1
|
Cavada BS, Oliveira MVD, Osterne VJS, Pinto-Junior VR, Martins FWV, Correia-Neto C, Pinheiro RF, Leal RB, Nascimento KS. Recent advances in the use of legume lectins for the diagnosis and treatment of breast cancer. Biochimie 2022; 208:100-116. [PMID: 36586566 DOI: 10.1016/j.biochi.2022.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Poor lifestyle choices and genetic predisposition are factors that increase the number of cancer cases, one example being breast cancer, the third most diagnosed type of malignancy. Currently, there is a demand for the development of new strategies to ensure early detection and treatment options that could contribute to the complete remission of breast tumors, which could lead to increased overall survival rates. In this context, the glycans observed at the surface of cancer cells are presented as efficient tumor cell markers. These carbohydrate structures can be recognized by lectins which can act as decoders of the glycocode. The application of plant lectins as tools for diagnosis/treatment of breast cancer encompasses the detection and sorting of glycans found in healthy and malignant cells. Here, we present an overview of the most recent studies in this field, demonstrating the potential of lectins as: mapping agents to detect differentially expressed glycans in breast cancer, as histochemistry/cytochemistry analysis agents, in lectin arrays, immobilized in chromatographic matrices, in drug delivery, and as biosensing agents. In addition, we describe lectins that present antiproliferative effects by themselves and/or in conjunction with other drugs in a synergistic effect.
Collapse
Affiliation(s)
- Benildo Sousa Cavada
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.
| | - Messias Vital de Oliveira
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Vinícius Jose Silva Osterne
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil; Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Vanir Reis Pinto-Junior
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil; Departamento de Física, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Cornevile Correia-Neto
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Ronald Feitosa Pinheiro
- Núcleo de Pesquisa e Desenvolvimento de Medicações (NPDM), Universidade Federal do Ceará, Fortaleza, Brazil
| | - Rodrigo Bainy Leal
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Kyria Santiago Nascimento
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.
| |
Collapse
|
2
|
Huldani H, Rashid AI, Turaev KN, Opulencia MJC, Abdelbasset WK, Bokov DO, Mustafa YF, Al-Gazally ME, Hammid AT, Kadhim MM, Ahmadi SH. Concanavalin A as a promising lectin-based anti-cancer agent: the molecular mechanisms and therapeutic potential. Cell Commun Signal 2022; 20:167. [PMID: 36289525 PMCID: PMC9597983 DOI: 10.1186/s12964-022-00972-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
Concanavalin A (ConA), the most studied plant lectin, has been known as a potent anti-neoplastic agent for a long time. Since initial reports on its capacity to kill cancer cells, much attention has been devoted to unveiling the lectin's exact molecular mechanism. It has been revealed that ConA can bind to several receptors on cancerous and normal cells and modulate the related signaling cascades. The most studied host receptor for ConA is MT1-MMP, responsible for most of the lectin's modulations, ranging from activating immune cells to killing tumor cells. In this study, in addition to studying the effect of ConA on signaling and immune cell function, we will focus on the most up-to-date advancements that unraveled the molecular mechanisms by which ConA can induce autophagy and apoptosis in various cancer cell types, where it has been found that P73 and JAK/STAT3 are the leading players. Moreover, we further discuss the main signaling molecules causing liver injury as the most significant side effect of the lectin injection. Altogether, these findings may shed light on the complex signaling pathways controlling the diverse responses created via ConA treatment, thereby modulating these complex networks to create more potent lectin-based cancer therapy. Video Abstract
Collapse
Affiliation(s)
- Huldani Huldani
- grid.443126.60000 0001 2193 0299Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan Indonesia
| | - Ahmed Ibraheem Rashid
- grid.427646.50000 0004 0417 7786Department of Pharmacology, Collage of Medicine, University of Babylon, Hilla, Iraq
| | - Khikmatulla Negmatovich Turaev
- grid.444694.f0000 0004 0403 0119Department of Clinical Pharmacology, Samarkand State Medical Institute, Samarkand, Uzbekistan ,grid.513581.b0000 0004 6356 9173Department of Scientific Affairs, Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, Uzbekistan 100047
| | | | - Walid Kamal Abdelbasset
- grid.449553.a0000 0004 0441 5588Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia ,grid.7776.10000 0004 0639 9286Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Dmitry Olegovich Bokov
- grid.448878.f0000 0001 2288 8774Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991 Russian Federation ,grid.466474.3Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky Pr, Moscow, 109240 Russian Federation
| | - Yasser Fakri Mustafa
- grid.411848.00000 0000 8794 8152Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | | | - Ali Thaeer Hammid
- grid.513683.a0000 0004 8495 7394Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| | - Mustafa M. Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit 52001 Iraq ,grid.444971.b0000 0004 6023 831XCollege of Technical Engineering, The Islamic University, Najaf, Iraq ,Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Seyed Hossein Ahmadi
- grid.411705.60000 0001 0166 0922Research Center for Cell and Molecular Sciences, School of Medicine, Tehran University of Medical Sciences, PO Box 1417613151, Tehran, Iran
| |
Collapse
|
3
|
Gliozzi M, Scarano F, Musolino V, Carresi C, Scicchitano M, Ruga S, Zito MC, Nucera S, Bosco F, Maiuolo J, Macrì R, Guarnieri L, Mollace R, Coppoletta AR, Nicita C, Tavernese A, Palma E, Muscoli C, Mollace V. Role of TSPO/VDAC1 Upregulation and Matrix Metalloproteinase-2 Localization in the Dysfunctional Myocardium of Hyperglycaemic Rats. Int J Mol Sci 2020; 21:ijms21207432. [PMID: 33050121 PMCID: PMC7587933 DOI: 10.3390/ijms21207432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/06/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Clinical management of diabetic cardiomyopathy represents an unmet need owing to insufficient knowledge about the molecular mechanisms underlying the dysfunctional heart. The aim of this work is to better clarify the role of matrix metalloproteinase 2 (MMP-2) isoforms and of translocator protein (TSPO)/voltage-dependent anion-selective channel 1 (VDAC1) modulation in the development of hyperglycaemia-induced myocardial injury. Hyperglycaemia was induced in Sprague-Dawley rats through a streptozocin injection (35 mg/Kg, i.p.). After 60 days, cardiac function was analysed by echocardiography. Nicotinamide Adenine Dinucleotide Phosphate NADPH oxidase and TSPO expression was assessed by immunohistochemistry. MMP-2 activity was detected by zymography. Superoxide anion production was estimated by MitoSOX™ staining. Voltage-dependent anion-selective channel 1 (VDAC-1), B-cell lymphoma 2 (Bcl-2), and cytochrome C expression was assessed by Western blot. Hyperglycaemic rats displayed cardiac dysfunction; this response was characterized by an overexpression of NADPH oxidase, accompanied by an increase of superoxide anion production. Under hyperglycaemia, increased expression of TSPO and VDAC1 was detected. MMP-2 downregulated activity occurred under hyperglycemia and this profile of activation was accompanied by the translocation of intracellular N-terminal truncated isoform of MMP-2 (NT-MMP-2) from mitochondria-associated membrane (MAM) into mitochondria. In the onset of diabetic cardiomyopathy, mitochondrial impairment in cardiomyocytes is characterized by the dysregulation of the different MMP-2 isoforms. This can imply the generation of a “frail” myocardial tissue unable to adapt itself to stress.
Collapse
Affiliation(s)
- Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
- Correspondence: ; Tel.: +39-0961-3694301
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Rocco Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
| | - Caterina Nicita
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
| | - Annamaria Tavernese
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
- Division of Cardiology, University Hospital Policlinico Tor Vergata, 00133 Rome, Italy
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
- IRCCS San Raffaele Pisana, Via di Valcannuta, 00163 Rome, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (F.S.); (V.M.); (C.C.); (M.S.); (S.R.); (M.C.Z.); (S.N.); (F.B.); (J.M.); (R.M.); (L.G.); (R.M.); (A.R.C.); (C.N.); (E.P.); (C.M.); (V.M.)
- Renato Dulbecco Institute, Presso Fondazione Terina, 88046 Lamezia Terme (CZ), Italy;
- IRCCS San Raffaele Pisana, Via di Valcannuta, 00163 Rome, Italy
| |
Collapse
|
4
|
Almeida N, Carrara G, Palmeira CM, Fernandes AS, Parsons M, Smith GL, Saraiva N. Stimulation of cell invasion by the Golgi Ion Channel GAAP/TMBIM4 via an H 2O 2-Dependent Mechanism. Redox Biol 2019; 28:101361. [PMID: 31693977 PMCID: PMC6838802 DOI: 10.1016/j.redox.2019.101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
The mechanisms by which the Golgi apparatus (GA) impacts on cell invasion are poorly understood. The human Golgi Anti-Apoptotic Protein (hGAAP, also known as TMBIM4) is a highly conserved Golgi cation channel that modulates intracellular Ca2+ fluxes. Human GAAP is expressed in all human tissues, is essential for cell viability and provides resistance against a range of apoptotic stresses. Furthermore, hGAAP enhances adhesion and cell migration by increasing the turnover of focal adhesions due to activation of store-operated Ca2+ entry. Here, we describe a GA-derived mechanism that controls cell invasion. The overexpression of hGAAP stimulates 3-dimensional proteolytic cell invasion by a mechanism that is dependent on the accumulation of intracellular hydrogen peroxide, which might be produced by the hGAAP-dependent stimulation of mitochondrial respiration. These findings provide new insight into the complex mechanisms by which Ca2+ and reactive oxygen species signaling contribute to cell invasion and to the role of the GA in these processes.
Collapse
Affiliation(s)
- Nuno Almeida
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Carlos M Palmeira
- Department of Life Sciences, University of Coimbra, Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guys Campus, London, SE1 1UL, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisbon, 1749-024, Portugal.
| |
Collapse
|
5
|
Franco C, Patricia HR, Timo S, Claudia B, Marcela H. Matrix Metalloproteinases as Regulators of Periodontal Inflammation. Int J Mol Sci 2017; 18:ijms18020440. [PMID: 28218665 PMCID: PMC5343974 DOI: 10.3390/ijms18020440] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/26/2022] Open
Abstract
Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the 'protease web' is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules-such as cytokines, chemokines, and growth factors, among others-regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation.
Collapse
Affiliation(s)
- Cavalla Franco
- Department of Conservative Dentistry, School of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
- Department of Biological Sciences, School of Dentistry of Bauru, University of São Paulo (FOB/USP), Bauru, São Paulo 17012-901, Brazil.
- Center for Craniofacial Research, University of Texas School of Dentistry at Houston, Houston, TX 77054, USA.
| | - Hernández-Ríos Patricia
- Department of Conservative Dentistry, School of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
| | - Sorsa Timo
- Department of Oral and Maxillofacial Diseases, Helsinki University and Helsinki University Central Hospital, Helsinki 00290, Finland.
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge 14183, Sweden.
| | - Biguetti Claudia
- Department of Biological Sciences, School of Dentistry of Bauru, University of São Paulo (FOB/USP), Bauru, São Paulo 17012-901, Brazil.
- Center for Craniofacial Research, University of Texas School of Dentistry at Houston, Houston, TX 77054, USA.
| | - Hernández Marcela
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile.
- Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago 8910060, Chile.
| |
Collapse
|
6
|
Tajhya RB, Hu X, Tanner MR, Huq R, Kongchan N, Neilson JR, Rodney GG, Horrigan FT, Timchenko LT, Beeton C. Functional KCa1.1 channels are crucial for regulating the proliferation, migration and differentiation of human primary skeletal myoblasts. Cell Death Dis 2016; 7:e2426. [PMID: 27763639 PMCID: PMC5133989 DOI: 10.1038/cddis.2016.324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 01/14/2023]
Abstract
Myoblasts are mononucleated precursors of myofibers; they persist in mature skeletal muscles for growth and regeneration post injury. During myotonic dystrophy type 1 (DM1), a complex autosomal-dominant neuromuscular disease, the differentiation of skeletal myoblasts into functional myotubes is impaired, resulting in muscle wasting and weakness. The mechanisms leading to this altered differentiation are not fully understood. Here, we demonstrate that the calcium- and voltage-dependent potassium channel, KCa1.1 (BK, Slo1, KCNMA1), regulates myoblast proliferation, migration, and fusion. We also show a loss of plasma membrane expression of the pore-forming α subunit of KCa1.1 in DM1 myoblasts. Inhibiting the function of KCa1.1 in healthy myoblasts induced an increase in cytosolic calcium levels and altered nuclear factor kappa B (NFκB) levels without affecting cell survival. In these normal cells, KCa1.1 block resulted in enhanced proliferation and decreased matrix metalloproteinase secretion, migration, and myotube fusion, phenotypes all observed in DM1 myoblasts and associated with disease pathogenesis. In contrast, introducing functional KCa1.1 α-subunits into DM1 myoblasts normalized their proliferation and rescued expression of the late myogenic marker Mef2. Our results identify KCa1.1 channels as crucial regulators of skeletal myogenesis and suggest these channels as novel therapeutic targets in DM1.
Collapse
Affiliation(s)
- Rajeev B Tajhya
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xueyou Hu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Redwan Huq
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Natee Kongchan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joel R Neilson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank T Horrigan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lubov T Timchenko
- Department of Pediatrics Neurology, Cincinnati Children's Hospital, Cincinnati, OH 45219, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA.,Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
7
|
Osorio C, Cavalla F, Paula-Lima A, Díaz-Araya G, Vernal R, Ahumada P, Gamonal J, Hernández M. H2 O2 activates matrix metalloproteinases through the nuclear factor kappa B pathway and Ca(2+) signals in human periodontal fibroblasts. J Periodontal Res 2015; 50:798-806. [PMID: 25824649 DOI: 10.1111/jre.12267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND The mechanisms involved in reactive oxygen species and matrix metalloproteinase (MMP)-mediated periodontal tissue breakdown are unknown. OBJECTIVE To determine the effect of H2 O2 in MMP-2 and MMP-9 activity, and the involvement of nuclear factor kappa B (NFκB) and Ca(2+) -mediated signals in human periodontal ligament fibroblasts. MATERIAL AND METHODS Primary cultures were characterized for their phenotype and exposed for 24 h to sublethal doses (2.5-10 μm) of H2 O2 or control media. NFκB involvement was evaluated through immunofluorescence of p65 subunit, using the NFκB blocking peptide SN50 and catalase. Ca(2+) signals were analyzed by loading the cells with Fluo4-AM and recording the fluorescence changes in a confocal microscope before and after the addition of H2 O2 . 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl was used to chelate intracellular Ca(2+) . The activity and levels of MMP-2 and MMP-9 were analyzed by gelatin zymogram and densitometric scanning, and enzyme-linked immunosorbent assay, respectively. Statistical analysis was performed with stata V11.1 software using the ANOVA test. RESULTS H2 O2 at concentrations of 2.5-5 μm induced Ca(2+) signaling and NFκB subunit p65 nuclear translocation, whereas catalase, SN50 and BAPTA-AM prevented p65 nuclear translocation. H2 O2 at 2.5-5 μm significantly increased MMP-9 and MMP-2 activity, while SN50 resulted in lower MMP-2 and MMP-9 activity rates compared with controls. CONCLUSION Sublethal H2 O2 induces Ca(2+) -dependent NFκB signaling with an increase in MMP gelatinolytic activity in human periodontal ligament.
Collapse
Affiliation(s)
- C Osorio
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - F Cavalla
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - A Paula-Lima
- Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - G Díaz-Araya
- Department of Chemical Pharmacology and Toxicology, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - R Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - P Ahumada
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - J Gamonal
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - M Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Pathology, Faculty of Dentistry Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Suzuki A, Maeda T, Baba Y, Shimamura K, Kato Y. Acidic extracellular pH promotes epithelial mesenchymal transition in Lewis lung carcinoma model. Cancer Cell Int 2014; 14:129. [PMID: 25493076 PMCID: PMC4260188 DOI: 10.1186/s12935-014-0129-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/13/2014] [Indexed: 11/25/2022] Open
Abstract
Background Epithelial mesenchymal transition (EMT) is thought to be an essential feature of malignant tumor cells when they spread into the stroma. Despite the extracellular acidity of tumor tissues, the effect of acidic extracellular pH (pHe) on EMT in carcinoma models, including the Lewis lung carcinoma (LLC) model, remains unclear. Methods High and low metastatic LLC variants were generated by repeated tail vein injection of metastatic cells. DMEM/F12 medium, which has been supplemented with 15 mM HEPES, 4 mM phosphoric acid, and 1 g/L NaHCO3 and adjusted to the desire pH with HCl or NaOH, was used for cell culture. EMT marker gene expression was determined by quantitative reverse transcription-polymerase chain reaction. Migration and invasion activities were analyzed by wound healing assay and the Boyden chamber assay through Matrigel®, respectively. Results Low metastatic variant LLCm1 cells showed a cobble-stone like morphology at pHe 7.4. At pHe 6.8, however, their morphology became fibroblastic, similar in shape to high metastatic variant LLCm4 cells. Steady state levels of matrix metalloproteinase-9 (Mmp9) mRNA were induced by acidic pHe, maximizing at pH 6.8, with the levels of Mmp9 mRNA higher in LLCm4 than in LLCm1 cells. Both variants showed decreased levels of E-cadherin and increased levels of vimentin at pHe 6.8. Acidic pHe also induced expression of mRNAs encoding the E-cadherin repressors, Zeb2, Twist1 and Twist2, as well as enhancing cell motility and in vitro invasion through Matrigel®. Conclusions Acidic pHe can induce EMT in some types of carcinoma.
Collapse
Affiliation(s)
- Atsuko Suzuki
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama, Japan ; Department of Oral Physiology and Biochemistry, Ohu University Graduate School of Dentistry, Koriyama, Japan
| | - Toyonobu Maeda
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama, Japan
| | - Yuh Baba
- Department of General Clinical Medicine, Ohu University School of Dentistry, Koriyama, Japan
| | - Kazuhiro Shimamura
- Department of Oral Growth and Development, Ohu University School of Dentistry, Koriyama, Japan
| | - Yasumasa Kato
- Department of Oral Function and Molecular Biology, Ohu University School of Dentistry, Koriyama, Japan ; Department of Oral Physiology and Biochemistry, Ohu University Graduate School of Dentistry, Koriyama, Japan
| |
Collapse
|
9
|
Setz C, Brand Y, Radojevic V, Hanusek C, Mullen PJ, Levano S, Listyo A, Bodmer D. Matrix metalloproteinases 2 and 9 in the cochlea: expression and activity after aminoglycoside exposition. Neuroscience 2011; 181:28-39. [PMID: 21354273 DOI: 10.1016/j.neuroscience.2011.02.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 01/22/2023]
Abstract
The matrix metalloproteinases (MMPs) are a family of proteins involved in the remodelling and homeostasis of the extracellular matrix. These proteases have been well studied in the retina and the brain, marking their importance in neuronal cell survival and death [Chintala (2006) Exp Eye Res 82:5-12; Candelario-Jalil et al. (2009) Neuroscience 158:983-994]. The neuroepithelia of the eye and the inner ear share common characteristics. Therefore, we hypothesized that MMPs could play a similar role in the cochlea as described in the retina. We focused on the localization and function of MMP-2 and MMP-9 in the cochlea, by determining their expression and activity under normal conditions and after cochlear damage via aminoglycoside exposition. We examined their expression in 5-day-old Wistar rat cochleas by RT-PCR, real-time PCR, and Western blot. We used immunohistochemistry to investigate their location in the cochleas of adult C57BL/6 mice. We also determined whether or not the exposure of the organs of Corti to aminoglycosides would change MMP-2 and MMP-9 expression patterns. Western blotting identified MMP-2 and MMP-9 in neonatal spiral ganglion, stria vascularis, and to a lesser extent the organ of Corti. Neonatal mRNA expression of MMP-2 was approximately equivalent in all three tissues, while MMP-9 mRNA was highest in spiral ganglion. Immunohistochemistry showed MMP-2 primarily in adult spiral ganglion neurons and inner hair cells, while MMP-9 was found mainly in spiral ganglion neurons, inner hair cells and supporting cells. Organs of Corti treated with gentamicin for 24 h showed an upregulation of MMP-2 and MMP-9 proteins, but did not show a significant upregulation of mRNA expression 3, 6, 12, 24, and 36 h after gentamicin exposure. Inhibition of MMP activity in organs of Corti incubated with an MMP inhibitor in organotypic cultures resulted in hair cell death-suggesting that a basal level of MMP activity is required for hair cell survival.
Collapse
Affiliation(s)
- C Setz
- Department of Biomedicine, University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Lee S, Park H, Sang QX. Calcium regulates tertiary structure and enzymatic activity of human endometase/matrilysin-2 and its role in promoting human breast cancer cell invasion. Biochem J 2007; 403:31-42. [PMID: 17176253 PMCID: PMC1828896 DOI: 10.1042/bj20061390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human MMP-26 (matrix metalloproteinase-26) (also known as endometase or matrilysin-2) is a putative biomarker for human carcinomas of breast, prostate and other cancers of epithelial origin. Calcium modulates protein structure and function and may act as a molecular signal or switch in cells. The relationship between MMPs and calcium has barely been studied and is absent for MMP-26. We have investigated the calcium-binding sites and the role of calcium in MMP-26. MMP-26 has one high-affinity and one low-affinity calcium binding site. High-affinity calcium binding was restored at physiologically low calcium conditions with a calcium-dissociation constant of 63 nM without inducing secondary and tertiary structural changes. High-affinity calcium binding protects MMP-26 against thermal denaturation. Mutants of this site (D165A or E191A) lose enzymatic activity. Low-affinity calcium binding was restored at relatively high calcium concentrations and showed a K(d2) (low-affinity calcium-dissociation constant) value of 120 microM, which was accompanied with the recovery of enzymatic activity reversibly and tertiary structural changes, but without secondary structural rearrangements. Mutations at the low-affinity calcium-binding site (C3 site), K189E or D114A, induced enhanced affinity for the Ca2+ ion or an irreversible loss of enzymatic activity triggered by low-affinity calcium binding respectively. Mutation at non-calcium-binding site (V184D at C2 site) showed that C2 is not a true calcium-binding site. Observations from homology-modelled mutant structures correlated with these experimental results. A human breast cancer cell line, MDA-MB-231, transfected with wild-type MMP-26 cDNA showed a calcium-dependent invasive potential when compared with controls that were transfected with an inactive form of MMP-26 (E209A). Calcium-independent high invasiveness was observed in the K189E mutant MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Seakwoo Lee
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| | - Hyun I. Park
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
11
|
Currie JC, Fortier S, Sina A, Galipeau J, Cao J, Annabi B. MT1-MMP down-regulates the glucose 6-phosphate transporter expression in marrow stromal cells: a molecular link between pro-MMP-2 activation, chemotaxis, and cell survival. J Biol Chem 2007; 282:8142-9. [PMID: 17229722 DOI: 10.1074/jbc.m610894200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bone marrow-derived stromal cells (BMSC) are avidly recruited by experimental vascularizing tumors, which implies that they must respond to tumor-derived growth factor cues. In fact, BMSC chemotaxis and cell survival are regulated, in part, by the membrane type-1 matrix metalloproteinase (MT1-MMP), an MMP also involved in pro-MMP-2 activation and in degradation of the extracellular matrix (ECM). Given that impaired chemotaxis was recently observed in bone marrow cells isolated from a glucose 6-phosphate transporter-deficient (G6PT-/-) mouse model, we sought to investigate the potential MT1-MMP/G6PT signaling axis in BMSC. We show that MT1-MMP-mediated activation of pro-MMP-2 by concanavalin A (ConA) correlated with an increase in the sub-G1 cell cycle phase as well as with cell necrosis, indicative of a decrease in BMSC survival. BMSC isolated from Egr-1-/- mouse or MT1-MMP gene silencing in BMSC with small interfering RNA (siMT1-MMP) antagonized both the ConA-mediated activation of pro-MMP-2 and the induction of cell necrosis. Overexpression of recombinant full-length MT1-MMP triggered necrosis and this was signaled through the cytoplasmic domain of MT1-MMP. ConA inhibited both the gene and protein expression of G6PT, while overexpression of recombinant G6PT inhibited MT1-MMP-mediated pro-MMP-2 activation but could not rescue BMSC from ConA-induced cell necrosis. Cell chemotaxis in response to the tumorigenic growth factor sphingosine 1-phosphate was significantly abrogated in siMT1-MMP BMSC and in chlorogenic acid-treated BMSC. Altogether, we provide evidence for an MT1-MMP/G6PT signaling axis that regulates BMSC survival, ECM degradation, and mobilization. This may lead to optimized clinical applications that use BMSC as a platform for the systemic delivery of therapeutic or anti-cancer recombinant proteins in vivo.
Collapse
Affiliation(s)
- Jean-Christophe Currie
- Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre BIOMED, Université du Québec à Montréal, Québec H3C 3P8, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Annabi B, Bouzeghrane M, Moumdjian R, Moghrabi A, Béliveau R. Probing the infiltrating character of brain tumors: inhibition of RhoA/ROK-mediated CD44 cell surface shedding from glioma cells by the green tea catechin EGCg. J Neurochem 2005; 94:906-16. [PMID: 15992376 DOI: 10.1111/j.1471-4159.2005.03256.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glioma cell-surface binding to hyaluronan (HA), a major constituent of the brain extracellular matrix (ECM) environment, is regulated through a complex membrane type-1 matrix metalloproteinase (MT1-MMP)/CD44/caveolin interaction that takes place at the leading edges of invading cells. In the present study, intracellular transduction pathways required for the HA-mediated recognition by infiltrating glioma cells in brain was investigated. We show that the overexpression of the GTPase RhoA up-regulated MT1-MMP expression and triggered CD44 shedding from the U-87 glioma cell surface. This potential implication in cerebral metastatic processes was also observed in cells overexpressing the full-length recombinant MT1-MMP, while the overexpression of a cytoplasmic domain truncated from of MT1-MMP failed to do so. This suggests that the cytoplasmic domain of MT1-MMP transduces intracellular signaling leading to RhoA-mediated CD44 shedding. Treatment of glioma cells with the Rho-kinase (ROK) inhibitor Y27632, or with EGCg, a green tea catechin with anti-MMP and anti-angiogenesis activities, antagonized both RhoA- and MT1-MMP-induced CD44 shedding. Conversely, overexpression of recombinant ROK stimulated CD44 release. Taken together, our results suggest that RhoA/ROK intracellular signaling regulates MT1-MMP-mediated CD44 recognition of HA. These molecular processes may partly explain the diffuse brain-infiltrating character of glioma cells within the surrounding parenchyma and thus be a target for new approaches to anti-tumor therapy.
Collapse
Affiliation(s)
- Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Département de Chimie-Biochimie, Université du Québec à Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
13
|
Osenkowski P, Meroueh SO, Pavel D, Mobashery S, Fridman R. Mutational and structural analyses of the hinge region of membrane type 1-matrix metalloproteinase and enzyme processing. J Biol Chem 2005; 280:26160-8. [PMID: 15901740 DOI: 10.1074/jbc.m414379200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane type 1 (MT1)-matrix metalloproteinase (MMP) is a major mediator of collagen degradation in the pericellular space in both physiological and pathological conditions. Previous evidence has shown that on the cell surface, active MT1-MMP undergoes autocatalytic processing to a major membrane-tethered 44-kDa product lacking the catalytic domain and displaying Gly285 at its N terminus, which is at the beginning of the hinge domain. However, the importance of this site and the hinge region in MT1-MMP processing is unknown. In the current study, we generated mutations and deletions in the hinge of MT1-MMP and followed their effect on processing. These studies established Gly284-Gly285 as the main cleavage site involved in the formation of the 44-kDa species. However, alterations at this site did not prevent processing. Instead, they forced downstream cleavages within the stretch of residues flanked by Gln296 and Ser304 in the hinge region, as determined by the processing profile of various hinge deletion mutants. Also, replacement of the hinge of MT1-MMP with the longer MT3-MMP hinge did not prevent processing of MT1-MMP. Molecular dynamic studies using a computational model of MT1-MMP revealed that the hinge region is a highly motile element that undergoes significant motion in the highly exposed loop formed by Pro295-Arg302 consistent with being a prime target for proteolysis, in agreement with the mutational data. These studies suggest that the hinge of MT1-MMP evolved to facilitate processing, a promiscuous but compulsory event in the destiny of MT1-MMP, which may play a key role in the control of pericellular proteolysis.
Collapse
Affiliation(s)
- Pamela Osenkowski
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
14
|
Nagano O, Saya H. Mechanism and biological significance of CD44 cleavage. Cancer Sci 2004; 95:930-5. [PMID: 15596040 PMCID: PMC11159127 DOI: 10.1111/j.1349-7006.2004.tb03179.x] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/18/2004] [Accepted: 10/18/2004] [Indexed: 12/13/2022] Open
Abstract
There are multiple steps in the metastasis of cancer cells. Tumor cells must first detach from the tumor mass and invade the surrounding extracellular matrix (ECM). In this step, cell surface adhesion molecules play an important role in the interaction between the cells and their microenvironments. CD44 is an adhesion molecule that interacts with hyaluronic acid (HA) and is implicated in a wide variety of physiological and pathological processes. Recently, proteolytic cleavages of CD44 have been emerging as key regulatory events for the CD44 dependent cell-matrix interaction and signaling pathway. CD44 undergoes sequential proteolytic cleavages in the ectodomain and intramembranous domain, resulting in the release of a CD44 intracellular domain (ICD) fragment. The ectodomain cleavage of CD44 is triggered by multiple stimulations and contributes to the regulation of cell attachment to and migration on HA matrix. The ectodomain cleavage subsequently induces the intramembranous cleavage, which is mediated by presenilin (PS)-dependent gamma -secretase. The intramembranous cleavage generates CD44ICD, which acts as a signal transduction molecule; it is translocated to the nucleus and activates transcription. An understanding of the underlying mechanism of these cleavages of CD44 could provide novel therapeutic targets for cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Osamu Nagano
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | | |
Collapse
|
15
|
Nagano O, Murakami D, Hartmann D, De Strooper B, Saftig P, Iwatsubo T, Nakajima M, Shinohara M, Saya H. Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca(2+) influx and PKC activation. ACTA ACUST UNITED AC 2004; 165:893-902. [PMID: 15197174 PMCID: PMC2172408 DOI: 10.1083/jcb.200310024] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CD44 is an adhesion molecule that interacts with hyaluronic acid (HA) and undergoes sequential proteolytic cleavages in its ectodomain and intramembranous domain. The ectodomain cleavage is triggered by extracellular Ca(2+) influx or the activation of protein kinase C. Here we show that CD44-mediated cell-matrix adhesion is terminated by two independent ADAM family metalloproteinases, ADAM10 and ADAM17, differentially regulated in response to those stimuli. Ca(2+) influx activates ADAM10 by regulating the association between calmodulin and ADAM10, leading to CD44 ectodomain cleavage. Depletion of ADAM10 strongly inhibits the Ca(2+) influx-induced cell detachment from matrix. On the other hand, phorbol ester stimulation activates ADAM17 through the activation of PKC and small GTPase Rac, inducing proteolysis of CD44. Furthermore, depletion of ADAM10 or ADAM17 markedly suppressed CD44-dependent cancer cell migration on HA, but not on fibronectin. The spatio-temporal regulation of two independent signaling pathways for CD44 cleavage plays a crucial role in cell-matrix interaction and cell migration.
Collapse
Affiliation(s)
- Osamu Nagano
- Dept. of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Osenkowski P, Toth M, Fridman R. Processing, shedding, and endocytosis of membrane type 1‐matrix metalloproteinase (MT1‐MMP). J Cell Physiol 2004; 200:2-10. [PMID: 15137052 DOI: 10.1002/jcp.20064] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Matrix metalloproteinases (MMPs) are multidomain zinc-dependent proteolytic enzymes that play pivotal roles in many normal and pathological processes. Some members of the MMP family are anchored to the plasma membrane via specialized domains and thus are perfectly suited for pericellular proteolysis. Membrane-anchoring also confers the membrane type-MMPs (MT-MMPs) a unique and complex array of regulatory processes that endow cells with the ability to control MT-MMP-dependent proteolytic activity independently of the levels of endogenous protease inhibitors. Emerging evidence indicates that mechanisms as diverse as autocatalytic processing, ectodomain shedding, homodimerization and internalization can all contribute to the modulation of MT-MMP activity on the cell surface. How these distinct processes interact to attain the optimal level of enzyme activity in a particular setting and the molecular signals that trigger them constitute a new paradigm in MMP regulation. This review will discuss the recent findings concerning these diverse regulatory mechanisms in the context of MT1-MMP (MMP-14).
Collapse
Affiliation(s)
- Pamela Osenkowski
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
17
|
Cheng S, Lovett DH. Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1937-49. [PMID: 12759250 PMCID: PMC1868144 DOI: 10.1016/s0002-9440(10)64327-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Progressive renal interstitial fibrosis and tubular atrophy represent the final injury pathway for all commonly encountered forms of renal disease that lead to end-stage renal failure. It has been recently recognized that myofibroblastic cells are the major contributors to the deposition of interstitial collagens. While there are several potential cellular sources of myofibroblasts, attention has focused on the transformation of the organized tubular epithelium to the myofibroblastic phenotype, a process potently driven both in vitro and in vivo by transforming growth factor-beta1 (TGF-beta1). Integrity of the underlying basal lamina provides cellular signals that maintain the epithelial phenotype, and disruption by discrete proteases could potentially initiate the transformation process. We demonstrate that TGF-beta1 coordinately stimulates the synthesis of a specific matrix metalloproteinase, gelatinase A (MMP-2), and its activator protease, MT1-MMP (MMP-14), and that active gelatinase A is absolutely required for epithelial-mesenchymal transformation induced by TGF-beta1. In addition, purified active gelatinase A alone is sufficient to induce epithelial-mesenchymal transformation in the absence of exogenous TGF-beta1. Gelatinase A may also mediate epithelial-mesenchymal transformation in a paracrine manner through the proteolytic generation of active TGF-beta1 peptide. MT1-MMP and gelatinase A were co-localized to sites of active epithelial-mesenchymal transformation and basal lamina disruption in the rat remnant kidney model of progressive renal fibrosis. These studies indicate that a discrete matrix metalloproteinase, gelatinase A, is capable of inducing the complex genetic rearrangements that characterize renal tubular epithelial-mesenchymal transformation.
Collapse
Affiliation(s)
- Sunfa Cheng
- Department of Medicine, San Francisco Veterans Affairs Medical Center, University of California, San Francisco 94121, USA
| | | |
Collapse
|
18
|
Mayer G, Boileau G, Bendayan M. Furin interacts with proMT1-MMP and integrin alphaV at specialized domains of renal cell plasma membrane. J Cell Sci 2003; 116:1763-73. [PMID: 12665557 DOI: 10.1242/jcs.00394] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and integrins are essential for cell and extracellular matrix homeostasis. Both membrane type-1 MMP (MT1-MMP) and the integrin alphaV subunit are fully activated upon cleavage at a furin recognition site. Furin is shuttled to the cell surface through the trans-Golgi network and endosomal system, and its only known role on plasma membrane consists in activation of opportunistic pathogenic entities. Here, we report findings about the interaction of furin with MT1-MMP and the integrin alphaV at the cell surface. By using in vivo gene delivery, western blotting and immunogold electron microscopy, we provide evidence of significant pools of furin and proMT1-MMP along the surface of cells lining basement membranes. Moreover, furin and integrin alphaV are frequently found associated with the slit diaphragm of renal podocytes and around endothelial fenestrations. ProMT1-MMP, by contrast, is concentrated at the slit diaphragm. Coimmunoprecipitations and double immunogold labelings indicate that furin interacts with proMT1-MMP and alphaV at points of insertion of the slit diaphragm. Our results suggest that these focalized complexes could trigger basement membrane proteolysis either directly by activation of proMT1-MMP or indirectly by promoting activation of proMMP2.
Collapse
Affiliation(s)
- Gaétan Mayer
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada
| | | | | |
Collapse
|
19
|
Trocmé C, Gaudin P, Berthier S, Morel F. Regulation of TIMP-1 phenotypic expression in Epstein--Barr virus-immortalized B lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1590:167-76. [PMID: 12063180 DOI: 10.1016/s0167-4889(02)00210-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal B lymphocytes as well as malignant B cells extravasate from blood circulation during physiological and pathological processes and require matrix metalloproteinases (MMPs) to facilitate trafficking through the subendothelial basal lamina and the extracellular matrix. We have previously shown that Epstein-Barr virus (EBV)-immortalized B lymphocytes constitutively synthesized low levels of MMP-9 and huge amounts of its preferential inhibitor, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1). In the present study, TIMP-1 phenotypic expression was extensively investigated in response to various mediators including interleukins, chemokines, growth factors and tumor promotor, and was compared to MMP-9 synthesis. Results showed a roughly constitutive TIMP-1 expression opposed to an inducible MMP-9 synthesis. Nevertheless, further analysis of TIMP-1 synthesis showed the existence of regulation mechanisms: modulation of intracellular Ca(2+) concentration as well as cation ionophore monensin were demonstrated to influence TIMP-1 production and secretion. The precise pathways implicated in these regulation mechanisms are currently under survey.
Collapse
Affiliation(s)
- Candice Trocmé
- GREPI, Laboratoire d'Enzymologie, CHU Albert Michallon, BP 217, 38043 Grenoble Cedex 9, France.
| | | | | | | |
Collapse
|
20
|
Ruangpanit N, Price JT, Holmbeck K, Birkedal-Hansen H, Guenzler V, Huang X, Chan D, Bateman JF, Thompson EW. MT1-MMP-dependent and -independent regulation of gelatinase A activation in long-term, ascorbate-treated fibroblast cultures: regulation by fibrillar collagen. Exp Cell Res 2002; 272:109-18. [PMID: 11777335 DOI: 10.1006/excr.2001.5403] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human skin fibroblasts were cultured long-term in the presence of ascorbic acid to allow formation of a three-dimensional collagen matrix, and the effects of this on activation of secreted matrix metalloproteinase-2 (MMP-2) were examined. Accumulation of collagen over time correlated with increased levels of both mature MMP-2 and cell-associated membrane type 1-MMP (MT1-MMP), and subsequently increased mRNA levels for MT1-MMP, providing temporal resolution of the "nontranscriptional" and "transcriptional" effects of collagen on MT-1MMP functionality. MMP-2 activation by these cultures was blocked by inhibitors of prolyl-4-hydroxylase, or when fibroblasts derived from the collagen alpha1(I) gene-deficient Mov-13 mouse were used. MMP-2 activation by the Mov-13 fibroblasts was rescued by transfection of a full-length alpha1(I) collagen cDNA, and to our surprise, also by transfection with an alpha1(I) collagen cDNA carrying a mutation at the C-proteinase cleavage, which almost abrogated fibrillogenesis. Although studies with ascorbate-cultured MT1-MMP-/- fibroblasts showed that MT1-MMP played a significant role in the collagen-induced MMP-2 activation, a residual MT1-MMP-independent activation of MMP-2 was seen which resembled the level of MMP-2 activation persisting when wild-type fibroblasts were cultured in the presence of both ascorbic acid and MMP inhibitors. We were also unable to block this residual activation with inhibitors specific for serinyl, aspartyl, or cysteinyl enzymes.
Collapse
Affiliation(s)
- Neeracha Ruangpanit
- VBCRC Breast Cancer Invasion and Metastasis Unit, St. Vincent's Institute of Medical Research, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Annabi B, Pilorget A, Bousquet-Gagnon N, Gingras D, Béliveau R. Calmodulin inhibitors trigger the proteolytic processing of membrane type-1 matrix metalloproteinase, but not its shedding in glioblastoma cells. Biochem J 2001; 359:325-33. [PMID: 11583578 PMCID: PMC1222150 DOI: 10.1042/0264-6021:3590325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Most transmembrane proteins are subjected to limited proteolysis by cellular proteases, and stimulation of cleavage of membrane proteins by calmodulin (CaM) inhibitors was recently shown. The present study investigated the ability of several CaM inhibitors to induce the proteolytic cleavage of the membrane type-1 matrix metalloproteinase (MT1-MMP) from the cell surface of highly invasive U-87 glioblastoma cells. Although no shedding of a soluble MT1-MMP form was induced by CaM inhibitors in the conditioned media, we showed that these inhibitors induced MT1-MMP proteolytic processing to the 43 kDa membrane-bound inactive form that was not correlated with an increase in proMMP-2 activation but rather with an increase in tissue inhibitor of MMPs (TIMP)-2 expression levels. Moreover, this proteolytic processing was sensitive to marimastat suggesting the involvement of MMPs. Interestingly, CaM inhibitors antagonized concanavalin A- and cytochalasin D-induced proMMP-2 activation, and affected the cytoskeletal actin organization resulting in the loss of migratory potential of U-87 glioblastoma cells. Cytoplasmic tail-truncated MT1-MMP constructs expressed in COS-7 cells were also affected by CaM inhibitors suggesting that these inhibitors stimulated MT1-MMP proteolytic processing by mechanisms independent of the CaM-substrate interaction. We also propose that TIMP-2 acts as a negative regulator of MT1-MMP-dependent activities promoted by the action of CaM inhibitors in U-87 glioblastoma cells.
Collapse
Affiliation(s)
- B Annabi
- Centre de Cancérologie Charles-Bruneau, Hôpital Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, Québec, Canada H3T 1C5
| | | | | | | | | |
Collapse
|
22
|
Chen PS, Zhai WR, Zhou XM, Zhang JS, Zhang YE, Ling YQ, Gu YH. Effects of hypoxia, hyperoxia on the regulation of expression and activity of matrix metalloproteinase-2 in hepatic stellate cells. World J Gastroenterol 2001; 7:647-51. [PMID: 11819847 PMCID: PMC4695567 DOI: 10.3748/wjg.v7.i5.647] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2001] [Revised: 06/06/2001] [Accepted: 06/12/2001] [Indexed: 02/06/2023] Open
Abstract
AIM To study the effects of hypoxia, hyperoxia on the regulation of expression and activity of matrix metalloproteinase-2 (MMP-2) in hepatic stellate cells (HSC). METHODS The expressions of MMP-2, tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) and membrane type matrix metalloproteinase-1 (MT1-MMP) in cultured rat HSC were detected by immunocytochemistry (ICC) and in situ hybridization (ISH). The contents of MMP-2 and TIMP-2 in culture supernatant were detected with ELISA and the activity of MMP-2 in supernatant was revealed by zymography. RESULTS In the situation of hypoxia for 12h, the expression of MMP-2 protein was enhanced (hypoxia group positive indexes: 5.7 +/- 2.0, n=10; control: 3.2 +/- 1.0, n = 7; P<0.05), while TIMP-2 protein was decreased in HSC (hypoxia group positive indexes: 2.5 +/- 0.7, n = 10; control: 3.6 +/- 1.0, n = 7; P < 0.05), and the activity (total A) of MMP-2 in supernatant declined obviously (hypoxia group: 7.334 +/- 1.922, n = 9; control: 17.277 +/- 7.424, n = 11; P < 0.01). Compared the varied duration of hypoxia, the changes of expressions including mRNA and protein level as well as activity of MMP-2 were most notable in 6h group. The highest value(A(hypoxia)-A(control)) of the protein and the most intense signal of mRNA were in the period of hypoxia for 6h, along with the lowest activity of MMP-2. In the situation of hyperoxia for 12h, the contents (A(450)) of MMP-2 and TIMP-2 in supernatant were both higher than those in the control, especially the TIMP-2 (hyperoxia group: 0.0499 +/- 0.0144, n = 16; control: 0.0219 +/- 0.0098, n = 14; P < 0.01), and so was the activity of MMP-2 (hyperoxia group: 5.252 +/- 0.771, n = 14; control: 4.304 +/- 1.083, n = 12; P < 0.05), and the expression of MT1-MMP was increased. CONCLUSION HSC is sensitive to the oxygen, hypoxia enhances the expression of MMP-2 and the effect is more marked at the early stage; hyperoxia mainly raises the activity of MMP-2.
Collapse
Affiliation(s)
- P S Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Ruangpanit N, Chan D, Holmbeck K, Birkedal-Hansen H, Polarek J, Yang C, Bateman JF, Thompson EW. Gelatinase A (MMP-2) activation by skin fibroblasts: dependence on MT1-MMP expression and fibrillar collagen form. Matrix Biol 2001; 20:193-203. [PMID: 11420151 DOI: 10.1016/s0945-053x(01)00135-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The respective requirements of collagen and MT1-MMP in the activation of MMP-2 by primary fibroblast cultures were explored further. Three-dimensional gels enriched in human collagen types I and III or composed of recombinant human type II or III collagen, caused increased MT1-MMP production (mRNA and protein) and induced MMP-2 activation. Only marginal induction was seen with dried monomeric collagen confirming the need for collagen fibrillar organisation for activation. To our surprise, relatively low amounts (as low as 25 microg/ml) of acid soluble type I collagen added to fibroblast cultures also induced potent MMP-2 activation. However, the requirement for collagen fibril formation by the added collagen was indicated by the inhibition seen when the collagen was pre-incubated with a fibril-blocking peptide, and the reduced activation seen with alkali-treated collagen preparations known to have impaired fibrilisation. Pre-treatment of the collagen with sodium periodate also abrogated MMP-2 activation induction. Further evidence of the requirement for collagen fibril formation was provided by the lack of activation when type IV collagen, which does not form collagen fibrils, was added in the cultures. Fibroblasts derived from MT1-MMP-deficient mice were unable to activate MMP-2 in response to either three-dimensional collagen gel or added collagen solutions, compared to their littermate controls. Collectively, these data indicate that the fibrillar structure of collagen and MT1-MMP are essential for the MMP-2 activational response in fibroblasts.
Collapse
Affiliation(s)
- N Ruangpanit
- VBCRC Breast Cancer Invasion and Metastasis Unit, St. Vincent's Institute of Medical Research, 9 Princes St., 3065, Fitzroy, Australia
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sawaji Y, Sato T, Seiki M, Ito A. Heat shock-mediated transient increase in intracellular 3',5'-cyclic AMP results in tumor specific suppression of membrane type 1-matrix metalloproteinase production and progelatinase A activation. Clin Exp Metastasis 2001; 18:131-8. [PMID: 11235988 DOI: 10.1023/a:1006760021997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have previously reported that heat shock suppresses the production and gene expression of membrane type 1-matrix metalloproteinase (MT1-MMP) and thereby inhibits the activation of progelatinase A/proMMP-2 in human fibrosarcoma HT-1080 cells and human squamous carcinoma A431 cells and SAS cells (Sato et al. Biochem Biophys Res Commun 1999; 265: 189-93). In an effort to clarify the heat shock-mediated signal transduction pathways, an intracellular cAMP level was found to be transiently augmented in the heat shocked HT-1080 cells. When HT-1080 cells were pretreated with cAMP elevating reagents, forskolin and dibutyryl cAMP for 4 h instead of heat shock and then maintained in a fresh medium, the production and gene expression of MT1-MMP were similarly suppressed. The MT1-MMP-mediated activation of proMMP-2 was also inhibited in the forskolin- and dibutyryl cAMP-treated HT-1080 cells. Furthermore, the transiently augmented cAMP by forskolin as well as heat shock interfered with in vitro invasive activity of HT-1080 cells. In contrast, in normal human fibroblasts neither heat shock nor cAMP elevating reagents altered the concanavalin A-augmented MT1-MMP production and proMMP-2 activation. These results suggest that a transient increase in intracellular cAMP is a critical signal for heat shock to induce tumor specific-suppression of MT1-MMP production and proMMP-2 activation.
Collapse
Affiliation(s)
- Y Sawaji
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | |
Collapse
|
25
|
Atkinson SJ, Patterson ML, Butler MJ, Murphy G. Membrane type 1 matrix metalloproteinase and gelatinase A synergistically degrade type 1 collagen in a cell model. FEBS Lett 2001; 491:222-6. [PMID: 11240131 DOI: 10.1016/s0014-5793(01)02204-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A fibrosarcoma cell line transfected with the matrix metalloproteinase MT1 MMP showed an enhanced ability to degrade 14C-labelled collagen films. As previously shown for proMMP 2 activation, TIMP 1 was an ineffective inhibitor of the process of collagenolysis whereas TIMP 2 was efficient and completely prevented collagen degradation. In the presence of the calcium ionophore, ionomycin, proteolytic processing of MT1 MMP was restricted and collagenolysis did not occur indicating that the 63 kDa form of the enzyme is not a functional collagenase. The collagenolytic activity of MT1 MMP was shown to be enhanced by the addition of proMMP 2, but TIMP 1 inhibition remained poor relative to that of TIMP 2. The study demonstrated that synergy between two non-conventional collagenases effectively degrades insoluble pericellular collagen. Due to the membrane localisation of MT1 MMP, this could potentially occur in a highly localised manner.
Collapse
Affiliation(s)
- S J Atkinson
- School of Biological Sciences, University of East Anglia, NR4 7TJ, Norwich, UK
| | | | | | | |
Collapse
|
26
|
Yan L, Moses MA, Huang S, Ingber DE. Adhesion-dependent control of matrix metalloproteinase-2 activation in human capillary endothelial cells. J Cell Sci 2000; 113 ( Pt 22):3979-87. [PMID: 11058085 DOI: 10.1242/jcs.113.22.3979] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The growth and regression of capillary blood vessels during angiogenesis is greatly influenced by changes in the activity of matrix metalloproteinases (MMPs), which selectively degrade extracellular matrix (ECM) and thereby modulate capillary endothelial cell shape, growth and viability. However, changes in cell-ECM binding and cell spreading have also been reported to alter MMP secretion and activation. Studies were carried out to determine whether changes in integrin binding or cell shape feed back to alter MMP-2 processing in human capillary endothelial (HCE) cells. Catalytic processing of proMMP-2 to active MMP-2 progressively decreased when HCE cells were cultured on dishes coated with increasing densities of fibronectin (FN), which promote both integrin binding and cell spreading. Conversely, the highest levels of active MMP-2 were detected in round cells cultured on low FN. When measured 24 hours after plating, this increase in active MMP-2 was accompanied by a concomitant rise in mRNA and protein levels for the membrane-type 1 MMP (MT1-MMP), which catalyzes the cleavage of proMMP-2. To determine whether proMMP-2 processing was controlled directly by integrin binding or indirectly by associated changes in cell shape, round cells on low FN were allowed to bind to microbeads (4.5 microm diameter) coated with a synthetic RGD peptide or FN; these induce local integrin receptor clustering without altering cell shape. ProMMP-2 activation was significantly decreased within minutes after bead binding in these round cells, prior to any detectable changes in expression of MT1-MMP, whereas binding of beads coated with control ligands for other transmembrane receptors had no effect. This inhibitory effect was mimicked by microbeads coated with activating antibodies against alphaVbeta3 and beta1 integrins, suggesting a direct role for these cell-surface ECM receptors in modulating proMMP-2 activation. Similar inhibition of proMMP-2 processing by integrin binding, independent of cell spreading, was demonstrated in cells that were cultured on small, microfabricated adhesive islands that prevented cell spreading while presenting a high FN density directly beneath the cell. Interestingly, when spread cells were induced to round up from within by disrupting their actin cytoskeleton using cytochalasin D, proMMP-2 processing did not change at early times; however, increases in MT1-MMP mRNA levels and MMP-2 activation could be detected by 18 hours. Taken together, these results suggest the existence of two phases of MMP-2 regulation in HCE cells when they adhere to ECM: (1) a quick response, in which integrin clustering alone is sufficient to rapidly inhibit processing of proMMP-2 and (2) a slower response, in which subsequent cell spreading and changes in the actin cytoskeleton feed back to decrease expression of MT1-MMP mRNA and, thereby, further suppress cellular proteolytic activity.
Collapse
Affiliation(s)
- L Yan
- Departments of Surgery and Pathology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
27
|
Demeule M, Brossard M, Pagé M, Gingras D, Béliveau R. Matrix metalloproteinase inhibition by green tea catechins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1478:51-60. [PMID: 10719174 DOI: 10.1016/s0167-4838(00)00009-1] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have investigated the effects of different biologically active components from natural products, including green tea polyphenols (GTP), resveratrol, genistein and organosulfur compounds from garlic, on matrix metalloproteinase (MMP)-2, MMP-9 and MMP-12 activities. GTP caused the strongest inhibition of the three enzymes, as measured by fluorescence assays using gelatin or elastin as substrates. The inhibition of MMP-2 and MMP-9 caused by GTP was confirmed by gelatin zymography and was observed for MMPs associated with both various rat tissues and human brain tumors (glioblastoma and pituitary tumors). The activities of MMPs were also measured in the presence of various catechins isolated from green tea including (-)-epigallocatechin gallate (EGCG), (-)-epicatechin gallate(ECG), (-)-epigallocatechin (EGC), (-)-epicatechin (EC) and (+)-catechin (C). The most potent inhibitors of these activities, as measured by fluorescence and by gelatin or casein zymography, were EGCG and ECG. GTP and the different catechins had no effect on pancreatic elastase, suggesting that the effects of these molecules on MMP activities are specific. Furthermore, in vitro activation of proMMP-2 secreted from the glioblastomas cell line U-87 by the lectin concanavalin A was completely inhibited by GTP and specifically by EGCG. These results indicate that catechins from green tea inhibit MMP activities and proMMP-2 activation.
Collapse
Affiliation(s)
- M Demeule
- Laboratoire de Médecine Moléculaire, Hopital Sainte-Justine - UQAM, C.P. 8888, Succursale centre-ville, Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
28
|
Cellular mechanisms for focal proteolysis and the regulation of the microenvironment. ACTA ACUST UNITED AC 2000. [DOI: 10.1054/fipr.2000.0068] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Murphy G, Stanton H, Cowell S, Butler G, Knäuper V, Atkinson S, Gavrilovic J. Mechanisms for pro matrix metalloproteinase activation. APMIS 1999; 107:38-44. [PMID: 10190278 DOI: 10.1111/j.1699-0463.1999.tb01524.x] [Citation(s) in RCA: 312] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The activation of pro matrix metalloproteinases (MMPs) by sequential proteolysis of the propeptide blocking the active site cleft is regarded as one of the key levels of regulation of these proteinases. Potential physiological mechanisms including cell-associated plasmin generation by urokinase-like plasminogen activator, or the action of cell surface MT1-MMPs appear to be involved in the initiation of cascades of pro MMP activation. Gelatinase A, collagenase 3 and gelatinase B may be activated by MT-MMP based mechanisms, as evidenced by both biochemical and cell based studies. Hence the regulation of MT-MMPs themselves becomes critical to the determination of MMP activity. This includes activation, assembly at the cell surfaces as TIMP-2 complexes and subsequent inactivation by proteolysis or TIMP inhibition.
Collapse
Affiliation(s)
- G Murphy
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Yu M, Sato H, Seiki M, Spiegel S, Thompson EW. Elevated cyclic AMP suppresses ConA-induced MT1-MMP expression in MDA-MB-231 human breast cancer cells. Clin Exp Metastasis 1998; 16:185-91. [PMID: 9514100 DOI: 10.1023/a:1006580406314] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have previously reported that induction of MMP-2 activation by Concanavalin A (ConA) in MDA-MB-231 human breast cancer cells involves both transcriptional and post-transcriptional mechanisms, and that the continuous presence of ConA is required for MMP-2 activation (Yu et al. Cancer Res, 55, 3272-7, 1995). In an effort to identify signal transduction pathways which may either contribute to or modulate this mechanism, we found that three different cAMP-inducing agents, cholera toxin (CT), forskolin (FSK), and 3-isobutyl-1-methylxanthine (IBMX) partially inhibited ConA-induced MT1-MMP expression and MMP-2 activation in MDA-MB-231 cells. Combinations of CT or FSK with IBMX exhibited additive effects on reduction of MT1-MMP mRNA expression and MMP-2 activation. Agents which increase cAMP levels appeared to target transcriptional aspects of ConA induction, reducing MT1-MMP mRNA and protein in parallel with the reduced MMP-2 activation. In the absence of ConA, down-regulation of constitutive production of MT1-MMP mRNA and protein was observed, indicating that cAMP acts independently of ConA. These observations may help to elucidate factors regulating MT1-MMP expression, which may be pivotal to the elaboration of invasive machinery on the cell surface.
Collapse
Affiliation(s)
- M Yu
- Department of Cell Biology, Vincent T. Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | |
Collapse
|