1
|
Milic J, Tian Y, Bernhagen J. Role of the COP9 Signalosome (CSN) in Cardiovascular Diseases. Biomolecules 2019; 9:biom9060217. [PMID: 31195722 PMCID: PMC6628250 DOI: 10.3390/biom9060217] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is an evolutionarily conserved multi-protein complex, consisting of eight subunits termed CSN1-CSN8. The main biochemical function of the CSN is the control of protein degradation via the ubiquitin-proteasome-system through regulation of cullin-RING E3-ligase (CRL) activity by deNEDDylation of cullins, but the CSN also serves as a docking platform for signaling proteins. The catalytic deNEDDylase (isopeptidase) activity of the complex is executed by CSN5, but only efficiently occurs in the three-dimensional architectural context of the complex. Due to its positioning in a central cellular pathway connected to cell responses such as cell-cycle, proliferation, and signaling, the CSN has been implicated in several human diseases, with most evidence available for a role in cancer. However, emerging evidence also suggests that the CSN is involved in inflammation and cardiovascular diseases. This is both due to its role in controlling CRLs, regulating components of key inflammatory pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and complex-independent interactions of subunits such as CSN5 with inflammatory proteins. In this case, we summarize and discuss studies suggesting that the CSN may have a key role in cardiovascular diseases such as atherosclerosis and heart failure. We discuss the implicated molecular mechanisms ranging from inflammatory NF-κB signaling to proteotoxicity and necrosis, covering disease-relevant cell types such as myeloid and endothelial cells or cardiomyocytes. While the CSN is considered to be disease-exacerbating in most cancer entities, the cardiovascular studies suggest potent protective activities in the vasculature and heart. The underlying mechanisms and potential therapeutic avenues will be critically discussed.
Collapse
Affiliation(s)
- Jelena Milic
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany.
| | - Yuan Tian
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany.
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), 81377 Munich, Germany.
- Munich Heart Alliance, 80802 Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany.
| |
Collapse
|
2
|
She ZG, Chen HZ, Yan Y, Li H, Liu DP. The human paraoxonase gene cluster as a target in the treatment of atherosclerosis. Antioxid Redox Signal 2012; 16:597-632. [PMID: 21867409 PMCID: PMC3270057 DOI: 10.1089/ars.2010.3774] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The paraoxonase (PON) gene cluster contains three adjacent gene members, PON1, PON2, and PON3. Originating from the same fungus lactonase precursor, all of the three PON genes share high sequence identity and a similar β propeller protein structure. PON1 and PON3 are primarily expressed in the liver and secreted into the serum upon expression, whereas PON2 is ubiquitously expressed and remains inside the cell. Each PON member has high catalytic activity toward corresponding artificial organophosphate, and all exhibit activities to lactones. Therefore, all three members of the family are regarded as lactonases. Under physiological conditions, they act to degrade metabolites of polyunsaturated fatty acids and homocysteine (Hcy) thiolactone, among other compounds. By detoxifying both oxidized low-density lipoprotein and Hcy thiolactone, PONs protect against atherosclerosis and coronary artery diseases, as has been illustrated by many types of in vitro and in vivo experimental evidence. Clinical observations focusing on gene polymorphisms also indicate that PON1, PON2, and PON3 are protective against coronary artery disease. Many other conditions, such as diabetes, metabolic syndrome, and aging, have been shown to relate to PONs. The abundance and/or activity of PONs can be regulated by lipoproteins and their metabolites, biological macromolecules, pharmacological treatments, dietary factors, and lifestyle. In conclusion, both previous results and ongoing studies provide evidence, making the PON cluster a prospective target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Zhi-Gang She
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
3
|
Oxidized low density lipoprotein inhibits phosphate signaling and phosphate-induced mineralization in osteoblasts. Involvement of oxidative stress. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1013-9. [PMID: 20667472 DOI: 10.1016/j.bbadis.2010.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/07/2010] [Accepted: 07/13/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND It is well admitted that oxidized LDL (OxLDL) plays a major role in the generation and progression of atherosclerosis. Since atherosclerosis is often accompanied by osteoporosis, the effects of OxLDL on phosphate-induced osteoblast mineralization were investigated. METHODS Calcium deposition, expression of osteoblast markers and inorganic phosphate (Pi) signaling were determined under OxLDL treatment. RESULTS OxLDL, within the range of 10-50 μg protein/ml, inhibited Pi-induced UMR106 rat osteoblast mineralization. In parallel, the expression of Cbfa1/Runx2 transcription factor was decreased, and the intracellular level of the osteoblast marker osteopontin (OPN) was reduced. The extracellular level of another marker, receptor activator of nuclear factor kappa B ligand (RANKL), was also diminished. OxLDL inhibited Pi signaling via ERK/JNK kinases and AP1/CREB transcription factors. OxLDL triggered the generation of reactive oxygen species (ROS), either in the absence or presence of Pi. Furthermore, the effects of OxLDL on Pi-induced mineralization, generation of ROS and extracellular level OPN were reproduced by the lipid extract of the particle, whereas the antioxidant vitamin E prevented them. CONCLUSIONS This work demonstrates that OxLDL, by generation of an oxidative stress, inhibits of Pi signaling and impairs Pi-induced osteoblast differentiation. GENERAL SIGNIFICANCE This highlights the role of OxLDL in bone remodeling and in degenerative disorders other than atherosclerosis, especially in osteoporosis.
Collapse
|
4
|
Sangle GV, Shen GX. Signaling mechanisms for oxidized LDL-induced oxidative stress and the upregulation of plasminogen activator inhibitor-1 in vascular cells. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Mazière C, Louvet L, Gomila C, Kamel S, Massy Z, Mazière JC. Oxidized low density lipoprotein decreases Rankl-induced differentiation of osteoclasts by inhibition of Rankl signaling. J Cell Physiol 2009; 221:572-8. [PMID: 19725047 DOI: 10.1002/jcp.21886] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of OxLDL in the generation and progression of atherosclerosis is well admitted. In addition, it is well known that atherosclerosis is often accompanied by perturbations in bone remodeling, resulting in osteoporosis. In the current studies, the effect of Cu(2+)-oxidized LDL (OxLDL) on RANKL-induced RAW264.7 mouse monocytes-macrophages differentiation to osteoclasts and on RANKL signaling pathway was investigated. OxLDL, within the range of 10-50 microg protein/ml, prevented RANKL-induced generation of multinucleated osteoclast-like cells and RANKL-induced tartrate resistant acid phosphatase (TRAP) activity. OxLDL also prevented the RANKL-induced phosphorylation of ERK, p38 and JNK kinases, together with the RANKL-induced DNA binding activities of NFkappaB and NFAT transcription factors. Concomitantly, OxLDL enhanced RANKL-induced generation of reactive oxygen species in a dose-dependent manner. The antioxidant glutathione (GSH) prevented whereas the prooxidant compound buthionine-sulfoximine (BSO) enhanced the effect of OxLDL on RANKL-induced oxidative stress and RANKL-induced differentiation. Finally, OxLDL also prevented RANKL-induced TRAP activity and RANKL-induced bone resorbing activity of human peripheral blood mononuclear cells. These results demonstrate that OxLDL, by generation of an intracellular oxidative stress, prevents the differentiation of osteoclasts by inhibition of RANKL signaling pathway. This might be related to the fact that atherosclerosis is accompanied by perturbations in bone and vascular remodeling, leading to osteoporosis and vascular calcification.
Collapse
|
6
|
Mazière C, Mazière JC. Activation of transcription factors and gene expression by oxidized low-density lipoprotein. Free Radic Biol Med 2009; 46:127-37. [PMID: 18996472 DOI: 10.1016/j.freeradbiomed.2008.10.024] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 06/26/2008] [Accepted: 10/01/2008] [Indexed: 11/25/2022]
Abstract
It is well recognized that oxidized LDL (OxLDL) plays a crucial role in the initiation and progression of atherosclerosis. Many biological effects of OxLDL are mediated through signaling pathways, especially via the activation of transcription factors, which in turn stimulate the expression of genes involved in the inflammatory and oxidative stress response or in cell cycle regulation. In this review, we will discuss the various transcription factors activated by OxLDL, the studied cell types, the active compounds of the OxLDL particle, and the downstream genes when identified. Identification of the transcription factors and some of the downstream genes regulated by OxLDL has helped us understand the molecular mechanism involved in generation of the atherosclerotic plaque.
Collapse
Affiliation(s)
- Cécile Mazière
- Biochemistry Laboratory, North Hospital, University of Picardie-Jules Verne, and INSERM, ERI 12, Amiens F-80000, France.
| | | |
Collapse
|
7
|
Kitano S, Yoshida Y, Kawano K, Hibi N, Niki E. Oxidative status of human low density lipoprotein isolated by anion-exchange high-performance liquid chromatography--assessment by total hydroxyoctadecadienoic acid, 7-hydroxycholesterol, and 8-iso-prostaglandin F(2alpha). Anal Chim Acta 2006; 585:86-93. [PMID: 17386651 DOI: 10.1016/j.aca.2006.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
This study aims to measure the oxidative status of LDL from human plasma (n=26) as assessed by biomarkers for lipid peroxidation, total hydroxyoctadecadienoic acid (tHODE), 7alpha- and 7beta-hydroxycholesterol (t7-OHCh), and 8-iso-prostaglandin F(2alpha) (t8-iso-PGF(2alpha)) after subfractionation of LDL with an anion-exchange HPLC (AE-HPLC). LDL was separated and quantified by AE-HPLC as LDL-1, LDL-2, and LDL-3 in the order of the anionic charge of the LDL particles. The concentrations of tHODE, t7-OHCh, and t8-iso-PGF(2alpha) in both plasma and LDL subfractions were assessed after reduction and saponification. In this method, the free and ester forms of hydroperoxides, ketones, and hydroxides of linoleic acid and cholesterol are measured as tHODE and t7-OHCh, respectively. It was found that tHODE significantly correlated with the proportion of LDL-2 and LDL-3 as well as with the concentration of malondialdehyde-modified LDL in plasma. Further, by the analyses of LDL subfractions, the concentrations of tHODE, t8-iso-PGF(2alpha), and t7-OHCh in LDL-3 were found to be significantly higher than those in LDL-1 and LDL-2. These results clearly indicate that the extent of oxidation increases in the order of LDL-1<LDL-2<<LDL-3 and that the oxidative status of LDL in plasma can be quantitatively evaluated by using AE-HPLC and biomarkers, tHODE, t7-OHCh, and t8-iso-PGF(2alpha).
Collapse
Affiliation(s)
- Soichi Kitano
- Technology Development Department, SRL Inc., 153 Komiya, Hachioji, Tokyo 192-0031, Japan
| | | | | | | | | |
Collapse
|
8
|
Kinumi T, Ogawa Y, Kimata J, Saito Y, Yoshida Y, Niki E. Proteomic characterization of oxidative dysfunction in human umbilical vein endothelial cells (HUVEC) induced by exposure to oxidized LDL. Free Radic Res 2005; 39:1335-44. [PMID: 16298863 DOI: 10.1080/10715760500306695] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The oxidative modification of low-density lipoprotein (LDL) and subsequent alteration of endothelial cell function are generally accepted as an important early event in the pathogenesis of atherosclerosis. To understand the mechanism by which oxidized LDL (oxLDL) causes dysfunction in endothelial cells, human umbilical vein endothelial cells (HUVEC) were exposed to oxLDL at a concentration that induces cellular dysfunction, and proteomic analysis was carried out, together with the analysis of cellular lipid peroxidation products. Time-dependent accumulation of 7-ketocholesterol and the progression of oxidative modification of peroxiredoxin 2 were observed, together with the suppression of cell proliferation. Proteomic analysis using two-dimensional gel electrophoresis (2-D gel) revealed that nucleophosmin, stathmin, and nucleolin were differentially expressed after exposure to oxLDL. Both 2-D gel and western blot analyses revealed that (1) nucleophosmin was dephosphorylated in a time-dependent manner; (2) stathmin was transiently phosphorylated at 6 h, and the unphosphorylated form was continuously down-regulated; and (3) nucleolin was identified as a 20-kDa fragment and a 76-kDa form, which were down-regulated. These observations suggest that the exposure of HUVEC to oxLDL results in the suppression of cell proliferation, which is ascribed to protein modification and/or altered expression of nucleophosmin, stathmin, and nucleolin under these oxidative stress conditions.
Collapse
Affiliation(s)
- Tomoya Kinumi
- Human Stress Signal Research Center (HSSRC), National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Oxidized low-density lipoprotein (Ox-LDL) is known to be involved in the generation and progression of atherosclerosis. Ox-LDL has a number of potentially atherogenic effects on vascular cells, including uncontrol uptake by scavenger receptors. Asp-hemolysin, a hemolytic toxin from Aspergillus fumigatus, is a binding protein for Ox-LDL. This study was undertaken to clarify the binding specificity of Asp-hemolysin to Ox-LDL. We examined the binding specificity of Asp-hemolysin to Ox-LDL using several modified lipoproteins and scavenger-receptor ligands. Asp-hemolysin bound to Ox-LDL with shorter LDL oxidation times. However, Asp-hemolysin did not bind to acetylated LDL. The native high-density lipoprotein (n-HDL) and modified HDL (e.g., acetylated HDL, oxidized HDL) also had no Asp-hemolysin binding. Inhibitors of scavenger-receptor binding, including maleylated bovine serum albumin, polyinosinic acid, dextran sulfate, and fucoidin, had no effect on the binding of Ox-LDL to Asp-hemolysin. Surface plasmon-resonance studies revealed that Ox-LDL binds with high affinity (K(D)=0.63 microg/ml) to Asp-hemolysin. Furthermore, we have shown that Ox-LDL strongly inhibits the hemolytic activity of Asp-hemolysin and that the removal of lysophosphatidylcholine (lysoPC) from Ox-LDL abolished the inhibition. We also investigated the interaction between Asp-hemolysin and lysoPC as a typical lipid moiety of Ox-LDL. The binding of Asp-hemolysin to LDL oxidized for different times depended on the lysoPC content in each Ox-LDL. In addition, the inhibition of lysoPC production in Ox-LDL by phenylmethylsulfonyl fluoride (PMSF) pretreatment of LDL resulted in a marked decrease in Asp-hemolysin binding to PMSF-pretreated Ox-LDL. The binding analysis of Asp-hemolysin to lysoPC revealed that Asp-hemolysin binds directly to lysoPC. We conclude that Asp-hemolysin is a specific binding protein with high affinity for Ox-LDL and that its binding specificity is distinct from any receptor for Ox-LDL.
Collapse
Affiliation(s)
- Yoichi Kudo
- Sendai Hospital of East Japan Railway Company, Sendai, Japan.
| |
Collapse
|
10
|
Mazière C, Morlière P, Massy Z, Kamel S, Louandre C, Conte MA, Mazière JC. Oxidized low-density lipoprotein elicits an intracellular calcium rise and increases the binding activity of the transcription factor NFAT. Free Radic Biol Med 2005; 38:472-80. [PMID: 15649649 DOI: 10.1016/j.freeradbiomed.2004.10.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 05/27/2004] [Accepted: 10/22/2004] [Indexed: 11/22/2022]
Abstract
Oxidized low-density lipoprotein (OxLDL) plays a key role in the generation and progression of atherosclerosis, which might be considered as an inflammatory disease. The transcription factor NFAT(Nuclear Factor of Activated T cells) plays an important role in the control of cytokine genes involved in the inflammatory response. The effect of copper-oxidized LDL (CuLDL) and monocyte-oxidized LDL (M-LDL) on the DNA-binding activity of NFAT was investigated in the T lymphocyte cell line Jurkat. Both OxLDL increased NFAT-binding activity in a dose-dependent manner within the range of 25-75 microg LDL protein/ml. This effect reached a maximum 1 h after the introduction of OxLDL in the medium. CuLDL and M-LDL both induce an intracellular calcium rise in a dose-dependent manner, with a maximum increase 15 min after the addition of OxLDL. The CuLDL-induced NFAT-binding activity was abolished in the presence of the calcium chelator EGTA or of the intracellular calcium trapping drug BAPTA, further indicating the involvement of calcium ions in the effect of OxLDL. In addition, cyclosporin A and FK 506, two inhibitors of calcineurin, a calcium-dependent phosphatase upstream of NFAT, also prevented the CuLDL-induced NFAT-binding activity, thus demonstrating the role of calcineurin. CuLDL and M-LDL also induced an increase in the intracellular level of reactive oxygen species (ROS), which reached a maximum 30 min after the addition of OxLDL. Finally, a pretreatment of cells with the antioxidant vitamin E blocked the CuLDL-induced increase in reactive oxygen species, in intracellular calcium rise and the CuLDL-induced NFAT-binding activity. The lipid extract of CuLDL, which includes the lipid peroxidation products, reproduced the effect of the CuLDL itself. These results suggest that the effect of OxLDL on NFAT is initiated by an oxidative stress, which then in turn activates the calcium-calcineurin signaling pathway of the transcription factor NFAT. This effect of OxLDL might be involved in the inflammatory process observed in atherosclerotic lesions.
Collapse
Affiliation(s)
- Cécile Mazière
- Laboratoire de Biochimie, EA 2087 and EA 2086, CHU Amiens, Hôpital Nord, Place Victor Pauchet, 80054 Amiens Cedex 1, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Bonnefont-Rousselot D. Gamma radiolysis as a tool to study lipoprotein oxidation mechanisms. Biochimie 2004; 86:903-11. [PMID: 15667940 DOI: 10.1016/j.biochi.2004.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 10/08/2004] [Indexed: 02/02/2023]
Abstract
Well-defined quantities of *OH, O2*-,HO2* or RO2*)radicals (reactive oxygen species) can be specifically produced by radiolysis of water or ethanol. Such radical species can initiate one-electron oxidation or one-electron reduction reactions on numerous biological systems. The oxidative hypothesis of atherosclerosis classically admits the involvement of the oxidation of low density lipoproteins (LDLs) but also of high density lipoproteins (HDLs) in the development of the atherosclerotic process. The initiation mechanisms of this oxidation are still incompletely defined, although free radicals are likely involved. Therefore, gamma-radiolysis appears as a method of choice for the in vitro study of the mechanisms of oxidation of LDLs and HDLs by oxygen-centred free radicals (*OH, O2*-,HO2* and RO2*). Radiolytically oxidized lipoproteins exhibited a very well defined oxidation status (radiation dose-dependent quantification of vitamin E, beta-carotene, lipid peroxidation, protein carbonylation ...). gamma-Radiolysis is a less drastic method than other oxidation procedures such as for example copper ions. Moreover, gamma-radiolysis is also especially suitable for studying the reducing properties of antioxidant compounds with regard to their scavenging capacity.
Collapse
Affiliation(s)
- Dominique Bonnefont-Rousselot
- Laboratoire de Biochimie Métabolique et Clinique (EA 3617), Faculté de Pharmacie, 4, avenue de l'Observatoire, 75270 Paris cedex 6, France.
| |
Collapse
|
12
|
Mazière C, Morlière P, Santus R, Marcheux V, Louandre C, Conte MA, Mazière JC. Inhibition of insulin signaling by oxidized low density lipoprotein. Protective effect of the antioxidant Vitamin E. Atherosclerosis 2004; 175:23-30. [PMID: 15186943 DOI: 10.1016/j.atherosclerosis.2004.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 02/02/2004] [Accepted: 02/13/2004] [Indexed: 12/26/2022]
Abstract
Oxidative stress is involved in several pathological conditions, including diabetes. Reactive oxygen species (ROS) have been demonstrated to act as second messengers for several hormones and cytokines, including insulin (INS). The effect of Cu(2+)-oxidized LDL (CuLDL) on INS-induced generation of ROS and on INS signaling was investigated on cultured human fibroblasts. Intracellular ROS generation was observed either in CuLDL- or in INS-treated cells. Moreover, CuLDL and INS had an additive effect on ROS formation in human fibroblasts. CuLDL by itself increased the phosphorylation of ERK without affecting the PKB/Akt phosphorylation. CuLDL also stimulated the DNA binding activities of the transcription factors AP1 and NFkappaB. However, CuLDL dose-dependently prevented the INS-signaling pathway, by inhibiting the INS-induced phosphorylation of the signaling kinases ERK and PKB/Akt and the INS-induced activation of the transcription factors AP1 and NFkappaB. Finally, the lipophilic antioxidant Vitamin E (Vit E) partially restored all the studied signaling events initiated by INS and impaired after pretreatment with CuLDL. These studies demonstrate that the oxidative stress generated by CuLDL has a negative effect on the INS-signaling pathway, independently of the INS-induced generation of ROS. Thus, oxidized LDL might be involved not only in atherosclerosis, as it is commonly admitted, but also in the INS-resistance observed in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Cécile Mazière
- Laboratoire de Biochimie EA 2087, CHU Amiens, Université de Picardie Jules Verne, Hôpital Nord, Place Victor Pauchet, 80054 Amiens Cedex 1, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Furman C, Rundlöf AK, Larigauderie G, Jaye M, Bricca G, Copin C, Kandoussi AM, Fruchart JC, Arnér ESJ, Rouis M. Thioredoxin reductase 1 is upregulated in atherosclerotic plaques: specific induction of the promoter in human macrophages by oxidized low-density lipoproteins. Free Radic Biol Med 2004; 37:71-85. [PMID: 15183196 DOI: 10.1016/j.freeradbiomed.2004.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 03/01/2004] [Accepted: 04/16/2004] [Indexed: 12/17/2022]
Abstract
Uptake of modified low-density lipoproteins (LDLs) by macrophages in the arterial wall is an important event in atherogenesis. Indeed, oxidatively modified LDLs (oxLDLs) are known to affect various cellular processes by modulating oxidation-sensitive signaling pathways. Here we found that the ubiquitous 55 kDa selenoprotein thioredoxin reductase 1 (TrxR1), which is a key enzyme for cellular redox control and antioxidant defense, was upregulated in human atherosclerotic plaques and expressed in foam cells. Using reverse transcription polymerase chain reaction analysis, we also found that oxLDLs, but not native LDLs (nLDLs), dose-dependently increased TrxR1 mRNA in human monocyte-derived macrophages (HMDMs). This stimulating effect was specific for oxLDLs, as pro-inflammatory factors, such as lipopolysaccharides (LPSs), interleukin-1beta (IL-1beta), interleukin-6 (Il-6), and tumor necrosis factor alpha (TNFalpha), under the same conditions, failed to induce TrxR1 mRNA levels to the same extent. Moreover, phorbol ester-differentiated THP-1 cells or HMDMs transiently transfected with TrxR1 promoter fragments linked to a luciferase reporter gene allowed identification of a defined promoter region as specifically responding to the phospholipid component of oxLDLs (p <.05 vs. phospholipid component of nLDLs). Gel mobility shift analyses identified a short 40-nucleotide stretch of the promoter carrying AP-1 and HoxA5 consensus motifs that responded with an altered shift pattern in THP-1 cells treated with oxLDLs, however, without evident involvement of either the Fos, Jun, Nrf2 or HoxA5 transcription factors.
Collapse
Affiliation(s)
- C Furman
- INSERM U-545, and Institut Pasteur de Lille, 59019 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zettler ME, Prociuk MA, Austria JA, Zhong G, Pierce GN. Oxidized low-density lipoprotein retards the growth of proliferating cells by inhibiting nuclear translocation of cell cycle proteins. Arterioscler Thromb Vasc Biol 2004; 24:727-32. [PMID: 14764420 DOI: 10.1161/01.atv.0000120373.95552.aa] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our study tested the hypothesis that the mitogenic effect of oxidized low-density lipoprotein (oxLDL) on vascular cells may be further enhanced by the presence of cytokines and growth factors known to be present in the atherosclerotic environment. METHODS AND RESULTS Quiescent fibroblasts and vascular smooth muscle cells were treated with 10 or 50 microg/mL minimally-oxidized LDL in combination with serum for 24 or 48 hours. Surprisingly, these cells showed inhibited release from growth arrest and a significant reduction in the number of cells completing the cell cycle when compared with cells treated with serum alone. This was not due to an induction of apoptosis. The antiproliferative effects were not closely associated with changes in the expression of cell cycle proteins. Instead, oxLDL inhibited the translocation of cell cycle proteins cell division cycle (Cdc) 2, cyclin-dependent kinase (Cdk) 2, Cdk 4, Cyclin A, Cyclin B1, Cyclin D1, and proliferative cell nuclear antigen (PCNA) into the nucleus, as compared with separate treatments with serum alone. Kinase activation associated with specific cell cycle proteins was also inhibited by oxLDL. CONCLUSIONS oxLDL, in the presence of serum, has a surprising inhibitory effect on cell proliferation that occurs through an inhibition of import of cell cycle proteins into the cell nucleus.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Apoptosis
- Arteriosclerosis/metabolism
- Cell Cycle/drug effects
- Cell Cycle Proteins/metabolism
- Cell Division/drug effects
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Culture Media, Serum-Free/pharmacology
- Depression, Chemical
- Dose-Response Relationship, Drug
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Growth Substances/pharmacology
- Humans
- Lipoproteins, LDL/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rabbits
Collapse
Affiliation(s)
- Marjorie E Zettler
- Cell Biology Laboratory, Division of Stroke and Vascular Disease, St Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
15
|
Ziouzenkova O, Asatryan L, Sahady D, Orasanu G, Perrey S, Cutak B, Hassell T, Akiyama TE, Berger JP, Sevanian A, Plutzky J. Dual roles for lipolysis and oxidation in peroxisome proliferation-activator receptor responses to electronegative low density lipoprotein. J Biol Chem 2003; 278:39874-81. [PMID: 12878589 PMCID: PMC4231711 DOI: 10.1074/jbc.m306786200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Low density lipoprotein (LDL) exists in various forms that possess unique characteristics, including particle content and metabolism. One circulating subfraction, electronegative LDL (LDL(-)), which is increased in familial hypercholesterolemia and diabetes, is implicated in accelerated atherosclerosis. Cellular responses to LDL(-) remain poorly described. Here we demonstrate that LDL(-) increases tumor necrosis factor alpha (TNFalpha)-induced inflammatory responses through NF kappa B and AP-1 activation with corresponding increases in vascular cell adhesion molecule-1 (VCAM1) expression. LDL receptor overexpression increased these effects. In contrast, exposing LDL(-) to the key lipolytic enzyme lipoprotein lipase (LPL) reversed these responses, inhibiting VCAM1 below levels seen with TNFalpha alone. LPL is known to act on lipoproteins to generate endogenous peroxisomal proliferator-activated receptor alpha (PPAR alpha) ligand, thus limiting inflammation. These responses varied according to the lipoprotein substrate triglyceride content (very low density lipoprotein >> LDL > high density lipoprotein). The PPAR alpha activation seen with LDL, however, was disproportionately high. We show here that MUT LDL activates PPAR alpha to an extent proportional to its LDL(-) content. As compared with LDL(-) alone, LPL-treated LDL(-) increased PPAR alpha activation 20-fold in either cell-based transfection or radioligand displacement assays. LPL-treated LDL(-) suppressed NF kappa B and AP-1 activation, increasing expression of the PPAR alpha target gene I kappa B alpha, although only in the genetic presence of PPAR alpha and with intact LPL hydrolysis. Mass spectrometry reveals that LPL-treatment of either LDL or LDL(-) releases hydroxy-octadecadienoic acids (HODEs), potent PPAR alpha activators. These findings suggest LPL-mediated PPAR alpha activation as an alternative catabolic pathway that may limit inflammatory responses to LDL(-).
Collapse
Affiliation(s)
- Ouliana Ziouzenkova
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachussetts 02115
| | - Liana Asatryan
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, California 90089
| | - Deanna Sahady
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachussetts 02115
| | - Gabriela Orasanu
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachussetts 02115
| | - Stephan Perrey
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachussetts 02115
| | | | | | | | | | - Alex Sevanian
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles, California 90089
| | - Jorge Plutzky
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachussetts 02115
- To whom correspondence should be addressed: Brigham and Women’s Hospital, 77 Av. Louis Pasteur, NRB 740, Boston, MA 02115. Tel.: 617-525-4361; Fax: 617-525-4380;
| |
Collapse
|
16
|
Bar-Or D, Thomas GW, Yukl RL, Rael LT, Shimonkevitz RP, Curtis CG, Winkler JV. Copper stimulates the synthesis and release of interleukin-8 in human endothelial cells: a possible early role in systemic inflammatory responses. Shock 2003; 20:154-8. [PMID: 12865660 DOI: 10.1097/01.shk.0000068318.49350.3a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Endogenous copper can play an important role in postischemic reperfusion injury, a condition associated with endothelial cell activation and increased interleukin 8 (IL-8) production. Excessive endothelial IL-8 secreted during trauma, major surgery, and sepsis may contribute to the development of systemic inflammatory response syndrome (SIRS), adult respiratory distress syndrome (ARDS), and multiple organ failure (MOF). No previous reports have indicated that copper has a direct role in stimulating human endothelial IL-8 secretion. Increased IL-8 in the culture medium of human umbilical vein (HUVEC), lung microvascular, and iliac artery endothelial cells was observed 24 h after the addition of 10 to 50 microM CuCl2 (cupric ions). HUVEC IL-8 induction by copper was higher than by 50 pg/mL tumor necrosis factor-alpha, whereas 50 pg/mL IL-1beta and 1 ng/mL platelet-activating factor did not stimulate IL-8 production or release. HUVEC IL-8 mRNA increased 3 h after CuCl2 stimulation and remained elevated after 24 h, implying sustained transcriptional activation. Copper did not stimulate HUVECs to secrete other cytokines. Cu(II) appeared to be the primary copper ion responsible for the observed increase in IL-8 because a specific high-affinity Cu(II)-binding peptide, d-Asp-d-Ala-d-His-d-Lys (d-DAHK), completely abolished this effect in a dose-dependent manner. These results suggest that Cu(II) may induce endothelial IL-8 by a mechanism independent of known Cu(I) generation of reactive oxygen species. Furthermore, in vivo studies are warranted to determine if copper is involved in the pathogenesis of systemic inflammation and if Cu(II) chelation can reduce this IL-8-induced endothelial inflammatory response.
Collapse
Affiliation(s)
- David Bar-Or
- Trauma Research Department, Swedish Medical Center, Englewood, Colorado 80110, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Mazière C, Conte MA, Mazière JC. Activation of JAK2 by the oxidative stress generated with oxidized low-density lipoprotein. Free Radic Biol Med 2001; 31:1334-40. [PMID: 11728804 DOI: 10.1016/s0891-5849(01)00649-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Atherosclerosis includes a series of cellular and molecular responses characteristic of an inflammatory disease. We provide evidence that cupric-ion-oxidized LDL (CuLDL) or endothelial cell-oxidized LDL (ELDL) induced the activation by Tyr-phosphorylation of JAK2, one of the Janus kinase involved upstream of STATs in the JAK/STAT pathway of cytokine transduction. Oxidized LDL (OxLDL) also initiated STAT1 and STAT3 Tyr-phosphorylation and translocation to the nucleus, with a more marked effect for the extensively modified CuLDL. Genistein, a nonspecific Tyr-kinase inhibitor, and AG490, a specific inhibitor of JAKs, markedly prevented the CuLDL-induced enhancement of STAT1 and STAT3 Tyr-phosphorylation and DNA-binding activity, suggesting that JAKs are the main kinases involved in STATs' activation by oxidized LDL. In addition, the lipid extract of CuLDL increased the intracellular levels of lipid peroxidation products and the Tyr-phosphorylation of JAK2, STAT1, and STAT3, whereas the antioxidant vitamin E prevented all these effects. These results demonstrate that OxLDL induces the activation by Tyr-phosphorylation of JAK2, STAT1, and STAT3 by generation of an intracellular oxidative stress by means of its lipid peroxidation products, and thus include JAK2 within the range of oxidative stress-activated kinases.
Collapse
Affiliation(s)
- C Mazière
- Laboratoire de Biochimie, Université de Picardie Jules Verne, Amiens, France.
| | | | | |
Collapse
|
18
|
Dulak J, Józkowicz A, Dichtl W, Alber H, Schwarzacher SP, Pachinger O, Weidinger F, Dulakk J. Vascular endothelial growth factor synthesis in vascular smooth muscle cells is enhanced by 7-ketocholesterol and lysophosphatidylcholine independently of their effect on nitric oxide generation. Atherosclerosis 2001; 159:325-32. [PMID: 11730812 DOI: 10.1016/s0021-9150(01)00520-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) generated by inducible NO synthase (iNOS) enhances vascular endothelial growth factor (VEGF) synthesis in vascular smooth muscle cells (VSMC) and both NO and modified low density lipoprotein (LDL) augment VEGF production in macrophages. Oxidized LDL (oxLDL) are known inhibitors of NO generation in the cells of vascular wall. As the relationship between VEGF, iNOS and oxLDL has not been well elucidated, we studied the effect of two main components of oxLDL, 7-ketocholesterol (7-Kchol) and lysophosphatidylcholine (LPC), on VEGF and NO synthesis in rat VSMC and on VEGF synthesis in human VSMC. Both LPC and 7-Kchol significantly augmented VEGF production in rat and human VSMC. Increase in VEGF generation was related to the activation of VEGF promoter by both 7-Kchol and LPC and enhancement of VEGF mRNA transcription. In rat, VSMC IL-1beta-induced NO generation and enhanced VEGF synthesis. 7-Kchol decreased rat iNOS promoter activity, iNOS expression and NO generation, but it did not impair IL-1beta-induced VEGF synthesis. LPC did not significantly influence IL-1beta-induced NO production in rat VSMC and VEGF synthesis was significantly enhanced by combined treatment with IL-1beta and LPC in comparison to the effect of either compound alone. The results indicate that VEGF and NO synthesis in VSMC can be modulated by oxLDL. Those interactions might have an effect on the plaque growth and might be of relevance for the physiology of vascular wall cells.
Collapse
Affiliation(s)
- J Dulak
- Department of Cardiology, University of Innsbruck, Anichstrasse 35, A-6020, Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Maggi-Capeyron MF, Ceballos P, Cristol JP, Delbosc S, Le Doucen C, Pons M, Léger CL, Descomps B. Wine phenolic antioxidants inhibit AP-1 transcriptional activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:5646-5652. [PMID: 11714372 DOI: 10.1021/jf010595x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Some of the beneficial effects of moderate wine consumption may be related to the antioxidant properties of polyphenolic compounds containing tannins, flavonoids, and phenolic acids. Cellular actions have recently been reported and may involve the modulation of transcriptional factors such as AP-1 (activator protein-1), which controls the expression of various genes implicated in inflammation processes, cell differentiation, and proliferation. The aim of this study was to evaluate the modulation of AP-1 activity by the phenolic acids (gallic, caffeic, protocatechic, paracoumaric, sinapic, and ferulic acids) that are present in wine and to compare their modulating pathways to those of lipophilic or hydrophilic "chain-breaking" antioxidants (such as DL-alpha-tocopherol or trolox) vitamin C, nitric oxide, and reduced glutathione. AP-1 response was studied on a cell line (MTLN) derived from MCF-7 cells transfected with luciferase gene under TRE sequence control. After stimulation by phorbol 12-myristate 13-acetate (PMA; 100 nM, 6 h, 10(-7) M), luciferase activity was determined by a luminescence method in the presence of luciferine/coenzyme A solution using a luminometer (LKB 1251, Finland). Antioxidants to be tested were incubated with cells in the presence or absence of PMA. Stimulation with PMA resulted in an AP-1-mediated increase in luciferase gene expression corresponding to an 8-fold increase in luciferase activity. After stimulation by PMA, a dose-dependent inhibition of AP-1 was observed with the six phenolic acids in the 20 nM-20 microM concentration range: gallic acid > caffeic > protocatechic, paracoumaric, sinapic acids > ferulic acid. Inhibition was more pronounced with phenolic acids than with DL-alpha-tocopherol (IC(50) = 5 +/- 4.5 microM for gallic acid vs 85 +/- 11 microM for vitamin E). None of the hydrophilic antioxidants inhibited PMA-induced AP-1 activation. None of the antioxidants tested in the absence of PMA stimulation induced any activation or inhibition of AP-1. Our results suggest that phenolic acids may act directly on cell signaling via inhibition of AP-1 transcriptional activity. In addition to preventing LDL oxidation in the arterial wall, our observations indicate that phenolic acids have a cell-mediated capacity to prevent some of the processes involved in atherosclerosis in a plasma concentration range compatible with nutritional intakes.
Collapse
Affiliation(s)
- M F Maggi-Capeyron
- EA Nutrition Humaine et Athérogénèse, Hôpital Lapeyronie, Avenue du Doyen Gaston Giraud, 34090 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Stoyanova E, Tesch A, Armstrong VW, Wieland E. Enzymatically degraded low density lipoproteins are more potent inducers of egr-1 mRNA than oxidized or native low density lipoproteins. Clin Biochem 2001; 34:483-90. [PMID: 11676978 DOI: 10.1016/s0009-9120(01)00258-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The transcription factor early growth response gene-1 (Egr-1) may contribute to atherosclerosis by inducing genes that mediate inflammation and thrombosis. Egr-1 mRNA is highly expressed in human atherosclerotic lesions. Enzymatic modification transforms LDL into atherogenic molecules (E-LDL) which are also present in atherosclerotic lesions. We have investigated whether E-LDL induces egr-1 mRNA in human monocytes. DESIGN AND METHODS Mono-Mac-6 cells were incubated with E-LDL, oxidized (Ox-LDL) and native LDL (N-LDL). Egr-1 mRNA expression was followed by quantitative RT-PCR. RESULTS E-LDL (25 microg cholesterol/mL) induced egr-1 mRNA maximally within 1 h and were 2.3 and 3.6 fold (p < 0.05) more effective than Ox-LDL or N-LDL. At a concentration of 10 microg/mL cholesterol, E-LDL were twofold less effective. CONCLUSIONS These results show that E-LDL are potent inducers of egr-1 mRNA and may therefore represent a link between lipoproteins trapped in the subendothelium and enhanced expression of egr-1 in human atherosclerotic lesions.
Collapse
Affiliation(s)
- E Stoyanova
- Abteilung Klinische Chemie, Georg-August-Universität Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
21
|
Persson K, Dean-Mckinney T, Steers WD, Tuttle JB. Activation of the transcription factors nuclear factor-kappaB and activator protein-1 in bladder smooth muscle exposed to outlet obstruction and mechanical stretching. J Urol 2001; 165:633-9. [PMID: 11176450 DOI: 10.1097/00005392-200102000-00086] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Transcriptional control of bladder genes in response to outlet obstruction, growth factors and mechanical force is poorly understood. We analyzed the effects of bladder obstruction, mechanical stretching and platelet derived growth factor on the activation of the major growth controlling transcription factors nuclear factor-kappaB and activator protein-1. MATERIALS AND METHODS Complete outlet obstruction was created in female rats by proximal urethral ligation and bladders were harvested 3, 6 and 24 hours later, respectively. Bladder cells were grown in culture and stimulated with 10 ng./ml. platelet derived growth factor or 10 cycles per minute of mechanical stretching for 0.5 to 4 hours. Nuclear proteins were high salt extracted and incubated with 32phosphorus double strand oligonucleotides containing a consensus binding sequence for activator protein-1 or nuclear factor-kappaB. The resulting DNA protein complexes were analyzed by electrophoretic mobility shift assay. RESULTS Nuclear extract isolated from obstructed bladders showed intense activator protein-1 binding activity 3, 6 and 24 hours after obstruction as well as increased nuclear factor-kappaB binding activity after 6 and 24 hours. Binding activity was absent or minimal in sham operated rats. Cultured cells exposed to mechanical stretching for 2 and 4 hours showed increased activator protein-1 and nuclear factor-kappaB DNA binding compared with unstretched cells. Likewise stimulation with platelet derived growth factor caused a consistent increase in activator protein-1 and nuclear factor-kappaB binding activity. The binding of nuclear proteins was abolished by a 40-fold excess of an unlabeled specific oligonucleotide but not by excess irrelevant oligonucleotide. Thus, the assays were specific for the factors involved. CONCLUSIONS Bladder obstruction and mechanical stretching cause the formation of activator protein-1 and nuclear factor-kappaB DNA complexes, consistent with a role of these transcription factors in the control of hypertrophy associated gene activation.
Collapse
Affiliation(s)
- K Persson
- Department of Clinical Pharmacology, Lund University Hospital, Lund, Sweden
| | | | | | | |
Collapse
|
22
|
Mazière C, Meignotte A, Dantin F, Conte MA, Mazière JC. Oxidized LDL induces an oxidative stress and activates the tumor suppressor p53 in MRC5 human fibroblasts. Biochem Biophys Res Commun 2000; 276:718-23. [PMID: 11027537 DOI: 10.1006/bbrc.2000.3528] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is now well established that oxidized LDL (OxLDL) is involved in the progression of the atheromatous plaque via several mechanisms, including its cytotoxicity toward the arterial wall. Our study demonstrates that a 4-h incubation of cultured human fibroblasts with 25-75 microg/ml OxLDL induced a dose-dependent increase in the intracellular levels of reactive oxygen species (ROS) and lipid peroxidation end products (TBARS). This effect was markedly prevented by the antioxidant vitamin E. The lipid extract of OxLDL partially reproduced the action of the LDL particle itself. Concomitantly, OxLDL enhanced the DNA binding activity of p53 measured by electrophoretic mobility shift assay, and the intracellular protein level of p53 determined by immunoblot analysis. Cycloheximide prevented the OxLDL-induced augmentation in both p53 binding activity and intracellular level. Again, the lipid extract of OxLDL reproduced the effect of OxLDL on p53 binding activity, whereas vitamin E prevented it. These results indicate that OxLDL initiates an intracellular oxidative stress by means of its lipid peroxidation products, leading to the activation of the tumour suppressor p53 by enhancement of p53 protein synthesis. This effect might be related to the cytotoxic effect of OxLDL since the activation of p53 is known to lead to cell cycle arrest, necrosis or apoptosis.
Collapse
Affiliation(s)
- C Mazière
- Laboratoire de Biochimie, Université de Picardie Jules Verne, CHRU d'Amiens, Place Victor Pauchet, Amiens Cedex 1, 80054, France.
| | | | | | | | | |
Collapse
|
23
|
Abstract
The recent research on the impact that oxidative changes of biolipids could have in pathophysiology serves to explain how free radical-driven reactions not only are considered as mere toxicologic events, but also modulators of cell activity and function. Oxidatively modified low-density lipoproteins are known to affect various cellular processes by modulating various molecular pathways and signaling nuclear transcription. Among the lipid oxidation products detectable in ox-LDLs, and also in the atherosclerotic plaques, 4-hydroxynonenal has been widely investigated. This aldehyde was shown to upregulate AP-1 transcription factor, signaling through the MAP kinase pathway, with eventual nuclear localization and induction of a series of genes. Further, oxidation products of cholesterol and cholesterol esters, in ox-LDL are of similar interest, especially in relation to the pathogenesis of fibrosclerotic lesions of the arterial wall.
Collapse
Affiliation(s)
- G Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, S. Luigi Gonzaga Hospital, Orbassano, Torino, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Delerive P, Furman C, Teissier E, Fruchart J, Duriez P, Staels B. Oxidized phospholipids activate PPARalpha in a phospholipase A2-dependent manner. FEBS Lett 2000; 471:34-8. [PMID: 10760508 DOI: 10.1016/s0014-5793(00)01364-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The peroxisome proliferator-activated receptor alpha (PPARalpha) is a transcription factor belonging to the PPAR subfamily of nuclear receptors. Fatty acids and eicosanoids are natural PPARalpha ligands. Here, we show using transient transfection assays that oxidized (oxLDL) but not native low-density lipoproteins (LDL) dose-dependently activate PPARalpha in endothelial cells without affecting PPARalpha protein expression. Fractioning of oxLDL lipids followed by transactivation experiments demonstrated that the oxidized phospholipid component in oxLDL is responsible for PPARalpha activation. Using specific inhibitors, it is shown that oxLDL-mediated PPARalpha activation requires phospholipase A2 activity and that the oxidized fatty acids 9- and 13-HODE activate PPARalpha directly. Finally, we found that, similar to the synthetic PPARalpha ligand Wy-14643, oxLDL induced expression of the fatty acid transport protein-1 in human primary endothelial cells. Our findings define a novel group of PPARalpha activators and provide a molecular basis for certain effects of these biologically active phospholipids on gene transcription.
Collapse
Affiliation(s)
- P Delerive
- INSERM U.325, Département d'Athérosclérose, Institut Pasteur de Lille, 1 Rue Calmette, P.O. Box 245, 59019, Lille, France
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Claise C, Edeas M, Chaouchi N, Chalas J, Capel L, Kalimouttou S, Vazquez A, Lindenbaum A. Oxidized-LDL induce apoptosis in HUVEC but not in the endothelial cell line EA.hy 926. Atherosclerosis 1999; 147:95-104. [PMID: 10525130 DOI: 10.1016/s0021-9150(99)00170-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We studied the cytotoxic effect of copper-oxidized LDL in human primary human umbilical vein endothelial cells (HUVEC) and the immortalized EA.hy 926 cell line. Copper oxidized LDL (50-200 microg apoB/ml) induced concentration-dependent apoptotic cell death in HUVEC but did not induce apoptosis in EA.hy 926 cells. Only necrotic EA.hy 926 cells were evidenced at all copper oxidized LDL concentrations (25-200 microg apoB/ml), oxidation states (lightly, moderately and extensively copper-oxidized LDL) and incubation periods (4, 8 and 20 h). The different mechanisms of cell death induced by copper-oxidized LDL in EA.hy 926 cells and HUVEC may be related to various factors such as cytokines. In this study, we investigated whether interleukin-8 may be implicated in this process. The interleukin-8 production was increased in EA.hy 926 cells but not in HUVEC incubated with oxidized LDL. This increase in EA.hy 926 cells was associated with necrosis but not apoptosis. Nevertheless, the addition of interleukin-8 to HUVEC did not inhibit apoptosis induced by oxidized LDL. As the lower antioxidant capacity of EA.hy 926 cells results in higher sensitivity to oxidized LDL cytotoxicity (as we previously described), the redox status of cells may also control the form of endothelial cell death. In atherosclerotic lesions, the formation of apoptotic endothelial cells may result in part from the induction by oxidized LDL.
Collapse
Affiliation(s)
- C Claise
- Department of Biochemistry, Hospital Antoine Béclère, 157 rue de la Porte de Trivaux, 92141, Clamart, France.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Oxidative stress and the production of intracellular reactive oxygen species (ROS) have been implicated in the pathogenesis of a variety of diseases. In excess, ROS and their byproducts that are capable of causing oxidative damage may be cytotoxic to cells. However, it is now well established that moderate amounts of ROS play a role in signal transduction processes such as cell growth and posttranslational modification of proteins. Oxidants, antioxidants, and other determinants of the intracellular reduction-oxidation (redox) state play an important role in the regulation of gene expression. Recent insights into the etiology and pathogenesis of atherosclerosis suggest that this disease may be viewed as an inflammatory disease linked to an abnormality in oxidation-mediated signals in the vasculature. In this review, we summarize the evidence supporting the notion that oxidative stress and the production of ROS function as physiological regulators of vascular gene expression mediated via specific redox-sensitive signal transduction pathways and transcriptional regulatory networks. Elucidating, at the molecular level, the regulatory processes involved in redox-sensitive vascular gene expression represents a foundation not only for understanding the pathogenesis of atherosclerosis and other inflammatory diseases but also for the development of novel therapeutic treatment strategies.
Collapse
Affiliation(s)
- C Kunsch
- AtheroGenics, Inc, Alpharetta, GA 30004, USA
| | | |
Collapse
|
28
|
Augé N, Nikolova-Karakashian M, Carpentier S, Parthasarathy S, Nègre-Salvayre A, Salvayre R, Merrill AH, Levade T. Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase, and sphingosine kinase. J Biol Chem 1999; 274:21533-8. [PMID: 10419457 DOI: 10.1074/jbc.274.31.21533] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidized LDL (oxLDL) have been implicated in diverse biological events leading to the development of atherosclerotic lesions. We previously demonstrated that the proliferation of cultured vascular smooth muscle cells (SMC) induced by oxLDL is preceded by an increase in neutral sphingomyelinase activity, sphingomyelin turnover to ceramide, and stimulation of mitogen-activated protein kinases (Augé, N., Escargueil-Blanc, I., Lajoie-Mazenc, I., Suc, I., Andrieu-Abadie, N., Pieraggi, M. T., Chatelut, M., Thiers, J. C., Jaffrézou, J. P., Laurent, G., Levade, T., Nègre-Salvayre, A., and Salvayre, R. (1998) J. Biol. Chem. 273, 12893-12900). Since ceramide can be converted to other bioactive metabolites, such as the well established mitogen sphingosine 1-phosphate (S1P), we investigated whether additional ceramide metabolites are involved in the oxLDL-induced SMC proliferation. We report here that incubation of SMC with oxLDL increased the activities of both acidic and alkaline ceramidases as well as sphingosine kinase, and elevated cellular sphingosine and S1P. Furthermore, the mitogenic effect of oxLDL was inhibited by D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol and N,N-dimethylsphingosine which are inhibitors of ceramidase and sphingosine kinase, respectively. These findings suggest that S1P is a key mediator of the mitogenic effect of oxLDL. In agreement with this conclusion, exogenous addition of sphingosine stimulated the proliferation of cultured SMC, and this effect was abrogated by dimethylsphingosine but not by fumonisin B1, an inhibitor of the acylation of sphingosine to ceramide. Exogenous S1P also promoted SMC proliferation. Altogether, these results strongly suggest that the mitogenic effect of oxLDL in SMC involves the combined activation of sphingomyelinase(s), ceramidase(s), and sphingosine kinase, resulting in the turnover of sphingomyelin to a number of sphingolipid metabolites, of which at least S1P is critical for mitogenesis.
Collapse
Affiliation(s)
- N Augé
- Laboratoire de Biochimie, INSERM U. 466, Université Paul Sabatier, CHU Rangueil, 31403 Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zarev S, Thérond P, Bonnefont-Rousselot D, Beaudeux JL, Gardès-Albert M, Legrand A. Major differences in oxysterol formation in human low density lipoproteins (LDLs) oxidized by *OH/O2*- free radicals or by copper. FEBS Lett 1999; 451:103-8. [PMID: 10371147 DOI: 10.1016/s0014-5793(99)00564-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of our study was to determine the oxysterol formation in low density lipoproteins (LDLs) oxidized by defined oxygen free radicals (*OH/O2*-). This was compared to the oxysterol produced upon the classical copper oxidation procedure. The results showed a markedly lower formation of oxysterols induced by *OH/O2*- free radicals than by copper and thus suggested a poor ability of these radicals to initiate cholesterol oxidation in LDLs. Moreover, the molecular species of cholesteryl ester hydroperoxides produced by LDL copper oxidation seemed more labile than those formed upon *OH/O2*(-)-induced oxidation, probably due to their degradation by reaction with copper ions.
Collapse
Affiliation(s)
- S Zarev
- Laboratoire de Biochimie Métabolique et Clinique, Faculté de Pharmacie, Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Mazière C, Alimardani G, Dantin F, Dubois F, Conte MA, Mazière JC. Oxidized LDL activates STAT1 and STAT3 transcription factors: possible involvement of reactive oxygen species. FEBS Lett 1999; 448:49-52. [PMID: 10217408 DOI: 10.1016/s0014-5793(99)00324-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of cupric ion-oxidized low density lipoprotein (Cu-LDL) or endothelial cell-oxidized LDL (E-LDL) on STAT1 and STAT3 (signal transducers and activators of transcription) DNA binding activity was investigated by electrophoretic mobility shift assay in human endothelial cells. Both oxidized LDL enhanced STAT1 and STAT3 binding to their respective consensus binding sites. Furthermore, the activation of STATs was proportional to the oxidation degree of LDL in that the highly oxidized Cu-LDL exhibited a more marked effect than E-LDL. Oxidized LDL induced an intracellular oxidative stress, as shown by the increase in the intracellular level of lipid peroxidation products (thiobarbituric acid-reactive substances) and in the level of reactive oxygen species, measured by the fluorescence of dichlorofluorescein diacetate. The binding activity of STAT1 and STAT3 paralleled these two parameters, which suggests that it is dependent upon the redox state of the cell. The activation of STATs by oxidized LDL was almost completely inhibited by the lipophilic antioxidant vitamin E, and partially antagonized by the hydrophilic thiol-containing compound N-acetylcysteine, suggesting that the oxidative stress induced by oxidized LDL is involved in the observed phenomenon. Furthermore, the lipid extract of Cu-LDL also activated STAT1 and STAT3. Since the STAT pathway plays a key role in cytokine and growth factor signal transduction, the activation of STATs by oxidized LDL might be related to their proinflammatory and fibroproliferative effect in the atherosclerotic plaque.
Collapse
Affiliation(s)
- C Mazière
- Laboratoire de Biochimie, CHRU Amiens, Hôpital Nord, France
| | | | | | | | | | | |
Collapse
|