Kimihisa Tajima
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Matsuoka, Fukui 910-1193, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Svegliati-Baroni G, Ridolfi F, Hannivoort R, Saccomanno S, Homan M, De Minicis S, Jansen PLM, Candelaresi C, Benedetti A, Moshage H. Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor. Gastroenterology 2005; 128:1042-55. [PMID: 15825085 DOI: 10.1053/j.gastro.2005.01.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Hepatic stellate cell (HSC) proliferation is a key event in the development of liver fibrosis. In many liver diseases, HSCs are exposed to inflammatory cytokines, reactive oxygen species, and bile acids. Although inflammatory cytokines and reactive oxygen species are known to promote proliferation of HSCs, nothing is known about the effects of bile acids on HSC proliferation or apoptosis. The aim of this study was to investigate the effects of bile acids on HSC proliferation. METHODS HSCs were exposed to bile acids with different hydrophobicity (5-200 micromol/L). HSC proliferation and cell cycle-related events were assessed by bromodeoxyuridine incorporation, cell counting and proliferating cell nuclear antigen and cyclin E expression, apoptosis by caspase-3 activity assay, immunocytochemistry for active caspase-3 and acridine orange staining, and activation of signal transduction pathways by Western blot using phospho-specific antibodies. Uptake of bile acids was investigated using fluorescent bile acids. RESULTS All bile acids, at concentrations >25 micromol/L, induce a 2.5- to 3-fold increase in HSC proliferation via activation of the epidermal growth factor receptor. Bile acid-induced proliferation is mediated by activation of a protein kinase C/extracellular signal-regulated kinase/p70S6K-dependent pathway. Bile acids did not induce apoptosis in HSCs. HSCs do not take up fluorescent bile acids and do not express the bile acid importer ntcp. CONCLUSIONS Bile acids at levels reached in cholestatic conditions are an independent profibrogenic factor. Bile acids induce HSC proliferation via the activation of the epidermal growth factor receptor, whereas HSCs are protected against bile acid-induced apoptosis by excluding bile acids.
Collapse
|
44
|
Salem Y, Shpungin S, Pasder O, Pomp O, Taler M, Malovani H, Nir U. Fer kinase sustains the activation level of ERK1/2 and increases the production of VEGF in hypoxic cells. Cell Signal 2005; 17:341-53. [PMID: 15567065 DOI: 10.1016/j.cellsig.2004.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 08/02/2004] [Accepted: 08/02/2004] [Indexed: 01/09/2023]
Abstract
Fer is a nuclear and cytoplasmic tyrosine kinase that is ubiquitously expressed in mammalian cells. Herein we show that Fer sustains a key signaling step in hypoxic cells. Knock-down of the Fer protein using a specific siRNA decreased the production of VEGF by the hypoxic cells. Conversely, ectopic expression of this kinase led to an elevated production of VEGF under hypoxia. At the molecular level, Fer was found to associate with ERK1/2 and this interaction was intensified under hypoxia. Moreover, Fer increased the activation levels of ERK1/2, and reducing the level of Fer, impaired the activation of ERK1/2 in hypoxic cells. Blocking the MEK-ERK1/2 signaling pathway with the MEK inhibitors U0126, or PD98059 led to the abrogation of ERK1/2 activity in hypoxic cells, an effect that was counteracted by Fer. Hence, Fer sustains the activation of ERK1/2 and increases the production of VEGF in hypoxic cells, without affecting the MEK-ERK signaling pathway.
Collapse
Affiliation(s)
- Yaniv Salem
- Faculty of Life Sciences, Bar-Ilan University, Geha Road, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
45
|
Gómez AR, López-Varea A, Molnar C, de la Calle-Mustienes E, Ruiz-Gómez M, Gómez-Skarmeta JL, de Celis JF. Conserved cross-interactions inDrosophilaandXenopusbetween Ras/MAPK signaling and the dual-specificity phosphatase MKP3. Dev Dyn 2005; 232:695-708. [PMID: 15704110 DOI: 10.1002/dvdy.20227] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The extracellular signal-regulated kinase (ERK) is a key transducer of the epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR) signaling pathways, and its function is required in multiple processes during animal development. The activity of ERK depends on the phosphorylation state of conserved threonine and tyrosine residues, and this state is regulated by different kinases and phosphatases. A family of phosphatases with specificity toward both threonine and tyrosine residues in ERK (dual-specificity phosphatases) play a conserved role in its dephosphorylation and consequent inactivation. Here, we characterize the function of the dual-specificity phosphatase MKP3 in Drosophila EGFR and Xenopus FGFR signaling. The function of MKP3 is required during Drosophila wing vein formation and Xenopus anteroposterior neural patterning. We find that the expression of the MKP3 gene is localized in places of high EGFR and FGFR signaling. Furthermore, this restricted expression depends on ERK function both in Drosophila and Xenopus, suggesting that MKP3 constitutes a conserved negative feedback loop on the activity of the Ras/ERK signaling pathway.
Collapse
Affiliation(s)
- Ana Ruiz Gómez
- Centro de Biologóa Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Panet R, Eliash M, Atlan H. Na+/K+/Cl− cotransporter activates MAP-kinase cascade downstream to protein kinase C, and upstream to MEK. J Cell Physiol 2005; 206:578-85. [PMID: 16222701 DOI: 10.1002/jcp.20506] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, we demonstrated that the specific inhibitors of the Na+/K+/Cl- cotransporter (NKCC1), bumetanide and furosemide, inhibited extracellular regulated kinase (ERK) phosphorylation in Balb/c 3T3 fibroblasts, stimulated with a variety of mitogens. In addition to fibroblast growth factor (FGF) shown before, the various mitogens tested in the present study (endothelial growth factor (EGF), platelet-derived growth factor (PDGF), insulin, thrombin, and the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA)). Enter, the Ras/Raf/MEK/ERK cascade via different growth factors receptors and through one of the two main routes. The results of the present study provide evidence that have led us to conclude that the target protein which is controlled by the Na+/K+/Cl- cotransporter, is downstream of tyrosine kinase receptors, as well as of the G-protein-coupled receptor (GPCR). Several additional lines of evidence supported the above conclusion: (i) furosemide inhibits phosphorylation of MAPK kinase (MEK) induced by receptor tyrosine kinase (RTK) ligands, such as PDGF, FGF, and EGF. (ii) Furosemide also inhibited ERK phosphorylation, induced by thrombin, a GPCR. (iii) Furosemide inhibited MEK and ERK phosphorylation even when ERK phosphorylation was induced by direct activation of protein kinase C (PKC) by TPA, which bypasses early steps of the mitogenic cascade. In addition, we found that furosemide did not affect PKC phosphorylation induced directly by TPA. Taken together, the results of the present study indicate that the signal transduction protein, controlled by the Na+/K+/Cl- cotransporter, must be downstream of the PKC, and at/or upstream to MEK in the Ras/Raf/MEK/ERK cascade.
Collapse
Affiliation(s)
- Rivka Panet
- Department of Medical Biophysics and Nuclear Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| | | | | |
Collapse
|
47
|
Aebersold DM, Shaul YD, Yung Y, Yarom N, Yao Z, Hanoch T, Seger R. Extracellular signal-regulated kinase 1c (ERK1c), a novel 42-kilodalton ERK, demonstrates unique modes of regulation, localization, and function. Mol Cell Biol 2004; 24:10000-15. [PMID: 15509801 PMCID: PMC525466 DOI: 10.1128/mcb.24.22.10000-10015.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular signal-regulated kinases (ERKs) are signaling molecules that regulate many cellular processes. We have previously identified an alternatively spliced 46-kDa form of ERK1 that is expressed in rats and mice and named ERK1b. Here we report that the same splicing event in humans and monkeys causes, due to sequence differences in the inserted introns, the production of an ERK isoform that migrates together with the 42-kDa ERK2. Because of the differences of this isoform from ERK1b, we named it ERK1c. We found that its expression levels are about 10% of ERK1. ERK1c seems to be expressed in a wide variety of tissues and cells. Its activation by MEKs and inactivation by phosphatases are slower than those of ERK1, which is probably the reason for its differential regulation in response to extracellular stimuli. Unlike ERK1, ERK1c undergoes monoubiquitination, which is increased with elevated cell density concomitantly with accumulation of ERK1c in the Golgi apparatus. Elevated cell density also causes enhanced Golgi fragmentation, which is facilitated by overexpression of native ERK1c and is prevented by dominant-negative ERK1c, indicating that ERK1c mediates cell density-induced Golgi fragmentation. The differential regulation of ERK1c extends the signaling specificity of MEKs after stimulation by various extracellular stimuli.
Collapse
Affiliation(s)
- Daniel M Aebersold
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
48
|
Czarny M, Schnitzer JE. Neutral sphingomyelinase inhibitor scyphostatin prevents and ceramide mimics mechanotransduction in vascular endothelium. Am J Physiol Heart Circ Physiol 2004; 287:H1344-52. [PMID: 15142848 DOI: 10.1152/ajpheart.00222.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, we showed that neutral sphingomyelinase (N-SMase) is concentrated at the endothelial cell surface in caveolae and is activated to produce ceramide in an acute and transient manner by increase in flow rate and pressure in rat lung vasculature (Czarny M, Liu J, Oh P, and Schnitzer JE, J Biol Chem 278: 4424-4430, 2003). Here, we report further on our investigations of this new acute mechanotransduction pathway. We employed three experimental models to explore the role of N-SMase and ceramides in mechanosignaling: 1) a cell-free, in vitro model using isolated luminal plasma membranes of rat lung endothelium; 2) a fluid shear stress model using monolayers of intact bovine aorta endothelial cell in culture; and 3) an in situ model using controlled perfusion of the rat lung vasculature. Scyphostatin, which specifically inhibited N-SMase but not acid SMase activity, prevented mechanoactivation of N-SMase as well as downstream tyrosine and mitogen-activated protein kinases. Cell-permeable ceramide analogs (N-acetylsphingosine, C2-ceramide, and N-hexanoylsphingosine, C6-ceramide) but not the inactive dihydroderivatives D2-ceramide and D6-ceramide (N-acetylsphinganine and N-hexanoylsphinganine, respectively) mimic rapid mechano-induced tyrosine phosphorylation of cell surface proteins as well as mechanoactivation of Src-like kinases and the extracellular regulated kinase pathway. The responses common to ceramide and mechanical stress were inhibited by genistein, herbamycin A, and PP2, but not PP3, which suggests an obligate role of Src-like kinases in ceramide-mediated mechanotransduction. Ceramides also induced serine/threonine phosphorylation to activate the Akt/endothelial nitric oxide synthase pathway. Thus N-SMase at the plasma membrane in caveolae may be an upstream initiating mechanosensor, which acutely triggers mechanotransduction by generation of the lipid second messenger ceramide.
Collapse
Affiliation(s)
- Malgorzata Czarny
- Division of Vascular Biology and Angiogenesis, Sidney Kimmel Cancer Center, San Diego, California 92121, USA
| | | |
Collapse
|
49
|
Röttinger E, Besnardeau L, Lepage T. A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets. Development 2004; 131:1075-87. [PMID: 14973284 DOI: 10.1242/dev.01000] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the sea urchin embryo, the skeleton of the larva is built from a population of mesenchymal cells known as the primary mesenchyme cells (PMCs). These derive from the large micromeres that originate from the vegetal pole at fourth cleavage. At the blastula stage, the 32 cells of this lineage detach from the epithelium and ingress into the blastocoel by a process of epithelial-mesenchymal transition. We report that shortly before ingression,there is a transient and highly localized activation of the MAP-kinase ERK in the micromere lineage. We show that ingression of the PMCs requires the activity of ERK, MEK and Raf, and depends on the maternal Wnt/β-catenin pathway. Dissociation experiments and injection of mRNA encoding a dominant-negative form of Ras indicated that this activation is probably cell autonomous. We identified the transcription factors Ets1 and Alx1 as putative targets of the phosphorylation by ERK. Both proteins contain a single consensus site for phosphorylation by the MAP kinase ERK. In addition, the Ets1 protein sequence contains a putative ERK docking site. Overexpression of ets1 by injection of synthetic mRNA in the egg caused a dramatic increase in the number of cells becoming mesenchymal at the blastula stage. This effect could be largely inhibited by treating embryos with the MEK inhibitor U0126. Moreover, mutations in the consensus phosphorylation motif substituting threonine 107 by an aspartic or an alanine residue resulted respectively in a constitutively active form of Ets1 that could not be inhibited by U0126 or in an inactive form of Ets1. These results show that the MAP kinase pathway, working through phosphorylation of Ets1, is required for full specification of the PMCs and their subsequent transition from epithelial to mesenchymal state.
Collapse
Affiliation(s)
- Eric Röttinger
- UMR 7009 CNRS, Université de Paris VI, Observatoire Océanologique, 06230 Villefranche-sur-Mer, France
| | | | | |
Collapse
|
50
|
Brummer T, Naegele H, Reth M, Misawa Y. Identification of novel ERK-mediated feedback phosphorylation sites at the C-terminus of B-Raf. Oncogene 2004; 22:8823-34. [PMID: 14654779 DOI: 10.1038/sj.onc.1207185] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The extracellular signal-regulated kinase (ERK) pathway plays an important role during the development and activation of B lymphocytes. We have recently shown that B-Raf is a dominant ERK activator in B-cell antigen receptor signalling. We now show that B-Raf is hyperphosphorylated upon BCR engagement and undergoes a prominent electrophoretic mobility shift. This shift correlates with ERK activation and is prevented by the MEK inhibitor U0126. Syk-deficient DT40 B cells display neither dual ERK phosphorylation nor a mobility shift of B-Raf upon BCR engagement. The inducible expression of a constitutively active B-Raf in this mutant line restores dual ERK phosphorylation and the mobility shift of endogenous B-Raf, indicating that these two events are connected to each other. By site-directed mutagenesis studies, we demonstrate that the shift is due to an ERK2-mediated feedback phosphorylation of serine/threonine residues within an evolutionary conserved SPKTP motif at the C-terminus of B-Raf. Replacement of these residues by negatively charged amino acids causes a constitutive mobility shift and a reduction of PC12 cell differentiation. We discuss a model in which ERK-mediated phosphorylation of the SPKTP motif is involved in negative feedback regulation of B-Raf.
Collapse
Affiliation(s)
- Tilman Brummer
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck Institute for Immunobiology, Stuebeweg 51, Freiburg 79108, Germany
| | | | | | | |
Collapse
|