1
|
Reinhold AK, Yang S, Chen JTC, Hu L, Sauer RS, Krug SM, Mambretti EM, Fromm M, Brack A, Rittner HL. Tissue plasminogen activator and neuropathy open the blood-nerve barrier with upregulation of microRNA-155-5p in male rats. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1160-1169. [PMID: 30625382 DOI: 10.1016/j.bbadis.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/30/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
The blood-nerve barrier (BNB) consisting of the perineurium and endoneurial vessels is sealed by tight junction proteins. BNB alterations are a crucial factor in the pathogenesis of peripheral neuropathies. However, barrier opening, e.g. by tissue plasminogen activator (tPA), can also facilitate topical application of analgesics. Here, we examined tPA both in the pathophysiology of neuropathy-induced BNB opening or via exogenous application and its effect on the cytoplasmatic tight junction protein anchoring protein, zona occludens-1 (ZO-1), the adherens molecule JAM-C and microRNA(miR)-155-5p. Specifically, we investigated whether tPA alone and barrier opening lead to pain behavioral changes, i.e. hyperalgesia, or whether these effects require further factors. Male Wistar rats underwent chronic constriction injury (CCI) or were treated by a single perisciatic application of recombinant (r)tPA. CCI elicited mechanical allodynia, tPA mRNA upregulation, macrophage invasion, BNB leakage for large molecule tracers, downregulation of ZO-1 and JAM-C mRNA/protein, and a loss of immunoreactivity of both in perineurium and endoneurial cells. Similarly, after perisciatic rtPA injection, ZO-1 and JAM-C mRNA as well as cytosolic/membrane protein and ZO-1 immunoreactivity were downregulated, and the BNB was opened. Neither mechanical hypersensitivity nor macrophage infiltration was observed after rtPA in contrast to CCI. Mechanistically, miR-155-5p, which is known to destabilize barriers and tight junction proteins like claudin-1 and ZO-1, was increased in CCI and to lesser extent after rtPA application. In summary, tPA transiently opens the BNB possibly via miR-155-5p. However, tPA does not provoke allodynia in the absence of a neuropathic stimulus like a ligation or inflammation.
Collapse
Affiliation(s)
- Ann-Kristin Reinhold
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Shaobing Yang
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany; Dept. of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | | | - Liu Hu
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany; Dept. of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Reine-Solange Sauer
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Susanne M Krug
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Egle M Mambretti
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200 Berlin, Germany
| | - Alexander Brack
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Heike L Rittner
- Dept. of Anesthesiology, University Hospital of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
2
|
Protein phosphorylation and its role in the regulation of Annexin A2 function. Biochim Biophys Acta Gen Subj 2017; 1861:2515-2529. [PMID: 28867585 DOI: 10.1016/j.bbagen.2017.08.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/17/2017] [Accepted: 08/30/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Annexin A2 (AnxA2) is a multifunctional protein involved in endocytosis, exocytosis, membrane domain organisation, actin remodelling, signal transduction, protein assembly, transcription and mRNA transport, as well as DNA replication and repair. SCOPE OF REVIEW The current knowledge of the role of phosphorylation in the functional regulation of AnxA2 is reviewed. To provide a more comprehensive treatment of this topic, we also address in depth the phosphorylation process in general and discuss its possible conformational effects. Furthermore, we discuss the apparent limitations of the methods used to investigate phosphoproteins, as exemplified by the study of AnxA2. MAJOR CONCLUSIONS AnxA2 is subjected to complex regulation by post-translational modifications affecting its cellular functions, with Ser11, Ser25 and Tyr23 representing important phosphorylation sites. Thus, Ser phosphorylation of AnxA2 is involved in the recruitment and docking of secretory granules, the regulation of its association with S100A10, and sequestration of perinuclear, translationally inactive mRNP complexes. By contrast, Tyr phosphorylation of AnxA2 regulates its role in actin dynamics and increases its association with endosomal compartments. Modification of its three main phosphorylation sites is not sufficient to discriminate between its numerous functions. Thus, fine-tuning of AnxA2 function is mediated by the joint action of several post-translational modifications. GENERAL SIGNIFICANCE AnxA2 participates in malignant cell transformation, and its overexpression and/or phosphorylation is associated with cancer progression and metastasis. Thus, tight regulation of AnxA2 function is an integral aspect of cellular homeostasis. The presence of AnxA2 in cancer cell-derived exosomes, as well as the potential regulation of exosomal AnxA2 by phosphorylation or other PTMs, are topics of great interest.
Collapse
|
3
|
Gabel M, Chasserot-Golaz S. Annexin A2, an essential partner of the exocytotic process in chromaffin cells. J Neurochem 2016; 137:890-6. [DOI: 10.1111/jnc.13628] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/09/2016] [Accepted: 03/30/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Marion Gabel
- INCI; UPR3212 CNRS; Université de Strasbourg; Strasbourg France
| | | |
Collapse
|
4
|
Rogers SW, Gahring LC. Upregulation of Nicotinic Acetylcholine Receptor alph4+beta2 through a Ligand-Independent PI3Kbeta Mechanism That Is Enhanced by TNFalpha and the Jak2/p38Mapk Pathways. PLoS One 2015; 10:e0143319. [PMID: 26619345 PMCID: PMC4664291 DOI: 10.1371/journal.pone.0143319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022] Open
Abstract
High affinity nicotine-binding sites in the mammalian brain are neuronal nicotinic acetylcholine receptors (nAChR) assembled from at least alpha4 and beta2 subunits into pentameric ion channels. When exposed to ligands such as nicotine, these receptors respond by undergoing upregulation, a correlate of nicotine addiction. Upregulation can be measured using HEK293 (293) cells that stably express alpha4 and beta2 subunits using quantification of [3H]epibatidine ([3H]Eb) binding to measure mature receptors. Treatment of these cells with choline also produces upregulation through a hemicholinium3 (HC3)-sensitive (choline kinase) and an HC3-insensitive pathway which are both independent of the mechanism used by nicotine for upregulation. In both cases, upregulation is significantly enhanced by the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) which signals through its receptor Tnfr1 to activate p38Mapk. Here we report that the inhibition of class1 phosphoinositide 3-kinases isoform PI3Kbeta using the selective antagonist PI828 is alone sufficient to produce upregulation and enhance both nicotine and choline HC3-sensitive mediated upregulation. Further, these processes are impacted upon by an AG-490 sensitive Jak2-associated pathway. Both PI3Kbeta (negative) and Jak2 (positive) modulation of upregulation converge through p38Mapk and both overlap with TNFalpha enhancement of this process. Upregulation through the PI3Kbeta pathway did not require Akt. Collectively these findings support upregulation of endogenous alpha4beta2 as a balance among cellular signaling networks that are highly responsive to multiple environmental, inflammatory and metabolic agents. The findings also suggest how illness and metabolic stress could alter the expression of this important nicotinic receptor and novel avenues to intercede in modifying its expression.
Collapse
Affiliation(s)
- Scott W Rogers
- Salt Lake City Veteran's Administration Geriatric Research, Education and Clinical Center, Salt Lake City, Utah, 84148, United States of America.,Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, 84132, United States of America
| | - Lorise C Gahring
- Salt Lake City Veteran's Administration Geriatric Research, Education and Clinical Center, Salt Lake City, Utah, 84148, United States of America.,Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, Utah, 84132, United States of America
| |
Collapse
|
5
|
Grindheim AK, Hollås H, Ramirez J, Saraste J, Travé G, Vedeler A. Effect of serine phosphorylation and Ser25 phospho-mimicking mutations on nuclear localisation and ligand interactions of annexin A2. J Mol Biol 2014; 426:2486-99. [PMID: 24780253 DOI: 10.1016/j.jmb.2014.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/09/2014] [Accepted: 04/19/2014] [Indexed: 11/19/2022]
Abstract
Annexin A2 (AnxA2) interacts with numerous ligands, including calcium, lipids, mRNAs and intracellular and extracellular proteins. Different post-translational modifications participate in the discrimination of the functions of AnxA2 by modulating its ligand interactions. Here, phospho-mimicking mutants (AnxA2-S25E and AnxA2-S25D) were employed to investigate the effects of Ser25 phosphorylation on the structure and function of AnxA2 by using AnxA2-S25A as a control. The overall α-helical structure of AnxA2 is not affected by the mutations, since the thermal stabilities and aggregation tendencies of the mutants differ only slightly from the wild-type (wt) protein. Unlike wt AnxA2, all mutants bind the anxA2 3' untranslated region and β-γ-G-actin with high affinity in a Ca(2+)-independent manner. AnxA2-S25E is not targeted to the nucleus in transfected PC12 cells. In vitro phosphorylation of AnxA2 by protein kinase C increases its affinity to mRNA and inhibits its nuclear localisation, in accordance with the data obtained with the phospho-mimicking mutants. Ca(2+)-dependent binding of wt AnxA2 to phosphatidylinositol, phosphatidylinositol-3-phosphate, phosphatidylinositol-4-phosphate and phosphatidylinositol-5-phosphate, as well as weaker but still Ca(2+)-dependent binding to phosphatidylserine and phosphatidylinositol-3,5-bisphosphate, was demonstrated by a protein-lipid overlay assay, whereas binding of AnxA2 to these lipids, as well as its binding to liposomes, is inhibited by the Ser25 mutations. Thus, introduction of a modification (mutation or phosphorylation) at Ser25 appears to induce a conformational change leading to increased accessibility of the mRNA- and G-actin-binding sites in domain IV independent of Ca(2+) levels, while the Ca(2+)-dependent binding of AnxA2 to phospholipids is attenuated.
Collapse
Affiliation(s)
- Ann Kari Grindheim
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; Molecular Imaging Center (MIC), University of Bergen, N-5009 Bergen, Norway
| | - Hanne Hollås
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | - Juan Ramirez
- Biotechnologie et Signalisation Cellulaire UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, F-67412 Illkirch, France
| | - Jaakko Saraste
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; Molecular Imaging Center (MIC), University of Bergen, N-5009 Bergen, Norway
| | - Gilles Travé
- Biotechnologie et Signalisation Cellulaire UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, F-67412 Illkirch, France
| | - Anni Vedeler
- Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway.
| |
Collapse
|
6
|
Mayer G, Poirier S, Seidah NG. Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J Biol Chem 2008; 283:31791-801. [PMID: 18799458 DOI: 10.1074/jbc.m805971200] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proprotein convertase subtilisin/kexin-type 9 (PCSK9), which promotes degradation of the hepatic low density lipoprotein receptor (LDLR), is now recognized as a major player in plasma cholesterol metabolism. Several gain-of-function mutations in PCSK9 cause hypercholesterolemia and premature atherosclerosis, and thus, inhibition of PCSK9-induced degradation of the LDLR may be used to treat this deadly disease. Herein, we discovered an endogenous PCSK9 binding partner by Far Western blotting, co-immunoprecipitation, and pull-down assays. Following two-dimensional gel electrophoresis and mass spectrometry analysis, we demonstrated that PCSK9 binds to a approximately 33-kDa protein identified as annexin A2 (AnxA2) but not to the closely related annexin A1. Furthermore, our functional LDLR assays and small hairpin RNA studies show that AnxA2 and the AnxA2.p11 complex could prevent PCSK9-directed LDLR degradation in HuH7, HepG2, and Chinese hamster ovary cells. Immunocytochemistry revealed that PCSK9 and AnxA2 co-localize at the cell surface, indicating a possible competition with the LDLR. Structure-function analyses demonstrated that the C-terminal cysteine-histidine-rich domain of PCSK9 interacts specifically with the N-terminal repeat R1 of AnxA2. Mutational analysis of this 70-amino acid-long repeat indicated that the RRTKK81 sequence of AnxA2 is implicated in this binding because its mutation to AATAA81 prevents its interaction with PCSK9. To our knowledge, this work constitutes the first to show that PCSK9 activity on LDLR can be regulated by an endogenous inhibitor. The identification of the minimal inhibitory sequence of AnxA2 should pave the way toward the development of PCSK9 inhibitory lead molecules for the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Gaétan Mayer
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montréal, Quebec H2W 1R7, Canada
| | | | | |
Collapse
|
7
|
Carneiro AMD, Blakely RD. Serotonin-, protein kinase C-, and Hic-5-associated redistribution of the platelet serotonin transporter. J Biol Chem 2006; 281:24769-80. [PMID: 16803896 PMCID: PMC3875312 DOI: 10.1074/jbc.m603877200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emerging data indicate the existence of multiple regulatory processes supporting serotonin (5HT) transporter (SERT) capacity including regulated trafficking and catalytic activation, influenced by post-translational modifications and transporter-associated proteins. In the present study, using differential extraction and sedimentation procedures optimized for the purification of cytoskeletal and membrane-skeletal associated proteins, we analyze SERT localization in platelets. We find that most of the plasma membrane SERT is associated with the membrane skeleton. This association can be enhanced by both transporter activation and 5HT2A receptor activation. Inactivation of transport activity by phorbol ester treatment of intact platelets relocates SERT to the cytoskeleton fraction, consequently leading to transporter internalization. The translocation of SERT between these compartments is correlated with changes in the interaction with the LIM domain adaptor protein Hic-5. Co-immunoprecipitation and uptake activity studies suggest that Hic-5 is a determinant of transporter inactivation and relocation to a compartment subserving endocytic regulation. Associations of SERT with Hic-5 are evident in brain synaptosomes, suggesting the existence of parallel mechanisms operating to regulate SERT at serotonergic synapses.
Collapse
Affiliation(s)
- Ana Marin D. Carneiro
- Department of Pharmacology, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
| | - Randy D. Blakely
- Department of Pharmacology, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
- Department of Psychiatry, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548
- To whom correspondence should be addressed: 7140 MRBIII, Vanderbilt School of Medicine, Nashville, TN 37232-8548. Tel.: 615-936-3705; Fax: 615-936-3040;
| |
Collapse
|
8
|
Ryzhova EV, Vos RM, Albright AV, Harrist AV, Harvey T, González-Scarano F. Annexin 2: a novel human immunodeficiency virus type 1 Gag binding protein involved in replication in monocyte-derived macrophages. J Virol 2006; 80:2694-704. [PMID: 16501079 PMCID: PMC1395445 DOI: 10.1128/jvi.80.6.2694-2704.2006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) replication in the major natural target cells, CD4+ T lymphocytes and macrophages, is parallel in many aspects of the virus life cycle. However, it differs as to viral assembly and budding, which take place on plasma membranes in T cells and on endosomal membranes in macrophages. It has been postulated that cell type-specific host factors may aid in directing viral assembly to distinct destinations. In this study we defined annexin 2 (Anx2) as a novel HIV Gag binding partner in macrophages. Anx2-Gag binding was confined to productively infected macrophages and was not detected in quiescently infected monocyte-derived macrophages (MDM) in which an HIV replication block was mapped to the late stages of the viral life cycle (A. V. Albright, R. M. Vos, and F. Gonzalez-Scarano, Virology 325:328-339, 2004). We demonstrate that the Anx2-Gag interaction likely occurs at the limiting membranes of late endosomes/multivesicular bodies and that Anx2 depletion is associated with a significant decline in the infectivity of released virions; this coincided with incomplete Gag processing and inefficient incorporation of CD63. Cumulatively, our data suggest that Anx2 is essential for the proper assembly of HIV in MDM.
Collapse
Affiliation(s)
- Elena V Ryzhova
- Department of Neurology and Microbiology, University of Pennsylvania, 3 W. Gates, 3400 Spruce Street, Philadelphia, Pennsylvania 19104-4283, USA
| | | | | | | | | | | |
Collapse
|
9
|
Chasserot-Golaz S, Vitale N, Umbrecht-Jenck E, Knight D, Gerke V, Bader MF. Annexin 2 promotes the formation of lipid microdomains required for calcium-regulated exocytosis of dense-core vesicles. Mol Biol Cell 2005; 16:1108-19. [PMID: 15635098 PMCID: PMC551477 DOI: 10.1091/mbc.e04-07-0627] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Annexin 2 is a calcium-dependent phospholipid-binding protein that has been implicated in a number of membrane-related events, including regulated exocytosis. In chromaffin cells, we previously reported that catecholamine secretion requires the translocation and formation of the annexin 2 tetramer near the exocytotic sites. Here, to obtain direct evidence for a role of annexin 2 in exocytosis, we modified its expression level in chromaffin cells by using the Semliki Forest virus expression system. Using a real-time assay for individual cells, we found that the reduction of cytosolic annexin 2, and the consequent decrease of annexin 2 tetramer at the cell periphery, strongly inhibited exocytosis, most likely at an early stage before membrane fusion. Secretion also was severely impaired in cells expressing a chimera that sequestered annexin 2 into cytosolic aggregates. Moreover, we demonstrate that secretagogue-evoked stimulation triggers the formation of lipid rafts in the plasma membrane, essential for exocytosis, and which can be attributed to the annexin 2 tetramer. We propose that annexin 2 acts as a calcium-dependent promoter of lipid microdomains required for structural and spatial organization of the exocytotic machinery.
Collapse
Affiliation(s)
- Sylvette Chasserot-Golaz
- Centre National de la Recherche Scientifique, Unité Propre de Recherche 2356, IFR 37 des Neurosciences, 67084 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
10
|
Parker SL, Fu Y, McAllen K, Luo J, McIntosh JM, Lindstrom JM, Sharp BM. Up-regulation of brain nicotinic acetylcholine receptors in the rat during long-term self-administration of nicotine: disproportionate increase of the alpha6 subunit. Mol Pharmacol 2004; 65:611-22. [PMID: 14978239 DOI: 10.1124/mol.65.3.611] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In male rats continually self-administering nicotine (approximately 1.5 mg free base/kg/day), we found a significant increase of nicotinic acetylcholine receptors (nAChRs) labeled by epibatidine (Epb) in 11 brain areas. A large increase of high-affinity Epb binding sites was apparent in the ventral tegmentum/substantia nigra, nucleus tractus solitarii, nucleus accumbens, thalamus/subthalamus, parietal cortex, hypothalamus, and amygdala. A smaller but significant up-regulation of high-affinity Epb sites was seen in the piriform cortex, hippocampus, caudate/putamen, and cerebellar cortex. The up-regulation of nAChRs, shown by immunoadsorption and Western blotting, involved alpha4, alpha6, and beta2 subunits. As a consequence of long-term self-administration of nicotine, the alpha6 immunoreactive (IR) binding of either labeled Epb or 125I-alpha-conotoxin MII increased to a much greater extent than did alpha4 or beta2 IR binding of Epb. In addition, the beta2 IR binding of Epb was consistently enhanced to a greater extent than was alpha4. These findings may reflect a larger surface membrane retention of alpha6-containing and, to some degree, beta2-containing nAChRs compared with alpha4-containing nAChRs during long-term self-administration of nicotine.
Collapse
Affiliation(s)
- Steven L Parker
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38163, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Kirshner J, Schumann D, Shively JE. CEACAM1, a Cell-Cell Adhesion Molecule, Directly Associates with Annexin II in a Three-dimensional Model of Mammary Morphogenesis. J Biol Chem 2003; 278:50338-45. [PMID: 14522961 DOI: 10.1074/jbc.m309115200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The epithelial cell adhesion molecule CEACAM1 (carcinoembryonic antigen cell adhesion molecule-1) is down-regulated in colon, prostate, breast, and liver cancer. Here we show that CEACAM1-4S, a splice form with four Ig-like ectodomains and a short cytoplasmic domain (14 amino acids), directly associates with annexin II, a lipid raft-associated molecule, which is also down-regulated in many cancers. Annexin II was identified using a glutathione S-transferase pull-down assay in which the cytoplasmic domain of CEACAM-4S was fused to glutathione S-transferase, the fusion protein was incubated with cell lysates, and isolated proteins were sequenced by mass spectrometry. The interaction was confirmed first by reciprocal immunoprecipitations using anti-CEACAM1 and anti-annexin II antibodies and second by confocal laser microscopy showing co-localization of CEACAM1 with annexin II in mammary epithelial cells grown in Matrigel. In addition, CEACAM1 co-localized with p11, a component of the tetrameric AIIt complex at the plasma membrane, and with annexin II in secretory vesicles. Immobilized, oriented peptides from the cytoplasmic domain of CEACAM1-4S were shown to directly associate with bovine AIIt, which is 98% homologous to human AIIt, with average KD values of about 30 nM using surface plasmon resonance, demonstrating direct binding of functionally relevant AIIt to the cytoplasmic domain of CEACAM1-4S.
Collapse
Affiliation(s)
- Julia Kirshner
- Graduate School of the City of Hope and Beckman Research Institute, Duarte, California 91010, USA
| | | | | |
Collapse
|
12
|
Liu J, Rothermund CA, Ayala-Sanmartin J, Vishwanatha JK. Nuclear annexin II negatively regulates growth of LNCaP cells and substitution of ser 11 and 25 to glu prevents nucleo-cytoplasmic shuttling of annexin II. BMC BIOCHEMISTRY 2003; 4:10. [PMID: 12962548 PMCID: PMC200965 DOI: 10.1186/1471-2091-4-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Accepted: 09/09/2003] [Indexed: 12/16/2022]
Abstract
BACKGROUND Annexin II heavy chain (also called p36, calpactin I) is lost in prostate cancers and in a majority of prostate intraepithelial neoplasia (PIN). Loss of annexin II heavy chain appears to be specific for prostate cancer since overexpression of annexin II is observed in a majority of human cancers, including pancreatic cancer, breast cancer and brain tumors. Annexin II exists as a heterotetramer in complex with a protein ligand p11 (S100A10), and as a monomer. Diverse cellular functions are proposed for the two forms of annexin II. The monomer is involved in DNA synthesis. A leucine-rich nuclear export signal (NES) in the N-terminus of annexin II regulates its nuclear export by the CRM1-mediated nuclear export pathway. Mutation of the NES sequence results in nuclear retention of annexin II. RESULTS Annexin II localized in the nucleus is phosphorylated, and the appearance of nuclear phosphorylated annexin II is cell cycle dependent, indicating that phosphorylation may play a role in nuclear entry, retention or export of annexin II. By exogenous expression of annexin II in the annexin II-null LNCaP cells, we show that wild-type annexin II is excluded from the nucleus, whereas the NES mutant annexin II localizes in both the nucleus and cytoplasm. Nuclear retention of annexin II results in reduced cell proliferation and increased doubling time of cells. Expression of annexin II, both wild type and NES mutant, causes morphological changes of the cells. By site-specific substitution of glutamic acid in the place of serines 11 and 25 in the N-terminus, we show that simultaneous phosphorylation of both serines 11 and 25, but not either one alone, prevents nuclear localization of annexin II. CONCLUSION Our data show that nuclear annexin II is phosphorylated in a cell cycle-dependent manner and that substitution of serines 11 and 25 inhibit nuclear entry of annexin II. Aberrant accumulation of nuclear annexin II retards proliferation of LNCaP cells.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christy A Rothermund
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jesus Ayala-Sanmartin
- INSERM U538, Trafic membranaire et signalisation dans les cellules épithéliales, CHU Saint Antoine, 27, rue Chaligny, 75012 Paris, France
| | - Jamboor K Vishwanatha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Peterson EA, Sutherland MR, Nesheim ME, Pryzdial ELG. Thrombin induces endothelial cell-surface exposure of the plasminogen receptor annexin 2. J Cell Sci 2003; 116:2399-408. [PMID: 12724354 DOI: 10.1242/jcs.00434] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cell-surface annexin 2 (A2) and its ligand p11 have been implicated in fibrinolysis because of their ability to accelerate tissue plasminogen activator (tPA)-mediated activation of plasminogen to plasmin. Because thrombin is a potent cell modulator obligately produced at the site of clot formation, we hypothesized that the amount of cell-surface A2 and p11 might be altered by thrombin with consequent effects on plasmin generation. In support of this hypothesis, immunofluorescence microscopy and hydrophilic biotinylation experiments showed that both A2 and p11 were significantly increased on the surface of human umbilical vein endothelial cells (HUVECs) treated with thrombin (0.8-8 nM) for 5 minutes followed by 1 hour at 37 degrees C. Intracellular immunofluorescence microscopy and immunoblot analyses of whole cell extracts revealed increased p11 but unchanged A2 in response to thrombin, suggesting that transbilayer trafficking of A2 might be controlled by p11. The thrombin receptor-activating peptide (TRAP) similarly affected cells, demonstrating that cell signaling at least involved the type-1 protease activated receptor (PAR-1). An effect on the fibrinolysis pathway after treatment of HUVECs with thrombin was shown by increased fluorescein-labeled plasminogen binding to cells, which was inhibited by an antibody specific for p11. This was confirmed by observing that thrombin pretreatment of HUVECs increased biotin-modified plasminogen binding. Utilizing a chromogenic assay, pretreatment of HUVECs by thrombin further enhanced activation of the Glu and Lys forms of plasminogen by tPA. These data suggest a novel mechanism that links the coagulation and fibrinolysis pathways by thrombin-mediated feedback.
Collapse
Affiliation(s)
- Erica A Peterson
- Canadian Blood Services, R&D Department, 1800 Alta Vista Drive, Ottawa, ON K1G 4J5, Canada
| | | | | | | |
Collapse
|
14
|
Burkart A, Samii B, Corvera S, Shpetner HS. Regulation of the SHP-2 tyrosine phosphatase by a novel cholesterol- and cell confluence-dependent mechanism. J Biol Chem 2003; 278:18360-7. [PMID: 12611902 DOI: 10.1074/jbc.m210701200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Endothelial cells approaching confluence exhibit marked decreases in tyrosine phosphorylation of receptor tyrosine kinases and adherens junctions proteins, required for cell cycle arrest and adherens junctions stability. Recently, we demonstrated a close correlation in endothelial cells between membrane cholesterol and tyrosine phosphorylation of adherens junctions proteins. Here, we probe the mechanistic basis for this correlation. We find that as endothelial cells reach confluence, the tyrosine phosphatase SHP-2 is recruited to a low-density membrane fraction in a cholesterol-dependent manner. Binding of SHP-2 to this fraction was not abolished by phenyl phosphate, strongly suggesting that this binding was mediated by other regions of SHP-2 beside its SH2 domains. Annexin II, previously implicated in cholesterol trafficking, was associated in a complex with SHP-2, and both proteins localized to adhesion bands in confluent endothelial monolayers. These studies reveal a novel, cholesterol-dependent mechanism for the recruitment of signaling proteins to specific plasma membrane domains via their interactions with annexin II.
Collapse
Affiliation(s)
- Alison Burkart
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|
15
|
|
16
|
|
17
|
Kastl K, Ross M, Gerke V, Steinem C. Kinetics and thermodynamics of annexin A1 binding to solid-supported membranes: a QCM study. Biochemistry 2002; 41:10087-94. [PMID: 12146973 DOI: 10.1021/bi025951z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By means of the quartz crystal microbalance (QCM) technique, the interaction of annexin A1 with lipid membranes was quantified using solid-supported bilayers immobilized on gold electrodes deposited on 5 MHz quartz plates. Solid-supported lipid bilayers were composed of a first octanethiol monolayer chemisorbed on gold and a physisorbed phospholipid monolayer obtained from vesicle fusion. This experimental setup enabled us to determine for the first time rate constants and affinity constants of annexin A1 binding to phosphatidylserine-containing layers as a function of the calcium ion concentration in solution and the cholesterol content within the outer leaflet of the solid-supported bilayer. The results reveal that a decrease in Ca(2+) concentration from 1 mM to 100 microM significantly increases the rate of annexin A1 binding to the membrane independent of the cholesterol content. However, the presence of cholesterol in the membrane altered the affinity constants considerably. While the association constant decreases with decreasing Ca(2+) concentration in the case of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) membranes lacking cholesterol, it remains high in the presence of cholesterol.
Collapse
Affiliation(s)
- Katja Kastl
- Institut für Analytische Chemie, Chemo- und Biosensorik, Universität Regensburg, 93040 Regensburg, Germany
| | | | | | | |
Collapse
|
18
|
Abstract
Annexins are Ca2+ and phospholipid binding proteins forming an evolutionary conserved multigene family with members of the family being expressed throughout animal and plant kingdoms. Structurally, annexins are characterized by a highly alpha-helical and tightly packed protein core domain considered to represent a Ca2+-regulated membrane binding module. Many of the annexin cores have been crystallized, and their molecular structures reveal interesting features that include the architecture of the annexin-type Ca2+ binding sites and a central hydrophilic pore proposed to function as a Ca2+ channel. In addition to the conserved core, all annexins contain a second principal domain. This domain, which NH2-terminally precedes the core, is unique for a given member of the family and most likely specifies individual annexin properties in vivo. Cellular and animal knock-out models as well as dominant-negative mutants have recently been established for a number of annexins, and the effects of such manipulations are strikingly different for different members of the family. At least for some annexins, it appears that they participate in the regulation of membrane organization and membrane traffic and the regulation of ion (Ca2+) currents across membranes or Ca2+ concentrations within cells. Although annexins lack signal sequences for secretion, some members of the family have also been identified extracellularly where they can act as receptors for serum proteases on the endothelium as well as inhibitors of neutrophil migration and blood coagulation. Finally, deregulations in annexin expression and activity have been correlated with human diseases, e.g., in acute promyelocytic leukemia and the antiphospholipid antibody syndrome, and the term annexinopathies has been coined.
Collapse
Affiliation(s)
- Volker Gerke
- Institute for Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | | |
Collapse
|
19
|
Eberhard DA, Karns LR, VandenBerg SR, Creutz CE. Control of the nuclear-cytoplasmic partitioning of annexin II by a nuclear export signal and by p11 binding. J Cell Sci 2001; 114:3155-66. [PMID: 11590242 DOI: 10.1242/jcs.114.17.3155] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This study investigated mechanisms controlling the nuclear-cytoplasmic partitioning of annexin II (AnxII). AnxII and its ligand, p11, were localized by immunofluorescence to the cytoplasmic compartment of U1242MG cells, with minimal AnxII or p11 detected within nuclei. Similarly, GFP-AnxII and GFP-p11 chimeras localized to the endogenous proteins. Likewise, GFP-AnxII(1-22) was excluded from nuclei, whereas GFP-AnxII(23-338) and GFP alone were distributed throughout the cells. Immunoprecipitation and biochemical studies showed that GFP-AnxII did not form heteromeric complexes with endogenous p11 and AnxII. Thus, the AnxII N-tail is necessary and sufficient to cause nuclear exclusion of the GFP fusion protein but this does not involve p11 binding. A nuclear export signal consensus sequence was found in the AnxII 3-12 region. The consensus mutant GFP-AnxII(L10A/L12A) confirmed that these residues are necessary for nuclear exclusion. The nuclear exclusion of GFP-AnxII(1-22) was temperature-dependent and reversible, and the nuclear export inhibitor leptomycin B (LmB) caused GFP-AnxII or overexpressed AnxII monomer to accumulate in nuclei. Therefore, AnxII monomer can enter the nucleus and is actively exported. However, LmB had little effect on the localization of AnxII/p11 complex in U1242MG cells, indicating that the complex is sequestered in the cytoplasm. By contrast, LmB treatment of v-src-transformed fibroblasts caused endogenous AnxII to accumulate in nuclei. The LmB-induced nuclear accumulation of AnxII was accelerated by pervanadate and inhibited by genistein, suggesting that phosphorylation promotes nuclear entry of AnxII. Thus, nuclear exclusion of AnxII results from nuclear export of the monomer and sequestration of AnxII/p11 complex, and may be modulated by phosphorylation.
Collapse
Affiliation(s)
- D A Eberhard
- Department of Pharmacology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
20
|
Ayala-Sanmartin J. Cholesterol enhances phospholipid binding and aggregation of annexins by their core domain. Biochem Biophys Res Commun 2001; 283:72-9. [PMID: 11322769 DOI: 10.1006/bbrc.2001.4748] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Annexins are Ca(2+)-dependent phospholipid-binding proteins composed of two domains: A conserved core that is responsible for Ca(2+)- and phospholipid-binding, and a variable N-terminal tail. A Ca(2+)-independent annexin 2-membrane association has been shown to be modulated by the presence of cholesterol in the membranes. Herein, the roles of the core and the N-terminal tail on the cholesterol-enhancement of annexin 2 membrane binding and aggregation were studied. The results show that (i) the cholesterol-mediated increase in membrane binding and in the Ca(2+) sensitivity for membrane aggregation were not modified by a N-terminal peptide (residues 15-26), and were conserved in mutants of the N-terminal end (S11 and S25 substitutions); (ii) cholesterol induced an increase in the Ca(2+)-dependent membrane binding and aggregation of the N-terminally truncated protein (Delta 1-29); and (iii) annexins 5 and 6, two proteins with unrelated N-terminal tails and homologous core domains showed a cholesterol-mediated enhancement of the Ca(2+)-dependent binding to membranes. These data indicate that the core domain is responsible for the cholesterol-mediated effects. A model for the cholesterol effect in membrane organisation, annexin binding and aggregation is discussed.
Collapse
Affiliation(s)
- J Ayala-Sanmartin
- INSERM U332, Signalisation, Inflammation et Transformation Cellulaire, Institut Cochin de Génétique Moléculaire, 22 rue Méchain, Paris, 75014, France.
| |
Collapse
|
21
|
Abstract
Annexin II heterotetramer (AIIt) is a multifunctional Ca(2+)-binding protein composed of two 11-kDa subunits and two annexin II subunits. The annexin II subunit contains the binding sites for anionic phospholipids, heparin, and F-actin, whereas the p11 subunit provides a regulatory function. The F-actin-binding site is presently unknown. In the present study we have utilized site-directed mutagenesis to create annexin II mutants with truncations in the C terminus of the molecule. Interestingly, a mutant annexin II lacking its C-terminal 16, 13, or 9 amino acids was unable to bind to F-actin but still retained its ability to interact with both anionic phospholipids and heparin. Recombinant AIIt, composed of wild-type p11 subunits and the mutant annexin II subunits, was also unable to bundle F-actin. This loss of F-actin bundling activity was directly attributable to the inability of mutant AIIt to bind F-actin. These results establish for the first time that the annexin II C-terminal amino acid residues, LLYLCGGDD, participate in F-actin binding.
Collapse
Affiliation(s)
- N R Filipenko
- Cancer Biology Research Group, Department of Biochemistry, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
22
|
Ayala-Sanmartin J, Henry JP, Pradel LA. Cholesterol regulates membrane binding and aggregation by annexin 2 at submicromolar Ca(2+) concentration. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1510:18-28. [PMID: 11342144 DOI: 10.1016/s0005-2736(00)00262-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Annexin 2 is a member of the annexin family which has been implicated in calcium-regulated exocytosis. This contention is largely based on Ca(2+)-dependent binding of the protein to anionic phospholipids. However, annexin 2 was shown to be associated with chromaffin granules in the presence of EGTA. A fraction of this bound annexin 2 was released by methyl-beta-cyclodextrin, a reagent which depletes cholesterol from membranes. Restoration of the cholesterol content of chromaffin granule membranes with cholesterol/methyl-beta-cyclodextrin complexes restored the Ca(2+)-independent binding of annexin 2. The binding of both, monomeric and tetrameric forms of annexin 2 was also tested on liposomes of different composition. In the absence of Ca(2+), annexin 2, especially in its tetrameric form, bound to liposomes containing phosphatidylserine, and the addition of cholesterol to these liposomes increased the binding. Consistent with this observation, liposomes containing phosphatidylserine and cholesterol were aggregated by the tetrameric form of annexin 2 at submicromolar Ca(2+) concentrations. These results indicate that the lipid composition of membranes, and especially their cholesterol content, is important in the control of the subcellular localization of annexin 2 in resting cells, at low Ca(2+) concentration. Annexin 2 might be associated with membrane domains enriched in phosphatidylserine and cholesterol.
Collapse
Affiliation(s)
- J Ayala-Sanmartin
- Unité de Biologie Cellulaire et Moléculaire de la Sécrétion, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | | | | |
Collapse
|
23
|
Abstract
Annexins are ubiquitous multifunctional Ca2+ and phospholipid-binding proteins whose mechanism of function remains largely unknown. The accumulated in vitro experimental evidence indicates that ATP and GTP are functional ligands for nucleotide-sensitive annexin isoforms. Such nucleotide binding could modulate Ca2+ homeostasis, vesicular transport and/or signal transduction pathways and link them to cellular energy metabolism. Alternatively, since annexins are able to interact with other nucleotide-utilizing proteins, such as various kinases, GTPases and structural proteins, these proteins could influence the guanine nucleotide exchange metabolism and/or control the activity of various G proteins. The nucleotide-binding properties of annexins may affect the development or maintenance of some pathologies and diseases in which changes in physiological concentrations of purine nucleotides or disruption of Ca2+ homeostasis are crucial targets.
Collapse
Affiliation(s)
- J Bandorowicz-Pikula
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | | | |
Collapse
|
24
|
Clark GB, Rafati DS, Bolton RJ, Dauwalder M, Roux SJ. Redistribution of annexin in gravistimulated pea plumules. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2000; 38:937-47. [PMID: 11708356 DOI: 10.1016/s0981-9428(00)01206-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We used immunocytochemistry to investigate the effects of gravistimulation on annexin localization in etiolated pea plumule shoots. In longitudinal sections, an asymmetric annexin immunostaining pattern was observed in a defined group of cells located just basipetal to apical meristems at the main shoot apex and at all of the axillary buds, an area classically referred to as the leaf gap. The pattern was observed using both protein-A-purified anti-annexin and affinity-purified anti-annexin antibodies for the immunostaining. A subset of the cells with the annexin staining also showed an unusually high level of periodic acid Schiff (PAS) staining in their cell walls. Prior to gravistimulation, the highest concentration of annexin was oriented toward the direction of gravity along the apical end of these immunostained cells. In contrast, both at 15 and 30 min after gravistimulation, the annexin immunostain became more evenly distributed all around the cell and more distinctly cell peripheral. The asymmetry along the lower wall of these cells was no longer evident. In accord with current models of annexin action, we interpret the results to indicate that annexin-mediated secretion in the leaf gap area is preferentially toward the apical meristem prior to gravistimulation, and that gravistimulation results in a redirection of this secretion. These data are to our knowledge the first to show a correlation between the vector of gravity and the distribution of annexins in the cells of flowering plants.
Collapse
Affiliation(s)
- G B Clark
- Department of Molecular Cell and Developmental Biology, The University of Texas, Austin, Texas 78713, USA
| | | | | | | | | |
Collapse
|
25
|
Tzima E, Trotter PJ, Orchard MA, Walker JH. Annexin V relocates to the platelet cytoskeleton upon activation and binds to a specific isoform of actin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4720-30. [PMID: 10903505 DOI: 10.1046/j.1432-1327.2000.01525.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously reported that stimulation of platelets causes a relocation of annexin V to the cytoplasmic side of the plasma membrane where it associates with actin. This study examined the association of annexin V with the platelet cytoskeleton and its binding to actin, following both physiological activation with thrombin and Ca2+ -ionophore activation. The time-dependence of annexin V incorporation into the detergent-extracted cytoskeleton following activation with thrombin was also measured. Although calcium from the intracellular stores was enough to relocate intracellular annexin V to the cytoskeleton, this relocation was further enhanced by influx of extracellular calcium. The association of annexin V with the cytoskeleton was found to be unaffected by the action of cytochalasin E, however, annexin V was solubilized when DNase I was used to depolymerize the membrane cytoskeleton, and spontaneously re-associated with the actin filaments when re-polymerization was induced in vitro. Using a bifunctional crosslinking reagent we have identified an 85-kDa complex in both membrane and cytoskeleton fractions containing annexin V and actin. Direct binding to actin filaments was only observed in high [Ca2+], however, inclusion of an extract from thrombin-stimulated platelets lowered the [Ca2+] requirement for the binding of annexin V to F-actin to physiological levels. We also show that GST-annexin V mimics the physiological binding of annexin V to membranes, and that this GST-annexin V binds directly to a specific isoform of actin. Immunoprecipitation using antibodies against annexin V copurify annexin V and gamma- but not beta-actin from activated platelets. This is the first report of a possible preferential binding of annexin V to a specific isoform of actin, namely gamma-actin. The results of this study suggest a model in which annexin V that relocates to the plasma membrane and binds to gamma-actin in an activation-dependent manner forms a strong association with the platelet cytoskeleton.
Collapse
Affiliation(s)
- E Tzima
- School of Biochemistry and Molecular Biology, University of Leeds, UK
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- H Kubista
- Department of Physiology, University College London, UK
| | | | | |
Collapse
|
27
|
Babiychuk EB, Palstra RJ, Schaller J, Kämpfer U, Draeger A. Annexin VI participates in the formation of a reversible, membrane-cytoskeleton complex in smooth muscle cells. J Biol Chem 1999; 274:35191-5. [PMID: 10575003 DOI: 10.1074/jbc.274.49.35191] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasmalemma of smooth muscle cells is periodically banded. This arrangement ensures efficient transmission of contractile activity, via the firm, actin-anchoring regions, while the more elastic caveolae-containing "hinge" regions facilitate rapid cellular adaptation to changes in cell length. Since cellular mechanics are undoubtedly regulated by components of the membrane and cytoskeleton, we have investigated the potential role played by annexins (a family of phospholipid- and actin-binding, Ca(2+)-regulated proteins) in regulating sarcolemmal organization. Stimulation of smooth muscle cells elicited a relocation of annexin VI from the cytoplasm to the plasmalemma. In smooth, but not in striated muscle extracts, annexins II and VI coprecipitated with actomyosin and the caveolar fraction of the sarcolemma at elevated Ca(2+) concentrations. Recombination of actomyosin, annexins, and caveolar lipids in the presence of Ca(2+) led to formation of a structured precipitate. Participation of all 3 components was required, indicating that a Ca(2+)-dependent, cytoskeleton-membrane complex had been generated. This association, which occurred at physiological Ca(2+) concentrations, corroborates our biochemical fractionation and immunohistochemical findings and suggests that annexins play a role in regulating sarcolemmal organization during smooth muscle contraction.
Collapse
Affiliation(s)
- E B Babiychuk
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
28
|
Szewczyk A, Pikuła S. Adenosine 5'-triphosphate: an intracellular metabolic messenger. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:333-53. [PMID: 9711292 DOI: 10.1016/s0005-2728(98)00094-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A Szewczyk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | |
Collapse
|
29
|
Bunnell SC, Berg LJ. The signal transduction of motion and antigen recognition: factors affecting T cell function and differentiation. GENETIC ENGINEERING 1998; 20:63-110. [PMID: 9666556 DOI: 10.1007/978-1-4899-1739-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- S C Bunnell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
30
|
Calkins CC, Sameni M, Koblinski J, Sloane BF, Moin K. Differential localization of cysteine protease inhibitors and a target cysteine protease, cathepsin B, by immuno-confocal microscopy. J Histochem Cytochem 1998; 46:745-51. [PMID: 9603786 DOI: 10.1177/002215549804600607] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The cystatin superfamily of cysteine protease inhibitors and target cysteine proteases such as cathepsin B have been implicated in malignant progression. The respective cellular/extracellular localization of cystatins and cysteine proteases in tumors may be critical in regulating activity of the enzymes. Confocal microscopy has enabled us to demonstrate the differential localization of cystatins and cathepsin B in an embryonic liver cell line and an invasive hepatoma cell line. In both, stefins A and B were distributed diffusely throughout the cytoplasm, whereas cystatin C was distributed in juxtanuclear vesicles. Stefin A and cystatin C, but not stefin B, were present on the cell surface. Cystatin C was found on the top surfaces of both cell lines, whereas stefin A was found only on the top surface of the embryonic liver cells. Cathepsin B staining was concentrated in perinuclear vesicles in the embryonic liver cells. In the hepatoma cells, staining for cathepsin B was also present in vesicles adjacent to the cell membrane and on localized regions of the bottom surface. Such a disparate distribution of cathepsin B and its endogenous inhibitors may facilitate proteolysis by the hepatoma cells and thereby contribute to their invasive phenotype.
Collapse
Affiliation(s)
- C C Calkins
- Department of Pharmacology, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|